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We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon
Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie
derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame
cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to
Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including
general relativity, Lovelock gravity, and “topological” terms in four dimensions.
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I. INTRODUCTION

The entropy of black holes in any diffeomorphism
invariant gravity theory can be identified via a variational
identity known as the first law of black hole mechanics. In
the approach of Wald [1], this identity arises from consid-
ering the Hamiltonian Hξ that generates evolution with
respect to the flow of the horizon-generating Killing vector
ξ of a black hole solution. The variation δHξ at a solution is
equal to a variation of boundary terms, and vanishes
because ξ generates a symmetry of the dynamical fields.
When the boundaries lie at the horizon bifurcation surface
and at spatial infinity, the implied relation between the
boundary term variations is the first law, from whichWald’s
formula for the black hole entropy as Noether charge can be
inferred.
This method is usually applied in a context where the

spacetime geometry is characterized by the metric tensor
alone, however in some settings it is necessary or desirable to
use instead a formalism with geometry determined by an
orthonormal frame and either the associated spin connection
(second order formalism) or an independent spin connection
(first order formalism). Application of Wald’s method in
this setting appears at first to yield a vanishing Noether
charge at the bifurcation surface where ξ vanishes—and
therefore vanishing black hole entropy—because the
Noether charge form involves ξ without derivatives. The
puzzle this raises has not to our knowledge been discussed
explicitly in the literature.
We trace the trouble to the requirement that the frame

(hereafter the “orthonormal” qualifier is implicit) has
vanishing Lie derivative with respect to ξ. This requirement
cannot be met at the bifurcation surface, and implies that
the derivative of the frame diverges at the bifurcation

surface, so that the spin connection diverges. On the other
hand, the diffeomorphism Noether charge form involves
the contraction of the vanishing Killing vector with the
diverging spin connection. We first show how one can
evaluate a finite, nonzero entropy by taking the limit as the
bifurcation surface is approached.
Next, in a second approach, we modify the derivation so

that the singular behavior does not arise in the first place. In
a frame formalism the theory is symmetric under both
diffeomorphisms and local Lorentz transformations of the
frame. We show in this paper how the black hole entropy
can be derived as the Noether charge for a particular
combination of these symmetries. The frame can be
invariant under the combined symmetry associated with
ξ, without having singular derivative at the horizon, so that
the extraction of the black hole entropy requires no limit.
The variation corresponding to this symmetry is defined by
a “Lorentz-Lie” derivative which is covariant under local
Lorentz transformations of the frame field. It is defined by
adding to the ordinary Lie derivative a connection term
built from the frame field and its partial derivatives. Besides
allowing for nonsingular invariant frames at the bifurcation
surface, this notion of combined Lorentz-diffeomorphism
symmetry should allow the symmetry to be implemented
on nonparallelizable manifolds, where no global frame
field exists. More generally, for theories containing fields
charged under a gauge group G, the Noether charge
formalism for symmetry under combined diffeomorphisms
and local gauge transformations has been formulated
recently in terms of fields living on a principal G-bundle
over spacetime [2].
This paper is organized as follows. Section II reviews the

derivation showing that black hole entropy is the horizon
Noether charge associated with the diffeomorphism gen-
erated by the horizon-generating Killing vector field. In
Sec. III we examine this Noether charge for general
relativity in the frame formalism, diagnose the pathology,
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and treat it with a limit. In Sec. IV we introduce the
Lorentz-covariant Lie derivative, and in Sec. V we show
how black hole entropy is the horizon Noether charge
associated with the combined Lorentz and diffeomorphism
symmetry it generates. In Sec. VAwe use this formalism to
evaluate the black hole entropy in Lovelock theory in
arbitrary dimensions, and in Sec. V B we apply it in four
dimensions to evaluate the contributions of the Holst [3],
Euler and Pontryagin terms. We conclude in Sec. VI with a
brief discussion.
We work in the units such that 16πG ¼ c ¼ 1. Lower

case Greek letters are used for the spacetime indices, and
internal Lorentz indices are denoted by lower case Latin
letters. The metric signature is ð−þþþÞ.

II. BLACK HOLE ENTROPY AS
DIFFEOMORPHISM NOETHER CHARGE

In this section we sketch Wald’s derivation [1] establish-
ing that black hole entropy is the diffeomorphism Noether
charge for the horizon-generating Killing field, evaluated at
the bifurcation surface. This will set the stage for the
application to the frame formalism, and our modified
derivation using a Lorentz-diffeomorphism Noether charge.
Wald’s derivation applies to any diffeomorphism invari-

ant theory defined by a Lagrangian n-form L, where n is the
spacetime dimension. Denoting the dynamical fields col-
lectively by ϕ, the variation δL induced by a field variation
δϕ can be written as

δL ¼ Eδϕþ dθðϕ; δϕÞ: ð1Þ

The quantity E defines the field equations, E ¼ 0. The
ðn − 1Þ-form θ is constructed locally out of the dynamical
fields and their first variation, and is called the “symplectic
potential.” The antisymmetrized field variation of θ defines
an ðn − 1Þ-form, called the “symplectic current,” via

Ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1θðϕ; δ2ϕÞ − δ2θðϕ; δ1ϕÞ: ð2Þ

When integrated over a spatial initial value surface, Ω
defines the symplectic form on the phase space of solutions.
Now consider the variation induced by a diffeomorphism

generated by a vector field ξ,

δξϕ ¼ Lξϕ: ð3Þ
Diffeomorphism invariance of the theory means that the
Lagrangian is constructed only from the dynamical fields,
without any background structure. In this case, the variation
of L induced by the field variation δξϕ is equal to the Lie
derivative of the Lagrangian itself,

δξL ¼ LξL ¼ diξL: ð4Þ
Since this is a total derivative we learn that the vector fields
on the spacetime generate symmetries of the dynamics.

With each ξ is associated an ðn − 1Þ-form called the
Noether current form, defined as

jξ ¼ θðϕ;LξϕÞ − iξL; ð5Þ
whose exterior derivative is given [according to (1), (3),
and (4)] by

djξ ¼ −ELξϕ: ð6Þ

For all vector fields ξ, the current jξ is therefore closed “on
shell,” i.e. when E ¼ 0. This implies [4] that, on shell, jξ is
an exact form,

jξ ¼ dQξ; ð7Þ
where Qξ is some ðn − 2Þ-form that is constructed locally
from the fields and their derivatives. The integral ofQξ over
a closed ðn − 2Þ-surface S is called the “Noether charge” of
S relative to ξ.
In the covariant framework used by Wald, the space of

solutions to the field equations is the phase space of the
theory, and the on shell variation δξϕ is the phase space
flow vector corresponding to the 1-parameter family of
diffeomorphisms generated by ξ. The Hamiltonian Hξ

generating this flow is related to the symplectic form via
Hamilton’s equations, δHξ ¼

R
Σ Ωðϕ; δϕ;LξϕÞ, where Σ is

a Cauchy surface. On shell this variation is a boundary
term:

δHξ ¼
Z
Σ
Ωðϕ; δϕ;LξϕÞ ð8Þ

¼
Z
Σ
δθðϕ;LξϕÞ − Lξθðϕ; δϕÞ ð9Þ

¼
Z
Σ
δjξ þ δðiξLÞ − iξdθ − diξθ ð10Þ

¼
I
∂Σ

δQξ − iξθ: ð11Þ

In the second line we used (2), in the third line (5), and in
the fourth line (7) and (1). If ξ generates a symmetry of the
fields in a solution ϕ, then Lξϕ ¼ 0, and thus (8) implies
δHξ ¼ 0, so that (11) yields an identity relating the surface
term variations away from that solution,

H
∂Σ δQξ − iξθ ¼ 0.

Now consider a stationary, axisymmetric black hole with
a Killing field ξ that generates a Killing horizon with
nonzero, constant surface gravity κ, and vanishes on a
bifurcation surface B. If we choose the hypersurface Σ to
have its only boundaries at spatial infinity and at B, then the
variational identity takes the form

I
B
δQξ ¼

I
∞
δQξ − iξθ; ð12Þ
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where the orientations of both surfaces are induced by a
vector pointing toward infinity. The right-hand side can be
shown to be equal to δE −ΩHδJ where E and J are the
asymptotically defined total energy and angular momen-
tum, respectively, and ΩH is the angular velocity of the
horizon. To evaluate the left-hand side, note that since ξ is a
Killing vector, its second and higher derivatives can be
written in terms of ξ and its first derivative, together with
the Riemann tensor and its derivatives, so Qξ depends on ξ
only algebraically via ξ and ∇ξ. At B the vector ξ vanishes,
and

∇μξ
ν ¼ ∂μξ

ν ¼ κnμν; ð13Þ

where nμν is the binormal to B (i.e. the normal 2-form,
normalized to −2), oriented as determined by the derivative
of the Killing vector in (13). Hence all the ξ dependence of
Q for the background solution is contained in the speci-
fication of the bifurcation surface and the (constant) surface
gravity κ. Moreover, the replacement ∇μξ

ν → κnμν may be
made before the variation is taken: the quantity aμbνδnμν

vanishes unless aμ is normal and bν is tangent to B, yet
there are no normal-tangential components in the back-
ground tensor because they would not be invariant under
the Killing flow of ξ at B (which acts as a boost normal to
B). The identity (12) therefore takes the form of the
so-called first law of black hole thermodynamics,

THδS ¼ δE − ΩHδJ ; ð14Þ

where TH ¼ ℏκ=2π is the Hawking temperature, and

S ¼ 2π

ℏ

I
B
Q̂ξ; ð15Þ

where Q̂ξ (for the background as well as for the varied
solution) is obtained from Qξ by the replacement
∇μξν → nμν. The black hole entropy S is thus proportional
to the horizon Noether charge corresponding to the
horizon-generating diffeomorphism. (For a more complete
discussion see [5].)
In order for the entropy to be nonzero, it would seem that

Qξ must depend on ∇ξ, so jξ, and therefore θðϕ;LξϕÞ,
must depend on ∇∇ξ. Since the Lie derivative of a tensor
field depends on ∇ξ, this requires that θðϕ; δϕÞ depends on
at least one derivative of δϕ, and therefore that L involves at
least second derivatives. Since the first order orthonormal
frame formalism involves only one derivative, it thus
appears that the black hole entropy would vanish in that
formalism, but that conclusion is obviously erroneous. The
right-hand side of the first law (14) is of course independent
of which formalism is used. In the next section we compute
the horizon Noether charge for general relativity using the
frame formalism, diagnose the flaw in the above reasoning,
and show how to evade the problem.

III. DIFFEOMORPHISM NOETHER CHARGE
FOR GENERAL RELATIVITY WITH

ORTHONORMAL FRAMES

In the first order orthonormal frame formalism, the
Lagrangian for general relativity in n dimensions is written
in terms of the frame field 1-form ea, which is SOðn − 1; 1Þ
vector valued, and the SOðn − 1; 1Þ connection 1-form
ωa

b. These are the independent dynamical variables of the
theory. The spacetime metric is given by gμν ¼ ηabeaμebν,
where ηab is the Minkowski metric, and the curvature
2-form is defined by Ra

b ¼ dωa
b þ ωa

c ∧ ωc
b. We raise

and lower Lorentz indices with ηab and its inverse, ηab.
We sometimes omit the Lorentz indices when that will not
cause confusion.
The Lagrangian n-form for general relativity in

n-dimensions is a function of the frame and the spin
connection via the curvature 2-form,

Lðe;ωÞ ¼ ϵa���bcdea ∧ � � � ∧ eb ∧ Rcd: ð16Þ

This is manifestly gauge invariant and diffeomorphism
covariant. The variation is given by

δL ¼ δea∧ ∂L
∂ea þ Dδωab∧ ∂L

∂Rab ð17Þ

¼ δea∧ ∂L
∂ea þ δωab∧ D

∂L
∂Rab

þ d

�
δωab∧ ∂L

∂Rab

�
; ð18Þ

where D is the Lorentz covariant exterior derivative [6], and
we have used the identity δRab ¼ Dδωab. (The variation
forms are placed in the first position in order to avoid the
need for a dimension-dependent minus sign that would
arise when integrating by parts on the D.) The equations of
motion are given by

ϵabc���dfec∧ � � � ∧ ed∧ Def ¼ 0; ð19Þ

ϵab���cdeeb∧ � � � ∧ ec∧ Rde ¼ 0: ð20Þ

The first of these equations implies (assuming ea is
nondegenerate) the “torsion-free” condition Dea ¼ 0,
which can be solved for the connection ω ¼ ωe. When
this is substituted in the second equation of motion, that
becomes equivalent to the vanishing of the Ricci tensor of
gμν, so one recovers the (vacuum) Einstein equation. If one
putsω ¼ ωe in the Lagrangian at the beginning, one has the
second order frame formalism, and (19) is true as an
identity. The diffeomorphism Noether current (5) involves
the Lie derivative of the connection, Lξω, which is given by

Lξω ¼ iξdωþ dðiξωÞ ¼ iξRþ DðiξωÞ: ð21Þ
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Here we are treating the connection components as a
collection of 1-forms, and we shall do the same with the
frame components. If the relevantmanifold cannot be covered
by a single frame field—i.e. is not parallelizable—this
strategy would not be available, because under a change of
local Lorentz gauge the Lie derivative would not transform
properly so as to determine a well-defined symmetry oper-
ation. In that case, something like the Lorentz-Lie derivative
discussed below would be required.
From (18) we can read off the symplectic potential

defined in (1),

θ ¼ δωab∧ ∂L
∂Rab : ð22Þ

Using (21), the diffeomorphism Noether current (23) can
thus be written as

jξ ¼ d

�
iξωab∧ ∂L

∂Rab

�

− ðiξωabÞ∧ D
∂L
∂Rab þ ðiξRabÞ∧ ∂L

∂Rab − iξL: ð23Þ

(In the first and second terms, the first factor is a 0-form,
so the wedge product is just ordinary multiplication.
Throughout this paper we sometimes include such unnec-
essary wedge notations since they seem helpful in organ-
izing the structure of the expressions.)
The second term in the Noether current (23) vanishes by

the ω equation of motion. Moreover, the Lagrangian (16)
has the nice property

iξL ¼ ðiξeaÞ∧ ∂L
∂ea þ ðiξRabÞ∧ ∂L

∂Rab ; ð24Þ

from which it follows that, taken together, the third and
fourth terms of (23) vanish by the e equation of motion.
Thus we may simply read off the Noether charge ðn − 2Þ-
form,

Qξ ¼ iξωab∧ ∂L
∂Rab : ð25Þ

Notice that this is linear in ξ, with no derivative on ξ. If ξ is
a horizon generating Killing field, Qξ therefore appears to
vanish when evaluated at the bifurcation surface B of the
Killing horizon. This would imply that the entropy (15)
vanishes, but obviously something is wrong with this
argument.
The problem arises because, in showing that the entropy

is proportional to the horizon Noether charge, we assumed
that the dynamical fields have vanishing Lie derivative with
respect to ξ. Because of this, the connection ωe diverges as
B is approached. We shall explain shortly from a geometric
viewpoint why the connection diverges, but first let us show

that iξωe has a finite, nonzero limit at B, and use this to find
the entropy.
The Lie derivative of the frame is given by

Lξea ¼ iξdea þ diξea

¼ iξDea þ Diξea − iξωa
b ∧ eb: ð26Þ

Setting this equal to zero, and using the field equation
Dea ¼ 0 (or the definition of ωe in the second order
formulation), we obtain

iξðωeÞab ¼ eμbDμðiξeaÞ; ð27Þ

where eμb is the inverse frame. To evaluate the right-hand
side note that the action of Dμ on tensors has not so far been
specified (other than being torsion-free) hence we may
choose it to act on tensor indices as the torsion-free
covariant derivative ∇μ determined by the metric. With
this choice we have Dμeaν ¼ 0, where Dμ denotes the full
derivative including both the spacetime and spin connec-
tions. Then, using the Leibniz rule, (27) becomes

iξðωeÞab ¼ eμbe
a
ν∇μξ

ν: ð28Þ

The limiting value at B is given by

lim
→B

iξðωeÞab ¼ −κnab; ð29Þ

where again κ (13) is the surface gravity, and nab ¼
nμνeaμebν is the binormal to B, converted to a Lorentz tensor.
Thus, despite appearances, iξωe does not vanish at the
bifurcation surface. This can only happen becauseωe blows
up there.
Using (29), we find the Noether charge form (25) is

given by

lim
→B

ðQξÞ ¼ −κnabϵabc���dec∧ � � � ∧ ed: ð30Þ

This is just 2κ times the “area” element on B, henceH
B Qξ ¼ κA=8πG (restoring the 16πG), so the entropy (15)
is SBH ¼ A=4ℏG, the Bekenstein-Hawking entropy.
To explain why and how the connection diverges at the

bifurcation surface, we employ a simple analogy with a
two-dimensional Euclidean space. The Killing vector field
that generates the rotation around the origin is given by
ξ ¼ ∂θ in polar coordinates ðr; θÞ. The origin is a fixed
point of the rotational isometry, i.e. ξ vanishes there, so it is
analogous to the bifurcation surface. A frame that has zero
Lie derivative with respect to this rotation Killing field
rotates by 2π when traversing a circle around the origin. For
a circle closer to the origin, the frame rotates faster, because
the circumference shrinks. At the origin the frame has to
rotate infinitely fast, which implies that the connection
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diverges. Explicitly, let the frame be given by e1 ¼ dr and
e2 ¼ rdθ, so that Lξea ¼ 0. The nonzero connection
components are given by ω2

1 ¼ −ω1
2 ¼ dθ. The norm

of dθ is ðgθθÞ1=2 ¼ 1=r, so dθ, and therefore the connection,
diverges at the origin, although the contraction iξω2

1 ¼ 1 is
finite and nonzero. At the bifurcation surface of a black
hole space-time one has a hyperbolic version of this
phenomenon. For instance, for a Schwarzschild black
hole we have e0 ¼ Ndt and e1 ¼ N−1dr, with N ¼
ð1 − 2M=rÞ1=2 the norm of the Killing vector ∂t. Then
ω0

1 ¼ κdt, where κ ¼ 1=4M is the surface gravity. The
connection diverges since the norm of dt is N−1, although
i∂tω0

1 ¼ κ is finite.
If we are to avoid the occurrence of a singular spin

connection in the Noether charge computation of black
hole entropy, we must modify the realization of the
diffeomorphism symmetry, so that a frame can be invariant
under the symmetry and yet nonsingular at the bifurcation
surface. The next section introduces this realization.

IV. LORENTZ-LIE DERIVATIVE

The Lie derivative of tensor fields with respect to a vector
field ξ is defined, with no additional structure, as the rate of
change of the pull-back along the flow of ξ. A frame consists
of covectors which are carried by the flow in a unique way.
The covectors remain orthonormal under the flow of a
Killing vector, but they undergo a Lorentz transformation.
Therefore the Lie derivative of a frame with respect to a
Killing vector is generally nonzero. However, given a frame,
one can define a modified derivative which includes a
compensating local Lorentz transformation, so that the
modified derivative of the frame with respect to a Killing
vector is always zero. We call this the Lorentz-Lie (LL)
derivative. The LL derivative we employ has been intro-
duced several times, using various formalisms (see [7–12]
and references therein). Acting on a spinor field, the LL
derivative agrees with the definition given by Kosmann [7].
It was called the Yano derivative in [11], where other notions
of generalized Lie derivative are also discussed.
We denote the Lorentz-Lie derivative byKe

ξ (the notation
is chosen in honor of Kosmann). It is the Lie derivative
supplemented with a local SOðn − 1; 1Þ gauge transforma-
tion generated by a particular λeξ which is determined by
a frame ea as follows. Note first that metric compatibility,
i.e. the vanishing ofKe

ξη
ab, implies antisymmetry of λeξ , that

is, ðλeξÞðacÞ ¼ ðλeξÞðabηcÞb ¼ 0. Now consider the action of
Ke

ξ on ea,

Ke
ξe

a ¼ Lξea þ ðλeξÞabeb: ð31Þ
The spacetime tensor eaKe

ξe
a can be decomposed into its

symmetric and antisymmetric parts,

eaμKe
ξe

a
ν ¼ eaðμKe

ξe
a
νÞ þ ea½μKe

ξe
a
ν�: ð32Þ

Owing to the antisymmetry of ðλeξÞab, the symmetric part is
independent of λeξ , and is given by

eaðμKe
ξe

a
νÞ ¼

1

2
Lξgμν: ð33Þ

The LL derivative Ke
ξe

a will therefore vanish when ξ is a
Killing vector if and only if the antisymmetric part
vanishes. The antisymmetric part,

ea½μKe
ξe

a
ν� ¼ ea½μLξeaν� þ eaμebνðλeξÞab; ð34Þ

can be set to zero by choosing

ðλeξÞab ¼ eσ½aLξe
b�
σ : ð35Þ

This choice of λeξ defines the LL derivative associated with
ea. The LL derivative of ea with respect to an arbitrary
vector field is thus given by

Ke
ξe

a
μ ¼

1

2
eaνLξgμν: ð36Þ

In particular, when ξa is a Killing vector field we
have Kξea ¼ 0.
It will be useful to find an explicit expression for λeξ (35)

in terms of ∇ξ. We have

ðλeξÞab ¼ eμ½aLξe
b�
μ ð37Þ

¼ eμ½aξν∇νe
b�
μ þ eμ½að∇μξ

νÞeb�ν ð38Þ

¼ iξðωeÞab þ eμ½aeb�ν ∇μξ
ν: ð39Þ

In the second line we expressed the Lie derivative using
the torsion-free metric compatible derivative ∇, and in the
third line we used ∇eb ¼ Deb − ðωeÞbcec ¼ −ðωeÞbcec.
Under a Lorentz transformation of the frame,

ea → La
beb, the quantity λeξ transforms like a connection

for the Lie derivative,

λLeξ ¼ LλeξL
−1 þ LLξL−1: ð40Þ

This makes the LL derivative covariant under SOðn − 1; 1Þ
gauge transformations. The action of the LL derivative is
extended to any Lorentz tensor by requiring that it be a
derivation, i.e. by stipulating that the Leibniz product rule
applies. Its action on any SOðn − 1; 1Þ connection is
defined so that the λξ term implements the infinitesimal
gauge transformation of a connection,

Ke
ξω

ab ¼ Lξω
ab − DðλeξÞab ð41Þ

¼ iξRab þ Dðiξω − λeξÞab: ð42Þ
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This result will be key when evaluating the entropy using
the Lorentz-diffeomorphism Noether charge.
Let us illustrate the action of the LL derivative in a two-

dimensional flat Euclidean space. The frame we considered
above has zero Lie derivative along the rotation Killing
vector field ξ ¼ ∂θ. Hence for that frame and that vector
field we have λξ ¼ 0, so the LL derivative is just the Lie
derivative, which vanishes on the frame. The problem with
such a frame, as explained above, is that it is singular at the
fixed point of the Killing flow. Next we consider a
Cartesian frame, e1 ¼ dx and e2 ¼ dy. Writing the same
Killing vector as ξ ¼ x∂y − y∂x, it is simple to see that
ðLξeÞ1 ¼ −e2 and ðLξeÞ2 ¼ e1. Although this frame is not
rotationally invariant, its LL derivative must vanish since ξ
is a Killing field. Indeed we have ðλeξÞ12 ¼ −ðλeξÞ21 ¼ 1, so
ðKeeÞ1 ¼ ðLξeÞ1 þ ðλeξÞ12e2 ¼ −e2 þ e2 ¼ 0, and simi-
larly ðKeeÞ2 ¼ ðLξeÞ2 þ ðλeξÞ21e1 ¼ e1 − e1 ¼ 0. In effect,
the gauge transformation cancels the nonzero Lie derivative
with respect to a Killing vector. (If we consider instead the
shear vector field x∂y, which is not a Killing vector, then
both the Lie and LL derivatives of the Cartesian frame are
nonvanishing, and they differ from each other.) Similarly,
the rotation invariant frame has a nonvanishing Lie deriva-
tive with respect to the translation Killing vector ∂x, but its
LL derivative with respect to ∂x vanishes.

V. BLACK HOLE ENTROPY AS
LORENTZ-DIFFEOMORPHISM

NOETHER CHARGE

We may now repeat the steps in the Noether charge
construction of Sec. II, replacing the Lie derivative varia-
tion by the LL derivative,

δϕ ¼ Ke
ξϕ: ð43Þ

Assuming the diffeomorphism-covariant Lagrangian is a
Lorentz scalar, its variation is the samewhether the fields of
which it is built vary by the Lie derivative, or the LL
derivative, hence it satisfies Ke

ξL ¼ LξL ¼ diξL.
The Noether current associated with the LL symmetry is

defined by

jKξ ¼ θðϕ;Ke
ξϕÞ − iξL; ð44Þ

which is closed on shell for all ξ, and hence is the exterior
derivative of a Noether charge ðn − 2Þ-form,

jKξ ¼ dQK
ξ : ð45Þ

The derivation of the first law of black hole mechanics
proceeds as in the case of the diffeomorphism Noether
current, but the role of the Lie derivative is played by the
LL derivative. In particular, to make use of the correspond-
ingly modified variational identity (11), the background

fields must now satisfy Ke
ξϕ ¼ 0, so that the variation of

the Hamiltonian generating the combined Lorentz-
diffeomorphism symmetry will vanish. This leads to a
new expression for the black hole entropy,

S ¼ 2π

ℏ

I
B
Q̂K

ξ ; ð46Þ

where again the hat on Q indicates the replacement
∇μξν → nμν. In order to evaluate this for a particular theory
one needs first to find the Noether current and then the
corresponding Noether charge form. Let us see how it
works out for general relativity and some closely related
theories.

A. Lovelock gravity

The analysis for general relativity in Sec. III actually
applies more generally to any Lagrangian Lðe;ωÞ that is
constructed from wedge products of frames and curvature
2-forms, since the nice property (24) continues to hold,
and the rest of the derivation is generic. In particular, the
expression for the Noether charge form (25) applies to all
such Lagrangians. These Lagrangians correspond to
Lovelock gravity theories, together with various “topologi-
cal” terms that do not affect the equations of motion.
Comparison of the expressions (42) and (21) for the LL

and Lie derivatives of the connection reveals that, to obtain
the Noether charge form, we merely need to replace iξω by
iξω − λeξ in (25). This yields

QK
ξ ¼ ðiξω − λeξÞab∧ ∂L

∂Rab : ð47Þ

The key point now is that since the frame is LL invariant
and not Lie invariant, it can be assumed to be regular at B.
Therefore the quantity iξω vanishes at B, and from (39) and
(13) we have there

ðλeξÞab ¼ κnab: ð48Þ

When this is substituted in (47), the result is identical to
what we obtained using the limiting expression (29) with a
singular, Lie invariant frame. That is,

Q̂K
ξ ¼ −κnab∧ ∂L

∂Rab ; ð49Þ

and integrating this gives the entropy (46).
The Lagrangian for Lovelock gravity is

Lðe;ωÞ ¼ ϵa���bcdðc0ea∧ � � � ∧ eb∧ ec∧ ed

þ c1ea∧ � � � ∧ eb∧ Rcd þ � � �Þ; ð50Þ

where ci is a coupling constant for the term with i factors of
the curvature, and the terms indicated by the ellipses each
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contain one more factor of R than the previous term. The c0
term is a cosmological constant, and the c1 term is the
Einstein-Hilbert Lagrangian. The form QK

ξ is obtained from
L by moving, in turn, each factor of R all the way to the first
position and replacing it by −κnab. Contracting nab with the
rank-n Lorentz ϵ in L produces twice the rank-ðn − 2Þ
Lorentz ϵ associated via the frame with the SOðn − 2Þ group
of the tangent space of B. The remaining Lorentz indices are
thus all projected into this subspace. The coefficient of the
term in QK

ξ with m − 1 factors of R is thus 2κmcm.
The curvatures in the entropy integrand are those of the

connection ω, whose equation of motion is D∂L=∂Rab¼0.
One way—and generically the only way—to satisfy this is
to have Dea ¼ 0, i.e. for ω to be the spin connection ωe

determined by e. For such solutions the curvature appearing
in the entropy is the one determined by e. These curvature
2-forms are all pulled back to B and, as explained above,
their Lorentz indices are all projected into the B-subspace.
Moreover, the extrinsic curvature of the bifurcation surface
vanishes, so these curvatures all reduce to intrinsic curva-
tures of B. The entropy is therefore determined by the
intrinsic geometry of the horizon [13].
The first and second order formalisms for Lovelock

gravity are not strictly identical in more than four dimen-
sions, since there exist solutions in the first order formalism
for which ω ≠ ωe. That is, the connection may have
torsion. In fact, black hole solutions with this property
exist, and their entropy might involve this torsion via the
curvature (see for example [14] and references therein). In
[15] black hole solutions in Born-Infeld gravity (which is a
special case of Lovelock gravity in even dimensions)
supporting nonzero torsion were constructed. However,
by construction all the Noether charges for these solutions
vanish, including the entropy. It would be interesting to find
solutions with nontrivial torsion contributing to the black
hole entropy.

B. Topological terms

As a further application of the Lorentz-diffeomorphism
symmetry discussed here, we now look into the contribu-
tions of topological terms to the black hole entropy in four-
dimensional general relativity. The contributions of these
terms have been studied before, using various formalisms;
see for example Refs. [12,16–18].
The Lagrangian 4-form is given by

Lðe;ωÞ ¼ ð�ðea∧ ebÞ
þ cHea∧ eb þ cE � Rab þ cPRabÞ∧ Rab;

ð51Þ

where � denotes Lorentz dual, e.g. �Rab ¼ 1
2
ϵabcdRcd. The

coupling constants are cH for the Holst term [3], cE for the
Euler (Gauss-Bonnet) invariant, and cP for the Pontryagin

invariant. The Holst term modifies the connection equation
of motion, but does not affect its solution ωe, and it drops
out of the frame equation of motion when the connection is
on shell. The Euler and Pontryagin terms depend only on
the connection. The Euler and Pontryagin terms are exact
forms, so do not affect the equations of motion. Were they
exterior derivatives of gauge-invariant forms, we could
absorb those forms into the symplectic potential θ (1), and
from general considerations conclude that the entropy is
unaffected by them [19]. However, those forms are not
gauge invariant, hence these terms might contribute to the
black hole entropy.
The black hole entropy (46) for the Lagrangian (51) is

given by

S ¼ 2π

ℏ

I
B
ncdð�ec ∧ ed þ cHec ∧ ed

þ 2cE � Rcd þ 2cPRcdÞ: ð52Þ

The Einstein-Hilbert term is proportional to the area of B,
as we saw before. The Holst term vanishes because the
binormal is orthogonal to B. The Euler term is one of the
terms in the general Lovelock Lagrangian (50). Therefore,
as explained above, it involves only the intrinsic curvature
of B. In the present case, since B is two dimensional, that
just amounts to the Ricci scalar. The integral of this term in
the entropy is a topological invariant, proportional to the
Euler characteristic of the horizon [13]. In higher, even
dimensions, similar terms exist, involving ðn − 2Þ=2 cur-
vature tensors. Finally, it turns out that, since the extrinsic
curvature vanishes, the Pontryagin term is an exact form
on B, so its integral vanishes. To see that the pull-back of
ncdRcd to B is exact, let la and na be null normals to B
satisfying lcnc ¼ −2, so ncd ¼ l½cnd�. Then we have
ncdRcd¼ lcD2nc¼dðlcDncÞ−Dlc∧Dnc. Since the extrin-
sic curvature of B vanishes, the null normals must be
parallel transported along B into multiples of themselves,
so pulled back to B we have Dlc ¼ σlc and Dnc ¼ −σnc
for some 1-form σ. Hence Dlc ∧ Dnc ¼ −2σ ∧ σ ¼ 0.

VI. DISCUSSION

In this paper we have made use of the Lorentz-Lie
derivative Kξ to define a particular variation of the frame
field (and other Lorentz tensors) under a diffeomorphism
generated by a vector field ξ. In words, the LL derivative is
defined by combining the usual Lie derivative with a term
that subtracts the local Lorentz transformation induced on
the frame by the flow. This subtraction term depends on the
frame field, and amounts to a connection that covariantizes
the Lie derivative with respect to local Lorentz trans-
formations. A key property of this definition is that if ξ
is a Killing vector, the LL derivative of the frame vanishes.
This property makes it possible for the frame to be
LL-invariant at the bifurcation surface of a Killing horizon

BLACK HOLE ENTROPY AND LORENTZ-DIFFEOMORPHISM … PHYSICAL REVIEW D 92, 124010 (2015)

124010-7



while remaining regular there. Using this formalism, we
showed how the LL Noether charge yields the black hole
entropy. We illustrated the computational convenience of
this method by evaluating the black hole entropy for
Lagrangians that are polynomial in wedge products of
the frame field 1-form and curvature 2-form.
The computations in this paper were carried out using a

single “local Lorentz gauge,” so in effect we assumed that
the relevant portion of the spacetime could be covered by a
single gauge patch. Further analysis would be required to
deal with situations where that is not the case. For example,
one could use the frame bundle formalism, which has been
discussed in this setting in Refs. [2,12].
We have restricted attention here to Lagrangians that are

Lorentz scalar n-forms. It could be interesting to study the
Noether charge formalism allowing for Lagrangians having
this property only up to the exterior derivative of a
nonscalar n-form. This would shed a different light on
the contributions of the Euler and Pontryagin terms studied
here, and could be useful in further generalizations.
Finally, the combined diffeomorphism-gauge Noether

current analysis can also be applied when the local gauge

symmetry is internal, as in Yang-Mills theory. A simple
example involving the electromagnetic field is discussed in
Appendix E1 of [20]. It employs the notion of “gauge
covariantLiederivative” to arrivedirectly at a gauge-covariant
Noether current. A general analysis is provided in Ref. [2].
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