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We study a class of early dark energy models which has a substantial amount of dark energy in the early
epoch of the Universe. We examine the impact of the early dark energy fluctuations on the growth of
structure and the cosmic microwave background power spectrum in the linear approximation. Furthermore,
we investigate the influence of the interaction between the early dark energy and the dark matter and its
effect on the structure growth and cosmic microwave background. We finally constrain the early dark
energy model parameters and the coupling between dark sectors by confronting different observations.

DOI: 10.1103/PhysRevD.92.123537 PACS numbers: 98.80.-k

I. INTRODUCTION

From astronomical observations, it is convincing that our
Universe is undergoing accelerated expansion. The driving
force of this acceleration is dark energy (DE), which
composes roughly 70% of the total energy budget of our
Universe. The physical nature of DE, together with its
origin and time evolution, is one of the most enigmatic
puzzles in modern cosmology. The simplest explanation of
DE is the cosmological constant with the equation of state
(EoS) w ¼ −1. Although the cosmological constant fits
well to current observational data, it suffers serious theo-
retical problems. One is the cosmological constant prob-
lem, the fact that the quantum field theory prediction for the
value of Λ is about a hundred orders of magnitude larger
than the observation [1]. Another problem, more closely
related to the cosmological evolution itself, is the coinci-
dence problem, namely, why, since it is a constant, the Λ
value becomes important for the evolution of the Universe
just at the present moment [2]. Besides the cosmological
constant, there are other alternative explanations of DE. But
so far, the focus has been on the EoS of DE and in particular
on its current value w0.
It is rather the amount of DE, Ωde, than the EoS that

influences the evolution of our Universe. In this spirit, an
interesting subclass of DEmodels involving a non-negligible
DE contribution at early times has been proposed. These
models are called early dark energy (EDE) and have been
extensively studied recently. EDE models can potentially
alleviate the coincidence problem. Furthermore, they can
influence the cosmic microwave background [3–9], big
bang nucleosynthesis [10], and large-scale structure forma-
tion [11–17]. For now, it would be fair to say that there are no
strong observational constraints on the EDEmodels, and it is
especially difficult to discriminate EDE models which have
w ¼ −1 at present from the ΛCDM model.

In this paper, we will focus on a specific EDE model,
which is similar to that originally introduced by Wetterich
[18] and further examined in Ref. [14]. This model is
characterized by a low but nonvanishing DE density at
early times with the EoS varying with time in the form

wðzÞ ¼ w0

1þ b ln ð1þ zÞ2 ; b¼ −
3w0

lnð1−Ωde;e

Ωde;e
Þ þ lnð1−Ωm;0

Ωm;0
Þ
;

ð1Þ

where w0 and Ωde;0 ¼ 1 −Ωm;0 represent the present-day
EoS and amount of DE, respectively, while Ωde;e gives the
average energy density parameter at early times. The
parameterization (1) has been constrained by type Ia
supernova observations including samples at z > 1.25
[19,20]. The impact of this EDE cosmology on galaxy
properties has been studied by coupling high-resolution
numerical simulations with semianalytic modeling of
galaxy formation and evolution [13]. The available results
highlight that such an EDE model leads to important
modifications in the galaxy properties with respect to a
standard ΛCDM universe.
We use this dynamical EDE parametrization to further

discuss the influence of this specific model on the cosmic
microwave background radiation (CMB) and compare it
with the ΛCDM prediction. For dynamical DE models, in
contrast with ΛCDM, they possess DE fluctuations. In the
linear regime, these fluctuations for usual DE models, for
example, quintessence, are usually several orders of mag-
nitude smaller than that of dark matter (DM) so that DE
fluctuations are usually neglected in studies of CMB and
structure formations in the linear approximation. It would
be interesting to examine the presence of the EDE
fluctuation and its impact on the DM perturbations and
CMB and compare this with the usual assumption of nearly
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homogeneous EDE and ΛCDM models. This can help to
distinguish between homogeneous and inhomogeneous
EDE models and also disclose the difference from the
ΛCDM model. Moreover, we will attempt to constrain this
EDE model using current data. In Ref. [9], one different
type of EDE model was constrained by using observational
data at high redshift including the WMAP five year data for
CMB, but in that study, the authors have not compared
different effects brought by the inhomogeneous and homo-
geneous EDE.
It is clear that DM and DE are the two main components

of our Universe, which compose almost 95% of the total
Universe. It is a special assumption that these two biggest
components exist independently in the Universe. A more
natural understanding, in the framework of field theory, is
to consider that there is some kind of interaction between
them. It has been shown that the interaction between DM
and DE is allowed by astronomical observations and can
help to alleviate the coincidence problem; see, for example,
Refs. [21–25] and references therein. It would be of great
interest to extend the previous studies to the interaction
between EDE and DM. With the non-negligible DE energy
density at high redshift, the interaction between dark
sectors will start to play the role earlier. To investigate
the influence of the interaction between EDE and DM on
the structure growth and CMB signals is the second
objective of this paper.
The outline of the paper is the following. In the next

section, we will first present the background evolution of
the EDE model and discuss the influence of the interaction
between dark sectors on the background dynamics. And
then we will study evolutions of linear perturbations of a
system with EDE and pressureless matter and calculate the
growth of the structure. We will examine the effect of the
interaction between EDE and DM on the linear perturba-
tions. Section III is devoted to the study of the CMB power
spectrum. In Sec. IV. we will present the constraint of the
EDE model from fittings to current observational data, and
in the last section, we will present our conclusions.

II. ANALYTICAL FORMALISM

In this paper, we investigate the EDE model presented in
(1), in which there is a low but nonvanishing DE density at
early times. We modified the CAMB code to examine the
influences of the EDE on the background evolution, linear
perturbation, and CMB power spectrum by performing
analysis for two models, EDE1 and EDE2, which
have w0 ¼ −0.93, Ωde;e¼ 2×10−4ðb¼ 0.29;Ωm;0¼ 0.25Þ
and w0 ¼ −1.07, Ωde;e ¼ 2×10−4ðb¼ 0.33;Ωm;0¼ 0.25Þ,
respectively.
Figure 1 shows the evolutions of the EoS in the EDE

models that we examine in this work. The amount of DE at
early times is nonvanishing, and EDE models approach the
cosmological constant scenario at recent times. The EDE1

model has an EoS always above −1, while the EDE2 EoS
can cross −1 and stay below −1 at present.
In the spatially flat Friedmann-Robertson-Walker

universe, the evolutions of the energy densities of DE
and DM in the background spacetime are governed by

ρ0dm þ 3Hρdm ¼ aQdm

ρ0de þ 3Hð1þ wÞρde ¼ aQde; ð2Þ

where H is the Hubble constant and H ¼ aH with a the
scale factor of the universe. Qα indicates the interaction
between dark sectors, where the subscript α refers to dm or
de, respectively. We show the evolution of the DE frac-
tional energy density when there is no interaction between
DE and DM in Fig. 2. In the left panel of Fig. 2, we
compare the Ωde for EDE1 with constant EoS DE and
cosmological constant. We can see that for the model EDE1
DE started to have a significant ratio in the budget of the
universe earlier, which helped to alleviate the coincidence
problem. We also compare the evolution of Ωde for
different EDE models with that of the cosmological
constant in the right panel of Fig. 2. The evolution of
Ωde shows that the model EDE1 is favorable to ease the
coincidence problem. To see more clearly, we present the
behavior on the ratio ρdm=ρde in Fig. 3. It is easy to see that
the ratio for EDE1 is smaller at early times. This shows that
the ratio for EDE1 evolves more slowly so that it has a
longer period for the energy densities of EDE1 and DM to
be comparable, in the spirit of alleviating the coincidence
problem.
Since we know the nature of neither DM nor DE, it is

hard to describe the interaction between them, although
there have been some attempts on this task [26–29]. Our
study on the interaction between dark sectors will concen-
trate on the phenomenological descriptions. We assume
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FIG. 1 (color online). EoS of two EDE models. The dotted line
refers to the EDE1 with b ¼ 0.01.
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there is energy flow due to the interaction between dark
sectors where the coupling vector is defined in the form
Qν ¼ ðQa ; 0; 0; 0ÞT [23], and Q takes the phenomenological
formQ ¼ 3λ1Hρdm orQ ¼ 3λ2Hρde, where λ1 and λ2 refer
to the strengths of the respective couplings.
We plot the evolution of the DE fractional energy density

in Fig. 4. In the left panel, we choose the interaction as
being proportional to the energy density of DM. For the
EDE model, with the positive coupling proportional to
the DM energy density (λ1 > 0), the influence of DE in the
universe evolution appeared much earlier. The positive
coupling, in our notation, indicates that energy flows from
DE to DM [21–25]. For the same amount of DE today, with
the positive coupling, it implies that DE density was higher
in the past. The coupling strength λ1 cannot be chosen
negative, since the negative λ1 will lead to the negative DE
fractional energy density Ωde at early time of the universe,
as is shown in the middle panel of Fig. 4, which is certainly

unphysical. In the right panel of Fig. 4, we show the case
where the interaction is proportional to the DE density. We
see that for the EDE1 model with positive coupling
(λ2 > 0) if the EDE model has the same amount of DE
as that of the ΛCDM model to drive the acceleration of the
Universe today, it must have more EDE at high redshift,
which we also argued to have consequences related to DM
phenomenology in accordance with the results of BOSS
[30]. But compared to the left panel, the influence of the
coupling is weaker in the right panel. This is easy to
understand, because in the right panel, the interaction is
proportional to DE energy density, which was much lower
than that of DM at early times in the universe.
Besides the background dynamics, we can extend the

study to the linear relativistic evolution of the system of DE
and DM. The gauge-invariant linear perturbation equations
of the system were derived in Refs. [23,31–33]. Using the
phenomenological form of the energy transfer between
dark sectors defined above, the equations yield

D0
dm ¼ −kUdm þ 3HΨðλ1 þ λ2=rÞ − 3ðλ1 þ λ2=rÞΦ0 þ 3Hλ2ðDde −DdmÞ=r;

U0
dm ¼ −HUdm þ kΨ − 3Hðλ1 þ λ2=rÞUdm;

D0
de ¼ −3HðC2

e − wÞDde þ f3w0 − 9Hðw − C2
eÞðλ1rþ λ2 þ 1þ wÞgΦ;

− 9H2ðC2
e − C2

aÞ
Ude

k
þ 3ðλ1rþ λ2ÞΦ0 − 3ΨHðλ1rþ λ2Þ þ 3Hλ1rðDde −DdmÞ

− 9H2ðC2
e − C2

aÞðλ1rþ λ2Þ
Ude

ð1þ wÞk − kUde;

U0
de ¼ −Hð1 − 3wÞUde − 3kC2

eðλ1rþ λ2 þ 1þ wÞΦþ 3HðC2
e − C2

aÞðλ1rþ λ2Þ
Ude

ð1þ wÞ
þ 3ðC2

e − C2
aÞHUde þ kC2

eDde þ ð1þ wÞkΨþ 3Hðλ1rþ λ2ÞUde; ð3Þ
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FIG. 2 (color online). The evolutions of DE fractional energy densities for different DE models when there is no interaction between
dark sectors.
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where Ψ, Φ are gauge invariant gravitational potentials,
Dα ¼ δα −

ρ0α
ρHΦ is the gauge-invariant density contrast,

Uα ¼ ð1þ wαÞVα, Vα is the gauge-invariant peculiar
velocity, and r≡ ρdm=ρde is the energy density ratio of
DM and DE. Ca is the adiabatic sound speed of DE, and Ce
is the effective sound speed of DE, which wewill set to be 1
in this work. Having these perturbation equations, we are in
a position to discuss the evolutions of DE and DM density
perturbations.
Assuming λ1 ¼ λ2 ¼ 0 in (3), we display the evolution

of the DE perturbation in the left panel of Fig. 5. In contrast
to the DE models with constant EoS, which always have
very small DE fluctuations, we see that, although the
fluctuation of EDE decays to zero as its EoS approaches
the cosmological constant, at early times, when EDE
started to play a significant role, its fluctuation was not
too small. It would be interesting to investigate how the
EDE perturbation influences the growth of DM perturba-
tions. We display the result in Fig. 6(a), where we show the
evolution of the DM density perturbation in different DE
models. It is clear that the earlier presence of non-negligible
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FIG. 4 (color online). The evolutions of DE fractional densities when there is an interaction between dark sectors.

EDE1

Const w 0.9

Const w 1.1

0.001 0.005 0.010 0.050 0.100 0.500 1.000
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a

D
de

w0 0.9, b 0.3, 1 0.01

w0 1.1, b 0.3, 1 0.01

0.5 0.6 0.7 0.8 0.9 1.0
0.00006

0.00004

0.00002

0

0.00002

a

FIG. 5 (color online). Left panel: The evolutions of DE perturbations. Right panel: The time derivative of the gravitational potential.
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FIG. 3 (color online). The ratio of DM densities to DE densities
for different DE models when there is no interaction between
dark sectors.
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DE fractional density in the background suppresses the
growth in the DM perturbation. To see more closely, we
have compared the evolution of the DM perturbation to the
standardΛCDMmodel in Fig. 6(b). DM perturbations were
suppressed compared with the ΛCDM model if DE is
described by EDE2, constant w ¼ −0.9, and EDE1. The
only exception is when DE has a constant EoS w ¼ −1.1.
The difference in the structure growth from that of the
ΛCDMmodel can be mainly attributed to the differences in
the background DE fractional energy density from the
standard ΛCDM model. The suppression of the growth of
perturbations was caused by the excessive amount of DE
compared to that in the ΛCDM model at the early epoch,
which hindered gravitational attraction and weakened the
growth of DM perturbations. For the EDE models, espe-
cially EDE1, the further excess of Ωde at early times
suppresses the structure growth even more. The solid
lines indicate the models having DE perturbation, while

the dashed lines are for the homogeneous DE models where
the DE perturbations are neglected. For the DE models with
a constant EoS, the difference of effects on the DM
perturbations caused by homogeneous and inhomogeneous
DE is negligible. This can be further seen in Fig. 6(c). But
for EDE models, we clearly see the differences between the
solid and dashed lines for the inhomogeneous and homo-
geneous DE. Figure 6(c) shows this property much more
clearly. This is understandable because for the DE with
constant EoS the DE perturbation itself is tiny. However,
for the EDE models, we clearly see that, different from the
homogeneous DE model, the DE perturbations do have an
impact on DM perturbations.
Considering the interaction between dark sectors, the

situation becomes more complicated. To clearly see the
influence of the interaction in dark sectors on the linear
perturbations, we concentrate on the DE model EDE1,
because in EDE1 the DE EoS is always greater than −1.
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FIG. 6 (color online). (a) The evolutions of DM perturbations. (b) The comparison of DM perturbation evolutions with those of the
ΛCDM model. (c) The comparison of DM perturbation evolutions with and without DE perturbations. The solid lines refer to models
taking into account DE perturbations. The dashed lines refer to the models assuming homogenous DE.
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1þ w has to be positive in order to avoid oscillation in the
time derivative of the gravitational potential on large scales
if the interaction between dark sectors is proportional to the
energy density of DM, which is inconsistent with obser-
vations, as shown in the right panel of Fig. 5. In Fig. 7(a),
we see that at the present moment for the model with
energy decay from EDE to DM the DM perturbation is
smaller, which is different from the case with energy decay
in the opposite direction. This is easy to understand,
because for the positive coupling the background, Ωde
was bigger in the past, which hindered the structure growth.
In Fig. 7(b), we present the comparison of the DM
perturbations between the interacting EDE model and
the ΛCDM model. It is clear that, comparing with the
ΛCDM model, EDE interacting with DM leads to smaller
DM perturbations. For the interaction between dark sectors
proportional to the energy density of DM, the effect of the
interaction showed up earlier. A positive λ1 implies more

DE in the past, bringing further suppression in the DM
perturbations at the early time. For the interaction between
dark sectors proportional to the density of DE, the effect
showed up later when DE started to dominate. A positive λ2
indicates the energy flow from EDE to DM, which implies
that there was more DE in the past, preventing the DM
perturbations further. This explains why the line in Fig. 7(b)
with positive λ2 is lower. For negative λ2, energy flows from
DM to DE. To have the observed amount of DM now, there
must have been more DM in the past, which implies faster
growth of DM perturbation. Since this effect of the
interaction started to appear when DE became important
and became more influential in the era of accelerated
expansion, lines corresponding to positive and negative
λ2 in Fig. 7(b) deviate from the noninteracting case late in
the history of the Universe. The solid and dashed lines in
Fig. 7(b) refer to inhomogeneous and homogeneous DE,
respectively. We see that DM perturbations differ by
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FIG. 7 (color online). (a) DM perturbations when EDE interacts with DM. (b) The comparison of DM perturbation evolutions with
that of the ΛCDM model. (c) The comparison of DM perturbation evolutions between models with and without DE perturbations. The
solid lines refer to models taking into account DE perturbations. The dashed lines refer to the models assuming homogenous DE.
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including the DE perturbations or not. This can be seen
much more clearly in Fig. 7(c). Comparing with Fig. 6(c),
we see that when energy flows from DE to DM, the
difference in the DM perturbations caused by the inhomo-
geneous DE and homogeneous DE is enlarged. Also from
Fig. 7(c), we see that the difference in the DM perturbations
between inhomogeneous and homogeneous DE is more
sensitive to the coupling if it is proportional to the energy
density of DM.

III. CMB POWER SPECTRUM

Once we have the understanding of the linear perturba-
tions for DM and DE, we can proceed to study the effects of
DE models on CMB. On large scales, the CMB power
spectrum is composed of the ordinary Sachs-Wolfe (SW)
effect and the Integrated SW (ISW) effect. The SW effect
indicates the photons’ initial condition when they left the
last scattering surface, while the ISW effect is the con-
tribution due to the change of the gravitational potential
when photons pass through the universe on their way to
Earth. The gauge-invariant gravitational potential in the
absence of anisotropic stress can be given by the Poisson
equation k2Φ ¼ −4πGa2δρ. Its derivative in the DM plus
DE universe, which is the source term for the ISW
contribution, is given by k2Φ0 ¼ −4πG ∂

∂η ½a2ðδρdmþ
δρdeÞ�. Thus, the large-scale CMB power spectrum depends
on the evolution of the density perturbations of DE and
DM. However, it should be noted that the ISW effect is
complicated. Besides density perturbations in DM and DE,
other cosmological parameters such as the EoS of DE,
background energy densities, H0, etc., also influence it.
Only for the same background evolution, the large-scale
CMB power spectrum can be interpreted in terms of the
evolution of the density perturbations for DE and DM.

Neglecting the interaction between dark sectors, for DE
with constant EoS w ¼ −0.9, we show the CMB power
spectrum in Fig. 8(a). Comparing with the ΛCDM model,
there is little difference in the CMB at the small l ISW
effect. The ISW effect relates to the time variation of the
gravitational potentials, which demonstrates little differ-
ence between DE with constant EoS and ΛCDM [16]. For
DE with constant EoS, the CMB power spectrum keeps the
same no matter whether we include the DE fluctuations in
the computation or not. The DE fluctuations do not show
up in the CMB power spectrum. This is because for DE
with a constant EoS, the DE perturbation is negligible. And
the result at the large-scale CMB power spectrum agrees
with that disclosed in the growth of the DM perturbation in
the previous section where the DE fluctuations do not show
up for the DE with a constant EoS. Thus, including the DE
fluctuations, the CMB power spectrum remains the same as
when the perturbations to DE are not taken into account.
For the EDE models, we observed some interesting

results in the CMB. We considered both cases where EDE
is homogeneous and inhomogeneous in Figs. 9. Besides a
slight shift of the position of the acoustic peaks with respect
to the ΛCDMmodel, we see that the CMB power spectrum
at small l is different between inhomogeneous and homo-
geneous EDE. In the homogeneous EDE model in which
DE fluctuations are neglected, the small l spectrum is
suppressed as compared with that of ΛCDM. In the
inhomogeneous EDE model in which DE fluctuations
are taken into account, we observe an enhanced power
spectrum at low l with respect to ΛCDM. For a given EDE
model, the evolutions of background cosmological param-
eters are the same; the differences in the large-scale CMB
power spectrum can be attributed to the evolutions of DE
and DM density perturbations. In the last section, we
learned that the inhomogeneity in EDE will have an impact
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FIG. 8 (color online). CMB power spectrum and the time derivative of the gravitational potential when the DE EoS is constant,
w ¼ −0.9.
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on the DM perturbations. For the inhomogeneous EDE, the
DM perturbation is stronger. The inhomogeneous EDE
perturbation also evolves with time. These effects result in a
change of the gravitational potential, and the variation of
the gravitational potential in time leads to the differences in
the ISW effect in the CMB.
Including the interaction between dark sectors, we have a

richer physics in the CMB. In the left panel of Fig. 10, we
present the CMB power spectrum for the interaction
proportional to the energy density of DM. With a positive
interaction, we see that the difference at the low l CMB
between homogeneous and inhomogeneous EDE is
enlarged compared with the zero coupling case. This can

be attributed to the enlarged differences in the EDE
perturbations together with the DM perturbations between
including the EDE fluctuations or not in the presence of the
interaction between dark sectors. Besides the difference we
observe at low l, at the first peak, the differences between
homogeneous and inhomogeneous EDE for the same
coupling are small. In the right panel, we show the
influence of the interaction proportional to the energy
density of DE. With inhomogeneous EDE, the interaction
makes the power spectrum higher (the blue solid line) at
low l. But with homogeneous EDE, the power spectrum at
small l is suppressed (the blue dashed line). The interaction
between dark sectors enlarges the differences in the small l
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FIG. 10 (color online). CMB power spectrum for EDE coupled to DM. For EDE models, the solid lines refer to inhomogeneous DE,
and the dashed lines refer to homogeneous DE.
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FIG. 9 (color online). CMB power spectrum for EDE models. We compare the CMB power spectrum for the universe with
inhomogeneous DE and homogeneous DE. For EDE models, the solid lines refer to inhomogeneous DE, and the dashed lines refer to
homogeneous DE.
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CMB power spectrum between homogeneous and inho-
mogeneous EDE. Making the strength of the interaction
stronger (λ2 ¼ 0.05), we see the clear enhancement of the
first peak.
To disclose the influence of different forms and strength

of the interaction, we show the CMB power spectrum for
EDE1 with various interactions as well as ΛCDM in
Fig. 11. We see that when the interaction is proportional
to the density of DM, its influence appears not only at small
l but also at the first acoustic peak of the CMB power
spectrum. A larger λ1 accommodates the suppression at the
low l spectrum but also the enhancement of the first peak. If
the interaction is proportional to the energy density of DE,
the CMB power spectrum exhibits consistent behaviors
both at low l and the first peak: a larger λ2 leads to the
enhancement of the power spectrum. For the EDE models,

the influences of the interaction between dark sectors
present the same qualitative influence on the CMB as
compared with the DE with a constant EoS [23,33].

IV. FITTING RESULTS

In this section, we fit the EDE models to observations by
the Markov chain Monte Carlo (MCMC) method. We
modify the public code CosmoMC [34–36] to perform the
MCMC analysis. For the EDE models without interaction
with DM, we carry out the fittings using two data sets: the
CMB observations from PlanckðTTþ TEþ BBþ EEÞ
[37–39] and a combined data set of PlanckðTTþ TEþ
BBþ EEÞ þ BAO [40–42] þSN [43] þH0 [44]. We try to
use these observational data to distinguish between homo-
geneous and inhomogeneous EDE models. When there is
interaction between EDE and DM, we fit the EDE models
to the combined data set only, since the CMB data alone
cannot constrain the cosmological parameters tightly due to
the degeneracy between the coupling strength and DE EoS.
In our numerical fittings, the priors of the cosmological
parameters are listed in Table I. For the interaction propor-
tional to the energy density of DM, we have to put strict
limits on the priors of the parameters. To avoid the negative
DE energy density in the early background dynamics and
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FIG. 11 (color online). CMB power spectrum for EDE1 coupled to DM. For EDE models, the solid lines refer to inhomogeneous DE,
and the dashed lines refer to homogeneous DE.

TABLE I. The priors for cosmological parameters. bðIÞ refers
to the prior of the parameter b of the EDE model for no
interaction between DM and DE and the interaction proportional
to the energy density of DE. bðIIÞ refers to the prior for the
interaction proportional to the energy density of DM.

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.5]
100θ [0.5, 10]
τ [0.01, 0.8]
ns [0.9, 1.1]
logð1010AsÞ [2.7, 4]
w0 [−0.99, −0.3]
bðIÞ [0.0, 1]
bðIIÞ [0.1, 1]
λ1 [0.0, 0.01]
λ2 [−0.5, 0.5]

TABLE II. Best-fit values and 68% C.L. constraints on the
inhomogeneous EDE.

Planck Planckþ BAO þ SNþ H0

Parameter Best fit 68% limits Best fit 68% limits

w0 −0.944 −0.877þ0.024
−0.113 −0.989 −0.975þ0.002

−0.015

b 0.111 0.171þ0.033
−0.171 0.012 0.057þ0.012

−0.057

χ2 9807 10243
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the oscillatory behavior in the time derivative of the
gravitational potential, it is necessary that λ1 > 0 and
w0 > −1, as we discussed above. For the sake of consis-
tency, we set the prior of w0 bigger than −1 in all models.

Besides, b cannot be close to zero if λ1 > 0. Otherwise, the
DE EoS would be approximately a constant above and
close to −1 in the early time of the Universe, as shown in
Fig. 1, which is known to cause unstable growth of the
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FIG. 12 (color online). Fitting results of the inhomogeneous EDE model. The upper panel is from the Planck data alone, while the
lower panel is from the combined data set.

FIG. 13 (color online). Fitting results of the inhomogeneous EDE model in the 2D contour w0 − b. The left panel is from the Planck
data alone, while the right panel is from the combined data set.
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curvature perturbation [31,45]. Furthermore, considering
that the CMB power spectrum is more sensitive to λ1 than
λ2, following Ref. [21], the prior of λ1 is tighter than λ2.
We first assume that DE and DM evolve independently

in the MCMC analysis. For the inhomogeneous EDE, with
Planck data alone, we show the results in Table II. The
likelihood distribution for parameters w0 and b in the EDE
model are shown in the upper panel of Fig. 12. Using the
combined data set, we can see how the constraints improve.
We list the results in Table II and exhibit the likelihood
distributions of w0 and b in the lower panel of Fig. 12. It is
easy to see that the addition of the complementary data

clearly improves the constraints on the EDE parameters.
This is because the parameters which could be degenerate
with the EDE parameters, such as the Hubble parameter,
are well constrained by other observations. The 2D contour
for w0 − b is shown in Fig. 13.
We then turn to the case where DE perturbations are

neglected. Performing an analysis with Planck data alone,
we show the fitting results in Table III and likelihoods for
the EDE model parameters in the upper panel of Fig. 14.
We find that with Planck data alone, the best fit of w0 is
farther away from −1, and the best fit of b gets smaller than
the results of the inhomogeneous case. But the mean values
and 68% limits are nearly the same. With combined data
sets, the best fit and 68% limit of the inhomogeneous and
homogeneous cases show basically no difference. The 2D
contour of w0-b is shown in Fig. 15. Both of them suggest
that w0 is very close to −1 and b is small, which implies a
tiny EDE effect.
Considering the interaction between DE and DM, we

carry out the MCMC analysis again. We display the
likelihood distributions of the EDE parameters and the
coupling strength from the combined data sets for inho-
mogeneous and homogeneous EDE in Figs. 16 and 17,
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FIG. 14 (color online). Fitting results of the homogeneous EDE model. The upper panel is from the Planck data alone, while the lower
panel is from the combined data set.

TABLE III. Best-fit values and 68% C.L. constraints on the
homogeneous EDE.

Planck Planckþ BAO þ SNþ H0

Parameter Best fit 68% limits Best fit 68% limits

w0 −0.886 −0.879þ0.024
−0.111 −0.988 −0.974þ0.002

−0.016

b 0.010 0.173þ0.034
−0.173 0.011 0.061þ0.013

−0.061

χ2 9806 10243
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respectively. The best-fitting values and 68% limits are
listed in Tables IV and V. For inhomogeneous EDE with
different forms of interaction, the fitting results of w0 are
similar to that of the noninteracting EDE model. On the
other hand, we see that in the presence of interaction, the
limit of b is larger, which implies that the EDE effect is
stronger. This may be attributed to the choice of prior bðIIÞ.
But this tendency is also clear when the interaction is

proportional to DE density, which shares the same prior of
b as noninteracting EDE models.
In the theoretical discussion of the CMB spectrum, we

see that the interaction proportional to DM energy density
has a stronger impact on the CMB power spectrum than the
interaction proportional to the DE energy density. This can
be seen also in the fitting results as we find that the limit of
λ1 is much smaller than that of λ2. The negative best-fit
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FIG. 16 (color online). Global fitting results of the inhomogeneous EDE model with interaction. The upper panel is for the interaction
proportional to the energy density of DM, while the lower panel is for the interaction proportional to the energy density of DE.

FIG. 15 (color online). Fitting results of the homogeneous EDE model in the 2D contour w0 − b. The left panel is from the Planck data
alone, while the right panel is from the combined data set.
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value of λ2 agrees with the result when the DE EoS is
constant [21]. The fitting results for the homogeneous case
are similar to the inhomogeneous case.
In the tables of the fitting results, we presented the χ2 for

the best-fit models. When the interaction is proportional to
the energy density of DM, the priors of b and λ1 are highly
limited as mentioned above. As a result, the χ2 is a bit larger
than the noninteracting EDE model. On the contrary, the
presence of the interaction proportional to DE density
decreases the χ2. Comparing with the ΛCDM model, in
which χ2 ¼ 9806, 10242 for Planck and the combined data
set of Planckþ BAOþ SNþH0, respectively, we find

that the EDE models and their interactions with DM are
compatible with current observations.
To examine whether the EDE models allowed by the

observations are effective to alleviate the coincidence
problem, we plot in Fig. 18 the ratio of the DM energy
density to the DE energy density in the best-fit EDE models
of the joint analysis and compare them with the ΛCDM
prediction. Comparing the EDE models with the ΛCDM
model, we find that if the interaction is proportional to the
energy density of DM, the ratio evolves more slowly than
those in other models. By introducing the interaction
between dark sectors, the coincidence problem becomes

TABLE IV. Best-fit values and 68% C.L. constraints on
inhomogeneous EDE models with interaction using the com-
bined data set of Planckþ BAOþ SNþH0.

Interaction ∝ ρDM Interaction ∝ ρDE

Parameter Best fit 68% limits Best fit 68% limits

w0 −0.985 −0.978þ0.002
−0.012 −0.989 −0.941þ0.012

−0.049

b 0.113 0.147þ0.007
−0.047 0.200 0.274þ0.034

−0.174

λ1 0.000274 0.000309þ0.000054
−0.000309 � � � � � �

λ2 � � � � � � −0.137 −0.209þ0.035
−0.050

χ2 10247 10238
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FIG. 17 (color online). Global fitting results of the homogeneous EDE model with interaction. The upper panel is for the interaction
proportional to the energy density of DM, while the lower panel is for the interaction proportional to the energy density of DE.

TABLE V. Best-fit values and 68% C.L. constraints on homo-
geneous models with interaction using the combined data set of
Planckþ BAO þ SNþH0.

Interaction ∼ρDM Interaction ∼ρDE
Parameter Best fit 68% limits Best fit 68% limits

w0 −0.974 −0.977þ0.002
−0.013 −0.966 −0.943þ0.011

−0.047

b 0.115 0.144þ0.008
−0.044 0.123 0.282þ0.038

−0.182

λ1 0.000109 0.000311þ0.000057
−0.000311 � � � � � �

λ2 � � � � � � −0.189 −0.209þ0.036
−0.058

χ2 10248 10237
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less acute. We conclude that the EDE model is compatible
with observations and it is effective to alleviate the
coincidence problem.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the influence of EDE on
DM perturbations. We have observed that, different from
DE models with a constant EoS, DM perturbation is larger
in inhomogeneous EDE models than in the homogeneous
EDE model in which DE fluctuation is neglected. We have
also disclosed the difference between inhomogeneous
and homogeneous EDE in the large-scale CMB power
spectrum. It is expected that the probe of the growth of the
large-scale structure and small l CMB power spectrum can

help to distinguish homogeneous and inhomogeneous EDE
models.
Furthermore, we have extended our discussion to the

interaction between EDE and DM. We have observed that
an interaction between EDE and DM also affects DM
perturbations and the small l CMB power spectrum, which
may be degenerate with the effect of DE fluctuations.
Comparing these effects, we found that the interaction
between EDE and DM has a stronger influence on DM
perturbations and on the ISW effect.
We have constrained the EDE models using Planck data

and a combined data set of Planckþ BAOþ SNþH0.
The analysis showed that the coincidence problem in all
best-fit EDE models is less severe than in the ΛCDM
model. The positive coupling between EDE and DM
proportional to the energy density of DM is particularly
effective to alleviate the coincidence problem. It can be
clearly seen in Fig. 18 that with the positive coupling
between EDE and DM proportional to the energy density of
DM, it has a longer period for the DE and DM to be
comparable.
It is interesting to further examine whether the disclosed

impacts of the DE fluctuations and the interaction between
DE and DM on observables are specific to EDE models. A
lot of efforts on this problem are called for.
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