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From the field equations in the linear regime of the characteristic formulation of general relativity, Bishop,
for a Schwarzschild’s background, and Mädler, for a Minkowski’s background, were able to show that it is
possible to derive a fourth order ordinary differential equation, calledmaster equation, for theJmetric variable
of the Bondi-Sachsmetric. Once β, another Bondi-Sachs potential, is obtained from the field equations, and J
is obtained from the master equation, the other metric variables are solved integrating directly the rest of the
field equations. In the past, the master equation was solved for the first multipolar terms, for both the
Minkowski’s and Schwarzschild’s backgrounds. Also, Mädler recently reported a generalisation of the exact
solutions to the linearised field equations when a Minkowski’s background is considered, expressing the
master equation family of solutions for the vacuum in terms of Bessel’s functions of the first and the second
kind. Here, we report new solutions to the master equation for any multipolar moment l, with and without
matter sources in terms only of the first kind Bessel’s functions for the Minkowski, and in terms of the
Confluent Heun’s functions (Generalised Hypergeometric) for radiative (nonradiative) case in the Schwarzs-
child’s background. We particularize our families of solutions for the known cases for l ¼ 2 reported
previously in the literature and find complete agreement, showing the robustness of our results.
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I. INTRODUCTION

The characteristic formulation of general relativity offers
an attractive point of view to deal with the problem of
gravitational wave emission from a source, because this
formulation is based on radiation coordinates. Several com-
plex numerical codes have been developed to treat diverse
problems in the nonlinear regime [1–8]. However, given the
complexity of the field equations, there are not analytical
solutions in the characteristic formulation in this regime.
In particular in the weak field limit, this formulation has

been used to construct wave extraction algorithms that
are applied to obtain the radiation patterns produced in
complex numerical simulations of binary systems. Such
simulations are usually performed using 3þ 1 numerical
codes, and then matching algorithms are used in order to
make the gravitational wave extraction from some charac-
teristic formulation schemes (see, e.g., [7,9]).
Furthermore, the linear regime has been applied in some

interesting situations, despite lacking physical meaning in
some cases, such as the equilibrium of a thin shell around a
static black hole or in a flat space-time, the motion of a
point particle orbiting a Schwarzschild’s black hole and the
problem of a point particle binary system emitting gravi-
tational radiation [10,11].
In all of these cases the characteristic initial value problem

is exchanged by a boundary problem by means of expressing

the metric variables as products of their spectral components,
using a spin-weighted decomposition, and time oscillatory
functions. All these problems deal with matter distributions,
in which the field equations could involve terms containing
Dirac’s delta orHeaviside’s functions. The boundary problem
is solved imposing regularity in the metric variables at the
vertices of the null cones as well as at the null infinity; also,
discontinuities in themetric and in their derivatives just across
the timelike world tubes which bound the sources are
required. This last issue can be done by just following the
standard procedures found in the literature, accordingly to
the boundary problem to be solved (see, e.g., Bonnor [12],
Georgiou [13], Israel [14], Choquet-Bruhat [15], Taub
[16,17], Bishop [10].)
We show that it is possible to find analytical solutions to

the system of equations for both backgrounds considered
(Minkowski and Schwarzschild) using standard methods.
In order to do that, it is necessary to transform the problem
from partial to ordinary differential equations, through the
expansion of the metric variables in spin-weighted spheri-
cal harmonics, or in other words, through a multipolar
expansion, in which the time dependence is encoded in a
periodic function. The substitution of such multipolar
expansions into the field equations yield a system of
coupled ordinary differential equations. The process to
decouple them leads to an equation known as the master
equation, which has been solved in the Minkowski’s case
for the vacuum [18], and in presence of a static black-hole
for particular values of l [10].
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However, it isworthmentioning that it hasnotbeen reported
so far in the literature any analytical family of solutions to the
master equation with sources in the Minkowski’s back-
ground. Also, concerning the Schwarzschild’s background,
there are not any solution for the vacuum nor with any
source terms, for any multipolar order.
We will show in this paper, for the first time in the

literature, families of solutions to the master equation, with
and without source terms, for arbitrary values of l, for the
Minkowski and Schwarzschild’s background.
Here we consider that in both cases studied the sources

produce only slight deviations to the background.
Consequently, the linear approximation is not taken only
for distant points from the sources, but instead it is
considered valid for the whole space-time. Within this
approximation, we will present the families of solutions to
the master equation with and without source terms. In order
to do that, some aspects of the characteristic formalism of
general relativity and the field equations are briefly present
in Sec. II. The derivation of the master equation is shown
in Sec. III; and the solutions to the master equation are
shown in Sec. IV. In Sec. V it is shown that these general
solutions are reduced to the known solutions for l ¼ 2.
Finally, in Sec. VI we present some final considerations and
conclusions.

II. THE CHARACTERISTIC AND
ETH FORMALISMS

As a starting point, we consider that the space-time is
foliated into null cones oriented to the future, which
emanate from a central timelike geodesic parametrized
by the retarded time x1 ¼ u. Consequently, each null cone
is labeled by the retarded time. The luminosity distance
x2 ¼ r is another parameter measured along the null
outgoing rays on the cones. This parameter is chosen in
such a way that for r and u constants the spacelike
2-hypersurfaces possess an area of 4πr2. In addition, the
angular coordinates are represented by xA, where A ¼ 3, 4.
In these coordinates the Bondi-Sachs metric [19,20] reads

ds2 ¼ −
�
e2β

�
1þ w

r

�
− r2hABUAUB

�
du2 − 2e2βdudr

− 2r2hABUBdxAduþ r2hABdxAdxB; ð1Þ

where β represents the redshift, w is related to the
Newtonian potential, UA measures the shift of the null
cones and hAB represents the metric of the angular manifold.
The metric of the unit sphere qAB is expressed in terms of

dyadic products of the complex vectors qA. These vectors
are related to the tangent vectors to the unit sphere which
are oriented along the coordinate lines defined by the charts
used to make the finite coverage of the sphere [21,22].
Conventionally, an atlas composed of two stereographic
charts, constructed from the poles, are used to cover the unit

sphere, and the properties shown here are referred to this
particular selection. The metric is then expressed as
qAB ¼ qðAq̄BÞ, where the round brackets are denoting
symmetrisation with respect to their indices and the over-
line indicates complex conjugation. In addition, these
vectors are null i.e., qAqA ¼ 0 and satisfy qAq̄A ¼ 2.
They are used to project the angular part of all tensors
in the space-time onto the unit sphere. Thus, the angular
part of these tensors can be decomposed in spin-weighted
scalars with different spin-weights, as described in [21–23].
Consequently, a spin-weighted function sΨ with spin-

weight s can be constructed from a tensor Ψa1���an
b1���bm in

the tangent space to the unit sphere, as

sΨ ¼
Yn
i¼1

Λai

Ym
j¼1

ΛbjΨa1���an
b1���bm; ð2Þ

where Λai and Λbj can take the values qai or q̄ai and qbj or
q̄bj respectively. The spin-weight s of the functions sΨ
depends on the number of qai , q̄ai , q

ai or q̄ai used to
construct them.
Thus, if m, ~s, n, r are the number of vectors qai , q̄ai , qai ,

q̄ai respectively, used to construct the spin-weighted scalar

sΨ, its spin-weight is given by

s ¼ 2ðmþ nÞ − ðrþ ~sÞ: ð3Þ

Hence, the metric for the angular manifold, hAB, is
decomposed into three spin-weighted scalars J, J̄ and K,
with spin-weights 2, −2, 0 respectively. Thus,

h33 ¼
2ðJ þ J̄ þ 2KÞ
ð1þ jζj2Þ2 ; h34 ¼ −

2iðJ − J̄Þ
ð1þ jζj2Þ2 ;

h44 ¼ −
2ðJ þ J̄ − 2KÞ
ð1þ jζj2Þ2 ; ð4Þ

where ζ defines the stereographic coordinates, which are
related to the spherical coordinates through

ζ ¼ tanðθ=2Þeiϕ; ζ̄ ¼ tanðθ=2Þe−iϕ; ð5Þ

and the symbol jAj indicates the norm of the complex scalar
A. Similarly, the shift vector UA is decomposed into two
spin-weighted scalars U and Ū with spin-weights 1 and −1
respectively,

U ¼ qAUA; Ū ¼ q̄AUA: ð6Þ

The projections of the covariant derivative related to the
unit sphere metric qAB onto the dyads qA or qA, lead to the
differential operators ð and ð̄. They result in

ðsΨ¼qAsΨ;AþsΩsΨ; ð̄sΨ¼ q̄AsΨ;A−sΩ̄sΨ; ð7Þ
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where the comma indicates partial derivation and Ω is the
contraction Ω ¼ −qAqBqAjB=2, in which the vertical line
was used to represent the covariant derivative with respect
to the metric of the unit sphere qAB. Notice that (7)
highlights the action of these operators on the spin-
weighted functions sΨ, to rise or lower their spin-weights.
Through the coordinate transformation between the north
and the south charts and from (7) one obtains

ðsΨ ¼ sþ1Ψ; ð̄sΨ ¼ s−1Ψ: ð8Þ

Using (4) and (6), the Bondi-Sachs metric (1) can be
reexpressed in terms of those spin-weighted scalars. In the
linear regime, when the second or higher order terms are
disregarded, the metric is reduced to

ds2 ¼ −du2 − 2dudr

þ 4r2

ð1þ jζj2Þ2 ðdq
2 þ dp2Þ þ

�
w
r
þ 2β

�
du2

− 4βdudr −
2r2

1þ jζj2 duððU þ ŪÞdq − iðU − ŪÞdpÞ

− 4ir2
ðJ − J̄Þ

ð1þ jζj2Þ2 dqdpþ 2r2ðJ þ J̄Þ
ð1þ jζj2Þ2 ðdq

2 − dp2Þ;

ð9Þ

which corresponds to a perturbation to the Minkowski
metric.
The Einstein’s field equations

Eμν ¼ Rμν − 8πðTμν − gμνT=2Þ ¼ 0; ð10Þ

in the characteristic formulation of general relativity
[24–26] can be written as

E22 ¼ 0; E2AqA ¼ 0; EABhAB ¼ 0; ð11aÞ

EABqAqB ¼ 0; ð11bÞ

E11 ¼ 0; E12 ¼ 0; E1AqA ¼ 0: ð11cÞ

corresponding to hypersurface, evolution and constrain
equations, respectively.Explicitly, for the perturbation
given in (9) one obtains

8πT22 ¼
4β;r
r

; ð12aÞ

8πT2AqA ¼ ð̄J;r
2

− ðβ;r þ
2ðβ
r

þ ðr4U;rÞ;r
2r2

; ð12bÞ

8πðhABTAB−r2TÞ¼−2ðð̄βþð2J̄þ ð̄2J
2

þðr4ðð̄UþðŪÞÞ;r
2r2

þ4β−2w;r; ð12cÞ

8πTABqAqB ¼ −2ð2β þ ðr2ðUÞ;r − ðr2J;rÞ;r þ 2rðrJÞ;ur;
ð12dÞ

8π

�
T
2
þ T11

�
¼ ðð̄w

2r3
þ ðð̄β

r2
−
ððŪ þ ð̄UÞ;u

2
þ w;u

r2
þ w;rr

2r

−
2β;u
r

þ 2β;r
r

þ β;rr − 2β;ru; ð12eÞ

8π

�
T
2
þ T12

�
¼ ðð̄β

r2
−
ðr2ððŪ þ ð̄UÞÞ;r

4r2
þ 2β;r

r
þ β;rr

− 2β;ru þ
w;rr

2r
; ð12fÞ

8πT1AqA ¼ ð̄J;u
2

−
ð2Ū
4

þ ðð̄U
4

þ 1

2

�
ðw
r

�
;r
− ðβ;u

þ ðr4U;rÞ;r
2r2

−
r2U;ur

2
þ U; ð12gÞ

which were computed previously by Bishop in [10] for the
Schwarzschild’s background.
Now, given that the eigenfunctions of the ½ð; ð̄� operators

are the spin-weighted spherical harmonics sZlm, defined
in [27] as,

sZlm ¼

8>><
>>:

iffiffi
2

p ðð−1ÞmsYlm þ sYl−mÞ for m < 0

sYlm for m ¼ 0

1ffiffi
2

p ðsYlm þ ð−1ÞmsYl−mÞ for m > 0

; ð13Þ

where the spin-weighted spherical harmonics sYlm, are also
eigenfunctions of ½ð̄; ð� and are defined in [21–23,28], as

sYlm ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ðsYlm if s ≥ 0

ð−1Þs
ffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ð̄−sYlm if s < 0

: ð14Þ

and the fact that spin-weighted spherical harmonics con-
stitutes an orthonormal and complete base of functions,
then the metric variables can be expanded in a multipolar
series as

sf ¼
X∞
l¼0

Xl

m¼l

ℜðflmeijmj ~ϕÞðsZlm; ð15Þ

where sf ¼ fβ; w; J; J̄; U; Ūg, Zlm ¼ 0Zlm, ~ϕ is a general
function of the retarded time, i.e., ~ϕ ≔ ~ϕðuÞ, flm are the
spectral components of the function sf, m ∈ Z, m ∈ ½−l; l�
and l ≥ 0 indicating the multipolar order.
Notice that in (15) the spin-weight of the function sf

is contained in ðsZlm. Therefore, substituting (15) into
the field equations (12) one obtains ordinary differential
equations for their spectral components, in which the spin-
weighted factors have been eliminated, namely
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βlm;r ¼ 2π

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕrT22; ð16aÞ

−
ðlþ 2Þðl − 1ÞJlm;r

2
− βlm;r þ

2βlm
r

þ ðr4Ulm;rÞ;r
2r2

¼ 8πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕT2AqA; ð16bÞ

2lðlþ 1Þβlm þ ðl − 1Þlðlþ 1Þðlþ 2ÞJlm þ lðlþ 1Þðr4ðUlmÞÞ;r
r2

þ 4βlm − 2wlm;r

¼ 8π

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕðhABTAB − r2TÞ; ð16cÞ

− 2βlm þ ðr2UlmÞ;r − ðr2Jlm;rÞ;r þ 2ijmjr _~ϕðrJlmÞ;r ¼
8πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp

Z
Ω
dΩZ̄lm ×

Z
2π

0

d ~ϕe−ijmj ~ϕTABqAqB;

ð16dÞ

−
lðlþ1Þwlm

2r3
−
lðlþ1Þβlm

r2
þ ijmjlðlþ1Þ _~ϕUlmþ ijmj _~ϕwlm

r2
þwlm;rr

2r
−
2ijmj _~ϕβlm

r
þ2βlm;r

r
þβlm;rr−2

_~ϕβlm;r

¼ 8π

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕ
�
T
2
þT11

�
; ð16eÞ

−
lðlþ 1Þβlm

r2
þ lðlþ 1Þðr2UlmÞ;r

2r2
þ wlm;rr

2r
¼ 8π

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕ
�
T
2
þ T12

�
; ð16fÞ

−
ijmjðlþ 2Þðl − 1ÞJlm _~ϕ

2
þ 1

2

�
wlm

r

�
;r
− ijmj _~ϕβlm þ ðr4Ulm;rÞ;r

2r2
−
ijmjr2 _~ϕ

2
Ulm;r þ Ulm

¼ 8πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕT1AqA; ð16gÞ

This system of coupled ordinary equations is separable through a simple procedure, as we will show in the next section.
Notice that an alternative procedure is presented by Mädler in [18].

III. THE MASTER EQUATION

Making the change of variable x ¼ r−1, the field equations (16a)–(16d) become

βlm;x ¼ −x2Alm; ð17aÞ

ðlþ 2Þðl − 1ÞxJlm;x þ 2xβlm;x þ 4βlm − 2Ulm;x þ xUlm;xx ¼ Blm; ð17bÞ

− 2x3Jlm;xx − 4ijmj _~ϕxJlm;x þ 4ijmj _~ϕJlm þ 4Ulm − 2xUlm;x − 4xβlm ¼ 2xDlm; ð17cÞ

where the source terms Alm ≔ AlmðxÞ, Blm ≔ BlmðxÞ and Dlm ≔ DlmðxÞ are explicitly defined,

Alm ¼ 2π

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕxT22; ð18aÞ

Blm ¼ 16πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕxT2AqA; ð18bÞ
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Dlm ¼ 8πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp
Z
Ω
dΩZ̄lm

Z
2π

0

d ~ϕe−ijmj ~ϕTABqAqB: ð18cÞ

In addition, solving (17b) for 4xβlm and substituting it into (17c), one obtains

− 2x3Jlm;xx − 4ijmj _~ϕxJlm;x þ x2ðlþ 2Þðl − 1ÞJlm;x þ 4ijmj _~ϕJlm þ x2Ulm;xx − 4xUlm;x þ 4Ulm þ 2x2βlm;x

¼ xð2Dlm þ BlmÞ: ð19Þ

Thus, the derivative of (19) with respect to x yields a third order differential equation for Jlm, i.e.,

− 2x3Jlm;xxx − 6x2Jlm;xx − 4ijmj _~ϕxJlm;xx þ x2ðlþ 2Þðl − 1ÞJlm;xx þ 2xðlþ 2Þðl − 1ÞJlm;x þ x2Ulm;xxx − 2xUlm;xx

þ 4xβlm;x þ 2x2βlm;xx ¼ ð2Dlm þ BlmÞ þ xð2Dlm;x þ Blm;xÞ: ð20Þ

After this, notice that it is possible to obtain x2Ulm;xxx just deriving (17b) with respect to x,

x2Ulm;xxx ¼ −x2ðlþ 2Þðl − 1ÞJlm;xx − xðlþ 2Þðl − 1ÞJlm;x þ xUlm;xx − 6xβlm;x − 2x2βlm;xx þ xBlm;x: ð21Þ

Then, substituting it in (20) and simplifying one obtains

− 2x3Jlm;xxx − 6x2Jlm;xx − 4ijmj _~ϕxJlm;xx þ xðlþ 2Þðl − 1ÞJlm;x

− xUlm;xx − 2xβlm;x ¼ 2xDlm;x þ Blm þ 2Dlm: ð22Þ

Making the derivative of (22) with respect to x, and substituting xUxxx from (21) one finds a fourth order differential
equation for Jlm, namely

− 2x4Jlm;xxxx − 12x3Jlm;xxx − 12x2Jlm;xx − 4ijmj _~ϕxJlm;xx − 4ijmj _~ϕx2Jlm;xxx

þ 2xðlþ 2Þðl − 1ÞJlm;x þ 2x2ðlþ 2Þðl − 1ÞJlm;xx þ 4xβlm;x − 2xUlm;xx

¼ 2xBlm;x þ 2x2Dlm;xx þ 4xDlm;x: ð23Þ

Finally, solving (22) for Ulm;xx and substituting into (23), a differential equation containing only Jlm with source terms is
obtained, namely

− 2x4Jlm;xxxx − 4x2ð2xþ ijmj _~ϕÞJlm;xxx þ 2xð2ijmj _~ϕþ xðlþ 2Þðl − 1ÞÞJlm;xx ¼ HlmðxÞ; ð24Þ

where

HlmðxÞ ¼ 2xBlm;x þ 2x2Dlm;xx − 8xβlm;x − 2Blm − 4Dlm ð25Þ

represents the source terms.
In order to reduce the order of this differential equation, one defines ~Jlm ¼ Jlm;xx, thus,

− 2x4 ~Jlm;xx − 4x2ð2xþ ijmj _~ϕÞ~Jlm;x þ 2xð2ijmj _~ϕþ xðlþ 2Þðl − 1ÞÞ ~Jlm ¼ Hlm: ð26Þ

For the vacuum, this differential equation turns homogeneous, i.e., Hlm ¼ 0, and hence (26) is reduced to the master
equation presented by Mädler in [18]

−x3 ~Jlm;xx − 2xð2xþ ijmj _~ϕÞ~Jlm;x þ ð2ijmj _~ϕþ xðlþ 2Þðl − 1ÞÞ ~Jlm ¼ 0: ð27Þ

Making l ¼ 2, this master equation reduces to those presented previously in [10] for the Minkowski’s background i.e.,
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−x3 ~Jlm;xx − 2xð2xþ ijmj _~ϕÞ ~Jlm;x þ 2ðijmj _~ϕþ 2xÞ ~Jlm ¼ 0:

The derivation of the master equation for the Schwarzschild’s background follows the same scheme. In this case the master
equation is given by

Jlm;xxxxx4ð2Mx−1ÞþJlm;xxxð2x3ð7Mx−2Þ−2ix2 _~ϕjmjÞþJlm;xxð2ix _~ϕjmjþðl−1Þðlþ2Þx2þ16Mx3Þ¼GlmðxÞ; ð28Þ

where M is the mass of the central static black-hole and GlmðxÞ represents the source term, which is given by

GlmðxÞ ¼
HlmðxÞ

2
: ð29Þ

It is important to observe that M ¼ 0 effectively reduces (28) to (24).

Defining ~Jlm ¼ Jlm;xx, the order of the differential equation (28) is reduced, namely

~Jlm;xxx4ð2Mx − 1Þ þ ~Jlm;xð2x3ð7Mx − 2Þ − 2ix2 _~ϕjmjÞ þ ~Jlmð2ix _~ϕjmj þ ðl − 1Þðlþ 2Þx2 þ 16Mx3Þ ¼ GlmðxÞ: ð30Þ

IV. FAMILIES OF SOLUTIONS TO THE
MASTER EQUATION

Now, the families of solutions to the master equa-
tions (24) and (28) associated with the linear approximation
in the Minkowski and the Schwarzschild’s space-times are
explicitly shown.
To proceed, consider that l is an integer and greater than

or equal to zero, i.e., l ≥ 0, the constants of integration Ci
are complexes Ci ∈ C, i ¼ 1…4, and arabic lower case
letters represent real constants, i.e., a; b; c; d; e; f;… ∈ R
It is worth stressing that the applicability of the present
work has some limitations, since in the context of the
characteristic formulation the matter fields must be known
a priori throughout the spacetime.

A. The Minkowski’s background

First, let us consider the most simple case corresponding
to the nonradiative, m ¼ 0, Minkowski’s master equation
without sources (27). Assuming the ansatz Jlm ¼ xk, we
obtain immediately

ðk − lþ 1Þðkþ lþ 2Þ ¼ 0

whose roots leave us to the general family of solutions,

~Jl0ðxÞ ¼ C1xl−1 þ C2x−ðlþ2Þ: ð31Þ
Thus, integrating the last equation two times and rearrang-
ing the constants one obtains families of solutions to (24) of
four parameters for the vacuum,

Jl0ðxÞ ¼ C1xlþ1 þ C2x−l þ C3xþ C4: ð32Þ
When the source term is not null, we find that the non-
radiative family of solutions,m ¼ 0, to the inhomogeneous
equation (26) reads

~Jl0ðxÞ ¼ C1xl−1 þ C2x−ðlþ2Þ þ x−ðlþ2Þ
Z

x

a
dy

HðyÞyl−1
2lþ 1

− xl−1
Z

x

b
dy

HðyÞy−ðlþ2Þ

2lþ 1
; ð33Þ

where a and b are real constants. Therefore, integrating two
times with respect to x and rearranging the constants we
find the family of solutions to the inhomogeneous master
equation (24), for m ¼ 0,

Jl0ðxÞ ¼ C1xlþ1 þ C2x−l þ C3xþ C4

þ
Z

x

a
dv

Z
v

b
dww−ðlþ2Þ

Z
w

c
dy

HðyÞyl−1
4lþ 2

−
Z

x

d
dv

Z
v

e
dwwl−1

Z
w

f
dy

HðyÞy−ðlþ2Þ

4lþ 2
; ð34Þ

where it is clear that the analyticity of the solutions depends
on the existence and analyticity of the integrals. If the
source term is disregarded, then (34) is reduced immedi-
ately to (32).
Now, we will consider the case for a radiative family of

solutions, m ≠ 0, jmj ≤ l for l > 0, without source term. In
this case (27) becomes a Bessel’s type differential equation.
Mädler [18] previously shows that the general solutions to
this master equation can be expressed as a linear combi-
nation of the first and second kind spherical Bessel’s
functions. We find here that the family of solutions to
the master equation (27) can be expressed in terms only of
the first kind Bessel’s functions, as
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~Jlm ¼
C12

1
2
−2lz3=2e

1
2
iðπlþ2zÞΓð1

2
− lÞðKJ−l−1

2
þ LJ1

2
−lÞ

ðl − 1Þl

þ
iC22

2lþ5
2z3=2eiz−

iπl
2 Γðlþ 3

2
ÞðKJlþ1

2
þ LJl−1

2
Þ

ðlþ 1Þðlþ 2Þ ; ð35Þ

where the argument of the first kind Bessel’s functions Jn
are referred to z, which is defined as

z ¼ jmj _~ϕ
x

; ð36Þ

and the coefficients K, L and S are,

K ¼ −iðlðl − 1Þ þ 2izÞ − 2zðl − izÞ; ð37aÞ

L ¼ −2zðz − iÞ; ð37bÞ

S ¼ lðl − 1Þ þ 2iz: ð37cÞ

Integrating two times (35), and rearranging the constants
we find the family of solutions that satisfies (24), i.e.,

Jlm ¼ −
iC12

1
2
−2l _~ϕ

2jmj2z−1=2e1
2
iðπlþ2zÞΓð1

2
− lÞð−2zJ1

2
−l þ S̄J−l−1

2
Þ

l2ðl2 − 1Þ −
C22

2lþ5
2
_~ϕ
2jmj2z−1=2e−1

2
iðπl−2zÞΓðlþ 3

2
Þð2zJl−1

2
þ S̄Jlþ1

2
Þ

lðlþ 1Þ2ðlþ 2Þ

þ C3 þ C4

_~ϕjmj
z

: ð38Þ

When matter is considered, we found that the family of solutions to (27) becomes,

~Jlm ¼
2
1
2
−2lz3=2ðC1 þD1Þeiπl

2
þizΓð1

2
− lÞðKJ−l−1

2
þ LJ1

2
−lÞ

ðl − 1Þl þ
i22lþ5

2z3=2ðC2 þD2Þeiz−iπl
2 Γðlþ 3

2
ÞðKJlþ1

2
þ LJl−1

2
Þ

ðlþ 1Þðlþ 2Þ ; ð39Þ

where the coefficients K and L were defined above, and the terms representing sources are

D1 ¼ −
Z jmj _~ϕ=z

jmj _~ϕ
d~z

22l−
5
2 ~z−1=2e−

1
2
iðπlþ2~zÞΓðlþ 1

2
ÞðKJlþ1

2
− LJl−1

2
Þ

ðlþ 1Þðlþ 2Þ _~ϕ2jmj2
H

� _~ϕjmj
~z

�
; ð40aÞ

and

D2 ¼ − i
Z jmj _~ϕ=z

jmj _~ϕ
d~z

2−2l−
9
2 ~z−1=2e

1
2
iðπl−2~zÞΓð−l − 1

2
ÞðKJ−l−1

2
þ LJ1

2
−lÞ

ðl − 1Þl _~ϕ2jmj2
H

� _~ϕjmj
~z

�
; ð40bÞ

where the argument of the first kind Bessel’s functions Jn is z, which is defined just in (36). It is worth noting that in this
form, it is clear that (39) converges immediately to (35), when the sources are not considered.
Integrating (39) two times we obtain the general family of solutions to the master equation with sources,

which reads

Jlm ¼ −
iC12

1
2
−2l _~ϕ

2jmj2z−1=2e1
2
iðπlþ2zÞΓð1

2
− lÞð−2zJ1

2
−l þ S̄J−l−1

2
Þ

l2ðl2 − 1Þ −
C22

2lþ5
2
_~ϕ
2jmj2z−1=2e−1

2
iðπl−2zÞΓðlþ 3

2
Þð2zJl−1

2
þ S̄Jlþ1

2
Þ

lðlþ 1Þ2ðlþ 2Þ

þ
Z

z

b
dy

Z
y

a
d~z

�
2
1
2
−2l ~z3=2D1e

iπl
2
þi~zΓð1

2
− lÞðKJ−l−1

2
þ LJ1

2
−lÞ

ðl − 1Þl þ
i22lþ5

2 ~z3=2D2ei~z−
iπl
2 Γðlþ 3

2
ÞðKJlþ1

2
þ LJl−1

2
Þ

ðlþ 1Þðlþ 2Þ
�

þ C3 þ C4

_~ϕjmj
z

: ð41Þ

These families of solutions are particularly interesting and useful to explore the dynamics of matter clouds immersed in a
Minkowski’s background.
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B. The Schwarzschild’s background

Now, we show the nonradiative families of solutions, m ¼ 0, for the vacuum i.e., GðxÞ ¼ 0, for equation (30). The
solution is expressed in terms of the hypergeometric functions 2F1ða1; a2; b; zÞ, as

~Jlm ¼ð−2Þ−l−2C1M−l−2x−l−22F1ð2 − l;−l;−2l; 2MxÞ þ ð−2Þl−1C2Ml−1xl−12F1ðlþ 1; lþ 3; 2lþ 2; 2MxÞ: ð42Þ

Integrating two times, we find the family of solutions to (28)

Jlm ¼ C1ð−1Þ−l2−l−2ðMxÞ−l3F2ð−l − 1; 2 − l;−l; 1 − l;−2l; 2MxÞ
lðlþ 1ÞM2

þ C2ð−1Þlþ12l−1xðMxÞl3F2ðl; lþ 1; lþ 3; lþ 2; 2lþ 2; 2MxÞ
lðlþ 1ÞM þ C3xþ C4; ð43Þ

where, pFqða1;…ap; b1;…; bq; zÞ are the generalized hypergeometric functions.
When we consider the source terms, i.e., HðxÞ ≠ 0, the nonradiative solutions to (30) reads,

~Jlm ¼ ð−1Þ1−l2−l−2M−l−2x−l−2ðA2ð−1Þ2l22lþ1M2lþ1x2lþ1
2F1ðlþ 1; lþ 3; 2lþ 2; 2MxÞ

−A12F1ð2 − l;−l;−2l; 2MxÞÞ þ C1ð−2Þ−l−2M−l−2x−l−22F1ð2 − l;−l;−2l; 2MxÞ
þ C2ð−2Þl−1Ml−1xl−12F1ðlþ 1; lþ 3; 2lþ 2; 2MxÞ ð44Þ

where A1, A2 are given by the integrals

A1 ¼ −
Z

x

a
dy

ð−2Þlþ2HðyÞMlþ2yl2F1ðlþ 1; lþ 3; 2ðlþ 1Þ; 2MyÞ
B1 þ B2

; ð45aÞ

A2 ¼
Z

x

b
dy

ð−2Þ1−lHðyÞM1−ly−l−12F1ð2 − l;−l;−2l; 2MyÞ
B1 þ B2

; ð45bÞ

and the functions B1 and B2 are

B1 ¼ð2My − 1Þððl − 2Þ2F1ð3 − l;−l;−2l; 2MyÞ2F1ðlþ 1; lþ 3; 2ðlþ 1Þ; 2MyÞ; ð46aÞ

B2 ¼ 2F1ð2 − l;−l;−2l; 2MyÞð22F1ðlþ 1; lþ 3; 2ðlþ 1Þ; 2MyÞ þ ðlþ 1Þ2F1ðlþ 2; lþ 3; 2ðlþ 1Þ; 2MyÞÞÞ: ð46bÞ

For the radiative (m ≠ 0) family of solutions to the master equation (30) for the vacuum, we find that its most general
solution is given by

~Jlm ¼ C1Le
2α
xMx−4 þ C2Kð2Mx − 1Þ4α−2x−2−4αe 2α

xM; ð47Þ
with

L ¼ HCð−4α; β; γ; δ; ϵ; ηÞ and K ¼ HCð−4α;−β; γ; δ; ϵ; ηÞ; ð48Þ
where HCðα; β; γ; δ; ϵ; ηÞ are the confluent Heun’s functions and their parameters are given by

α ¼ i _~ϕmM; β ¼ 2 − 4α ð49aÞ

γ ¼ 2; δ ¼ 8αðα − 1Þ ð49bÞ

ϵ ¼ −ðlþ 2Þðl − 1Þ − 8αðα − 1Þ η ¼ 2Mx − 1

2Mx
: ð49cÞ

Finally, we present the analytical family of solutions to (30) in the radiative case, m ≠ 0, when the source terms are
considered,
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Jlm ¼ − 8Me
2a
Mxð−LMxþM2x2Lþ L=4ÞA1x−4ð2Mx − 1Þ−2 þ 2Me

2a
Mxx2−4að2Mx − 1Þ4aA2Kx−4ð2Mx − 1Þ−2

þ C1Le
2a
Mxx−4 þ C2Ke

2a
Mxx−2−4að2Mx − 1Þ−2þ4a; ð50Þ

where A1 and A2 are the integrals

A1 ¼
Z

x

a
d~x

~x2Hð~xÞe− 2a
M ~xK

−4LKM ~xþ 8LKaM ~x − LSþ 2LM ~xSþ KR − 2KM ~xR
ð51aÞ

A2 ¼
Z

x

b
d~x

4~x4ae−
2a
M ~xHð~xÞðM ~x − 1=2Þ2ð2M ~x − 1Þ−4aL

−4LKM ~xþ 8LKaM ~x − LSþ 2LM ~xSþ KR − 2KM ~xR
; ð51bÞ

where S and R are the derivative of the Heun’s functions, i.e. S ¼ K0ðxÞ and R ¼ L0ðxÞ, in which we suppress all indices
except one which gives the functional dependence.

V. FAMILIES OF SOLUTIONS FOR l ¼ 2

Now, we show that the families of solutions found here are reduced to those previously reported in the literature for l ¼ 2.
Thus, for this particular value of lwe obtain that the family of solutions to the master equation for the vacuum, (27) takes the
explicit form

~Jlm ¼ E1xþ
E2e

2i _~ϕjmj
x ð6x3 _~ϕjmj − 6ix2 _~ϕ

2jmj2 − 4x _~ϕ
3jmj3 þ 2i _~ϕ

4jmj4 þ 3ix4Þ
4x3 _~ϕ

5jmj5
ð52Þ

Now, substituting l ¼ 2 in the family of solutions (35), one obtains

~Jlm ¼ iC1
_~ϕ
3jmj3e2i _~ϕjmj

x

6x3
−
40iC2

_~ϕ
3jmj3e2i _~ϕjmj

x

x3
−
C1

_~ϕ
2jmj2e2i _~ϕjmj

x

3x2
þ 80C2

_~ϕ
2jmj2e2i _~ϕjmj

x

x2
−
iC1

_~ϕjmje2i _~ϕjmj
x

2x
þ 120iC2

_~ϕjmje2i _~ϕjmj
x

x

þ 1

2
C1e

2i _~ϕjmj
x − 120C2e

2i _~ϕjmj
x þ iC1xe

2i _~ϕjmj
x

4
_~ϕjmj

þ iC1x

4
_~ϕjmj

−
60iC2xe

2i _~ϕjmj
x

_~ϕjmj
þ 60ix

_~ϕjmj
: ð53Þ

Both family of solutions, (52) and (53), are completely equivalent. Note that, the transformation between the constants,
necessary to pass from (52) to (53) is given by

E1 ¼
iðC1 þ 240C2Þ

4
_~ϕjmj

; E2 ¼
1

3
ðC1 − 240C2Þ _~ϕ

4jmj4: ð54Þ

Note that for the Schwarzschild case, when no sources are present, the master equation (30), for the vacuum and l ¼ 2 takes
the explicit form

x2ð2Mx − 1Þ~Jlm;xx þ 2xð7Mx − 2Þ ~Jlm;x þ ð16Mxþ 4Þ ~Jlm ¼ 0: ð55Þ

Its family of solutions is

~Jlm ¼ C1

x4
−
C2ð16M4x4 þ 32M3x3 − 44M2x2 − 4Mxþ 12ð1 − 2MxÞ2 logð1 − 2MxÞ þ 7Þ

64M5x4ð1 − 2MxÞ2 : ð56Þ

Now, specializing the solutions (42) for l ¼ 2, we find a totally equivalent solution, i.e.,

~Jlm ¼ D1

16M4x4
þ 5D2ð2Mxð2M3x3 þ 4M2x2 − 9Mxþ 3Þ þ 3ð1 − 2MxÞ2 logð1 − 2MxÞÞ

8M4x4ð1 − 2MxÞ2 : ð57Þ

Thus, a simple Maclaurin series expansion of both solutions shows that the relationship between the constants is

MASTER EQUATION SOLUTIONS IN THE LINEAR … PHYSICAL REVIEW D 92, 124015 (2015)

124015-9



D1 ¼
64C1M5 − 7C2

4M
; D2 ¼ −

C2

10M
: ð58Þ

Finally, given that the known family of solutions for l ¼ 2 is written in terms of power of series around the point r ¼ 2M, as
shown in [10], we expand the radiative family of solutions for the master equation (28) around the same point r ¼ 2M for
l ¼ 2. Thus, we observe that the confluent Heun’s function HCð−4α; β; γ; δ; ϵ; ηÞ is expressed as a Taylor series for the
parameters (49) around η ¼ 0, namely

HCð−4α; β; γ; δ; ϵ; ηÞ≃ 1þ ðð4aþ 1Þ2 − 5þ ðl − 1Þðlþ 2ÞÞη
−3þ 4a

þ 1

8ða − 1Þð4a − 3Þ ðð256a
4 þ 192a3 þ 32a2ðl2 þ l − 5Þ

þ 4að4l2 þ 4l − 39Þ þ l4 þ 2l3 − 17l2 − 18lþ 72Þη2Þ; ð59Þ

and for the confluent Heun’s function HCð−4α;−β; γ; δ; ϵ; ηÞ,

HCð−4α;−β; γ; δ; ϵ; ηÞ≃ 1 −
ð4aþ l2 þ lÞη

4a − 1
−
ð12a − l4 − 2l3 þ l2 þ 2lÞη2

8að4a − 1Þ : ð60Þ

Then, from (59) and (60) we obtain that around to r ¼ 2M, (47) at first order for l ¼ 2,

~Jlm ¼ C1

�
16e4αð4αþ 12ÞηM4

4α − 3
þ 16e4αM4

�
−
24αþ2C2e4αð16α2 þ 16αþ 2Þη4α−1ð 1MÞ−4α−2

4α − 1

þ 24α−1C2e4αð256α4 þ 576α3 þ 384α2 þ 132αþ 24Þη4αð 1MÞ−4α−2
αð4α − 1Þ

−
24αþ1C2e4αð256α5 þ 896α4 þ 1056α3 þ 636α2 þ 228αþ 72Þη4αþ1ð 1MÞ−4α−2

3αð4α − 1Þ

þ 24αþ2C2e4αη4α−2
�
1

M

�
−4α−2

; ð61Þ

that are just the family of solutions for the master equation
obtained using power series around r ¼ 2M.

VI. SUMMARY AND CONCLUSIONS

In this work we report new solutions to the master
equation when a flat background is considered, generaliz-
ing the results obtained by Mädler [18] with the inclusion
of source terms. Likewise, we reexpress the family of
solutions for the vacuum using only Bessel’s functions of
the first kind.
Bishop [10] already found the solutions to the field

equations in the space-time exterior to a static and spheri-
cally symmetric black-hole, for l ¼ 2, but only by expand-
ing the metric variables in power series around the
coordinate singularity r ¼ 2M, and in an asymptotic
expansion near the null infinity. However his solutions
depend on the order of the expansion and in this sense it
is an approximation. We report for the first time in the
literature the exact solutions to the master equation in
terms of the hypergeometric (Heun’s function) for the

nonradiative (radiative) modes with and without source
terms. Considering the solutions for l ¼ 2 we also show the
equivalence between our solution and those reported in the
literature.
Finally, notice that the importance of these analytical

results is in the fact that it can be useful in the construction
of semianalytical models for matter distributions for
this regime, like thin and thick shells or stars composed
of layers obeying some equation of state. However, as
already mentioned, it is important to bear in mind that the
matter fields must be known a priori throughout the
spacetime.
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