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We examine gravitational wave asteroseismology relations for f-modes of rapidly rotating neutron stars.
A different approach than previous studies is employed. First, the moment of inertia is used instead of the
stellar radius and, second, the normalization of the oscillation frequencies and damping times is different. It
is shown that in the nonrotating case this can lead to a much stronger equation of state independence, and
our goal is to generalize the static relations to the rapidly rotating case and values of the spherical mode
number l ≥ 2. We employ realistic equations of state that cover a very large range of stiffness in order to
better check the universality of the relations. We later explore the inverse problem; i.e., we obtain the
neutron star parameters from the observed gravitational frequencies and damping times. It turns out that,
with this new set of relations, we can solve the inverse problem with very good accuracy using three
frequencies. This was not possible in the previous studies, where one also needed damping times. The
asteroseismology relations are also quite accurate for the massive rapidly rotating models that are subject to
secular instabilities.
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I. INTRODUCTION

A direct detection of gravitational waves has been a
major goal in physics for several decades. Naturally, the
investigation of the strong sources of gravitational radiation
is being done in parallel. Different dynamical processes
connected to neutron stars, such as neutron star mergers and
rotational instabilities, are considered as promising sources.
The final goal is to use the observed gravitational wave
signal in order to extract the characteristic parameters of the
observed objects, such as the mass, radius, rotational rate,
etc., and eventually to constrain the nuclear matter equation
of state (EOS) [1–7].
In this paper, we will concentrate on the neutron star

oscillations with an emphasis on the region of the param-
eter space where the Chandrasekhar-Friedman-Schutz
(CFS) instability can develop; i.e., certain nonaxisymmetric
modes can become unstable due to the emission of
gravitational waves. This is one of the most promising
scenarios for the emission of strong gravitational radiation
where the signal can reach even above the Advance LIGO
sensitivity [8,9]. More specifically, we will reexamine the
gravitational wave asteroseismology with rapidly rotating
neutron stars by considering a different parametrization of
the EOS independent relations.
Studying gravitational wave asteroseismology of oscil-

lating neutron stars originates in Refs. [3–5], where the
mode oscillation frequencies and damping times of static
neutron stars were related to their mass and radius. It was
found that the asteroseismology relations do not depend on
the EOS to a large extent and that the inverse problem can

be solved with very good accuracy. Later, these results were
extended by including other modern, realistic EOSs [10].
The generalization of the relations to rapidly rotating neutron
stars and larger values of the spherical mode number l was
done recently in [6,7]. These results extend up to the Kepler
limit, which means that asteroseismology can be performed
for a much larger class of objects and, more specifically, for
neutron stars that are subject to the CFS instability. In a
similar fashion, the frequencies of the emitted gravitational
wave signal during binary neutron star mergers can be
connected to the properties of the postmerger supramassive
neutron stars [1,2].
All of the relations obtained in [4,6,7,10] connect the

oscillation mode frequency and damping time to the
neutron star mass, radius, and rotational rate. But a different
approach was proposed in [11], which steamed out of an
earlier study by Lattimer and Schutz [12]: to use the
moment of inertia instead of the stellar radius. In this
way, the obtained relations are much more EOS insensitive
compared to the previous results. Similar relations were
also obtained in [13]. The results in [11,13] are limited to
the nonrotating case though. Our main goal in this paper is
to extend them to the rapidly rotating case in order to see if
the EOS universality is preserved and whether this
approach is more beneficial than the standard case [6,7].

II. ASTEROSEISMOLOGY USING
THE MOMENT OF INERTIA

Our aim is to present the results as a brief report. For this
reason, we will not go into detail about the method of
calculation of the mode frequencies and damping times;
instead, we will give only the most important points.*daniela.doneva@uni‑tuebingen.de
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We refer the reader to [7], where a detail presentation of
the methodology can be found (see also [6,14,15]).
We obtain the oscillation modes by performing a time

evolution of the linearized perturbation equations in the
Cowling approximation, where the perturbations of the
metric are neglected. The reason for these simplifications is
that the full nonlinear simulations are extremely demanding
of computer and manpower resources [16], and solving the
linearized perturbation equations without any additional
approximation has not been done until now. We should
note, however, that even though this approximation can
lead to relatively large deviations in frequency (in the range
of 10%–30%, depending on the compactness and the mode
number l), it was shown in [6,7] that it gives not only
qualitatively but also, in some cases, quantitatively good
results for the asteroseismology relations.
The numerical code we use for the time evolution of the

perturbation equations was developed in [7,15]. The back-
ground neutron star solutions are obtained with the RNS

code [17] that has been proven to be reliable for rapid
rotation. The mode frequencies are easily obtained after
performing a Fourier transform on the computed time
series. Obtaining the damping time, on the other hand, is
more involved. Since we are working in the Cowling
approximation, where the background metric is not per-
turbed, the damping (or the growth, in the case of CFS
instability) of the modes due to the emission of gravitational
waves cannot be calculated directly.1 Instead, one can apply
an approximate Newtonian formula, where the emission of
gravitational waves is related to the mutlipole moments of
the neutron star. It was shown—at least in the nonrotating
case—that this formula gives good results for the damping
time compared to the exact general relativistic values [18].
We use three EOSs that cover a very large range of

masses and radii: EOS A [19], WFF2 [20], and L [21]. The
first one is very soft, reaching a maximum mass of only
1.67M⊙. The second one is a standard modern realistic
EOS that fulfills all of the observational constraints on the
neutron star mass and radius [22–25]. EOS L on the other
hand is very stiff (one of the stiffest available in the
literature) with Mmax ¼ 2.72 M⊙ and typical radii around
14–15 km. Even though some of these EOSs have already
been ruled out by the observations, we have chosen this
particular set of EOSs for a reason. It covers a large range of
stiffness, which makes it easy to verify up to what extent
our results are insensitive to the EOSs. For practical
purposes, one can of course use a narrower set of EOSs
that fall into the preferred range of masses and radii,
according to the observations. This can significantly reduce
the error in the fitting formulas. Since we are calculating the

modes in the Cowling approximation, we cannot reduce the
errors of our asteroseismology formulas below the devia-
tions coming from this approximation. That is why we
decided not to give separate fittings for a set of EOSs that
fall into the preferred range of neutron star masses and
radii. Our purpose here is more to offer an alternative way
for doing asteroseismology of rapidly rotating neutron stars
and to demonstrate its validity over a large range of EOS
stiffness.
Throughout the paper, we will use the following dimen-

sions for the different quantities. The mass M is measured
in solar masses M⊙, the frequencies (the angular rotational
frequency Ω as well as the mode oscillation frequency σ)
are measured in kilohertz, the damping/growth time
in seconds, and the moment of inertia I is defined as
I ¼ Icgs=1045 g cm2, where Icgs is the moment of inertia in
centimeter-gram-second (cgs) units. In this way, for exam-
ple, the quantity η—which is widely used in this paper and,
roughly speaking, has the meaning of an effective compact-
ness of the star—takes the form

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

M
M⊙

�

3
�

Icgs
1045 g cm2

�

−1
s

: ð1Þ

A. Oscillation frequencies

Here, we will present the results for the asteroseismology
relations of the oscillation frequencies. In previous studies
of asteroseismology with rapidly rotating neutron stars
[6,7], two step relations were constructed that map the
oscillation frequencies of rotating neutron stars to their
mass, radius, and rotational rate. As a first step, we have
relations between the normalized oscillation frequencies
and the rotational rate derived for different values of l,

FIG. 1 (color online). The potentially unstable l ¼ m ¼ 2
f-mode oscillation frequencies measured in an inertial frame
as functions of the parameter η.

1It is questionable whether this damping/growth time can be
accurately calculated using a time evolution code, in general,
since the inevitable numerical dissipations in many cases are
much stronger than the dissipation of energy due to gravitational
wave emission.
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where the oscillation frequencies are normalized to the
corresponding values in the nonrotating limit. As a second
step, the nonrotating frequencies are expressed as a
function of the neutron star average density, similar to [4].
Here, we follow a different approach. We are going to

use the moment of inertia instead of the stellar radius and a
different normalization similar to [11]. It was shown that
this makes the asteroseismology relations much more
insensitive to the EOS. First, we will focus on counter-
rotating f-modes with l ¼ m that are potentially CFS
unstable. In Fig. 1, we plot the l ¼ m ¼ 2 f-mode
oscillation frequencies measured in an inertial frame of
reference2 σunsti normalized to the neutron star massM, as a
function of the parameter η. Different colors correspond to
sequences with fixed values of the normalized rotational
parameter Ω̂ ¼ MΩ and different styles of the symbols
correspond to different EOSs. The data range from the
nonrotating limit Ω̂ ¼ 0 to the rapidly rotating case with
Ω̂ ¼ 25 (in units ½M⊙kHz�). In the latter case, the models
have rotational frequencies in the range f ¼ 1.2–1.5 kHz
and they do not have a stable nonrotating limit.
The first thing one can notice is that even though the

chosen EOSs are very different, the data points for a fixed Ω̂
fall very well on a single line. Moreover, the slopes of the
fitting lines vary by a small amount for different values of
Ω̂. It turns out that the dependences can be well approxi-
mated by a fitting formula of the type

σunsti M ¼ ða1 þ a2Ω̂þ a3Ω̂2Þ þ ðb1 þ b2Ω̂þ b3Ω̂2Þη:
ð2Þ

The coefficients a1;…; b3 are given in Table I for different
values of l.
An interesting fact, we should note, is that the coef-

ficients a1;…; b3 can be expressed as linear functions of
the mode number l with a good accuracy (only the error in
the fitting of b2 is slightly larger). Thus, we obtain

σunsti M ¼ ½ð−0.332 − 0.725lÞ þ ð0.085 − 0.111lÞΩ̂
þ ð0.0112 − 0.00903lÞΩ̂2�
þ ½ð1.755þ 0.955lÞ þ ð−0.0165 − 0.0149lÞΩ̂
þ ð−0.00501þ 0.00355lÞΩ̂2�η: ð3Þ

An important consequence of this dependence is that, with
good accuracy, one can say that the relations given by
Eq. (2) for different l’s are linearly dependent. This reflects
the possible ways of solving the inverse problem that will
be discussed in the next section.
The above given asteroseismology relations have several

advantages compared to the ones considered in [6,7]. First,
they are much simpler and the rotational frequencyΩ enters
at second order compared to the third order relations given
in [6,7]. Also, the deviations from EOS universality are
smaller.3 However, there are, of course, also disadvantages
compared to the original approach [6,7]. Here, the aster-
oseismology relations are prone to the deviations coming
from the Cowling approximation, whereas, in the two step
relations in [6,7], it was shown that the normalized relations
between the oscillation frequencies and the rotational rate
are very close to the results coming from the full nonlinear
general relativistic calculations [7,16].
We will also briefly present here results for the aster-

oseismology relations for the corotating stable modes with
l ¼ −m. Part of our motivation comes from the fact that, by
employing a specific normalization of the quantities, we
can solve the inverse problem by using three frequencies
(both stable and unstable). This was not possible using the
relations in [6,7], where, in order to obtain the mass, radius,
and rotational rate independently, one has to use at least one
damping time of a mode.
The relations for the stable branches are similar to the

potentially unstable case. However, it turns out that for
solving the inverse problem it is better to use the oscillation
frequencies in comoving frame σc instead of σi. Also, the
dependence on Ω̂ can be well approximated with a linear
function compared to the second order polynomial in the
potentially unstable case. The normalized dependences
between the l ¼ −m ¼ 2 oscillation frequencies in the
comoving frame and the parameter η are shown in Fig. 2
for different values of Ω̂.
We use a fit very similar to the one for the counter-

rotating modes given by Eq. (2), with the only difference
being that the dependence on Ω̂ is linear:

TABLE I. The coefficients a1;…; b3 in the fitting formula (2), for the potentially unstable branches with
l ¼ m ¼ 2, 3, and 4.

a1 a2 a3 b1 b2 b3

l ¼ m ¼ 2 −1.76 −0.143 −6.65 × 10−3 3.64 −4.36 × 10−2 2.00 × 10−3

l ¼ m ¼ 3 −2.55 −0.236 −1.63 × 10−2 4.67 −6.63 × 10−2 5.79 × 10−3

l ¼ m ¼ 4 −3.21 −0.365 −2.47 × 10−2 5.55 −7.33 × 10−2 9.09 × 10−3

2The inertial frame frequency σi is connected to the comoving
frame frequency σc by the relation σc ¼ σi þmΩ=2π, wherem is
the azimuthal mode number.

3As a matter of fact the normalized relations between the
oscillation frequencies and the rotational rate in [6,7] are also
quite independent of the EOSs. But the second set of relations—
namely, between the nonrotating frequencies and the neutron star
average density—can lead to larger deviations from the fits, as
discussed in [4,10].
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σstcM ¼ ða1 þ a2Ω̂Þ þ ðb1 þ b2Ω̂Þη: ð4Þ
The coefficients a1, a2, b1, and b2 are given in Table II. We
present results only for the l ¼ −m ¼ 2 modes, and not for
higher values of l, since, in general, the modes with lower
value of l are better emitters of gravitational waves. For the
counterrotating potentially unstable modes, we also consid-
ered the l > 2 case because the CFS instability might
develop easier for higher l’s [7,8,14]. We do not have such
a mechanism for the corotating modes, however, and it is
generally accepted that only the corotating stable l ¼ 2
modes will emit a significant amount of gravitational waves.

B. Damping times

Deriving asteroseismology relations for the damping
time τGW is not as straightforward as for the oscillation
frequencies, for the following reasons. The damping time
can be expressed as

τGW ¼ −
1

2E
dE
dt

; ð5Þ

where E is the mode energy and the energy carried by
gravitational waves dE=dt is proportional to the squared
lþ 1 time derivative of the corresponding multipole
moment. Applying the Newtonian multipole formula for
the gravitational wave emission, one can show that [6,18,26]

1=τGW ∝ σ2lþ1
i σc; ð6Þ

where σi and σc are the frequencies in the inertial
and corotating frames, respectively. As one can notice,
τGW → ∞ when σi → 0. This means that τGW cannot be
expressed directly as a function of the stellar mass, moment
of inertia, and rotational rate, similar to Eq. (2), because then
the peculiar behavior of τGW around the σi ¼ 0 point (i.e.,
around the transition from a stable to a CFS unstable regime)
cannot be reflected. Instead, τGW can be expressed as a
function of σi similar to previous studies [7,14]. In order to
obtain relations insensitive to the EOS, one has to, of course,
use a proper normalization of the quantities, which is
explained and justified below.
Making some approximate back of the envelope calcu-

lations on the basis of Eq. (5), and taking into account that
the parameter η can play the role of an effective compact-
ness instead of ðM=RÞ, one can obtain

η

�

M
τη2

�ð1=2lÞ
∝ Mσ: ð7Þ

Even though this formula is based on greatly simplified
assumptions, it offers a good way for normalizing the
damping time asteroseismology relations.
The dependences of the normalized f-mode damping

time, as a function of the normalized oscillation frequency,
for the potentially CFS unstable branches with l ¼ m ¼ 2
and l ¼ m ¼ 4 are shown in Fig. 3. One can easily notice
that the dependences pass through the origin of the axes
where both σunsti ¼ 0 and 1=τGW ¼ 0, according to Eq. (6).
Therefore, we can approximate the data with a second order
polynomial of the form

η

�

M
τη2

�ð1=2lÞ
¼ c1ðMσunsti Þ þ c2ðMσunsti Þ2; ð8Þ

where c1 and c2 are constants. If we substitute ðMσunsti Þ
from Eq. (2) into Eq. (8), we will finally have the desired
relation between the damping time from one side and the
neutron star mass, moment of inertia, and rotational rate
from the other. As one can see from Fig. 3, the approxi-
mation is very good for l ¼ m ¼ 4, but the errors in the
l ¼ m ¼ 2 case can be larger. However, these large errors
are observed mainly in the stable part of the graph (with
τGW > 0). That is why we have chosen to separately
provide the values of c1 and c2 obtained from the fit of
the unstable part only. Moreover, this is the regime where
the CFS instability is operating and can offer a promising
mechanism for the emission of a detectable gravitational
waves signal [8,9]. The values of the coefficients c1 and c2
for l ¼ m ¼ 2, 3, and 4 are given in Table III, both for the
full sequence of data and for the CFS unstable part of the
branches where τGW < 0 and σi < 0.
Let us now compare the relations derived here with those

in the previous studies. A single dependence between the
normalized damping time and the normalized rotational
frequency was derived in [6,7] for the potentially unstable
branches with l ¼ m ¼ 2, 3, and 4. Thus, it was, in a way,

FIG. 2 (color online). The stable l ¼ −m ¼ 2 f-mode oscil-
lation frequencies in the comoving frame as functions of the
parameter η.

TABLE II. The coefficients a1, a2, and b in Eq. (4) for the
stable branch with l ¼ −m ¼ 2.

a1 a2 b1 b2

l ¼ −m ¼ 2 −1.66 −0.249 3.66 0.0633

DANIELA D. DONEVA and KOSTAS D. KOKKOTAS PHYSICAL REVIEW D 92, 124004 (2015)

124004-4



more general than the corresponding relations in this paper
given by Eq. (8). But, as we explained above, the relations
in [6,7] are two step, and the normalized dependences have
to be supplemented with relations between the static
damping times and the stellar mass and radius. These
static relations are different for different values of l and the
deviations from EOS universality can reach large values.
That is why, if we sum up the advantages and disadvantages
in both cases, we can conclude that the relations given here
are at least as good as the ones in [6,7]. Of course, in order
to determine more precisely which set of relations is better,
one has to also examine the inverse problem and see how
accurately we can derive the stellar properties from the
observed mode frequencies and damping times. This will
be done in the following section.
We should note that the Cowling approximation can

introduce very large deviations in the damping times. For
example, if the frequency increases by, say, 30%, the
damping time decreases by a factor of 3 (for the l ¼ 2
mode) due to the strong dependence of τGW on σi,
according to Eq. (6). That is why relaxing the Cowling
approximation is very important for the exact calculation of
the damping times and the related gravitational wave
asteroseismology. Such a project is under way.

III. SOLVING THE INVERSE PROBLEM

In this section, we will consider the inverse problem,
i.e., obtaining the stellar parameters using the observed
oscillation frequencies and damping times. The only
source of error we will take into account is that coming
from the inaccuracy of the approximate universal aster-
oseismology relations. In practice, though, additional
error will come from the uncertainties in the extracted
frequencies and damping times of the observed gravita-
tional wave signal.
The previous results for rapid rotation showed that,

using the normalizations in [6,7], one cannot obtain the
mass, radius, and rotational rate of the star independently
using only the observed oscillation frequencies due to
the specific form of the relations used there. Instead, one
has to also use the damping times. However, it is much
more difficult to observe the damping times than the
oscillation frequencies, and the errors are expected to be
considerably larger.
The normalization presented in this paper allows us to

improve the picture a little bit. Unfortunately, one still
cannot solve the inverse problem using three frequencies of
CFS unstable modes with different l’s. The reason is that, as
we said above, a1;…; b3 in Eq. (2) can be expressed with
very good accuracy as linear functions of l, which makes
the corresponding coefficients for l ¼ 2, 3, and 4 linearly
dependent. Instead, one can supplement the unstable l ¼ m
mode frequencies with a frequency of a stable corotating
mode having m < 0.
In Table IV, we present the results after solving the

inverse problem in four different potential scenarios4:

FIG. 3 (color online). The normalized damping time ηðM=τη2Þð1=2lÞ as a function of the normalized oscillation frequency Mσunsti
for the l ¼ m ¼ 2 and l ¼ m ¼ 4 f-modes.

TABLE III. The coefficients c1 and c2 in Eq. (8) for different
values of l.

c1 c2

Full sequence:
l ¼ m ¼ 2 0.644 2.07 × 10−2

l ¼ m ¼ 3 0.246 2.68 × 10−3

l ¼ m ¼ 4 0.147 1.91 × 10−4

Unstable part:
l ¼ m ¼ 2 0.403 −7.64 × 10−2

l ¼ m ¼ 3 0.217 −4.82 × 10−3

l ¼ m ¼ 4 0.144 −3.15 × 10−4

4We have tried to solve the inverse problem also for other
realistic EOSs that are not included in the present study, and the
results show that the stellar parameters can still be obtained with
good accuracy.
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(1) We are able to observe the l ¼ m ¼ 2, 3 potentially
unstable mode frequencies together with the l ¼
−m ¼ 2 stable mode frequency.

(2) We are able to observe the l ¼ m ¼ 2, 4 potentially
unstable mode frequencies together with the l ¼
−m ¼ 2 stable mode frequency.

(3) We are able to observe the l ¼ m ¼ 2, 3 potentially
unstable mode frequencies together with the l ¼
m ¼ 2 damping time.

(4) We are able to observe the l ¼ m ¼ 2, 4 potentially
unstable mode frequencies together with the l ¼
m ¼ 2 damping time.

We will represent the accuracy of the inverse asteroseis-
mology relation on two neutron star models that are
massive and rapidly rotating and are thus subject to the
CFS instability. Such models can be the outcome of
core collapse or binary neutron star merger, and they
are promising sources of gravitational waves [8,9].
Moreover, it was shown that the rapidly rotating massive
models are the biggest challenge to the asteroseismology
relations presented in [6,7] and that they lead to large
errors when solving the inverse problem. In cases 3 and 4,
where damping time is used as input information, we
employ the relations for the unstable part of the aster-
oseismology relation given in Table III.
From the data in Table IV, one can draw the following

conclusions. First, the neutron star parameters can be
obtained with good accuracy using the given combinations
of potential observables. This is particularly true for the
first two cases with three observed frequencies where the
errors are very small. Therefore, the relations presented
here are more accurate than the ones in [6,7], especially in
the massive rapidly rotating neutron star case. Also, the
advantage we have here is that the stellar parameters can be
obtained using three frequencies. This is important since
the damping times will be much more difficult to obtain
from the detected signal, and the observational errors are
supposed to be much bigger than the oscillation frequen-
cies. Another important point is that the relations presented
here are also good for very massive rapidly rotating models,
which were the biggest challenge to the relations in [6,7].
Such neutron stars are of particular interest since they are
subject to CFS instability and are supposed to emit strong
gravitational radiation in the early stages of their life [8,9].

That is why obtaining asteroseismology relations that can
be used for solving the inverse problem with a good degree
of accuracy for such models is important.
It is natural to expect that the accuracy when solving the

inverse problem can be improved in two ways. The first way,
as we commented above, is to use a restricted set of EOSs
because, in this paper, we employed a quite broad set in
order to test the EOS independence of our relations, and
some of the EOSs are not even in agreement with the current
observational constraints. Another way to improve the
results in some cases is to make a second step in solving
the inverse problem explained in detail in [6,7]. Namely, we
can use the obtained values ofM,Ω, and η and rederive all of
the asteroseismology relations for values of the parameters
close to these particular values of M, Ω, and η. Afterwards,
we can use the new relations and obtain updated values ofM,
Ω, and η. This procedure can be repeated more than once.
To conclude the section, let us discuss a possible

modification of the asteroseismology relations presented
here. A key parameter in the relations is η, which plays the
role of generalized compactness. We use it since it was
shown that it leads to the largest known degree of EOS
independence [11]. However, one can obtain similar
asteroseismology relations if the true compactness M=R
is used instead.5 The way to build the relations will be
practically the same as the one used in this paper, except
that η has to be replaced by M=R. Our rough calculations
show that the obtained relations in the case ofM=R are also
EOS independent to a large extent. We will not give the
explicit relations and numbers here since the main goal of
this paper is not to give as complete set of relations as
possible, but instead to demonstrate an alternative way of
doing asteroseismology and to test its accuracy. We plan to
derive a more complete set of relations in the future when
we drop the Cowling approximation.

IV. CONCLUSIONS

In this paper, we considered a new way of parametrizing
the gravitational wave asteroseismology relations in the

TABLE IV. Solutions of the inverse problem using either three inertial frame frequencies or two inertial frame frequencies and a
damping time. Two different neutron star models with EOSWFF2 that are subject to the CFS instability are chosen. The rounded percent
deviations from the exact values are given in brackets.

M [M⊙] I=1045 [g=cm3] Ω [kHz] M [M⊙] I=1045 [g=cm3] Ω [kHz]

Exact 2.02 2.80 8.66 2.34 3.04 9.62
σunstl¼2 & σunstl¼3 & σstl¼2 2.02 (0.2) 2.82 (1) 8.63 (0.3) 2.39 (2) 3.17 (4) 9.48 (1)
σunstl¼2 & σunstl¼4 & σstl¼2 2.02 (0.2) 2.82 (1) 8.63 (0.3) 2.37 (1) 3.17 (4) 9.49 (1)
σstl¼2 & σunstl¼3 & τunstl¼2 2.15 (7) 2.41 (14) 9.70 (12) 2.35 (1) 2.72 (10) 10.12 (5)
σstl¼2 & σunstl¼4 & τunstl¼2 2.17 (7) 2.41 (14) 9.75 (13) 2.34 (0) 2.72 (10) 10.09 (5)

5The asteroseismology relations using the compactness M=R
were shown to be quite EOS independent in the static limit
[4,27,28].
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case of rapidly rotating neutron stars. We concentrated on
the f-modes that are one of the most efficient emitters of
gravitational radiation. Our study is motivated by the
results in [11], where it was shown that, if one normalizes
the oscillation frequencies and damping times in a certain
way and uses the moment of inertia of the star, the
asteroseismology relations become much more insensitive
to the nuclear matter equation of state than in the commonly
used relations involving the neutron star average density
[4]. The results in [11] were limited to the static case,
and here we extended them to rapid rotation and also to the
values of the spherical mode number l ≥ 2. This is
particularly important since the f-modes of neutron stars
can become CFS unstable for rotational frequencies above
roughly 80% of the Kepler limit [7,8,14], thus becoming
efficient emitters of gravitational radiation. The case of
l > 2, on the other hand, is important since the standard
mass neutron stars (with a mass of, say,M < 2.0M⊙) have
a much larger CFS instability window for modes with
l ¼ m ¼ 3 and l ¼ m ¼ 4 than with l ¼ m ¼ 2.
In our studies, we used three different equations of state

that cover a very large range a stiffness—from very soft
EOSs with small maximum mass to very stiff EOSs with
large maximum masses and large radii. Even though some
of these EOSs are not in the preferred range of neutron star
masses and radii according to observations, they are very
useful for testing the EOS independence of our results.
It turns our that after choosing an appropriate normaliza-
tion, the obtained asteroseismology relations are indeed
EOS independent up to a large extent for both the
oscillation frequencies and the damping times.
There are several important differences from the pre-

vious results on rapidly rotating neutron stars obtained in
[6,7]. The main one is that the asteroseismology relations in
[6,7] are two step. First, we have relations between the
normalized oscillations frequency (or damping time) and
the normalized rotational frequency, where the normaliza-
tions involve the oscillations frequency and damping times
in the nonrotating limit. Second, we have relations con-
necting the oscillation frequency and damping times in the
nonrotating limit to the neutron star mass and radius. The
normalization considered in this paper is different—we
have a single relation connecting the oscillation frequency
(or damping time) to the neutron star parameters (mass,

moment of inertia, and rotational frequency) for every value
of l. The relations in this paper also look simpler: they are
either linear or quadratic with respect to Ω̂ compared to the
second and third order relations in [6,7]. Another difference
is that we are using the moment of inertia instead of the
stellar radius since it was shown in [11] that this leads to
better EOS independence. On the other hand, one can
constrain the nuclear matter EOS using the moment of
inertia [12].
The same methodology as the one described in this paper

can be used to derive asteroseismology relations that
employ the stellar radius, as discussed in the previous
section. Our rough calculations show that these relations
are also quite EOS independent (one just has to replace the
effective compactness η with M=R).
At the end, we concentrated on different ways of solving

the inverse problem; i.e., we obtained the stellar parameters
from the observed oscillation frequencies and damping
times. The most important thing to point out is that using
the relations presented in this paper, we were able to solve
the inverse problem with very high accuracy using three
oscillation frequencies, which was not possible in the
previous studies [6,7], where the use of both the mode
frequencies and the damping/growth times was required.
This is quite beneficial since extracting the damping/
growth times from the gravitational wave signal might
be very difficult, and the accuracy will be much lower
compared to the oscillation frequencies. When solving the
inverse problem, we concentrated mainly on massive
models that are rotating rapidly, i.e., the primary candidates
for the CFS instability. The derived relations are particu-
larly good in these cases, that represent the biggest
challenge to the relations in [6,7], where the errors increase
significantly for massive rapidly rotating models.

ACKNOWLEDGMENTS

D. D. is grateful to S. Yazadjiev for the helpful discussions
and suggestions. D. D. would like to thank the Alexander
von Humboldt Foundation; the European Social Fund; and
the Ministry Of Science, Research, and the Arts Baden-
Wüerttemberg for the support. The support from Bulgarian
NSF Grant No. DFNI T02/6 and “New-CompStar” COST
Action No. MP1304 is gratefully acknowledged.

[1] A. Bauswein, N. Stergioulas, and H.-T. Janka, Phys. Rev. D
90, 023002 (2014).

[2] K. Takami, L. Rezzolla, and L. Baiotti, Phys. Rev. Lett. 113,
091104 (2014).

[3] N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134
(1996).

[4] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron.
Soc. 299, 1059 (1998).

[5] K. Kokkotas, T. Apostolatos, and N. Andersson, Mon. Not.
R. Astron. Soc. 320, 307 (2001).

[6] E. Gaertig and K. D. Kokkotas, Phys. Rev. D 83, 064031
(2011).

ASTEROSEISMOLOGY OF RAPIDLY ROTATING NEUTRON … PHYSICAL REVIEW D 92, 124004 (2015)

124004-7

http://dx.doi.org/10.1103/PhysRevD.90.023002
http://dx.doi.org/10.1103/PhysRevD.90.023002
http://dx.doi.org/10.1103/PhysRevLett.113.091104
http://dx.doi.org/10.1103/PhysRevLett.113.091104
http://dx.doi.org/10.1103/PhysRevLett.77.4134
http://dx.doi.org/10.1103/PhysRevLett.77.4134
http://dx.doi.org/10.1046/j.1365-8711.1998.01840.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01840.x
http://dx.doi.org/10.1046/j.1365-8711.2001.03945.x
http://dx.doi.org/10.1046/j.1365-8711.2001.03945.x
http://dx.doi.org/10.1103/PhysRevD.83.064031
http://dx.doi.org/10.1103/PhysRevD.83.064031


[7] D. D. Doneva, E. Gaertig, K. D. Kokkotas, and C. Krüger,
Phys. Rev. D 88, 044052 (2013).

[8] A. Passamonti, E. Gaertig, K. Kokkotas, and D. D. Doneva,
Phys. Rev. D 87, 084010 (2013).

[9] D. D. Doneva, K. D. Kokkotas, and P. Pnigouras, arXiv:
1510.00673 [Phys. Rev. D (to be published)].

[10] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70,
124015 (2004).

[11] H. K. Lau, P. T. Leung, and L. M. Lin, Astrophys. J. 714,
1234 (2010).

[12] J. M. Lattimer and B. F. Schutz, Astrophys. J. 629, 979
(2005).

[13] C. Chirenti, G. H. de Souza, and W. Kastaun, Phys. Rev. D
91, 044034 (2015).

[14] E. Gaertig, K. Glampedakis, K. D. Kokkotas, and B. Zink,
Phys. Rev. Lett. 107, 101102 (2011).

[15] C. Krüger, E. Gaertig, and K. D. Kokkotas, Phys. Rev. D 81,
084019 (2010).

[16] B. Zink, O. Korobkin, E. Schnetter, and N. Stergioulas,
Phys. Rev. D 81, 084055 (2010).

[17] N. Stergioulas and J. L. Friedman, Astrophys. J. 492, 301
(1998).

[18] E. Balbinski, S. L. Detweiler, L. Lindblom, and B. Schutz,
Mon. Not. R. Astron. Soc. 213, 553 (1985).

[19] W. D. Arnett and R. L. Bowers, Astrophys. J. Suppl. Ser. 33,
415 (1977).

[20] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38,
1010 (1988).

[21] V. R. Pandharipande, D. Pines, and R. A. Smith, Astrophys.
J. 208, 550 (1976).

[22] J. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012).
[23] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.

765, L5 (2013).
[24] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch

et al., Science 340, 1233232 (2013).
[25] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.

Roberts, and J. W. T. Hessels, Nature (London) 467, 1081
(2010).

[26] E. Balbinski and B. F. Schutz, Mon. Not. R. Astron. Soc.
200, 43P (1982).

[27] L. K. Tsui and P. T. Leung, Mon. Not. R. Astron. Soc. 357,
1029 (2005).

[28] K. V. Staykov, D. D. Doneva, S. S. Yazadjiev, and K. D.
Kokkotas, Phys. Rev. D 92, 043009 (2015).

DANIELA D. DONEVA and KOSTAS D. KOKKOTAS PHYSICAL REVIEW D 92, 124004 (2015)

124004-8

http://dx.doi.org/10.1103/PhysRevD.88.044052
http://dx.doi.org/10.1103/PhysRevD.87.084010
http://arXiv.org/abs/1510.00673
http://arXiv.org/abs/1510.00673
http://dx.doi.org/10.1103/PhysRevD.70.124015
http://dx.doi.org/10.1103/PhysRevD.70.124015
http://dx.doi.org/10.1088/0004-637X/714/2/1234
http://dx.doi.org/10.1088/0004-637X/714/2/1234
http://dx.doi.org/10.1086/431543
http://dx.doi.org/10.1086/431543
http://dx.doi.org/10.1103/PhysRevD.91.044034
http://dx.doi.org/10.1103/PhysRevD.91.044034
http://dx.doi.org/10.1103/PhysRevLett.107.101102
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevD.81.084055
http://dx.doi.org/10.1086/305030
http://dx.doi.org/10.1086/305030
http://dx.doi.org/10.1093/mnras/213.3.553
http://dx.doi.org/10.1086/190434
http://dx.doi.org/10.1086/190434
http://dx.doi.org/10.1103/PhysRevC.38.1010
http://dx.doi.org/10.1103/PhysRevC.38.1010
http://dx.doi.org/10.1086/154637
http://dx.doi.org/10.1086/154637
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1088/2041-8205/765/1/L5
http://dx.doi.org/10.1088/2041-8205/765/1/L5
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1093/mnras/200.1.43P
http://dx.doi.org/10.1093/mnras/200.1.43P
http://dx.doi.org/10.1111/j.1365-2966.2005.08710.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08710.x
http://dx.doi.org/10.1103/PhysRevD.92.043009

