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Cardy formula for charged black holes with anisotropic scaling
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We first observe that for Lifshitz black holes of which the only charge is the mass, the resulting Smarr
relation is a direct consequence of the Lifshitz Cardy formula. From this observation, we propose to extend
the Cardy formula to the case of electrically charged Lifshitz black holes satisfying as well a Smarr relation.
The expression of our formula depends on the dynamical exponent, the energy and the charge of the ground
state which is played by a magnetically charged soliton obtained through a double Wick rotation. The
expression also involves a factor multiplying the chemical potentials which varies in function of the
electromagnetic theory considered. This factor is precisely the one that appears in the Smarr formula for
charged Lifshitz black holes. We test the validity of this Cardy formula in different situations where
electrically Lifshitz charged black holes satisfying a Smarr relation are known. We then extend these results
to electrically charged black holes with hyperscaling violation. Finally, an example in the charged anti-de

Sitter case is also provided.
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I. INTRODUCTION

Recently, there has been important interest in extending
the ideas underlying the standard relativistic AdS/CFT
correspondence [1] to physical systems that exhibit a
dynamical scaling near fixed points. The latter are char-
acterized by an anisotropic invariance encoded by the fact
that the space and the time scale with different weights,

t— A, X = AX. (1)
The constant z which is called the dynamical exponent
precisely reflects this anisotropic symmetry. In analogy
with the anti-de Sitter (AdS) case z = 1, the gravity dual
metric in D dimensions refereed as the Lifshitz metric was
given in Ref. [2],

2 N r 2 = 2
ds* = =( 5 m47ﬂr+ﬁ§)m, (2)
i=1

and it is easy to see that the anisotropic transformations (1)
together with the rule » — A~'r act as an isometry for this
metric. Nevertheless, in contrast with the AdS case, Lifshitz
spacetimes or their black hole extensions are not solutions
of standard General Relativity and instead require the
introduction of some source that may be materialized by
some extra fields [3—6] or/and by considering higher-order
gravity theories [7—11]. The thermodynamical properties of
the Lifshitz black holes, in spite of their rather unconven-
tional asymptotic behaviors, have been intensively studied;
see e.g. Refs. [12—14]. One of the most appealing properties
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of the Lifshitz black holes of which the only charge is the
mass A concerns their entropy S which scales with respect
to the temperature 7 as

SxT%. (3)

As a direct consequence, the Smarr formula [15] takes the
following form [16]:

:Dz E2 @
z

In three dimensions, this last relation (4) can be obtained
by exploiting the fact that the Lifshitz algebras in two
dimensions with dynamical exponents z and z~! are iso-
morphic [17]. As shown precisely in this last Ref. [17], this
isomorphism is translated into a duality between the low and
high temperature regimes and allows one to derive a formula
for the asymptotic growth number of states in three dimen-
sions where the ground state is played by the soliton obtained
through a double Wick rotation,

S =2ml(z+1) K%)A]_ (5)

where —A corresponds to the mass of the soliton. In the
isotropic case z = 1, this expression becomes the standard
Cardy formula. Note also that the validity of Eq. (5) has been
checked in the case of the Lifshitz black hole solution with
z = 3 of new massive gravity [7] (see Ref. [17]) and also in
the presence of a source given by a nonminimal scalar field
for the same gravity theory [5]. The first law dA = TdS
applied to the relation (5) will then imply that the mass can be
expressed as
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A
A ==2(27IT) ", (6)
Z

and combining together the two expressions (5)—(6), one
easily obtains the Smarr formula (4) for D = 3. Hence from
this simple exercise, we have highlighted a certain correlation
between the Smarr formula and the generalized Cardy
formula in three dimensions.

The main aim of this paper is to extend the formula (5) to
the charged case. In doing so, we will inspire ourselves
from the fact that the Smarr formula in the case of charged
solutions must be a consequence of the Cardy formula as it
occurs in the neutral case. This problem has a certain
interest since electrically charged Lifshitz black holes
have also been found in the current literature; see e.g.
Refs. [18-23]. Such examples occur for example in the case
of Einstein gravity with a source given by a Proca-Maxwell
action [20] or in the presence of N-Abelians U(1) fields
with a dilaton [24] as well as in the case of nonlinear
electrodynamics [21,22]. In all these examples, a Smarr
formula generalizing the expression (4) can be derived and
is generically written as [16]

D-2
= 2% TS+ad,0, 7
Diz-2l9Ta%L ™

where ®, is the electric potential and Q, the electric charge.
In this relation, the value of the constant « varies in function
of the electromagnetic Lagrangian considered. From now on,
it is important to emphasize the nonuniversal character of the
Smarr formula in the charged case reflected by the presence
of the constant a. In other words, this means that the constant
a does not depend only on the dynamical exponent z and the
dimension D but also depends on the theory considered as
we will see in the different examples listed below.

In this paper, we will show that for electrically charged
Lifshitz black holes satisfying a Smarr relation of the form
(7) in three dimensions, the Cardy formula (5) becomes

S =2zl(z + 1)(|Agz™" + a®,,Q, [|A - a®,Q, )71, (8)

where ®,, (respectively, Q,,) denotes the magnetic poten-
tial (respectively, the magnetic charge) of the magnetically
charged soliton obtained from the electric solution by
means of a double Wick rotation. Since the Wick rotation
switches the role of the time coordinate ¢ with the angular
coordinate x = ¢, the field strengths of the resulting
magnetically charged soliton will be complex in general
with a magnetic charge and potential both purely imagi-
nary. Nevertheless, this will not be dramatic since in the
proposed formula (8), only their product which is always
real appears. The Wick rotation is also responsible for the
apparent discrepancy of the sign appearing in front of the
constant ¢ accompanying the magnetic and electric parts
in (8).
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In what follows, we will test the validity of the
formula (8) in different theories where charged Lifshitz
black holes satisfying a Smarr formula of the form (7) are
known. In each case, we will derive the corresponding
magnetically charged soliton and compute the mass of the
soliton through the quasilocal method given in
Refs. [25,26] as well as their magnetic charge. We will
then extend these results to the case of charged hyper-
scaling violation black holes. Finally, the last section will
be dedicated to some comments regarding the isotropic
AdS case z = 1.

II. CHARGED LIFSHITZ BLACK HOLE
AND SOLITON SOLUTIONS

In all the examples given below, the Lagrangian £ will
involve a gravity part encoded by the metric g as well as
different Abelian fields denoted generically by A;), and
eventually a scalar field ¢ with its standard kinetic term

8;t¢aﬂ¢’
L= L(g, Az D) )

The corresponding action will be given by

Slg. oA = / Px /5L (10)

The mass of the charged black hole and soliton will be
computed through the quasilocal method described in
Refs. [25,26] where the charge A which corresponds to
the mass is given by

A@) = [ dn (5Kﬂ”(<§) ~2g [° ds@”}(§|s>>- (1)

Here 5K* (&) =K', (&) — K2 ,(£) denotes the difference
of the Noether potential between the interpolated solutions,
dx,, represents the integration over the codimension-2
boundary B, & = (1,0,0) is the timelike Killing vector
field, and ®" represents the surface term. In the case of a

Lagrangian given by (9), the involved quantities are given by

er =2,/—g {Pﬂ(aﬂ)yvygga 5 — 0905V, pulap)y

1 oL 1 0L
32 <a<aﬂA<,->y> ‘““)") " 2000,9) 54’ .

K™ = \/—_g[ZP””””V/)dfG —4¢,V, prre

oL
_E :7 Ao | 13
i 8(814A(i)v)§ U] (13)

where PH7° = azéi with R,,,, being the Riemann tensor.
The black hole”metric will be parametrized by the
following line element,
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2z

ds? = —— f(r)df* + d2+ d(p,

12
14
= 770) 1
and the ansatz for the gauge fields and eventually the scalar
field read

A<,->de” = A(i)t(r)dt, ¢ = ¢(r)

(15)
The Euclidean version of (14) obtained by means of the
transformation ¢ = it requires the Euclidean time to be
periodic with period # = T~! in order to avoid conical
singularity while the angle keeps identified as 0 < ¢ < 2xl.
Under the Euclidean diffeomorphism defined by

(2N B (Y, 2
e (o= (o= () 0=,

the Euclidean Lifshitz black hole is diffeomorphic to
another asymptotically Lifshitz solution with dynamical
exponent z~!, scale Iz~! and inverse temperature

p = (al)"p, (17)
and finally the Lorentzian soliton will be obtained from
7 = if yielding

o\ P 272
ds? = —<7> AP + ————dF 2+—h(r) (18)

2272 h(7)

As mentioned before, this double Wick rotation will be
responsible of the fact that the field strengths of the
corresponding soliton will be purely imaginary. Note that
in the case of the scalar field which depends only on the
radial coordinate, this double Wick rotation does not yield
to a complex scalar field for the soliton solution [5]. We
may also emphasize that the set of parameters as well as the
range of admissible values of the dynamical exponent z are
the same for the electrically charged black hole and for the
magnetically charged soliton.

Also in order to simplify the expressions, the volume of
the one-dimensional sphere is denoted by Q; with

Q, = 2zl.

We are now in a position to check the validity of the
expression (8) in different contexts presented below.

A. Case of Einstein gravity with two Abelian
fields and a dilaton

We first analyze the case of Einstein gravity with two
Abelian fields and a dilaton for which the Lagrangian reads
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1 1 1<
_ — _ _ = Aih 172
L= > (R 2A 23M¢aﬂ¢ 1 ?:1 e F(i)), (19)

withF<) F F fori =1, 2.
For an ansatz of tl('le form (14)—(15), the solution given in
Ref. [24] reads

o =1=m(") " on-n(2)7 oo
—\/2(22 - 1)M\/2<+_1><;>Z, (20b)

'

Flom = VAm =1~ D VE () (20e)

et = purv2Eh), (20d)
where m and p are two integration constants and r;, stands
for the location of the horizon. Note that we have opted for
this parametrization of the solution for latter convenience,
but the expressions (20) are equivalent to those given in
Ref. [24] after some redefinitions of the constants. This
solution is defined provided that the parameters are fixed as
follows,

z2(z+1) 2
A=— R PR S J—
202 : =1 77

2(z—1), (21)

while the range for the admissible values of the dynamical
exponent is z > 1.

In this case, the Wald entropy together with the Hawking
temperature read

_277,'91 ry
K 1)’

T= 4ll[zz+(1—z) ](’"f) —%(’—;) (22b)

where we have defined

Sw (22a)

:%[214- (1 —2z)m]. (23)

On the other hand, the electric charge and electric potential
read, respectively,

Qe:\/z( m—1)(z—1)V2Ehg, A (24)

2kl?

and
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2(m - 1)/4_% 2z-1)
Vz—1F

Introducing a one-parameter family of locally equivalent
solutions, the variation of the Noether potential and the
surface term (12)—(13) are given by

(z—=1)m (ﬁ)z“ n (m—1)r¥ —

2kl l kl#+? ’

mz (rp\*tt (m— l)rff B
ds®" = n _ z+1‘
A 2 1(1) k2

From these expressions, we obtain the mass of the
Lifshitz black hole to be

m, [r,\ !
- 2z<z1 <Th> ’ (26)

and we easily check that the first law holds:

O, = —Ap)(ry) = e (25)

SK" = —

dA =TdSy + ©,d0,. (27)
The Smarr formula turns to be

1
A= +1(T$W+z<1> Q,) (28)

and corresponds to the expression (7) with a = 5.
The metric function of the corresponding solitonic

spacetime (18) is given by

where o is defined in (23), and the Abelian gauge fields and
the dilaton read

222 =1y o=y N
Fyrp =1 G ] ) 7 (30a)
A VE
F(2);(7) =1 271-0'Z rz, (30b)
e? = ur . (30c)

As before, the variation of the Noether potential and the
surface term read

5K”—i (m—1) z_r% 2m
2k [27%6%z7 \ 1 (zﬂg)%l '

[l (7) + ]
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yielding to

zmy

o G1)
2kl(2no) <

Finally, the magnetic charge and potential are, respectively,
expressed as

0, — i\/Z(m —1)(z = DV, @ 32)

drozx

and

/ _ —3v/2(z-1) 1
o, — VM= Do G DNE )
Vz—=11 2roz

It is then easy to verify that the formula (8) with the
parameter @ = +1 correctly fits with the expression of the
Wald entropy given by Eq. (22a).

B. Case of Einstein gravity with
a nonlinear electrodynamics

In Ref. [22], the authors consider a slight generalization
of the previous Lagrangian (19) by introducing a nonlinear
term as

1 1 1
E = 2_](' |:R - ZA - 58”456/447 - Z€AI¢F%1)
1 p
+ (—Zelsz'Ffz)) ] (34)

We have made some redefinitions of the fields and
parameters in the original action [22] such that the
Lagrangian (34) reduces to (19) in the linear limiting
case p = 1. Note that such nonlinear generalization of
the Maxwell action is being currently studied; see e.g.
Ref. [27].

For an ansatz of the form (14)—(15), the metric function
given in Ref. [22] after some redefinitions of the constants

reads
f(r)=1-m (’—f) ) (r—r"> e

where the constant I' is defined as

2(p-1)

r=- .
2p—1

(36)

For this solution, the uncharged Abelian field Fj),, the
dilaton, the cosmological constant and the coupling con-
stants are given by the same expressions than in the linear
case; see (20b), (20d) and (21). The only changes are
concerned with the charged Abelian gauge field F ), and
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the coupling constant 4, which now take the following
forms,

V() T

Foy = (=D2p-D) J
/ 1+(;p—1 )pﬂﬁruz—;’zﬁuz
C22(z=1)p—-2z+1]
2 — bl

py2(z=1)
where for simplicity we have defined

ZZ(m—l)[?Zy—_Zﬁ)};—Z—I—ﬂ. (37)

The expression of the entropy as well is unchanged and

given by
K l

where r;, is now the location of the horizon for the metric
function (35). The Hawking temperature for this configu-
ration reads

) -3 )

where we have defined

(38)

sy (= Dm=1)

2z(2p - 1) (39)

with ¢ given by (23). On the other hand, the electric
potential together with the electric charge read

[(e=2)p—z+1] _ 1

V2Q2p = 1)(ry)~ 7
¢, = " e)p EETEE (4‘0)
I 7 [2(z=2)p —z+ 3]urven
z=D@p-1) 2p-1 (2z=1)p—z+1
0, V2pu /eI s 2:,)—<1rh) Q) L@

2kl P

with X given by the expression (37).

Let us now compute the mass of this solution through
the quasilocal formalism. For the timelike Killing vector
&' =(1,0,0), and after some tedious but straightforward
computations, the surface term together with the variation
of the Noether potential (12)—(13) are given by
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2(2z—1)p—2z42 [2(z=2)p—z+3]
ld @r (m_l)(rh) 2p—1 r 2p-1 +Zm rh 14z
SO = —|— ,
o KlF+2 2kl \ 1
2(2z—1)p—2z+2 [2(z=2) p—z+3]
5Krt (m_l)(rh) 2p-1 r 2p-1
- K[t

(z=1)m [(r,\ 12
2kl l ’

This implies that the mass of the Lifshitz black hole is

given by
A _ m—gzl ﬁ Z-’rl7
2l \ 1

and it is simple to verify that the first law (27) still holds.
Additionally, the Smarr formula turns to be

(z=D(p-1)
(1+2z2)p

1
A:—TSW+{ S

P
z+1 14z } Qe

and corresponds to the expression (7) with

aZZ(2p—1)—(p—1)

plz+1) (42)

As in the linear case, operating the same diffeomorphism
(16), the metric function of the corresponding soliton reads
(m—1)

(27::)2?' <z_lr)_ T et (;i) " (43)

where & is defined in (39) and I' is given in (36). As before,
the Abelian gauge field F(;);; together with the dilaton are
given by (30a) and (30c),) respectively, while F,);5 yields

h(F) =1 -

— 1

p-1
. 2\ @ 22
Fopg = ’\/5<_) e

l P 4(—1)pi3-2z

Hp\/Z( D7 @z

where

s _ 2(z=2)p+3—-2z](m—1)
(275)*2(2p — 1)

For the same timelike Killing vector, the variation of the
Noether potential and the surface term yield

N V) (z_f>-—é%_ m_
k(275)> iz \ xk(275) 1

/1 I — (m— 12 <z_?)% n m(z +2)
0 k(275) >z \ |

2 (2n5) 1
yielding to
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o zmi)y
26l(275)

The magnetic charge and potential, as before, are purely
imaginary and read

i \/_ ;_ =D@p-1)
o, BE() e
; _ - =h2p-1)
lﬁ(zp l)Z (Z> P-L) pz:zpﬂ ,,\/2(_)
2(z=-2)p+3 -1

l _[2(:(—22)/714;372]
— A 45
x (2715'Z> (45)

As a matter of check, one can see that all the expressions
involved in the nonlinear case reduce to those obtained in
the previous subsection in the linear limiting case p = 1.

Finally, it is straightforward to check that the formula (8)
with a given by (42) fits perfectly with the Wald
formula (38).

q)m =

C. Case of Einstein gravity with a Proca
and Maxwell fields

We now consider the case of Einstein gravity with a
Proca field A D, together with a Maxwell field A, 2), of
which the Lagrang1an is given by

1 1
— af 2 a af
L=R-2A _ZF(UaﬁF(]) —Em A(l)(lA<]) _ZF(Z)UZ/}F(Z)
(46)

with F(i)a/i = 80(A(i)ﬁ — aﬁA(l’)a for i = 1, 2.

In this case, the electrically charged Lifshitz black hole
solution exists only for z = 2; the metric function (14) and
the Proca and Maxwell fields read [20]

0 =1= (") At = () s

Foy(r) = V2

[2 ry, (47)

while the parameters must be fixed as follows:
2 5

\/_ N A —_ - A7

l 21

For this solution, the Wald entropy Sy and the Hawking
temperature are given by

4rr, rﬁ

Sw=—7—"":
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The expressions of the surface term and Noether potential
(12)—(13) read

1
/ ds®" =
0

which in turn implies that the mass A = 0. This solution
with vanishing mass can be interpreted as an extremal
charged Lifshitz black hole as it occurs for examples in
Refs. [12,14,28]. Nevertheless, the electric charge Q, and
the electric potential ®, are nonvanishing and given by

o, = Y2 <"’1>

2rr% SKT — 2rrh

l4 ’ 14 4 (49)

r 13 2
S, =—-Vv2(—]. (50
o —==v2(%) 0
It is easy to verify that the first law of thermodynamics
holds,

dA =0 = TdSy + ®,dQ,, (51)

and the Smarr formula (7) reads in this case

that is, the constant  appearing in the generic formula (7)
: 1
1S a = 3

The corresponding soliton is given by the line element
(18) with z = 2 where the metric function and the gauge

fields are given by

— . T _ o
h(r)zl—ﬁ, A(1)¢:2l<i>h(}’)’ F(2>;(77:l(lr) 1/2‘

(53)

Along the same lines as before, the Noether potential
together with the surface term take the following forms,

1 2 (2F\z . 2 (27\:
/ds@f:— IV Ak =—Z(Z5) (54
0 1\ 1 I\ 1

and as in the electric case, the mass of the soliton is
vanishing Ay = 0. The magnetic charge and potential are
purely imaginary and read

9, = i?ﬁl, ®, = —iV2, (55)

and it is a matter of check that the formula (8) with z = 2
and a = 1/3 fits perfectly with the Wald formula (48).
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ITII. GENERALIZATION FOR CHARGED
LIFSHITZ BLACK HOLES WITH
HYPERSCALING VIOLATION

In the anisotropic extension of the AdS/CFT correspon-
dence, there exists another dual metric of interest, the so-
called hyperscaling violation spacetime of which the line
element can be parametrized as follows:

ds* = —r¥de? (56)

20
yD=2

2
+ dirz + r2dx?

r

In this case, the anisotropic transformations (1) together
with r = 17! act rather like a conformal transformation,
ds* — 2%0/(P=2)4g2 Note also that this metric reduces to
the Lifshitz metric (2) in the limiting case @ = 0.

In Refs. [29,30], it was shown that if the entropy S scales
with respect to the temperature 7" as

deff

S~T=, (57)
where d. is the effective spatial dimensionality, and
where z is the dynamical exponent, the formula (5) in
the uncharged case becomes

S =2 (24 duy) (AOdeff>%A L (s8)
Z

eff

Repeating the same exercise as in the Lifshitz case, the first
law dA = TdS allows one to express the mass as

gy A
A = (22T) d“( ‘“4“>, (59)
z
and the Smarr formula becomes
deff
= 60
z+ deff ( )

We may note that the expressions (57)—(60) with d = 1
reduce to those obtained in the Lifshitz case.

Now by a certain analogy with the charged Lifshitz case,
the Cardy formula for electrically charged black holes with
hyperscaling violation should be

2 Ay
S_—(Z+deff)<' z deff"’aq) Qm

eff

|A a® Q |dm> +deff

(61)

As before, the constant o is the one appearing in the
charged version of the Smarr formula in the hyperscaling
case, namely

PHYSICAL REVIEW D 92, 124002 (2015)

deff
7+ degr

A= TS + a®,Q,. (62)

Let us now verify this formula for the charged hyper-
scaling violation black hole derived in Ref. [31] for which
the Lagrangian is given by

£=g®=3 (00 V) - iie&m(gwn&) ,
(63)
where the potential is
V(p) = —2Aer.

The solution as reported in Ref. [31], again after some
redefinitions of the constant, reads

1 dr? -
ds? = 0 [—rzzf(r)dt2 + 20 + rquoz} . (64)
where
Z+1-0 22-29
flry=1- m<ﬁ> +(m-1) <Z> , (65a)
r r
V2
Fyne =/2(z = 1)(1 =0 + 2)p2Vi=0=0270, (65b)
V2 z=0
Fio = VAT =03 = 0= 1i(m = D~ 50 (%)™
-
(65¢)
e(/) = ur 2(1—9)(1—9—1)’ (65(1)
while the parameters are fixed as
2 2(z—0-1
= — TN Sl A}
(1-0)(z—0-1) 1-6
1 _ 02
A=3(1=0+2)(z= O Vo,
260
Y= . (66)
V2(1-0)(z—0-1)
For this solution, the Wald entropy is given by
271,170
Sy = L’ (67)
K
while the Hawking temperature is
-2)0 — -1)+2
p_ln=20-me=)r2ds L

iy 4
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where for simplicity we define

p:%m (69)

with ¢ given in (23). In this case, the electric charge
together with the potential read, respectively,

2(z—0-1)
o _V2T=0)G=0-1)m =1 > 1,0,
o 2K ’

2(1 =0)(m —1) _y20-D
d, = —( z—)Q(—l )/4 Wiy, (71)

The variation of the Noether potential together with the
surface term are obtained as

(70)

SK' — (z—0—1)mr,'—0+=

2K
===,
K
/1 150" — (z = 20)mr),'~01=
0 2K
27260
i (m - 1)(9 - 1)’"11 ¢ FH_ZH, (72)
K

yielding to the same expression of the mass as the one
found in Ref. [31], namely

_m(1-0)Q,

A
2K

rhl‘aﬂ. (73)
From all these expressions, one can easily check the

validity of the first law while the effective spatial dimen-
sionality is given by

deg =1-0, (74)

and the Smarr formula (62) is realized with a constant a
chosen as

z—0
S S — 75
“ z+1-0 (75)
On the other hand, the soliton counterpart for the
hyperscaling violation metric (64) with the metric function
(65a), obtained through a double Wick rotation, has the
following form,

dr?

1
d 2 _ szt2
s " + r*h(r)

r29

+ r*h(r)dg*|, (76)

where the metric function % is defined as
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m (m—1)

(2mp) 10 (2ap)

h(r)=1- (77)

with p being given by Eq. (69). The gauge fields read in this
case

V2
Fiiyp = iV/2(z = (1 = 0§ Vo070, (78)

JO =) BV,

Forw==0\"Zg-1y # 7

(79)

while the dilaton is given by Eq. (65d).

As before, choosing the Killing vector & = (1,0, 0), the
variation of the Noether potential and the surface term are
calculated as

0—-1 -1

sk = - 0= D= 1)
k(2zp)"7 r0t k(2mp) s

1 0—-1)(m—1 z+2—-20)m
/ ds®" = ( L _9_)] ( 4 ’
0 k(2zp)~7 1t 2k(2mp)

@—1)m

1-0+z

which, in turn, implies that

zm€2
A0 = l|+z—() . (80)
2k(27p) =

Finally, the magnetic charge and the magnetic potential
read

V/2(z-0-1)

0 201 -60)(z—0-1)(m—1)u 27 Q
" 2%(27p) ’
CR(1=0)(m—1) 200/ 1\t
O, =i\ ——— Ty 2 [ — | . 1
m i—0—-1 " 27p (81)

Once again, it is easy to verify that the formula (61) with
the parameter a given by (75) correctly fits with the Wald
entropy defined in (67).

IV. CASE OF ADS CHARGED BLACK HOLES

We now consider the isotropic AdS case which corre-
sponds to a dynamical exponent z = 1. There exist exam-
ples of electrically charged AdS black holes in three
dimensions, and the most popular one is the charged
Banados-Teitelboim-Zanelli  (BTZ)  solution  [32].
Unfortunately in this case, because of the logarithmic
behavior of the Maxwell electric gauge field, there is not
such a Smarr formula (7) encoding the charged BTZ
solution. As a direct consequence, the Cardy formula given
in (8) is no longer valid in such a situation. Nevertheless, as
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shown in Refs. [33,34], considering instead a nonlinear
version of the Maxwell action (as the one used in Sec. II. B)
and eventually a scalar field nonminimally and conformally
coupled, there exists an electrically AdS charged black hole
such that the electric gauge field A,(r) exhibits a
Coulombian behavior, that is A,(r) ~ r~!. In what follows,
we shall consider such a particular solution that satisfies a
Smarr relation (7) and show again that the Cardy for-
mula (8) will reproduce the correct value of the entropy.
We deal with the Lagrangian reported in Ref. [34],

CR+22 1,0, 1
B P LU TR

+ 5(_F/41/FW>3/47 (82)

L

where the matter part of the action (the scalar field and the
nonlinear electromagnetic action) is chosen such that it
enjoys the conformal invariance. The solution we consider
for testing the Cardy formula (8) is given by the simplest
one found in Refs. [34],

24612 b
=142 = 2 Rt s

r

where f(r) is the metric function of the line element (14)
with z =1 and |g|*/? = —Ab>. The constant b is strictly
positive, while 4 is negative. In this particular case, the
quantities of interest read [34]

r? r K 4r’r
A== =2 Sy =(1- Ly
Kl 2712 v ( 81\/—24/1>

K
6”(—1)1/3 ry
AN Y Y A— 84
Q=" " 242(=))1/3 (34)

where the location of the horizon r;, is defined by ”%1 =
—242b*1? and for simplicity we have assumed that g > 0.
Having in hands all these quantities, one easily verifies that
a Smarr relation (7) is satisfied with a = 1/2.

The corresponding soliton solution is described by

w0 =1-5 0= ()"

24(=2)'3R

(85)

where ¢(7) is the metric function of (18) with z = 1. We
may note that, as said before, the double Wick rotation does
not yield to a complex scalar field for the soliton solution.
Along the same lines as before, the surface term together
with the variation of the Noether potential are given by
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1 _
/dS®’: Vor — V6 +i,
0 4813/=1  481\/=iF 2l
V67 N NG 1
4813/=1  481v/—=IF kI’

6K = (86)

yielding to
1 T
Ay=—Q =—.
0T okl Tk

Finally, the magnetic charge and magnetic potential read

iv/6n i
m = 77, ®ﬂ’l —_ 775 - 87
Q 2(=4)V/6 241(-2)1/3 ®7)
Hence, as in the anisotropic case, the charged version of the
Cardy formula (8) with @ = 1/2 and z = 1 gives the correct
value of the entropy (84).

V. CONCLUDING REMARKS

Our starting point was the observation that in the case of
Lifshitz black holes of which the only charge is the mass,
the general asymptotic formula for the asymptotic growth
of number of states derived in Ref. [17] naturally implies
the emergence of a Smarr formula given by (4)in D = 3. In
our search of generalizing the Cardy formula to the case of
electrically charged Lifshitz black holes, we have proposed
a formula compatible with a charged version of the Smarr
formula of the form (7). We have tested the viability of this
formula in three different examples where charged Lifshitz
black holes obeying a Smarr relation were known. We have
extended our analysis to the other class of charged black
hole solutions with anisotropic symmetry, namely those
exhibiting a hyperscaling violation.

In the case of the isotropic charged AdS black holes, we
have shown that the absence of a Smarr relation for the
charged BTZ solution renders our formula (8) inappropri-
ate. The absence of a Smarr relation of the form (7) is
mainly due to the logarithmic behavior of the Maxwell
gauge field. It seems that in this case, the appropriate
formula should be the Cardy-Verlinde formula [35] where
the Smarr relation is augmented by a pressure term; see
Ref. [36]. Nevertheless, charged AdS black holes have a
U(1)-corrected Cardy formula which accounts for their
entropy; see e.g. Ref. [37].

Nevertheless, replacing the standard Maxwell theory by
its nonlinear and conformal generalization, asymptotically
charged AdS black holes are known with a gauge field
behaving as a Coulomb one. In a simple example of such a
solution given in Ref. [34], we have again tested the
viability of the Cardy formula after ensuring that this
Coulombian solution was as well satisfying a Smarr
relation.
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As a natural extension of this work, it will be desirable to
test this formula in many more examples, particulary those
involving higher-order gravity theories in three dimensions.
This task can be interesting by itself in the hyperscaling
violation case, since as shown in Ref. [30], the spatial
effective dimensionality d.; may vary in function of the
order of the gravity theories involved in the action.

Also there exists a generalization of the Smarr relation
in the case of AdS black holes for which the cosmo-
logical constant is viewed as a dynamical variable. In a
very recent paper, the authors of Ref. [38] showed that
such a generalization of the Smarr relation can be

PHYSICAL REVIEW D 92, 124002 (2015)

understood from a dual holographic point of view.
Extension to the Lifshitz case can also be an interesting
work to deal with.
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