
Maxwell perturbations on asymptotically anti–de Sitter spacetimes:
Generic boundary conditions and a new branch of quasinormal modes

Mengjie Wang (王梦杰),* Carlos Herdeiro,† and Marco O. P. Sampaio‡

Departamento de Física da Universidade de Aveiro and CIDMA,
Campus de Santiago, 3810-183 Aveiro, Portugal

(Received 10 June 2015; published 1 December 2015)

Perturbations of asymptotically anti-de-Sitter (AdS) spacetimes are often considered by imposing field
vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing
energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box,
we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show
that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell
perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for
other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black
holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant
instabilities and vector clouds. As a first application, we consider here the quasinormal modes of
Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum
reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.
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I. INTRODUCTION

The stability of a black hole (BH) is a crucial question in
BH physics. The reason is twofold. From the viewpoint of
astrophysics, sufficiently stable BHs provide the best candi-
dates to explain observations, e.g., high energy astrophysical
processes like Active Galactic Nuclei (AGN). From the
theoretical viewpoint, BH stability relates to the uniqueness
theorems [1], since BH instabilities may lead to new BH
solutionswhen a zero-modeof the instability exists; examples
includenew string solutions [2] due to theGregory-Laflamme
instability [3] and new asymptotically flat hairy rotating BH
solutions [4–6] due to the superradiant instability [7].
The problem of BH stability is typically tackled by

introducing linear perturbations of test fields on a fixed
background and studying either quasinormal modes or
quasibound states (cf. reviews [8–10]). Quite remarkably,
it has been shown that the equations of motion for linear
perturbations of massless spin fields on four dimensional
Kerr BHs both separate and decouple, yielding the cel-
ebrated Teukolsky equation [11]. Subsequently, this equa-
tion has been generalized to rotating BHs with a
cosmological constant in different contexts [12–14].
To solve the Teukolsky equation, one has to assign

physically relevant boundary conditions (BCs) which
depend on the specific problem. In the context of quasinor-
mal modes in asymptotically anti-de Sitter (AdS) BHs, the
most studied perturbations are those of scalar fields, for
which field vanishingBCs are usually imposed; see e.g. [15].

For other spin fields, the problem has only been partly
addressed. The quasinormalmodes for theMaxwell field and
gravitational field in Schwarzschild-AdS BHs have been
obtained using the Regge-Wheeler method [16], instead of
the Teukolsky equation, in [17,18], exploring the spherical
symmetry of the background. Additionally, these works
impose field vanishing BCs. For nonspherically symmetric
backgrounds, like in Kerr-AdS BHs, one must, however, use
the Teukolsky formalism and, since this formalism uses a
different set of variables, it is not obvious how to imposeBCs
for nonzero spin fields. Recently, superradiant instabilities of
the gravitational field on Kerr-AdS BHs have been studied
[19] with BCs [20] chosen as to preserve the asymptotic
global AdS structure of the background1. Furthermore, it was
proved in [19] that the BCs in [20] yield vanishing energy
flux at the asymptotic boundary.
The AdS boundary may be regarded as a perfectly

reflecting mirror, in the sense that no energy flux can
cross the asymptotic boundary. We will take this viewpoint
as our basic principle for imposing BCs for linear pertur-
bations of asymptotically AdS spacetimes. It suggests
taking vanishing energy flux (VEF) BCs, which should
be contrasted to the field vanishing BCs we mentioned
before. In this paper we will illustrate how these BCs, based
on this simple physical principle, can lead to new results,
using the Maxwell field as an example.
We present a framework to calculate VEF BCs for the

Maxwell field on Kerr-AdS BHs, when using the Teukolsky
equation. From the VEF BCs we get a set of two Robin BCs.
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1Such BCs, as argued in [21], do not appear to give rise to a
well posed time evolution.
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These are determined by a linear combination of the
Teukolsky variables and their derivatives, for the Maxwell
field inKerr-AdSBHs. Interestingly, these two conditions are
different even in Schwarzschild-AdSBHs; thus, in this paper,
we will focus on the latter background. We then observe that
one of the Robin BCs recovers the results shown in
[17,18,22], but the other one leads to a hitherto unknown
branch of quasinormal modes. Other applications of the VEF
BCs, such as superradiant instabilities and vector clouds of
Kerr-AdS BHs, will be reported elsewhere [23].
The formulation we present to construct BCs applies to

both the Maxwell field as well as for other spin fields. For a
scalar field, however, the VEF BCs yield equivalent results
to the Dirichlet BCs typically used. It would be interesting
to consider the VEF BCs for other spin fields as well,
especially for a gravitational field, to inquire if they are
equivalent to the BCs in [20].
The structure of this paper is organized as follows. In

Sec. II we introduce the Kerr-AdS background geometry,
and the Teukolsky equation for the Maxwell field which
will be studied in this paper. In Sec. III we show how to get
the VEF BCs in the Teukolsky formalism. In Sec. IV we
apply these BCs to Schwarzschild-AdS BHs, and discuss
the two branches of quasinormal frequencies, one of them
already reported in the literature, and a new one which has
not been explored yet. Final remarks and conclusions are
presented in the last section.

II. BACKGROUND GEOMETRY
AND THE FIELD EQUATION

For a self-contained presentation, in this section we
briefly review some basic properties of Kerr-AdS BHs,
and the Teukolsky equation for the Maxwell field on this
background geometry. We consider the following line
element for a Kerr-AdS BH:

ds2 ¼ − ρ2
�
dr2

Δr
þ dθ2

Δθ

�
þ Δr

ρ2Ξ2
ðdt − asin2θdφÞ2

−
Δθsin2θ
ρ2Ξ2

ðadt − ðr2 þ a2ÞdφÞ2; ð1Þ

with metric functions

ρ2 ¼ r2 þ a2cos2θ; Δr ¼ ðr2 þ a2Þ
�
1þ r2

L2

�
− 2Mr;

Δθ ¼ 1−
a2cos2θ

L2
; Ξ ¼ 1−

a2

L2
; ð2Þ

where L is the AdS radius and parameters M, a are related
to the BH energy E and angular momentum J. In this
frame, the angular velocity of the event horizon and the
Hawking temperature are given by

ΩH ¼ a
r2þ þ a2

; ð3Þ

TH ¼ 1

Ξ

�
rþ
2π

�
1þ r2þ

L2

�
1

r2þ þ a2
−

1

4πrþ

�
1 −

r2þ
L2

��
; ð4Þ

where the event horizon rþ is determined as the largest root
of ΔrðrþÞ ¼ 0. For a given rþ, the mass parameter M can
be expressed as

M ¼ ðr2þ þ a2ÞðL2 þ r2þÞ
2rþL2

:

For nonextremal BHs and to avoid singularities, we shall
constrain the rotation parameter a [19]

a
L
≤
rþ
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2þ þ L2

L2 − r2þ

s
; for

rþ
L

<
1ffiffiffi
3

p ;

a
L
< 1; for

rþ
L

≥
1ffiffiffi
3

p :

A linear perturbation equation for massless spin fields on a
Kerr BH was worked out by Teukolsky in a pioneer work
[11], and was generalized to a Kerr-dS BH later [12].
Recently the analogous equation was derived for a Kerr-
AdS BH [13]. In the following we outline the equations
for the radial and angular parts of the master field
describing a spin s perturbation, without a detailed deri-
vation. For the case of interest herein, the spin parameter is
s ¼ �1. The radial equation is

Δ−s
r

d
dr

�
Δsþ1

r
dRsðrÞ
dr

�
þHðrÞRsðrÞ ¼ 0; ð5Þ

with

HðrÞ ¼ K2
r − isKrΔ0

r

Δr
þ 2isK0

r þ
sþ jsj

2
Δ00

r þ
a2

L2
− λ;

where

Kr ¼ ½ωðr2 þ a2Þ − am�Ξ: ð6Þ

The angular equation is

d
du

�
Δu

dSlm
du

�
þ AðuÞSlm ¼ 0; ð7Þ

with u ¼ cos θ, and

AðuÞ ¼ −
K2

u

Δu
− 4smu

Ξ
1 − u2

þ λ − jsj − 2ð1 − u2Þ a
2

L2
;

where

Ku ¼ ðωað1 − u2Þ þ ðsu −mÞÞΞ;

Δu ¼ ð1 − u2Þ
�
1 −

a2

L2
u2
�
:
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III. BOUNDARY CONDITIONS

To solve a differential equation, like the radial equa-
tion (5) and the angular equation (7), one has to impose
physically relevant BCs. For the angular equation (7), one
usually requires its solutions to be regular at the singular
points θ ¼ 0 and θ ¼ π. This determines uniquely the set
of angular functions labeled by l and m. For the radial
equation (5), we have to impose conditions both at the
horizon and at infinity. At the horizon, ingoing BCs are
imposed. At infinity, however, the BCs are more subtle. For
the often studied case of a scalar field on Kerr-AdS BHs,
the BCs typically imposed require the field itself to vanish
[15,18], when looking for quasinormal modes. For the
Maxwell field and in the Teukolsky formalism, the asymp-
totic BCs have not been explored yet. In this section,
we are going to discuss them for the general Kerr-AdS
background.
We propose that in the Teukolsky formalism, when

looking for quasinormal modes of the Maxwell field on
Kerr-AdS BHs, VEF BCs should be imposed, following the
spirit that the AdS boundary is a perfectly reflecting mirror
so that no energy flux can cross it. For the particular case
of the electromagnetic field, these BCs create an analogy
between the AdS boundary and a perfect conductor.
Actually the conductor condition for the Maxwell field
has been considered in a Kerr mirror system [24]. But the
VEF BCs, which for a scalar field can yield both standard
Dirichlet and Neumann BCs and for a Maxwell field can
yield perfectly conducting BCs, are a general principle for
any spin field, based on a sound physical rationale.
The energy-momentum tensor for the Maxwell field is

Tμν ¼ FμσFσ
ν þ

1

4
gμνF2; ð8Þ

with the Maxwell tensor Fμν [11]

Fμν ¼ 2ðϕ1ðn½μlν� þm½μm�
ν�Þ þ ϕ2l½μmν� þ ϕ0m�

½μnν�Þ
þ c:c;

where square brackets on subscripts stand for antisymmet-
rization, and c:c stands for complex conjugate of the
preceding terms. The tetrad is constructed from the line
element in Eq. (1), with definition

lμ ¼
�ðr2 þ a2ÞΞ

Δr
; 1; 0;

aΞ
Δr

�
;

nμ ¼ 1

2ρ2
ððr2 þ a2ÞΞ;−Δr; 0; aΞÞ;

mμ ¼ 1ffiffiffiffiffiffiffiffi
2Δθ

p
ρ̄

�
iaΞ sin θ; 0;Δθ;

iΞ
sin θ

�
;

where ρ̄ ¼ rþ ia cos θ.

The Maxwell scalars are defined as

ϕ0 ¼ Fμνlμmν; ϕ1 ¼
1

2
Fμνðlμnν þm�μmνÞ;

ϕ2 ¼ Fμνm�μnν;

where m�μ ¼ ðmμÞ�.
We are now able to calculate the radial energy flux Tr

t,
by substituting all of the above ingredients into Eq. (8),
which gives

Tr
t ¼ Tr

t;I þ Tr
t;II;

where

Tr
t;I ¼

1

2Ξ

�
4jϕ2j2 −

Δ2
r

ρ4
jϕ0j2

�
; ð9Þ

while Tr
t;II becomes irrelevant at infinity, so we do not

show its expression here. Then we decompose the Maxwell
scalars as

ϕ0 ¼ e−iωtþimφRþ1ðrÞSþ1ðθÞ;

ϕ2 ¼
B

2ðρ̄�Þ2 e
−iωtþimφR−1ðrÞS−1ðθÞ; ð10Þ

where B is a positive root of [14]

B2 ¼ λ2 − 4Ξ2ωðωa2 −maÞ;

such that the Starobinsky-Teukolsky identities are
satisfied [14]

Rþ1 ¼
�
d
dr

−
iKr

Δr

��
d
dr

−
iKr

Δr

�
R−1; ð11Þ

B2R−1 ¼ Δr

�
d
dr

þ iKr

Δr

��
d
dr

þ iKr

Δr

�
Pþ1; ð12Þ

where Kr is given by Eq. (6), Pþ1 ¼ ΔrRþ1, and R�1ðrÞ
and S�1ðθÞ obey the radial equation (5) and the angular
equation (7), respectively.
With the fields decomposition in Eq. (10), integrating

Tr
t;I over a sphere, we obtain the energy flux

F jr ¼
Z
S2
sin θdθdφr2Tr

t;I

¼ r2

2Ξρ4
ðB2jR−1j2 − Δ2

r jRþ1j2Þ; ð13Þ

up to an irrelevant normalization, and the angular functions
S�1ðθÞ are normalized
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Z
π

0

sin θdθjS�1ðθÞj2 ¼ 1:

To get the asymptotic boundary condition for R−1, we
expand Eq. (5) with s ¼ −1 asymptotically as

R−1 ∼ α−rþ β− þOðr−1Þ; ð14Þ

where α− and β− are two integration constants. Keeping
in mind the Starobinsky-Teukolsky identities (11),
making use of the radial equation (5) with s ¼ −1 and
the asymptotic expansion in Eq. (14), at the asymptotic
boundary, the energy flux in Eq. (13) becomes

F jr;∞ ¼ B2jα−j2 − jðλ − 2ω2Ξ2L2Þα− þ 2iβ−ωΞj2; ð15Þ

where an overall proportional constant has been ignored.
To impose the VEF BCs, i.e. F jr;∞ ¼ 0, we have

B2jα−j2 − jðλ − 2ω2Ξ2L2Þα− þ 2iβ−ωΞj2 ¼ 0: ð16Þ

Note that α− and β− are two independent integration
constants; we can rescale them so that the modulus in
the above equation can be dropped [25]. Then it is easy to
solve this quadratic equation obtaining the two solutions

α−

β−
¼ 2iωΞ

�B − λþ 2ω2Ξ2L2
: ð17Þ

We have also checked that, the angular momentum flux of
the Maxwell field vanishes asymptotically if the above
boundary conditions are satisfied, similarly to the gravita-
tional case [19].
For Schwarzschild-AdS BHs, Eq. (17) simplifies to

α−

β−
¼ i

ωL2
;

α−

β−
¼ iω

−lðlþ 1Þ þ ω2L2
: ð18Þ

These are, apparently, two distinct Robin BCs, but at this
moment it is unclear if they lead to physically different
modes or if they are isospectral.
We can also follow the same procedure to calculate BCs

for the Teukolsky equation with s ¼ þ1. Instead of using
Rþ1ðrÞ, we use Pþ1ðrÞ for convenience, which relates
to Rþ1ðrÞ through Pþ1ðrÞ ¼ ΔrRþ1ðrÞ. As before, we
expand Pþ1ðrÞ from Eq. (5) with s ¼ þ1 asymptotically

Pþ1 ∼ αþrþ βþ þOðr−1Þ; ð19Þ

where αþ and βþ are two integration constants. Using the
Starobinsky-Teukolsky identity in Eq. (12), the asymptotic
expansion in Eq. (19), the Teukolsky equation with s ¼ þ1

in Eq. (5) and the transformation Pþ1ðrÞ ¼ ΔrRþ1ðrÞ, then
Eq. (13) gives the conditions

αþ

βþ
¼ −

2iωΞ
�B − λþ 2ω2Ξ2L2

; ð20Þ

after imposing the VEF BCs. Comparing the two BCs in
(17) and in (20), we find that there is only a sign difference,
or in other words, they are complex conjugate to each
other. This is the consequence that Pþ1ðrÞ and R−1ðrÞ are
proportional to complex conjugate functions of each other.
We have checked that solving the radial equation (5) for
s ¼ −1 and s ¼ þ1 with the corresponding BCs (17) and
(20), for Schwarzschild-AdS BHs, the same quasinormal
frequencies are obtained, which is consistent with the
argument that these two Teukolsky equations encode the
same information. Thus, for concreteness and without loss
of generality, in the following we specify s ¼ −1, and
consider the corresponding BCs.

IV. MAXWELL QUASINORMAL MODES
FOR SCHWARZSCHILD-ADS BHS

We shall now apply the VEF BCs to Maxwell perturba-
tions on Schwarzschild-AdS BHs, in the Teukolsky for-
malism. We show that even in this simpler case, there is a
new branch of quasinormal modes which has not been
explored yet. Before that, however, we calculate normal
modes in pure AdS spacetime, which not only illustrates
how the BCs work, but also provides an initial guess for the
later numerical calculations of quasinormal modes. In the
pure AdS case the spectra obtained from the two different
Robin BCs are isospectral (up to one mode).

A. Normal modes

The normal frequencies for the Maxwell field on an
empty AdS background can be obtained analytically. The
radial Teukolsky equation (5) can be simplified in this
case to

ΔrR00−1ðrÞ þ
�
K2

r þ iKrΔ0
r

Δr
− 2iK0

r − lðlþ 1Þ
�
R−1ðrÞ

¼ 0; ð21Þ

with

Δr ¼ r2
�
1þ r2

L2

�
; Kr ¼ ωr2:

The general solution for Eq. (21) is
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R−1 ¼ rlþ1ðr − iLÞωL2 ðrþ iLÞ−l−ωL
2

�
C1F

�
l;lþ 1þ ωL; 2lþ 2;

2r
rþ iL

�

þ C2ð−1Þ2lþ12−2l−1
�
1þ iL

r

�
2lþ1

F

�
−l − 1;−lþ ωL;−2l;

2r
rþ iL

��
; ð22Þ

where Fða; b; c; zÞ is the hypergeometric function, C1 and
C2 are two integration constants with dimension of inverse
length. These are related to each other by the BCs through
expanding Eq. (22) at large r:

(i) Imposing the first of the two BCs in Eq. (18), one
gets a first relation between C1 and C2

C2

C1

¼ −22lþ1
l

lþ 1

Fðlþ 1;lþ 1þωL;2lþ 2;2Þ
Fð−l;−lþωL;−2l; 2Þ :

ð23Þ

(ii) Imposing the second, of the two BCs in Eq. (18), on
the other hand, one gets a second relation between
C1 and C2

C2

C1

¼ 22lþ1

�
l

lþ 1

�
2 lþ 1þ ωL

l − ωL
A1

A2

; ð24Þ

where

A1 ¼ ðlþ 1ÞFðl;lþ 1þ ωL; 2lþ 2; 2Þ
þ ωLFðlþ 1;lþ 2þ ωL; 2lþ 3; 2Þ;

A2 ¼ lFð−l − 1;−lþ ωL;−2l; 2Þ
− ωLFð−l;−lþ 1þ ωL; 1 − 2l; 2Þ: ð25Þ

Then from the small r behavior of Eq. (22)

R−1 ∼
−iLlþ1C2

rl
þ ð−1Þl22lþ1L−lC1rlþ1; ð26Þ

we have to set C2 ¼ 0 in order to get a regular solution
at the origin. This regularity condition picks the normal
modes, from Eqs. (23) and (24):

Fðlþ 1;lþ 1þ ωL; 2lþ 2; 2Þ ¼ 0;

⇒ ω1;NL ¼ 2N þ lþ 2; ð27Þ

A1 ¼ 0;

⇒ ω2;NL ¼ 2N þ lþ 1; ð28Þ

where N ¼ 0; 1; 2;…, and l ¼ 1; 2; 3;…. Observe that, as
announced before, the two sets of frequencies are isospec-
tral, up to one mode. Observe also that these two normal

modes are the same with the gravitational case, as shown
in [19].

B. Quasinormal modes

When the BH effects are taken into account, we cannot
solve the radial Teukolsky equation analytically as before.
So we are now going to look for quasinormal modes
of Schwarzschild-AdS BHs by solving the Teukolsky
equation numerically.
As we mentioned before, the quasinormal modes for the

Maxwell field on Schwarzschild-AdS BHs have been
studied using the Regge-Wheeler formalism [18]. Here
we will tackle the same problem in the Teukolsky formal-
ism, imposing the BCs discussed in Sec. III. We find the
following:

(i) when the first of the two BCs in Eq. (18) is imposed,
we recover the results given in the literature [18,22];

(ii) when the second of the two BCs in Eq. (18) is
imposed, there is one new branch of quasinor-
mal modes.

To be complete and comparative, we will show both results
in the following. In the numerical calculations all physical
quantities are normalized by the AdS radius L and we set
L ¼ 1. Also, observe that we use ω1 (ω2) to represent
the quasinormal frequency corresponding to the first
(second) BCs.
To solve the radial equation (5) with s ¼ −1, we use a

direct integration method, adapted from [26–28]. First, we
use Frobenius’s method to expand R−1 close to the event
horizon

R−1 ¼ ðr − rþÞρ
X∞
j¼0

cjðr − rþÞj;

with the ingoing boundary condition

ρ ¼ 1 −
iωrþ

1þ 3r2þ
;

and initialize the integration of Eq. (5) therein. The series
expansion coefficients cj can be derived directly after
inserting these expansions into Eq. (5). At infinity, the
asymptotic behavior of R−1 has been given in Eq. (14),
where two coefficients, α− and β−, can be extracted from
R−1 and its first derivative. For that purpose, we can define
two new fields fχ;ψg, which will asymptote respectively to
fα−; β−g, at infinity. Such a transformation can be written
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in a matrix form by defining the vector ΨT ¼ ðχ;ψÞ for the
new fields, and another vector VT ¼ ðR−1;

d
dr R−1Þ for the

original field and its derivative. Then the transformation is
given in terms of an r-dependent matrix T defined through

V ¼
�
r 1

1 0

�
Ψ≡ TΨ:

To obtain a first order system of ODEs for the new fields,
we first define a matrix X through

dV
dr

¼ XV; ð29Þ

where X can be read out from the original radial equa-
tion (5). Then we obtain

dΨ
dr

¼ T−1
�
XT −

dT
dr

�
Ψ; ð30Þ

which is the equation we are going to solve numerically.
With this numerical procedure and the BCs given in
Eq. (18), we calculate quasinormal frequencies.
In Table I, we list a few fundamental ðN ¼ 0Þ quasi-

normal frequencies of ω1 (with l ¼ 1) and ω2 (with
l ¼ 2), for different BH sizes. As mentioned above, the
normal modes displayed in Eqs. (27) and (28), are
isospectral under the mapping

l2 ↔ l1 þ 1; ð31Þ
except one mode for ω2, where l1 and l2 refer to the
angular momentum quantum number in the spectrum of ω1

and ω2. The presence of a BH, however, breaks the
isospectrality. To show this, we present in Table I the
two sets of quasinormal frequencies, with l1 ¼ 1 and
l2 ¼ 2, respectively. One observes that the degeneracy
between ω1 and ω2 gets broken, especially in the small BH
and intermediate BH regimes. For large BHs, these two
modes are, again, almost isospectral, which seems to be a
general feature for any type of perturbation [18,22].
Furthermore, for large BHs, the real part of the frequency
for either of the sets vanishes, while the imaginary part
scales linearly with the BH size rþ. This scaling can be
equally stated in terms of the Hawking temperature, which
relates to the BH size through TH ¼ 3rþ=ð4πL2Þ for large
BHs, supporting the arguments given in [29], where a
similar linear relation was found for scalar fields. We
remark that the numerical data for ω1 displayed in Table I

TABLE I. Quasinormal frequencies of the Maxwell field on
Schwarzchild-AdS. Some fundamental modes are shown, for
different BH sizes rþ and for the two sets of modes.

rþ ω1ðl ¼ 1Þ ω2ðl ¼ 2Þ
0.2 2.6384–5.7947 × 10−2 i 2.9403–1.0466 × 10−4 i
0.5 2.2591–0.6573 i 2.7804–0.07549 i
0.8 2.1758–1.2870 i 2.6923–0.2721 i
1.0 2.1630–1.6991 i 2.6647–0.4061 i
5.0 0–8.7948 i 0–5.0528 i
10 0–15.5058 i 0–13.8198 i
50 0–75.0958 i 0–74.7533 i
100 0–150.048 i 0–149.876 i

FIG. 1 (color online). Left: comparison of the imaginary part for quasinormal frequencies between the analytical approximation of
small BHs (thin dashed lines) and the numerical data (thick lines) for the fundamental modes of each branch of solutions. Note that the
double logarithmic scale is used in this panel. Right: effect of the angular momentum quantum number l on the quasinormal frequencies
for intermediate size BHs with rþ ¼ 1, and N ¼ 0. The red line is for ω1 and the blue line is for ω2.
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coincides with the numerical results presented in [17,18],
within four significant digits at least, which can be used as a
check for our numerical method.
For small BHs, it can be shown by a perturbative

analytical matching method [23] that the real part of the
frequencies approaches the normal modes of empty AdS
[30], given by Eqs (27) and (28) for the two different BCs,
while the imaginary part for both modes approaches zero as

−ωj;I ∝ r2lþ2
þ ;

which also seems to be a general feature for any type of
perturbation [31]. In Fig. 1, left panel, we display the
numerical data (thick lines) for the fundamental modes of
each branch against the leading behavior obtained from the
perturbative matching method [23] and find a good agree-
ment for small rþ, which can be used as another check for
our numerical method.
In Table II, consider intermediate size BHs to exemplify

the effect of the angular momentum quantum number l on
the frequencies; we have checked the effect of varying l is
qualitatively similar for small BHs. As one can see, for both
modes, the real (imaginary) part of quasinormal frequencies
increases (decreases) in magnitude as l increases. These
behaviors are more clearly shown in the right panel of
Fig. 1. Observe that the increasing of the real part of the
frequency with l is qualitatively similar to the one observed
for empty AdS.
Finally, let us remark that, in the above, we have focused

on fundamental modes because, on the one hand, our main
interest has been to explore the new set of modes which
arises even for N ¼ 0 and, on the other hand, since these
low lying modes are expected to dominate the late time
behavior of time evolutions.

V. DISCUSSION AND FINAL REMARKS

In this paper we have proposed that perturbations of
asymptotically AdS BHs should be considered using VEF
BCs. This is a simple physical principle based on the
perspective that the asymptotic AdS boundary acts like a
perfectly reflecting mirror. We have constructed a framework

for implementing perturbations of Kerr-AdS BHs, with these
BCs in the Teukolsky formalism and illustrated how VEF
BCs can lead to new results for the specific case of a
Maxwell field, even for the simpler Schwarzschild-AdS
background. Indeed, we have found that there are two
branches of quasinormal modes, one of which has been
studied in [17,18,22], and another which is new.
The new branch is actually isospectral to the old branch

for empty AdS, except for the l ¼ 1 mode of ω2. This
isospectrality is broken when BH effects are taken into
account. To establish this we presented a numerical analysis
of the quasinormal frequencies for different BH size. The
breakdown of isospectrality is more pronounced in the
small and intermediate BH size regimes; for large BHs two
modes are again almost isospectral.
An interesting aspect is that for both small and intermediate

size BHs, the imaginary part of new modes is always smaller
than that of the old modes, which implies a longer decay time
scale. For small BHs, one can show analytically that the real
part of both modes approaches the corresponding normal
modes,while the imaginary part is proportional to r2lþ2

þ (with
different proportionality constants). Furthermore, we also
studied the effect of the angular momentum quantum number
l on the frequencies. The real (imaginary) part of bothmodes
increases (decreases) in magnitude as the angular momentum
quantum number l increases.
We would like to stress that the VEF BCs, in the case of

spherically symmetric backgrounds, can be applied not only
in the Teukolsky formalism, but also in the Regge-Wheeler
formalism. We have checked that if one imposes VEF BCs
in the latter formalism for Maxwell perturbations of
Schwarzschild-AdS BHs—instead of vanishing field BCs
[17]—we get the same two sets of quasinormal frequencies
that we have obtained in the Teukolsky formalism.
Since the formulation we have presented can be applied to

other spin fields, we have checked that, for a scalar field, the
VEF BCs reduces precisely to the commonly used Dirichlet
BCs. It would be interesting to apply this formulation to
other spin fields, especially for the gravitational field.
Turning on the angular momentum of the BHs, the Robin

BCs on the Teukolsky variables for Kerr-AdS BHs can be
used to study also superradiant instabilities and vector clouds
of the Maxwell field. Work to investigate these aspects is
underway and we hope to report on them soon [23].
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TABLE II. Same as Table I, but fixing now the BH size to be
rþ ¼ 1. Some fundamental modes are shown, considering differ-
ent angular momentum quantum number l.

l ω1 ω2

1 2.16302–1.69909 i 1.55360–0.541785 i
2 3.22315–1.38415 i 2.66469–0.406058 i
3 4.23555–1.20130 i 3.69923–0.334088 i
4 5.23994–1.07445 i 4.71659–0.286828 i
5 6.24294–0.97775 i 5.72784–0.252025 i
6 7.24598–0.89976 i 6.73632–0.224622 i
7 8.24941–0.83447 i 7.74335–0.202110 i
8 9.25327–0.77838 i 8.74952–0.183072 i
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