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The Tolman VII solution for a static perfect fluid sphere to the Einstein equations is reexamined, and a
closed form class of equations of state (EOSs) is deduced for the first time. These EOSs allow further
analysis to be carried out, leading to a viable model for compact stars with arbitrary boundary mass density
to be obtained. Explicit application of causality conditions places further constraints on the model, and
recent observations of masses and radii of neutron stars prove to be within the predictions of the model.
The adiabatic index predicted is γ ≥ 2, but self-bound crust solutions are not excluded if we allow for
higher polytropic indices in the crustal regions of the star. The solution is also shown to obey known
stability criteria often used in modeling such stars. It is argued that this solution provides realistic limits on
models of compact stars, maybe even independently of the type of EOS, since most of the EOSs usually
considered do show a quadratic density falloff to first order, and this solution is the unique exact solution
that has this property.
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I. INTRODUCTION

The construction of exact analytic solutions to the
Einstein equations has had a long history, nearly one
hundred years to be more precise. However, in spite of
the fact that the total number of solutions is large [1] and
growing, only a small subset of those solutions can be
thought of as having any physical relevance. Most solutions
exhibit mathematical pathologies or violate simple princi-
ples of physics (energy conditions, causality, etc.) and are
therefore not viable descriptions of any observable or
potentially observable phenomena.
Indeed, works that review exact solutions and their

properties demonstrate the difficulties associated with
constructing solutions that might be relevant to gravitating
systems that actually exist in our Universe. Even in the
simplest case of exact analytic solutions for static, spheri-
cally symmetric fluid spheres, it has been shown that less
than ten percent of the many known solutions can be
considered as describing a realistic, observable object.
For example, Delgaty and Lake, using computer algebra
methods, reviewed over 130 solutions and found that only
nine could be classified as physically relevant [2]. A similar
study by Finch and Skea arrived at the same conclusion [3].
The latter review also introduced an additional criterion that
further reduced the number of physically relevant solutions
to those that have exact analytic equations of state (EOSs)
of the form p ¼ pðρÞ, where p is the fluid pressure and ρ is
the matter density. This class of solutions was called “the
set of interesting solutions.”
In 1939 Tolman introduced a technique for constructing

solutions to the static, spherically symmetric Einstein

equations with material fluid sources [4]. That method
led to eight exact analytic expressions for the metric
functions, the matter density and in some cases the fluid
pressure. Beginning with an exact analytic solution for one
of the two metric functions, an expression for the mass
density could be obtained by integration. With expressions
for the density and the first metric function in hand, an
analytic expression for the second metric function could be
obtained. This often required an appropriate change of the
radial variable to obtain a simple integral. All functions
could then be written as explicit functions of the radial
coordinate r. While the fluid pressure could, in principle,
be obtained from the metric and density functions, Tolman
chose not to evaluate the fluid pressure in some cases due to
the fact that to do so would lead to mathematically rather
complicated expressions that might be difficult to interpret.
Of the eight solutions presented in his paper, three were

already known (the Einstein universe, the Schwarzschild–
de Sitter solution and the Schwarzschild constant density
solution); most of the others “describe situations which are
frankly unphysical, and these do have a tendency to distract
attention from the more useful ones.” [5]. One, the so-called
Tolman VII solution appeared to have some physical
relevance, but this was one of the solutions for which no
explicit expression for the pressure was given.
The Tolman VII solution has been rediscovered a

number of times and has appeared under different names,
the Durgapal [6,7] and the Mehra [8] solutions being two
examples. That these solutions can be used to describe
realistic physical systems has been noted by many authors,
including those of the two review papers mentioned above
[2,3]. It has been used as an exact analytic model for
spherically symmetric stellar systems, and additional
research has investigated its stability properties [9,10].
While these later works were able to obtain the complicated
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expressions for the fluid pressure as a function of the radial
coordinate, according to Finch and Skea [3] it still was not
one of the “interesting solutions,” since it lacked an explicit
expression for the equation of state. The choice of param-
eters that has been taken by different authors in order
to completely specify the solution in many ways prevented
the immediate interpretation of the physical conditions
described by the solution.
The reasons mentioned above are not sufficient to use or

classify the Tolman VII solution as a physically viable one.
Instead, we seek physical motivations for the viability of
this solution, and indeed we find these in many forms:

(i) From a Newtonian point of view, simple thermody-
namic arguments yield polytropes of the form
pðρÞ ¼ kργ (here γ is the adiabatic index sometimes
written in terms of the polytropic index n,
γ ¼ 1þ 1=n, and k is known at the adiabatic
constant that can vary from star to star) as viable
models for neutron matter. When coupled with
Newtonian hydrodynamic stability and gravitation,
the result is the Lane-Emden differential equation
for the density profile, ρðrÞ. Solutions of the latter,
obtained numerically, or in particular cases (γ ¼ ∞,
2, or 1.2) exactly, all have a distinctive density falloff
from the center to the edge of the Newtonian star.
This is a feature we wish physical solutions to have.
Furthermore, this distinctive falloff is quadratic in
the rescaled radius [11], suggesting that even in the
relativistic case, such a falloff would be a good first
approximation to model realistic stars, which have a
proper thermodynamic grounding.

(ii) Looking at viable exact relativistic solutions to the
Einstein equations, the one used extensively before
1939 and even much later, was the Schwarzschild
interior solution. This solution has the feature that
the density is constant throughout the sphere, and is
not physical: the speed of sound (pressure) waves in
its interior is infinite. However, this solution pro-
vides clear predictions about the maximum possible
mass of relativistic stars in the form of the Buchdahl
limit [12]: M ≤ 4R=9. The next best guess in this
line of reasoning of finding limiting values from
exact solutions would be to find an exact solution
with a density profile that decreases with increasing
radius, since a stability heuristic for stars demands
that dρ=dr ≤ 0, as expected from (i) in theNewtonian
case. Extension to the relativistic Lane-Emden equa-
tion also requires [11] that ðdρ=drÞjr¼0 ¼ 0, a prop-
erty Tolman VII has.

(iii) Additionally, an extensive review [13] of most
EOSs used from nuclear physics to model neutron
stars concluded that a quadratic falloff in the
density is a very close approximation to most
such nuclear models—the differences of drastically
different nuclear models from Tolman VII being
only minor if only the density profiles were

compared. Since Tolman VII is precisely the unique
exact solution to the full Einstein field equations that
exhibits a quadratic falloff in the density profile, we
believe that it captures much of what nuclear models
have to say about the overall structure of relativis-
tic stars.

These three reasons taken together make a strong case
for considering the Tolman VII solution as the best possible
exact solution that is capable of describing a wide class of
EOSs for neutron stars. At the very least, it is as good a
candidate that captures first-order effects in density of most
nuclear model EOSs, and at best it is the model that all
realistic nuclear models tend to, while including features
like self-boundedness naturally, as we shall show.
The purpose of this paper is to reexamine the Tolman VII

solution by introducing a set of constant parameters that
we believe provide a more intuitive understanding of the
physical content of the solution. In addition, the solution
now becomes a member of the set of “interesting solu-
tions,” since we provide an explicit expression for a class of
equations of state derived from the solution without any
further assumptions about the matter, except for the
Newtonian-like, and physically motivated quadratic falloff
of the density. The EOSs will allow for further exploration
of the predictions of the solution as well as a description of
the material that makes up the star. The imposition of both
the causality conditions where the speed of sound in the
fluid never exceeds the speed of light and the different
boundary conditions will provide further restrictions on the
parameters associated with the solution. What this all leads
to is a complete analytic model for compact stars that can
be used to compare with recent observations of neutron star
masses and radii. That the Tolman VII solution is consistent
with all observations of astrophysical neutron stars leads to
the conclusion that this exact solution is physically relevant
while having features present in compact objects found in
nature.
This article is divided as follows: following a brief

historical introduction in Sec. I, we re-derive the Tolman
VII solution in Sec. II, paying particular attention to the
pressure expressionwith physicallymore intuitivevariables.
We then invert the density equation and use the pressure
expression just found to derive a class of EOSs in Sec. III,
wherewe also carry out an analysis of the said class of EOSs.
In the same section, we contrast the two different types of
physical models that the solution admits, and we shall also
show how qualitative differences arise in the stars’ structure
and quantitative ones appear in the predicted values of the
adiabatic indices of the fluid. Finally, we provide some brief
concluding remarks in Sec. IV.

II. THE TOLMAN VII SOLUTION

Beginning with a line element in terms of standard areal
(Schwarzschild) coordinates for a static and spherically
symmetric metric,
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ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2dθ2 − r2sin2θdφ2; ð1Þ

the Einstein equations for a perfect fluid source lead to
three ordinary differential equations for the two metric
variables ν, λ, and the two matter variables ρ and p.
However, these variables will not be the most practical ones
to carry out our analysis. Instead two related metric
functions, ZðrÞ ¼ e−λðrÞ and YðrÞ ¼ eνðrÞ=2, are introduced,
as prescribed in Ivanov [14]. The reason for introducing
these new metric variables is that with the assumption made
for the density function, these variables will transform the
original nonlinear differential equations into linear ones
which may then be easily solved.
Given the metric equation (1), the Einstein equations

reduce to the following set of three coupled ordinary
differential equations (ODEs) for the four variables Z, Y,
p, and ρ:

κρ ¼ e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ 1

r2
−
Z
r2

−
1

r
dZ
dr

; ð2aÞ

κp ¼ e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ 2Z

rY
dY
dr

þ Z
r2

−
1

r2
; ð2bÞ

κp ¼ e−λ
�
ν00

2
−
ν0λ0

4
þ ðν0Þ2

4
þ ν0 − λ0

2r

�

¼ Z
Y
d2Y
dr2

þ 1

2Y
dY
dr

dZ
dr

þ Z
rY

dY
dr

þ 1

2r
dZ
dr

; ð2cÞ

where the primes ð0Þ denote differentiation with respect to
r, and κ is equal to 8π, since in what follows natural units
where G ¼ c ¼ 1 are introduced.
The first two equations (2a) and (2b) can be added

together to generate the simpler equation

κðpþ ρÞ ¼ 2Z
rY

dY
dr

−
1

r
dZ
dr

; ð3Þ

which will be useful later on. In order to solve this set of
ODEs, one begins with equation (2a) and assumes a
specific functional form for the density, one that is
motivated from physical considerations according to (iii).
Since this is a linear inhomogeneous ODE for ZðrÞ, one can
for the appropriately chosen form of ρðrÞ easily integrate
this equation. The Tolman VII density has a simple func-
tional form:

ρ ¼ ρc

�
1 − μ

�
r
rb

�
2
�
; ð4Þ

where the constant rb represents the boundary radius as
mentioned previously, ρc represents the central density at
r ¼ 0, and μ is a “self-boundedness” dimensionless param-
eter that spans values between 0 and 1, so that when it is
equal to 0, we have a sphere of constant density, and when

it is equal to 1, we have a “natural” star, with density
vanishing at the boundary.
Although very simple, this quadratic function is known

to provide a good approximation for the density profile of a
number of neutron star’s EOSs. For example, Fig. 5 in
Ref. [13] plots the density profile of 12 EOSs and compares
them to a function of the form given in equation (4) (for the
μ ¼ 1 case). Therefore, the claim is that this functional
form is a generic feature of many different types of nuclear
EOSs, and this suggests that at the very least some global
features of such a density profile might describe the bulk
properties of many compact objects.
The set of three parameters that describe the density

function will occur frequently in what follows and will be
denoted as: Π ≔ fρc; rb; μg. The form of the density
function for μ > 0 is physically realistic, since it is
monotonically decreasing from the center to the edge of
the sphere, as argued previously in (ii) and (iii), in contrast
to the constant-density exact solution frequently used to
model such objects.
Additionally, boundary conditions are required for the

system, since we eventually want to match this interior
solution to an external metric. Since the vacuum region is
spherically symmetric and static, the only candidate by
Birkhoff’s theorem is the Schwarzschild exterior solution.
The Israel-Darmois junction conditions for this system
can then be shown to be equivalent to the following two
conditions [15]:

pðrbÞ ¼ 0; and ð5aÞ

ZðrbÞ ¼ 1 −
2M
rb

¼ Y2ðrbÞ; ð5bÞ

where M ¼ mðrbÞ is the total mass of the sphere as seen
by an outside observer, and mðrÞ is the mass function
defined by

mðrÞ ¼ 4π

Z
r

0

ρðr̄Þr̄2dr̄: ð6Þ

Furthermore, the requirement of regularity for the mass
function, that it must vanish at the origin of the radial
coordinate from physical considerations, leads to
mðr ¼ 0Þ ¼ 0. On imposing (5b), one immediately writes
Z in terms of the parameters appearing in the density
assumption:

ZðrÞ¼ 1−
�
κρc
3

�
r2þ

�
κμρc
5r2b

�
r4≕ 1−br2þar4: ð7Þ

In contrast, Tolman’s method was to assume the second
form for Z (or equivalently for e−λ) in (7), and then obtain
the density function from (2a) directly by differentiation.
The physical constants μ, ρc, and rb occur frequently
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enough in the combinations shown above that the constants
a and b as defined in (7) will be used when convenient. The
solution methods for solving the ODEs obtained from the
Einstein equations, particularly those leading to the Tolman
VII solution, have been given in multiple references [4,8]
and will not be reproduced here.
The complete Tolman VII solution is specified with the

two functions (8) and (9) below, together with the pre-
viously given density function (4), and the metric function
Z in equation (7):

YðξÞ ¼ c1 cosðϕξÞ þ c2 sinðϕξÞ; ð8Þ

where ϕ ¼ ffiffiffiffiffiffiffiffi
a=4

p
. The quantity ξ is a new radial variable

whose explicit expression in terms of r is

ξðrÞ ¼ 2ffiffiffi
a

p coth−1
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − br2 þ ar4

p

r2
ffiffiffi
a

p
�
; ð9Þ

and it has been employed to simplify the expression of Y.
Now that the full solution for the metric functions is

known, the pressure can be computed through the relation
(10), obtained from a simple rearrangement and variable
change of (3):

κpðrÞ ¼ 4

ffiffiffiffi
Z

p

Y
dY
dξ

−
1

r
dZ
dr

− κρ: ð10Þ

This substitution results in a very complicated-looking
expression for the pressure,

κpðrÞ ¼ 4ϕ½c2 cos ðϕξÞ − c1 sin ðϕξÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − br2 þ ar4

p

c1 cos ðϕξÞ þ c2 sin ðϕξÞ

− 4ar2 þ 2b − κρc

�
1 − μ

�
r
rb

�
2
�
: ð11Þ

So far the two integration constants c1 and c2 appearing
in the expression for Y, and therefore p, are completely
arbitrary. Application of the boundary conditions using
equations (10), (5a), and (5b) leads to

κðpþ ρÞjx¼xb
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
ZðxbÞ

p
YðxbÞ

dY
dξ

����
ξ¼ξb

− 2
dZ
dx

����
x¼xb

; ð12Þ

where x ≔ r2 is another radial coordinate, and all the b-
subscripted variables are the values at the boundary r ¼ rb.
The cancellation shown results frommatching to the exterior
Schwarzschild solution. However, according to the second
boundary condition (5a), the pressure has to vanish at the
boundary; therefore equation (12) simplifies to

κρjx¼xb ¼ 4
dY
dξ

����
ξ¼ξb

− 2
dZ
dx

����
x¼xb

;

which can be further simplified and rearranged as

dY
dξ

����
ξ¼ξb

¼ b − axb
4

¼ κρc
4

�
1

3
−
μ

5

�
≕ α: ð13Þ

Since theODE, equation (2c) forY, is second order, a second
condition is required. This is simply going to be condition
(5b) restated as

Yðx ¼ xbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bxb þ ax2b

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κρcr2b

�
1

3
−
μ

5

�s
≕ γ: ð14Þ

The two equations (13) and (14) constitute the complete
Cauchy’s boundary condition on Y. The integration con-
stants c1 and c2 can now be determined from the simulta-
neous equations:

dY
dξ

����
ξ¼ξb

¼ ϕ½c2 cos ðϕξbÞ − c1 sin ðϕξbÞ� ¼ α;

∴ c2 cos ðϕξbÞ − c1 sin ðϕξbÞ ¼ α=ϕ; ð15Þ

Yðξ ¼ ξbÞ ¼ γ ∴ c2 sin ðϕξbÞ þ c1 cos ðϕξbÞ ¼ γ: ð16Þ

This system can be solved by first multiplying (15) by
cos ðϕξbÞ, and (16) by sin ðϕξbÞ, and adding the equations
obtained, yielding c2. Similarly, switching themultiplicands
and performing a subtraction instead yields c1, and these can
be given in the form

c1 ¼ γ cos ðϕξbÞ −
α

ϕ
sin ðϕξbÞ; ð17Þ

c2 ¼ γ sin ðϕξbÞ þ
α

ϕ
cos ðϕξbÞ: ð18Þ

The integration constants are ultimately computed in terms
of the parameter set Π, and in doing so this completes the
specification of the full Tolman VII solution in the new
constant scheme.
An important quantity to consider (since it establishes

whether or not the solution is relativistically causal) is the
adiabatic speed of sound waves in the fluid. The usual
definition of this quantity in perfect fluids is v2 ¼ dp=dρ.
However, it will be convenient to find an expression for
the sound speed directly from the differential equations,
since the expression and functional form while completely
equivalent are simpler to work with. First, from the
expression for the density (4), one obtains the derivative

dρ
dr

¼ −
2μρc
r2b

r;
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which is zero only at r ¼ 0. For the other equation, the
conservation of the energy-momentum tensor ∇iTi

j ¼ 0

reduces to

dp
dr

¼ −
ν0ðpþ ρÞ

2
¼ −

ðpþ ρÞ
Y

dY
dr

ð19Þ

in the j ¼ 0 case. These two expressions can be used to find
dp=dρ for every value of r but the center, so that

v2 ¼ dp
dρ

¼
�
dp
dr
= dρ

dr

�
¼ r2bðpþ ρÞ

2μρcrY
dY
dr

: ð20Þ

Using the expressions for all the terms in this formula,
one obtains a relatively simple expression for the speed
of sound.
The bulk modulus K of a fluid is a measure of the

resistance of a fluid to change its volume under an applied
pressure. For perfect fluids it is related to the speed of
sound in the media throughK ¼ ρv2. This is also a quantity
which may be computed for the fluid in the interior. This
calculation demonstrates that the order of magnitude of the
bulk modulus is significantly higher than any currently
known substance by many orders of magnitude.
The next step to understanding this solution is to

investigate the behavior of the solution as the parameter
set is varied. The particular choice of parameters will be
those that are associated with what one might expect for
realistic compact astrophysical objects. As a result, central
densities ρc ∼ 1015 g cm−3 will be typical. Similarly, radii
rb ∼ 106 cm (i.e. 10 km) will often be used for the same
reason. As stated above, the density profile (4) will
decrease quadratically, and this provides a good approxi-
mation of what one would expect from a number of
neutron-star EOSs. Figure 1 plots the density as a function
of radius for different values of μ, which controls the
relation of the surface density to the central density.
The surface density ranges from a zero value when μ ¼ 1

to increasingly higher densities as μ is decreased. In the
literature [13], models having zero surface densities have
been called “natural,” and those with nonvanishing surface
densities have been called “self-bound.” It is for this reason
that μ is called the “self-boundedness” parameter.
Similarly, the complicated expression for the pressure

given by equations (11), (17) and (18) can also be plotted
as a function of the radius. Of importance here is the fact
that while the densities might not vanish at the boundary
rb, the pressure for all parameter values must do so
according to the boundary condition (5a). This is emi-
nently clear in Fig. 2, where we see the pressures
associated with the density curves shown in Fig. 1.
Similarly, the speed of sound and bulk modulus, all
associated with the matter content in the star, are shown
in Figs. 3 and 4, respectively.

The functions ZðrÞ and YðrÞ representing the solutions
to the differential equations (2) are given in Figs. 6 and 5,
respectively, again for different values of the self-
boundedness μ. Equivalently, the metric coefficients in
Schwarzschild form—the form most often used in the
literature for specifying static spherically symmetric
models—can be obtained from YðrÞ and ZðrÞ. For the
sake of completeness, λðrÞ is plotted in Fig. 7 and νðrÞ is
plotted in Fig. 8.
The redshift zs of light emanating from a star as

perceived by distant observers is another quantity that
potentially can be measured. This quantity can also be
calculated in our model, from the relation

zs ¼
�
1 −

2mðrbÞ
rb

�
− 1

2

− 1:

de
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ity
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3
)
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FIG. 1 (color online). Variation of density with the radial
coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 2 (color online). Variation of pressure with the radial
coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 3 (color online). Variation of speed of sound with the
radial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 4 (color online). Variation of bulk modulus with the r
adial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1 taking,
the various values shown in the legend.
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FIG. 5 (color online). Variation of Y metric variable with the
radial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 6 (color online). Variation of Z metric variable with the
radial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 m and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 7 (color online). Variation of λ metric variable with the
radial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 gm−3, rb ¼ 1 × 106 cm and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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FIG. 8 (color online). Variation of ν metric variable with the
radial coordinate inside the star. The parameter values are
ρc ¼ 1 × 1015 g cm−3, rb ¼ 1 × 106 m and 0.6 ≤ μ ≤ 1, taking
the various values shown in the legend.
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The redshift value at the surface of the star for different
values of μ is shown in Fig. 9.

III. THE EQUATION OF STATE AND
PHYSICAL MODELS

A nice feature of the density assumption (4) is that it can
be inverted to easily obtain r as a function of ρ. This allows
one to generate an equation of state (EOS) for this solution.
The full equation of state is given below:

pðρÞ ¼ −
1

20πh1h2

n
h1 − h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2f1cot2f2

q
þ 4πh1h2ρ

o
;

where f1ðρÞ and f2ðρÞ are functions of the density:

f1ðρÞ ¼ 50 − 3

�
h1
h2

�
2

−
4πh21
h2

ρþ 32π2h21ρ
2

and

f2ðρÞ ¼
1

2
ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
8f1h2

p þ h1 − 16πh1h2ρ
20h2C

�
:

The constants h1 and h2 are determined by the central
density and μ, as follows:

h1 ¼ rb

ffiffiffiffiffiffiffiffiffiffiffiffi
5

2πρcμ

s
and h2 ¼

3

8πρc
;

while the constant C is expressible as a complicated
function of the parameters only, in terms of the auxiliary
variables σ and χ:

C ¼
�
1 −

h1
4h2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ð4h2 − h1Þ
8r2bh2 − h21 þ χ

s
exp

�
arctan

�
χ

σ

��
;

with

χ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð4h2r4b − h21r

2
b þ h21h2Þ

q
;

σ ¼ 16h2r2b þ 8πρch21h2ð1 − μÞ − 2h21:

It should be noted here that no assumption about the nature
of matter, except for the very general thermodynamic
prescription of a perfect fluid, has gone into this solution.
Everything else, and in particular the equation of state, was
obtained solely by virtue of the field equations and the
density profile (4). With the equation of state now given
explicitly as p ¼ pðρÞ, it is a simple matter to find the
derivative dp=dρ for the speed of pressure waves, and this
yields precisely the same function as the one found
previously in equation (20).
The expression for this class of EOS is somewhat

complicated, but it is not without physical interpretation,
contrary to what Tolman [4] thought in 1939: “The
dependence of p on r, with e−λ=2 and e−ν explicitly
expressed in terms of r, is so complicated that the solution
is not a convenient one for physical considerations.”
By virtue of having a class of exact EOS, there is the

possibility of two separate interpretations for an EOS that
arise from the analytic expressions. This classification can
be seen as a practical way of interpreting a class of EOS that
has four different parameters, not all independent of each
other. Both EOS1pðρ;ΠÞ for ρb ¼ ρcð1 − μÞ ≤ ρ ≤ ρc,
with the values of the elements of Π, in particular ρc,
fixed (henceforth called EOS1); and EOS2pðρ ¼ ρc;ΠÞ,
with the parameters of Π varying between limits imposed
by causality (EOS2), could be candidates of the EOS.
In the literature, both interpretations have been used, and

sometimes even interchanged. However, each has a com-
pletely different content in that the first interpretation
expresses how the pressure of the fluid changes in moving
from the center of the star r ¼ 0, ρ ¼ ρc, to the boundary
r ¼ rb, ρb ¼ ρcð1 − μÞ, while all the integration constants,
and hence parameters Π, are kept fixed. Those seeking an
interpretation of a unique EOS that should be applicable to
all neutron stars without exception would find this inter-
pretation sufficient.
The second interpretation, by contrast, looks closely at

the fluid material itself and how the pressure at a certain
point in the star changes as the density of the fluid at the
center changes. Given that the central mass density of a
compact star is inaccessible, this interpretation is of interest
to those who believe that the central density should be a free
parameter in a neutron star model. This would allow one to
explore the possibilities that such a parameter change has
on the observable quantities of the stars.
At this point in the derivation, a causality condition has

not been imposed upon expressions of EOS1 or EOS2.
Therefore, the class of EOS obtained can take a wide range
of parameter values, as long as the metric functions and
derived curvature tensors do not have singularities. The
conditions leading to such singularities are narrower than
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FIG. 9 (color online). The redshift zs at the surface of the sphere
for different values of μ.
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the causality criterion, and enforcing the latter ensures that
the parameter values do not cause singular behavior in the
solution, and hence the class of EOS.
We first carry out an analysis of EOS1, and find that, to a

high degree of accuracy, the variation of pðρ;ΠÞ, with ρ,
and equivalently r, is very close to that of a generalized
polytrope of the general form p ¼ kργ − p0, where p0 is a
pressure constant chosen such that p vanishes when ρ ¼ ρb
at the boundary of the star and, as usual, γ and k are the
adiabatic index and the adiabatic constant, respectively.
This relation is very obvious from the shape of the curve in
the “natural” μ ¼ 1 case, as is seen in the one curve in
Fig. 10, and all the curves in Figs. 12 and 13. It is
interesting to note that the μ < 1 cases all show a behavior
similar to that found for other self-bound EOSs. (See e.g.
Fig. 1 in the review by Lattimer and Prakash [13].) Indeed,
Fig. 13 even seems to suggest that varying the boundary
radius rb changes the value of k in the polytrope, and

Fig. 12 that varying ρc changes the value of γ in the
polytrope.
Models employing polytropic perfect fluids use similar

values for the adiabatic index γ as what we find for a
range of different values of parameters Π. This is shown in
Fig. 11, which treats γ as a continuous variable defined by

γ ¼ dðlogpÞ
dðlog ρÞ, and can be understood as the slope of the

previous log-log graph.
From this figure it becomes evident how both types of

stars have an interior structure well described by a poly-
trope with an adiabatic index close to 2.5. The “self-bound”
stars exhibit the existence of an envelope consisting of
material that is considerably stiffer than that found in the
interior. Physically this is intuitive: for fixed ρc and rb, the
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FIG. 10 (color online). Log-log plot of pressure versus density
for neutron star models determined by different μ, but the same ρc
and rb. The densities and pressures are in cgs units, and the Π is
fixed by the following: rb ¼ 106 cm, ρc ¼ 1015 g cm−3. Since
pressure is a decreasing function of distance from the center, large
densities indicate points closer to the center of the star.
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self-bound stars will become more and more massive as μ
decreases. The increasing boundary density discontinuity
requires a stiffer exterior mass distribution to maintain the
hydrostatic equilibrium condition.
A notable characteristic of the class of EOS is its

uncanny ability to distinguish between the different types
of matter that make up the natural and the self-bound stars.
Since the mass density (4) is a monotonically decreasing
function of stellar radius, Fig. 11 can be thought of as
the equivalent of a “flipped” and “rescaled” plot of the
adiabatic index as a function of density. For the case μ ¼ 1,
Figs. 10 and 11 are consistent with a number of hadronic
EOS proposals. For densities in the range of 1–10×
1014 g cm−3, the adiabatic index ranges from 2.7 for the
most dense nuclear material to 2.0 for the lower-density
material. This type of behavior is found, for example, in a
model proposed by Glendenning [16], that consists of a
mixture of baryons.
For the self-bound models, where μ < 1, the Tolman

EOS is consistent with quark models using the MIT bag
model. Figure 10 is similar in nature to the strange quark
models (SQM1–3) shown in Fig. 1 in Ref. [13], while
Fig. 11 has similarities to the work of Casali and Menezes,
who analyze the MIT bag model (see also the book by
Haensel et al. [17]) and where it is found that the EOS for
quark matter stiffens significantly at low densities [18]. The
adiabatic index of that material reaches very high values
(e.g. γ > 7 for densities less than 1014 g cm−3).
To fully understand the nature of the EOS, the effect on

the matter resulting from changing the other two param-
eters of Π can be investigated. Figure 12 demonstrates how
the EOS inside the star changes as the central density ρc
changes, and similarly Fig. 13 shows how the EOS varies
with changes in the magnitude of the boundary radius rb.
What these figures show is that the value of the free

parameters can change by up to an order of magnitude,
yielding drastically different masses, while maintaining the
same general polytropic behavior, independently of the
parameter choices. At the highest densities, Fig. 12 shows
that the EOS are nearly independent of the central density
parameter. Figure 13, which demonstrates how the EOS
changes under changes in the boundary radius, indicates
that the adiabatic index γ is fixed over a large range of
densities, but as expected the adiabatic constant k is
different for different stars. The self-boundedness param-
eter μ, however, changes the character of this polytrope
very much, as is clear in Fig. 11, hinting that the same EOS
can have a richer structure than can be ultimately specified
by the central density alone.
This polytropic behavior is very satisfying, since we

started by trying to model a relativistic star from a
Newtonian picture. That a class of EOS globally similar
to the solutions of the Lane-Emden equations becomes
apparent when we extend the nonphysical Schwarzschild
interior to a more realistic density profile suggests that

Tolman VII is at least as good as the Newtonian neutron
stars, however with relativity being taken into account.
Now turning to the second way to characterize the class

of EOS, concentrating on the behavior of the fluid material
itself, independent of the geometry of the star, we deter-
mine how different physical quantities depend on the values
of the central density ρc. The total mass-energy is defined as

M ¼ 4π

Z
rb

0

r̄2ρðr̄Þdr̄ ¼ 4πr3bρcð5 − 3μÞ
15

: ð21Þ

The mass is important, since it is the only directly and
reliably measurable quantity that can be obtained from
neutron star observations. Lattimer and Prakash [13,19,20]
and others [21,22] have ruled out certain EOS2 based on
mass and spin measurement of neutron stars. The former
have also used Tolman VII to constrain other EOS2 based
on nuclear microphysics, and have even postulated that
Tolman VII could be used as a guideline discriminating
between viable and nonviable EOS2 [20]. If this postulate
is true, given that the complete Tolman VII EOS2 is known,
the condition that the solution must be causal can be
applied, independent of measurements first, and then
compared with the previous works [20,22].
This is done in Fig. 14, where we superimpose the result

of Ref. [22], on our own analysis of the whole solution
space Π. The surface shown is that for the values at which
the speed of sound vs ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

dp=dρ
p Þjr¼0 at the center of the

fluid sphere just reaches the speed of light. This is a
sufficient condition for the solution to be causal, since vs is
a monotonically decreasing function of r in the sphere. Any
point located below this surface has coordinate values for
M, ρc, and μ that represent a valid causal solution to the
Tolman VII differential equations. The orange line is the
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FIG. 14 (color online). The mass of possible stars just obeying
causality. The grey surface obeys the equation vsðr ¼ 0Þ ¼ c.
Every point below the surface is a possible realization of a star,
and we can potentially read off the mass, central density, and μ
value of that star. The numbered lines represent stars with the
same mass that are causal, i.e. they are projections of the causal
surface onto the ρc − μ plane. Glendenning’s [22] curve is shown
in orange and represents a limit in the natural case only, and
according to our results is acausal, being above our surface. The
μ ¼ 1 plane’s intersection with our graph is the graph given in
Ref. [20], and here too our prediction is more restrictive.
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previous result obtained by Glendenning [22] from rota-
tional considerations.
Imposing causality to constrain the parameter space Π is

not a new idea. However, having an explicit EOS allows
one to easily generate the causal surface shown in Fig. 14,
exactly without having to do any numerical gymnastics to
find the speed of sound.
One method often used to distinguish between different

EOS2 has been to calculate the compactness ratio, given by
β ¼ GM

c2rb
. In the case of Tolman VII, the values of β for a

large range of parameter variations Π are relatively con-
stant. This means that even though we might change the
value for Π of the stars, the ones bordering on causality
share very similar compactness, albeit one that is lower
than that previously thought possible. We show how this
compactness β varies with μ in Fig. 15. Clearly the variation
of β is small (0.27 < β < 0.29) over a large range of values
for μ (0.45 < μ < 1.0). A value for the maximal compact-
ness of about 0.34 from rotational and causality criteria was
obtained by Ref. [20]. Our analysis shows that β is less than
0.3 for all possible stars, if Tolman VII is a valid physical
model (at least as a limit) for stars. Recently radius
measurements of a limited number of neutron stars have
been obtained [23–26]. These are shown along with some
other stars of knownmass in Fig. 16.We also superimpose a
few of the limiting causal curves obtained for different
values of μ from Tolman VII, to show that Tolman VII is not
ruled out by observational results, even though it predicts
lower compactness than most nuclear models. The dotted
lines shown in the figure represent the causal limits for
different values of the self-boundedness parameter μ.
For a fixed value of μ, causality requirements determine

the relationship between the central density and the

boundary of the star. A typicalM − R curve for a particular
EOS2 would be determined by fixing the parameters
associated with a particular EOS2 and then computing
the mass as a function of the star’s radius. All possible
curves of this nature lie to the right of the curves shown in
Fig. 16, and thus any curves in that region represent a viable
model for neutron star structure obtained from a Tolman
VII solution. This is one advantage of having a complete
analytic solution to the Einstein equations. Rather than
integrate (using numerical methods) the TOVequation for a
specific set of EOS parameters, an entire class of solutions
are provided by the complete analytic expressions. Physical
constraints on the solution (such as causality) then provide
restrictions on that class of solutions. What the curves
shown in this plot represent are the maximum possible
cases for the ðM; rbÞ relation provided by the causal
Tolman VII EOS solutions. Therefore, the whole space
to the right of those lines can potentially yield a causal
EOS, and thus Fig. 16 shows that Tolman VII is not ruled
out yet as a viable model for compact objects unless the
radii of some of the neutron stars with known masses are so
small that they would be represented by a point to the left of
the curves.
The lines shown are on the edge of causality in the

following way: the speed of sound, a monotonically
decreasing function of the radius, is just equal to the speed
of light at the center where r ¼ 0—that is, the lines are the
counterparts of those points that make up the surface of
Fig. 14. Since all observations of compactness are bounded
by the most extreme Tolman VII model, we claim that the
solution may actually realized by compact stars in nature.

FIG. 15 (color online). The compactness as a function of the
self-boundedness parameter μ. This plot was generated by
varying rb from 4 km to 20 km for fixed μ and finding ρc
and subsequently the compactness each time, such that the sound
speed was causal at the center of the star. The curve shown is a
polynomial fit, and the box-and-whisker plots (very small in
green) show the variation of β for fixed μ, but different rb. The
very small whiskers justify the pertinence of β as a useful
measure in the analysis of the behavior of the model.

FIG. 16 (color online). The mass M in solar units versus radius
rb in kilometers of a few stars for which these values have been
measured. We use error bars to denote observational uncertain-
ties, and colored bands in the case where only the mass is known.
The lines we show and the ones that are at the causality limit in
the Tolman VII model, and the whole area below those lines can
be causal parameter choices for stars.
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IV. CONCLUSION

A complete analysis of the Tolman VII solution has been
carried out, and it was found that it is a physically valid
solution with a huge potential for modeling physical objects.
The class of EOS this solution predicts has been found, and
in certain regimes behaves very much like a polytrope with
an adiabatic index of 2.5, independently of the choices of
two parameters: the central density and the radius of the star.
The third parameter, the self-boundedness, changes the
polytropic index drastically, particularly at the edge of the
star, as expected from a naive Newtonian approach to stellar
structure. That this solution has a density profile that is very
close to the hand-picked, but thermodynamically motivated
polytropes of Newtonian stars, while still being a full
relativistic model, is a very good reason to take its
predictions of stellar structure seriously.
It is also interesting that the type of matter that produces

the different EOSs depends crucially on the value of μ.
Hadronic matter is obtained with μ ¼ 1, while μ < 1 stars
would appear to be made up of quark matter.
Using the EOS derived from Tolman VII, we are

able to compute the speed of pressure waves, and
imposing causality on the latter results in a more

restrictive limit on the maximum compactness of fluid
spheres allowable by classical general relativity. This is
possible to do without the use of numerical computa-
tions, because of the exact form of the class of EOSs
generated by the quadratic density falloff assumption in
Tolman VII.
The solution is, moreover, stable under radial pertur-

bations, since the speed of these pressure waves is finite
and monotonically decreasing from the center outwards,
thus satisfying the stability criterion in Ref. [27]. If we
believe as in Ref. [20] that Tolman VII is an upper limit
on the possible energy density ρc, for a given mass M,
some known models [19] which predict higher compact-
ness than Tolman VII will have to be reconsidered, since
they still maintain a quadratic density profile to first
order, and thus cannot also be causal at these higher
compactnesses.
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