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Future cosmological measurements should enable the sum of neutrino masses to be determined
indirectly through their effects on the expansion rate of the Universe and the clustering of matter. We
consider prospects for the gravitationally lensed cosmic microwave background (CMB) anisotropies and
baryon acoustic oscillations (BAOs) in the galaxy distribution, examining how the projected uncertainty of
≈15 meV on the neutrino mass sum (a 4σ detection of the minimal mass) might be reached over the next
decade. The current 1σ uncertainty of ≈103 meV (Planck-2015þ BAO-15) will be improved by upcoming
“Stage-3” (S3) CMB experiments (S3þ BAO-15∶ 44 meV), then upcoming BAO measurements
(S3þ DESI∶ 22 meV), and planned next-generation “Stage 4” (S4) CMB experiments
(S4þ DESI∶ 15–19 meV, depending on angular range). An improved optical depth measurement is
important: the projected neutrino mass uncertainty increases to 26 meV if S4 is limited to l > 20 and
combined with current large-scale polarization data. Looking beyond ΛCDM, including curvature
uncertainty increases the forecast mass error by ≈50% for S4þ DESI, and more than doubles the error
with a two-parameter dark-energy equation of state. Complementary low-redshift probes including galaxy
lensing will play a role in distinguishing between massive neutrinos and a departure from a w ¼ −1, flat
geometry.
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I. INTRODUCTION

A central goal in both cosmology and particle physics is
to measure the mass of the neutrino particles. The neutrino
sector is still poorly understood and the mechanism that
gives rise to their mass is unknown. There are thought to be
three active neutrino species, with mass differences mea-
sured through solar, atmospheric, reactor, and accelerator
neutrino oscillation experiments (for reviews see, e.g.,
Gonzalez-Garcia and Nir [1], Maltoni et al. [2], Smirnov
[3], and Feldman et al. [4]). The results imply a minimum
total mass of 60 meV in a normal hierarchy with two lighter
neutrinos and one heavier neutrino, or 100 meV in an
inverted hierarchy with two massive neutrinos.
Cosmology provides an indirect probe of massive

neutrinos (e.g., [5–19]). Massive neutrinos behave initially
like noninteracting relativistic particles, and then later like
cold dark matter. As such, they affect the expansion rate of
the Universe, compared to a pure radiation or pure matter
component, and they modify the evolution of perturbations
at early times. They also modify the growth of structure
through a suppression of the clustering of matter on scales
that entered the cosmic horizon while the neutrinos were
relativistic.
The current indirect 95% upper limit from cosmological

data on the sum of the neutrino masses is Σmν < 230 meV
from the Planck measurements of the cosmic microwave

background (CMB), combined with baryon acoustic oscil-
lation (BAO) measurements from the Baryon Oscillation
Spectroscopic Survey (BOSS) [20,21]. The limit is Σmν <
680 meV from the CMB alone [21]. Tighter limits have been
found including Lyman-α forest measurements from quasars
in the BOSS survey (Σmν < 120 meV) [22,23], but the
result depends on numerical hydrodynamical simulations
which may contribute additional systematic uncertainty.
Recent forecasts of mass limits for upcoming cosmo-

logical data sets, including galaxy lensing and clustering,
redshift-space distortions, the kinematic Sunyaev-
Zel’dovich effect, and counts of galaxy clusters, have been
studied extensively (e.g., Kitching et al. [24], Font-Ribera
et al. [25], Villaescusa-Navarro et al. [26], Mueller et al.
[27], and Errard et al. [28]), showing the promise of a wide
range of future cosmological data to target a neutrino mass
measurement. In this paper we focus on the combination of
lensed CMB and BAO measurements, data sets which do
not require detailed modeling of nonlinear structure for-
mation or an understanding of galaxy bias. The gravita-
tionally lensed CMB measures the growth of structure at
times typically before the Universe was half its current age,
and on angular scales larger than ≈100 Mpc, and so it is
dominated by linear physics. Studies of this combination
have been reported in Hall and Challinor [29], Abazajian
et al. [30], Wu et al. [31], and Pan and Knox [32], with a 4σ
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detection of neutrino mass forecast for the next generation
of experiments. In this paper we investigate this further,
exploring the dependence on experimental details and on
parameter degeneracies.
In Sec. II we give a brief review of the cosmological

effects of neutrinos, and in Sec. III we study how the mass
measurement may be reached stepwise using data collected
during the coming decade. In Sec. IV we investigate the
dependence on experimental details, and in Sec. V we
explore degeneracies with other cosmological parameters.
We conclude in Sec. VI.

II. COSMOLOGICAL EFFECTS OF NEUTRINOS

Standard Model neutrinos are initially relativistic, fol-
lowing a thermal distribution after decoupling from the
primordial plasma when the Universe had a temperature of
around kBT ≈ 1 MeV. The neutrino temperature decreases
as the scale factor grows, until their rest-mass energy
dominates and they become indistinguishable from cold
dark matter. For a neutrino of massmν the transition occurs
at z ≈ 120ð mν

60 meVÞ [12], so current limits indicate a tran-
sition epoch of 120≲ z≲ 460 for a normal mass hierarchy.
This limit implies that the neutrinos were still relativistic

when the CMB decoupled, so they would be indistinguish-
able from massless neutrinos in the primary anisotropies.
However, higher mass neutrinos become nonrelativistic
sooner, which reduces the early-time integrated Sachs-
Wolfe (ISW) effect. This gravitational redshift of the CMB
photons arises while the non-negligible radiation compo-
nent causes the potentials of the density fluctuations to
evolve [7,12] and affects the anisotropies on scales around
the first acoustic peak [33].
This effect is not sensitive to masses that remain

relativistic until well after decoupling [12,34], but further
information comes from probes of later-time large-scale
structure measurements. Massive neutrinos interact weakly,
allowing them to free stream out of overdensities while
relativistic, so the growth rate of matter perturbations inside
the horizon is suppressed compared to a universe with only
cold dark matter. For comoving wave numbers k ≫ kFS, Hu
et al. [35] show that the suppression of the matter power
spectrum today, PðkÞ, is proportional to the sum of the
neutrino masses,

PΣmν
ðkÞ−PΣmν¼0ðkÞ
PΣmν¼0ðkÞ

≈−0.07
�

Σmν

0.1 eV

��
Ωmh2

0.136

�−1
; ð1Þ

where the comoving free-streaming scale is given by

kFS ¼ 0.0072

�
Σmν

0.1 eV

�
1=2

�
Ωm

0.315

�
1=2

hMpc−1; ð2Þ

as illustrated in Fig. 1 and, e.g., [30], for models with fixed
total matter density. For current limits this scale is estimated
to lie in the range 0.005≲ kFS ≲ 0.011 [h Mpc−1].

The suppression of small-scale power can be probed
using galaxy clustering and the gravitational lensing of
galaxies. These are promising avenues for neutrino mass
measurements (e.g., [25]), although these observables are
sensitive to nonlinearities in the matter power spectrum
and scale-dependent galaxy and shape biases [36,37]. An
alternative route is through the gravitational lensing of the
CMB (see, e.g., [38] for a review). Here the CMB photons
are deflected by the large-scale structure, integrated over
the photon path after decoupling.
Following [38], the CMB convergence angular power

spectrum, Cκκ
l , is a weighted projection of the matter power

spectrum Pðk; χÞ; under the Limber approximation,

Cκκ
l ¼

Z
χH

0

dχ
W2ðχÞ
f2kðχÞ

P

�
l

fkðχÞ
; χ

�
; ð3Þ

where χH is the comoving horizon size, fkðχÞ relates line-
of-sight comoving distances and transverse comoving
distances in a curved universe, and the window function
WðχÞ is

WðχÞ ¼ 3ΩmH2
0

2c2
fkðχÞfkðχ� − χÞ

aðχÞfkðχ�Þ
ð4Þ

for χ < χ� and zero otherwise. Here aðχÞ is the scale factor
and χ� is the radial comoving distance to the last-scattering
surface. This angular power spectrum is sensitive to Σmν,
as shown in Fig. 1, and does not depend on galaxy bias.
CMB lensing probes structures at higher redshift than
galaxy clustering or weak lensing, and is correspondingly
less sensitive to detailed nonlinear modeling of the matter
power spectrum. In practice it is reconstructed from CMB
temperature and polarization maps using a four-point
function (e.g., [39]).
The CMB temperature and polarization angular power

spectra, fCTT
l ; CTE

l ; CEE
l ; CBB

l g, are also modified by lens-
ing, which smears the acoustic peaks by adding variance to
the apparent scale of a mode, converts E-mode polarization
into B-mode polarization, and adds small-scale power in T,
E, and B (e.g., [38]). The approximate effect of massive
neutrinos is shown in Fig. 1 for the E-mode polarization,
where we artificially amplify the effects of neutrinos on the
CMB lensing, rather than the primary CMB, by varying the
amplitude of the lensing potential. Increasing the neutrino
mass has a similar effect to decreasing the lensing ampli-
tude. Compared to the power spectra, the reconstructed
convergence field contains more information on the neu-
trino mass [40].
Massive neutrinos also affect angular diameter distances

dAðzÞ and the expansion rate HðzÞ, as their evolution differs
from a pure radiation or pure matter component (e.g., [32]).
These can be measured using a “standard ruler” method that
is relatively free of systematic uncertainties: The primordial
oscillations in the photon-baryon fluid are imprinted in the
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galaxy distribution as BAOs. The comoving scale of the
oscillations is fixed by the sound horizon at decoupling, rs,
which is not significantly affected by neutrino masses given
current limits and is in the linear regime of density
perturbations (≈150 Mpc). The observed spherically aver-
aged BAO angular scale for galaxies at redshift z is sensitive
to the parameter combination rs=dVðzÞ; dV is the volume
distance [41],

dVðzÞ≡ ½czð1þ zÞ2d2AðzÞH−1ðzÞ�1=3: ð5Þ

For fixed cold-dark-matter density, more massive neutrinos
increase the total late-time nonrelativistic matter content,
which increases the volume distance, as shown in Fig 1.

III. IMPROVEMENTS IN THE NEXT DECADE

We consider how upcoming and planned CMB and BAO
experiments will improve the current limits on the sum of the
neutrino masses, building on previous analyses [25,29–32].

A. New data

The current state of the art for the CMB is the Planck
and WMAP satellite data, including the first analysis of
the full-mission Planck data [21,42]. Improved small-scale
CMB measurements are currently being made by the
“Stage 2” ground-based experiments: ACTPol, SPTPol,
and POLARBEAR [43–45]. These will soon be upgraded
to “Stage 3” (hereafter, S3) with new detectors and sensi-
tivity to multiple frequencies. Here we consider a S3 “wide”
experiment that maps 40% of the sky, and a “deep”
experiment that maps 6% of the sky. The wide experiment
is similar to AdvACT specifications [46] and the deep to
SPT-3G [47]. These experiments are expected to take data
from 2016 to 2019, and the specifications we adopt are given
in Table I. We also anticipate data from S3 experiments
targeting larger angular scales (e.g., CLASS), but do not
consider these specifically. In addition, we can expect a
complete analysis of the Planck polarization data, optimis-
tically including reliable large-scale polarization data.

FIG. 1 (color online). Effect of neutrino mass on CMB power spectra and BAO distance scales. Top: Fractional change of the linear
matter power spectrum today PðkÞ (left) and CMB convergence power spectrum Cκκ

l (right) with neutrino mass Σmν, for fixed physical
dark-matter density today, Ωch2 þ Ωνh2. Suppression of power is due to neutrino free-streaming, and the oscillatory structure comes
from a slight shift in the acoustic scale between models. Bottom left: Lensed CMB E-mode power spectrum with varying amplitudes of
the lensing potential Alens, approximating and exaggerating the effect that massive neutrinos have on the CMB polarization spectrum.
Bottom right: BAO distance ratio rs=dV for fixed θA and Ωch2. Massive neutrinos behave like additional matter in the BAO redshift
range, decreasing H0 and increasing the volume distance dV .

TOWARDS A COSMOLOGICAL NEUTRINO MASS DETECTION PHYSICAL REVIEW D 92, 123535 (2015)

123535-3



Beyond S3, a “Stage-4” (S4) experiment—or set of
experiments—is being developed by the CMB community
that may cover at least half the sky to typical noise levels of
1 μK-arcmin [30]. There are also proposed space-based
experiments including LiteBIRD and PIXIE [48,49], and
we approximate their role with a cosmic variance-limited
large-scale polarization measurement (“CV-low”) that
could supplement S3 ground-based data.
On the BAO front, current state-of-the-art measurements

come from the BOSS “LowZ” and “C-MASS” galaxy
samples at z ¼ 0.32 and z ¼ 0.57 [20]. These are supple-
mented by data from the Six-Degree Field Galaxy Redshift
Survey (6dFGRS) at z ¼ 0.11 [50] and the Sloan Digital
Sky Survey (SDSS) Main Galaxy Sample (MGS) sample at
z ¼ 0.15 [51]. Improved measurements are being made by
the eBOSS survey which will survey a deeper sample [52].
A significant advance should be made with the Dark
Energy Spectroscopic Instrument (DESI), due to begin
surveying in 2018, which is expected to measure the BAO
distance ratio from redshifts 0.15 < z < 1.85 in bins of
width Δz ¼ 0.1 to percent-level precision [25,53].

B. Forecasting methods

We use a Fisher-matrix forecasting method to predict the
neutrino mass uncertainties. For a model defined by
parameters θ the expected Fisher matrix is

FijðθÞ ¼
�
−
∂2 lnpðθjdÞ

∂θi∂θj
�
; ð6Þ

where pðθjdÞ is the posterior distribution for θ given data d.
The forecast parameter covariance is then given by the
inverse of the Fisher matrix, Cij ¼ ðF−1Þij. Here our data
are the lensed TT, TE, and EE CMB power spectra,
reconstructed CMB convergence power spectrum κκ, and
BAO distance ratio measurements rs=dVðzÞ. Our parame-
ters are the standard six ΛCDM parameters (the physical
baryon and cold-dark-matter densities Ωbh2 and Ωch2, the
angular size of the sound horizon at recombination θA, the
optical depth to reionization τ, the amplitude of primordial
scalar perturbations As, the tilt of the primordial scalar
power ns) plus the neutrino mass sum Σmν, as well as
possible extension parameters including curvature and dark
energy. Our methods are summarized in the Appendix,

including choices made about the fiducial model, choice of
parameter basis, and step size for calculating derivatives.
We also describe validation of our numerical code.
We use the lensed CMB power spectra and the con-

vergence power spectrum as our CMB observables, which
differs from the approach in [25,29–31], but more closely
follows the “real” data analysis: the CMB sky we see is
lensed, and it is a difficult inverse problem to infer the
unlensed sky (e.g., [54]). Using unlensed spectra in fore-
casts removes information contained in the lensed temper-
ature and polarization fields. However, it is challenging to
construct the full covariance matrix for the lensed power
spectra and convergence power spectrum: the T, Q, and U
fields are all lensed by the same lensing potential, which
correlates the power spectra and adds additional non-
Gaussian covariance. This is explored in detail in
[40,55]. In this analysis we make the approximation of
discarding BB information and assuming Gaussian uncer-
tainties in TT, TE, EE, and κκ. We account for the
correlation between the temperature and polarization sig-
nals and the unlensed T − κ correlation (from the ISW
effect), but neglect other correlations with κ. This is likely a
good approximation for S3 data, but could underestimate
certain parameter errors for S4-type data by up to ≈20%
[40]. We use CAMB for evaluation of all relevant CMB and
lensing power spectra [56].
For the noise levels of Planck, we consider two cases:

“Planck-2015” (P15), which produces cosmological con-
straints which closely match the published results [21], and
“Planck-pol,” which includes TE and EE data coming from
the polarization measurements of the High Frequency
Instrument (HFI), including large scales. The specifications
are given in the Appendix. For Planck-pol, noise levels are
approximated by taking temperature sensitivities from P15
and assuming the per-channel noise scalings from temper-
ature to polarization in the Planck Blue Book [57]. This is
likely to be overoptimistic at the largest scales.
For the CMB power spectra, we set a maximum multi-

pole for the recoverable information: lT
max ¼ 3000,

lP
max ¼ 4000, and lκ

max ¼ 3000 for the future S3 and S4
experiments. Smaller scales are likely hard to extract due to
extragalactic foreground contamination. We assume white
noise, and do not include additional foreground uncertainty
beyond the multipole cuts outlined above, although the
expected S3 white-noise level includes some foreground
inflation [46]. We also set a minimum multipole of lmin ¼
50 for S3 due to the challenge of recovering large scales
from the ground, and consider two options for S4: lmin ¼
50 and lmin ¼ 5. For S3 and S4 we include Planck data for
2 < l < lmin, and our nominal analysis uses Planck-pol
unless stated otherwise. We consider the importance of the
large-scale polarization measurements in Sec. IVA.
We use the quadratic-estimator formalism of Hu and

Okamoto [58] to calculate the CMB convergence noise
spectrum Nκκ

l . This uses the coupling of otherwise

TABLE I. Upcoming (S3) and proposed (S4, CV-low) CMB
experiments that will add to Planck. The Planck specifications we
use are in the Appendix.

Experiment fsky
Beam

(arcmin)
ΔT

(μK-arcmin)
ΔP

(μK-arcmin)

S3-wide 0.4 1.4 8.0 11.3
S3-deep 0.06 1 4.0 5.7
S4 0.4 3 1 1.4
CV-low 0.4 60 1 1.4
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uncorrelated modes in temperature and polarization to
reconstruct the lensing potential. Iterative delensing proce-
dures are able to reduce the effective noise level of the
estimated lensing field, particularly for the low-noise
(ΔP≲ 4 μK-arcmin) future experiments considered here
[59]. We consider the impact of this process in Sec. III C.
For the BAO measurements we use the published

uncertainties on the distance ratio rs=dV for the current
BAO data described in Sec. III [20,50,51], labeled as BAO-
15. For DESI we use the forecast uncertainties on dAðzÞ and
HðzÞ given in Font-Ribera et al. [25] to estimate the
expected rs=dV uncertainties, summarized in the
Appendix. We do not use broadband shape information
in the galaxy power spectra.
In Fig. 2 we show the fractional changes in lensing and

E-mode power spectrum and the BAO distance ratio for
physically relevant variations in the neutrino mass. We
overplot projected uncertainties for S3, S4, BAO-15,
and DESI to illustrate the constraining power of these
experiments.

C. Expected constraints

We find forecast marginal 1σ uncertainties on the sum of
the neutrino masses Σmν of

σðΣmνÞ
meV

¼

8>>>>>><
>>>>>>:

103 ðP15þ BAO-15Þ
44 ðS3-wideþ BAO-15Þ
22 ðS3-wideþ DESIÞ
19 ½S4ðl > 50Þ þ DESI�
15 ½S4ðl > 5Þ þ DESI�

ð7Þ

where S3 and S4 include Planck-pol at large scales. If we
replace S3-wide with the S3-deep survey we find σðΣmνÞ¼
53meV combined with BAO-15, and 25 meV with DESI.
The expected constraints are summarized in Fig. 3, and are
consistent with findings in Wu et al. [31]. These forecasts
imply that if the neutrino hierarchy is inverted, with mass
sum > 100 meV, we may have > 2σ evidence for nonzero
mass in the next few years from S3 data, and an almost 5σ
detection in≈5 years with DESI. If instead it is the minimal
mass of 60 meV, a 2σ–3σ indirect measurement should be
reachable in five years, with stronger evidence from the
subsequent experiments.
As illustrated in Fig. 4, there is a strong positive

correlation between the neutrino mass and cold-dark-matter
density in the CMB observables. This arises predominantly
from the competing influence of these parameters on the
lensing signal. Increased neutrino mass suppresses small-
scale power, while increasing cold-dark-matter density
boosts small-scale power by shifting matter-radiation
equality to earlier times; this shortens the radiation-
domination epoch in which subhorizon modes of the
gravitational potential decay, enhancing the small-scale
amplitude of structure [29,60,61]. Conversely, BAO data

constrain the sum of the CDM and massive neutrino
density, since it is this combination that affects the angular
diameter distance and expansion rate.
The power of the BAO and CMB data lie in their

combination. BAO measurements alone cannot constrain

FIG. 2 (color online). Top and middle: Fractional change in the
convergence κ (top) and E-mode (middle) power spectrum with
neutrino mass, for fixed Ωch2 þΩνh2, with expected uncertain-
ties for S3-wide and S4 CMB data. A higher neutrino mass has
less lensing, decreasing the E-mode peak smoothing. Bottom:
Fractional change in distance ratio rs=dV , with uncertainties from
current (BAO-15 [20]) and forecast (DESI [25]) BAO data. Here
Ωch2 is fixed.
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the primordial parameters As and ns, nor the optical depth
to reionization τ; the constraints lie in the four-dimensional
subspace spanned byΩch2, Ωbh2, Σmν, and θA (being most
constraining in the directions corresponding approximately
to Ωmh2 and θA). S4 alone could achieve a neutrino mass
error of σðΣmνÞ ¼ 53 meV; with DESI BAO this is
expected to tighten to σðΣmνÞ ¼ 19 meV, enough for a
3σ detection of the minimal mass.
For comparison, we note that the forecast conditional

neutrino mass uncertainty (the uncertainty when
fixing the ΛCDM parameters) is σðΣmνÞ ¼ 3 meV for
S4ðl > 5Þ þ DESI, compared to σðΣmνÞ ¼ 15 meV in

the marginalized case. This highlights the effect of
degeneracies even in the base model.
Comparing to previous results, the S4ðl > 5Þ þ DESI

forecast matches previous results [30–32], and the “current
data” P15þ BAO-15 forecast is compatible with the
published result: σðΣmνÞ < 0.23 eV at 95% confidence
[21], with the forecast errors on other ΛCDM parameters
also matching closely.
Herewe choose by default a fiducial mass sum of 60 meV,

approximating the normal hierarchy as one massive neutrino
and two massless neutrinos, with a modified temperature to
account for QED and noninstantaneous decoupling effects
(giving Neff ¼ 3.046). Given the known mass splittings
from oscillation experiments, this is an excellent approxi-
mation to the normal hierarchy in the minimal-mass scenario
[4]. For comparison, we compute the constraint on the
neutrino mass sum in the inverted hierarchy, with two
degenerate massive neutrinos and one massless neutrino,
with a neutrinomass sum ofΣmν ¼ 120 meV. For these two
cases we find σðΣmνÞ ¼ 53ð54Þ meV for S4 alone for a
fiducial mass of 60 (120) meV; with DESI included this
reduces to σðΣmνÞ ¼ 19ð20Þ meV. We therefore do not
expect our results are sensitive to the adopted fiducial model.
We describe further tests of the code in the Appendix.
We consider the impact of using an improved, like-

lihood-based lensing estimator (going beyond the first-
order quadratic estimator of Hu and Okamoto [58]) to
reduce the effective noise power Nκκ

l of the lensing
reconstruction. Hirata and Seljak [62] show that Nκκ

l can
be reduced by a factor of 2 for a S4-like experiment; under
this modification, we find only a 3% tightening of the
neutrino mass constraint for S4þ DESI. The improvement
is small due to the contribution of cosmic variance (CV) to
the lensing power spectrum uncertainties, and the degen-
eracy of neutrino mass with other ΛCDM parameters; the
S4 lensing power spectrum derived from the quadratic
estimator is already CV-limited out to l ≈ 800.
As in Benoit-Lévy et al. [40], we find that there is

useful information in the lensed power spectra. We show
the relative impact on forecasted constraints for S3-wide
and S4 in Table II (including Planck-pol at large scales but
no BAO). Lensing reduces the neutrino mass uncertainty
by a factor of ≈6 compared to the unlensed CMB. As
such, the two-point functions will provide increasingly
more information as E-mode polarization measurements

FIG. 3 (color online). Forecast marginal posterior constraints
on the sum of the neutrino masses Σmν within a ΛCDMþ Σmν

model, assuming Gaussian error distributions. The current un-
certainties (P15þ BAO-15) are expected to improve rapidly,
with S3 CMB data and DESI BAO data expected by ∼2020.

TABLE II. Impact of lensing on the neutrino mass constraint (in
units of meV). Constraining power comes from both the lensed
spectra (two-point) and the reconstructed lensing potential (four-
point). Gaussian uncorrelated errors are assumed.

Unlensed
Lensed TT, TE, EE
(two-point only)

Unlensedþ κκ
(four-point only)

S3, σðΣmνÞ 435 75 61
S4, σðΣmνÞ 363 64 53

FIG. 4 (color online). Expected joint constraint (68% C.L.) on
the neutrino mass sum Σmν and physical cold-dark-matter density
Ωch2 within a ΛCDMþ Σmν model. The BAO constraint,
sensitive to the total late-time cold-dark-matter density, is almost
orthogonal to the CMB lensing constraint, breaking the degeneracy.
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improve. Checking for consistency between the lensed
observables will be an important systematic test for new
CMB data. For example, marginalizing over the lensing
effect in the two-point functions, by introducing a variable
lensing amplitude parameter Alens [63], would isolate the
impact of neutrinos on the four-point function.

IV. DEPENDENCE ON EXPERIMENTAL DETAILS

Since future CMB experiments are currently under
development, we investigate the importance of certain
experimental details on the mass constraint.

A. Importance of the reionization bump

The amplitude of primordial power, As, is partially
degenerate with Σmν, since As increases the amplitude
of clustering at small scales, and Σmν decreases it in an
approximately scale-independent fashion (e.g., Fig. 2). The
amplitude As is not well determined by the primordial
CMB temperature anisotropy; an increased optical depth to
reionization lowers the signal such that the normalization of
the anisotropy measures the combination Ase−2τ [64]. This
leads to a degeneracy between τ and Σmν that can be
broken with precision measurements of the reionization
bump at multipoles l < 20 in polarization [25,65].
Here we explore the importance of making a robust

optical depth measurement, considering three cases for S4:
current WMAP measurements [42,66], optimistic future
Planck-pol measurements (see Appendix), and a future S4
measurement that reaches the largest scales (lmin ¼ 5). We
find forecast constraints of

σðΣmνÞ
meV

¼
8<
:

27 ½S4ðl > 50Þ þWMAP-polþ DESI�
19 ½S4ðl > 50Þ þ Planck-polþ DESI�
15 ½S4ðl > 5Þ þ DESI�

ð8Þ

with the uncertainty on τ reducing from 0.008 to 0.005 to
0.003, respectively. This is compared to 0.013 for WMAP-
pol from EE alone; i.e., improved CMB lensing data helps
constrain τ even when the neutrino mass is varied. Figure 5
shows the expected correlation between τ and neutrino mass.
Figure 5 also shows the impact of reducing the minimum

multipole of the S4 experiment on the neutrino mass
constraint, supplemented with Planck-pol or the current
WMAP-pol at the largest scales. There is a limiting plateau
for S4 at lmin > 20, and a clear improvement as the
polarization is better measured at increasingly large scales.
The S4ðl > 5Þ þ DESI limit reaches the CV limit for
CMB data.1

We then also consider the relative importance of making a
higher sensitivity small-scale measurement, versus a new
large-scale polarization measurement. We start with a
S3-type l > 50 experiment, and then either increase the
l > 50 sensitivity, or supplement it with a new CV-low
large-scale measurement at l < 50. We find forecast con-
straints of

σðΣmνÞ
meV

¼
8<
:

22 ½S3ðl > 50Þ þ Planck-polþ DESI�
19 ½S4ðl > 50Þ þ Planck-polþ DESI�
17 ½S3ðl > 50Þ þ CV-lowþ DESI�:

ð9Þ

This indicates that a cosmic-variance-limited measurement
of optical depth could be more valuable than more sensitive
small-scale data, especially given that Planck-pol large-scale

FIG. 5 (color online). Top: The neutrino mass Σmν is correlated
with the optical depth to reionization τ (forecast 68% C.L.).
Current data at l < 20 (WMAP-pol) would leave a degeneracy
between Σmν and τ that could be broken with improved large-
scale polarization data. Bottom: The expected neutrino mass
constraint as a function of the minimum multipole accessible to
S4, indicating the benefit of reaching large scales.

1Pan and Knox [32] found that a S4 experiment combined with
a CV-limited BAO experiment could tighten the neutrino mass
constraint further, to σðΣmνÞ ¼ 11 meV.
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polarization data is itself not yet demonstrated to be free of
systematic errors.
We note that 21-cm experiments, which map the bright-

ness temperature of neutral hydrogen as a function of
redshift, will probe the epoch of reionization [67]; the
combination of this information with CMBþ BAO would
break the Σmν − τ degeneracy and improve the neutrino
mass constraint (investigated in Liu et al. [68]).

B. Importance of sensitivity and angular range

For the particular case of an l > 50 experiment covering
40% of the sky at 3-arcmin resolution, combined with
Planck-pol, we vary the white-noise sensitivity. The fore-
cast neutrino mass limits are shown in Fig. 6 for CMB-only,
CMBþ BAO-15, and CMBþ BAO-DESI. There is
clearly an improvement as the noise is reduced, and a
significant gain is expected over current Planck measure-
ments, but below white ¼ noise levels of ≈10 μK-arcmin
there does not appear to be a substantial gain (as also seen
in Wu et al. [31]).
It is not yet certain whether this ≈10 μK-arcmin noise

level, over half the sky, will be achieved in practice from the
upcoming S3 CMB experiments, or whether the lensing
reconstruction will achieve the expected noise levels.
Atmospheric, ground, and foreground emission are typical
contaminants that would increase the effective noise in the
maps and in the lensing reconstruction. New data from the
current S2 experiments will help clarify the impact of
nonwhite noise on the lensing noise performance.
Here we have continued to restrict our analysis to “clean”

scales at l < 3000 in TT and TE and l < 4000 in EE. A
foreground-free S3 or S4 experiment would contain infor-
mation from l > 3000; the TT spectrum is signal domi-
nated to small scales (l ≈ 4800 for S4) where there are a
large number of modes. However, uncertainty about extra-
galactic foregrounds will likely make this information

inaccessible. We find that including l > 3000 scales would
tighten the neutrino mass error by ≈10%.
We restrict the modes available for reconstruction of the

lensing potential to these same scales, and to l > 50, since
reconstruction on the largest scales has yet to be demon-
strated (there are difficulties such as mean-field subtraction
for masked fields [69]). We find that the information,
quantified by the term FΣmν

l in the Fisher matrix, is
concentrated in the multipole range 100≲ l≲ 1000 for
S3 and 200≲ l≲ 2000 for S4. This also means that
detailed nonlinear modeling should not be required, since
at redshift z ≈ 2 at the peak of the CMB lensing kernel
[Eq. (4)], the information peak corresponds to physical
scales ≳200 Mpc.

V. HOW UNIQUE IS THE MASSIVE
NEUTRINO SIGNAL?

The measurable effect of neutrinos can be partly mim-
icked by changes in other cosmological parameters, as
explored in, e.g., Font-Ribera et al. [25], Benoit-Lévy et al.
[40], Hamann et al. [70]. Massive neutrinos affect the
expansion rate and angular diameter distance, but changes
in curvature, dark-energy history or the Hubble parameter
can compensate to keep the well-constrained acoustic peak
positions and structure essentially unchanged.
Here we consider changes in the spatial curvature and

changes in the energy density of dark energy with time.
Dark energy is invoked to explain the acceleration of the
Universe, and may take the form of a cosmological constant
with constant energy per unit proper volume, although an
evolving dark-energy equation of state (w ≠ −1) is not
ruled out by current observations [21]. We consider two
parameterizations for dark energy; these are the usual
Taylor expansion in the scale factor for dynamical dark
energy [71,72],

wðaÞ ¼ w0 þ wað1 − aÞ; ð10Þ
with two free parameters w0 and wa, and also the Doran and
Robbers [73] model for early dark energy,

ΩΛðaÞ ¼
ΩΛ − Ωeð1 − a−3w0Þ

ΩΛ þΩma3w0
þ Ωeð1 − a−3w0Þ; ð11Þ

with parameters Ωe and w0. This has a background
expansion similar to a massive neutrino for periods of
the evolution of the universe. Previous work has considered
neutrino mass constraints within this model (e.g., [74,75]).
We use the CAMB Parameterized Post-Friedmann (PPF)
module [76] and a modified version of CAMB from
Calabrese et al. [74] to compute the power spectrum within
these models.
We take as our baseline the S4ðl > 50Þ þ DESI experi-

ment. Marginalizing over simple extensions to the
ΛCDMþ Σmν model, we find

FIG. 6 (color online). The dependence of the neutrino mass
constraint σðΣmνÞ on CMB map sensitivity, for a 3-arcmin
resolution experiment covering 40% of the sky.
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σðΣmνÞ
meV

¼

8>>>>>>>><
>>>>>>>>:

19 ðΛCDMþ ΣmνÞ
30 ðΛCDMþ Σmν þ ΩkÞ
27 ðΛCDMþ Σmν þ w0Þ
46 ðΛCDMþ Σmν þ w0 þ waÞ
37 ðΛCDMþ Σmν þ Ωe þ w0Þ
64 ðΛCDMþ Σmν þ w0 þ wa þ ΩkÞ:

ð12Þ

We discuss these parameter degeneracies in the remainder
of this section. We find that marginalizing over the neutrino
number Neff (and other extension parameters that modify
the primordial CMB spectrum such as a running spectral
index) have a <10% effect on the predicted neutrino mass
uncertainties. These findings are summarized in Fig. 7,
which also includes the corresponding S3 forecasts.
At first sight, the degradation of the neutrino mass

estimate in the case of varying w0, wa, and Ωk simulta-
neously appears severe, more than tripling the error bar.
However, this model has three extra parameters compared
to ΛCDM; within the Bayesian framework, one can
rigorously ask whether additional parameters are required
by the data, quantifying the trade-off between improving
the fit against an increased complexity of the model (see,
e.g., [77] for discussion in the context of cosmological
data). This model selection approach would quantify the
need for additional extension parameters, and would
disfavor an overparameterized model if it is not required
by the data. In practice our challenge is likely to lie in
distinguishing between different one-parameter extensions
to ΛCDM: Are we seeing nonzero neutrino mass, or could

it be similarly well explained by a small amount of
curvature, or a small deviation from a w ¼ −1 equation
of state?

A. Physical degeneracies

To help understand these degeneracies, we note the
Hubble parameter HðzÞ is given by

�
HðzÞ
H0

�
2

¼ Ωrð1þ zÞ4 þΩmð1þ zÞ3

þ Ωkð1þ zÞ2 þΩΛðzÞ;

at times after the neutrinos become nonrelativistic, where
ΩΛðzÞ is the dark-energy density, constant for w ¼ −1, Ωr
is the radiation density today (e.g., photons and massless
neutrinos), Ωm ¼ Ωc þΩb þ Ων is the matter density
today (CDM, baryons, and massive neutrinos) and Ωνh2 ¼
Σmν=93 eV is the physical massive neutrino density today.
The angular diameter distance is given by

dAðzÞ ¼
c

H0ð1þ zÞ

8>>><
>>>:

1ffiffiffiffiffiffiffi
−Ωk

p sin
	 ffiffiffiffiffiffiffiffiffi

−Ωk
p R

z
0
H0dz0
Hðz0Þ



Ωk < 0;

R
z
0
H0dz0
Hðz0Þ Ωk ¼ 0;

1ffiffiffiffi
Ωk

p sinh
	 ffiffiffiffiffiffi

Ωk
p R

z
0
H0dz0
Hðz0Þ



Ωk > 0:

ð13Þ

Considering curvature, photons propagating in a nonflat
universe follow curved geodesics, changing the angular
diameter distance to an object of fixed proper size, at a
given comoving distance, relative to a flat universe.
Varying curvature shifts the angular scale of the acoustic
peaks; to remain consistent with the CMB data, the matter
density and Hubble constantH0 must vary to keep the peak
structure unchanged. This is the well-known geometric
degeneracy [78].
This degeneracy is partially broken by CMB lensing

measurements [79], which are sensitive to the growth of
structure in the late-time universe and, therefore, to the
matter density Ωm and dark-energy density ΩΛ. For a fixed
CMB acoustic peak scale, the effect of decreasing the
curvature parameter Ωk, moving to a more closed universe,
is to decrease the Hubble constant and increase Ωm. This
enhances the amplitude of the CMB lensing power spec-
trum, as illustrated in Fig. 8, which can be compensated by
increasing Σmν. This leads to an anticorrelation between
Σmν and Ωk when using CMB measurements alone, as
shown in Fig. 9.
The BAO constraint in the Σmν-Ωk plane is approx-

imately orthogonal to the CMB-only constraint, because
decreasing Ωk decreases the volume distance to a given
redshift [Eq. (5)]. This can be compensated by a smaller
matter density, lowering the neutrino mass. These data are

FIG. 7 (color online). Neutrino mass constraints forecast for
different data combinations and simple one- or two-parameter
extensions to the ΛCDMþ Σmν model [all except S4ðl ≥ 5Þ
include Planck-pol information at low l]. With CMBþ BAO
data, neutrino mass is not correlated with the number of neutrino
species, Neff , but is partly correlated with spatial curvature, Ωk,
and with the dark energy equation of state, w0. Expected
confidence levels are shown assuming the minimal total neutrino
mass Σmν ¼ 60 meV.
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powerful in combination, and for S3þ BOSS the neutrino
mass constraint is independent of curvature. However, the
neutrino mass constraint from S3þ DESI or S4þ DESI is
expected to degrade by ≈50% when allowing for curvature,
as illustrated in Fig. 7.
Similar arguments apply to dark energy, which modifies

the background evolution according to its equation of state,
but does not contribute to clustering. Increasing the dark-
energy equation-of-state parameter w0 leads to an increased
expansion rate, shifting the angular scale of the acoustic
peaks; to remain consistent with the CMB data, the Hubble
constant H0 decreases to keep the peak structure
unchanged. Similar to the curved model, this increases
the clustering, which can be compensated with larger
neutrino masses. This gives the positive correlation
between w0 and Σmν in CMB data, illustrated in Fig. 9
and reported in, e.g., [40,80]. The BAO degeneracy is,
however, also positively correlated, so the neutrino mass
uncertainty is inflated more than when allowing for
curvature. Increasing Σmν increases the contribution of
neutrinos to Ωm, requiring a smaller ΩΛ (in a flat universe);
the volume distance to a given redshift, and, hence, the
BAO peak position, can then be preserved by increasingw0.
The early dark-energy density parameter, Ωe, is anticorre-
lated with neutrino mass, due to their similar effects on the
background expansion [74,75].2

We find that the neutrino mass constraints from
S3þ DESI or S4þ DESI are degraded by more than
a factor of 2 when allowing for a nonminimal (w ≠ −1)

dark-energy equation of state in the cosmological model,
as shown in Fig. 7. Distinguishing a nonzero neutrino
mass parameter from a universe with dark energy beyond
the cosmological constant will be difficult with the
CMBþ BAO data combinations considered here.
Allowing for freedom in both dark energy and curvature
(i.e., a ΛCDMþ Σmν þ Ωk þ w0 þ wa model) degrades
the constraint further to σðΣmνÞ ¼ 64 meV for S4þ DESI,
but would include three new parameters.

B. Breaking degeneracies with complementary
measurements

We have focused so far on the minimal combination of
future CMB and BAO data. To break these remaining
degeneracies between neutrino mass and curvature/dark-
energy parameters, we would turn to other large-scale
structure probes such as the galaxy power spectrum,

FIG. 8 (color online). CMB convergence power spectrum for
varying Ωk, with other parameters holding the primary CMB
fixed. Decreasing Ωk requires a smaller Hubble constant H0 and
increased growth rate. This has a similar effect to decreasing the
neutrino mass.

FIG. 9 (color online). Top: Forecast joint constraint on the
neutrino mass, Σmν, and spatial curvature,Ωk, within a ΛCDMþ
Σmν þ Ωk model. The BAO data breaks the anticorrelated
degeneracy in the CMB data. Bottom: Forecast constraint on
Σmν and the dark energy equation of state, w0, marginalized over
the ΛCDM and wa parameters.

2Here we adopted a fiducial Ωe ¼ 0.007, allowed by current
data [81]. A smaller Ωe would improve the neutrino mass
constraint, as the parameters are anticorrelated and Ωe cannot
be negative.
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redshift-space distortions, galaxy weak lensing, the kin-
ematic Sunyaev-Zel’dovich effect, and galaxy cluster
counts, which measure the growth of structure at later
times, and Type Ia supernovae, which better constrain the
expansion rate.
We have not included these and other data in our baseline

forecasts as they are, arguably, more prone to systematic
uncertainties such as tracer bias and the shape of the
nonlinear power spectrum, which contains unknown bar-
yonic feedback effects, source distribution uncertainties,
and multiplicative bias [21,37,82]. However, a promising
path would be to examine a suite of different comple-
mentary probes, each in combination with the CMB and
BAO data, to distinguish neutrino mass from a nonflat or
non-Λ model.
For example, in Fig. 10 we illustrate schematically how

galaxy weak lensing can break remaining degeneracies
between two example models. Here the CMB spectra and
BAO distances are indistinguishable with S4þ DESI data
(see parameters in the Appendix).
Their galaxy weak lensing signals, which probe the

growth of structure during the dark-energy-dominated era,
are distinct, and should be distinguishable with a plausible
future weak lensing survey. With a 2% difference in σ8,
robust galaxy cluster measurements should also help
discriminate between these models (e.g., [84,85]).

VI. DISCUSSION AND CONCLUSIONS

We have demonstrated that an indirect detection of the
sum of the neutrino masses should be possible with
upcoming CMB and BAO surveys. In the next decade a
4σ detection should be reachable, within theΛCDMþ Σmν

model, even in the minimal mass (Σmν ¼ 60 meV) sce-
nario. We have found that this is contingent on obtaining

improved large-scale polarization measurements from the
CMB, which may be the hardest experimental challenge. It
will also be necessary to exclude degeneracies with other
plausible extensions such as curvature and dark energy. We
find that allowing for these extensions degrades the
expected neutrino mass constraint, and that use of other
large-scale structure probes will be necessary to rule out
other departures from ΛCDM.
Our forecasts make a number of assumptions. We have

neglected non-Gaussian terms in the CMB covariance due
to correlation of the temperature, polarization, and lensing
fields, which should have a small impact on imminent data
but will become more important as noise levels reduce. We
assume Gaussianity of the posterior distribution and rely on
data independence of the covariance matrix. These assump-
tions become increasingly accurate for the precision future
experiments considered here, but remain an approximation.
Our analysis also assumes little foreground contamination.
This will be most important for the large-scale CMB signal,
but is not expected to significantly degrade the smaller-
scale lensing signal.
We have assumed white noise in the new CMB data. This

has not yet typically been achieved in practice from the
ground, due to atmospheric and scan-synchronous emis-
sion that induces additional variance at large scales.
However, polarization measurements are cleaner than
temperature in this respect, and new experiments have
sophisticated designs to modulate the polarization signal.
Performance of current Stage-2 experiments will help
refine noise projections for the future experiments. We
have also assumed ideal performance of the future DESI
BAO experiment.
In terms of theoretical scope, beyond an evolving dark-

energy equation of state, we have not considered other
possible new physics. For instance, theoretically motivated
axion contributions to the background expansions and
perturbations might offer an alternative explanation for a
neutrino mass detection. The cosmological effects are not
identical [86], but further investigation will be useful.
Finally, neutrino mass is the next beyond-ΛCDM

parameter that we know will be needed to fit data, so it
is valuable that competitive constraints are expected to
come from different combinations of cosmological data
sets beyond the CMB=BAO considered here. Their com-
plementarity will aid in convincingly excluding systematic
effects and alternative cosmological models.
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APPENDIX: FORECASTING PARAMETER
CONSTRAINTS

We forecast posterior parameter constraints and degen-
eracy directions by evaluating the relevant Fisher matrix as
defined in Eq. (6). We assume uniform priors on all
parameters, allowing the posterior pðθÞ to be replaced
with the likelihood LðθÞ ¼ Pðdjθ;MÞ in Eq. (6). The
Fisher matrix is evaluated at fiducial parameters; the choice
is unimportant under the assumption of a Gaussian pos-
terior and data-independent covariance, although in prac-
tice they are chosen to match the current best-fit parameters
of the model, as the real covariance does have a term that
scales with the signal. Our choices are shown in Table III.
To compute the Fisher matrix we use as observables the

CMB power spectra and the BAO distance measurements.
For the CMB, we use the lensed power spectrum between
each pair of (assumed Gaussian) fields X, Y from their
spherical harmonic coefficients,

ĈXY
l ¼ 1

2lþ 1

Xm¼l

m¼−l
x�lmylm: ðA1Þ

This formula omits beam-smoothing effects and the sub-
traction of a noise term, which we account for below. The
estimated power spectrum is a sum of many random
variables of finite variance, and to good approximation
follows a Gaussian distribution. This approximation breaks
down at large scales but does not have a significant impact
on expected errors. For a full-sky survey, we have

−2 lnLðθÞ ¼ −2
X
l

lnpðĈljθÞ

¼
X
l

½ðĈl − ClðθÞÞ⊤C−1
l ðθÞðĈl − ClðθÞÞ

þ ln detð2πClðθÞÞ� ðA2Þ

where Ĉl ¼ ðĈTT
l ; ĈTE

l ;…Þ contains auto- and cross-
spectra and Cl is their covariance matrix. Inserting this
likelihood into Eq. (6) and neglecting parameter depend-
ence in the power spectrum covariance matrix, one obtains

Fij ¼
X
l

∂C⊤
l

∂θi C
−1
l

∂Cl

∂θj : ðA3Þ

From Eq. (A1), and applying Wick’s theorem, the covari-
ance matrix for the power spectra has elements

CðĈαβ
l ; Ĉγδ

l Þ ¼
1

ð2lþ 1Þfsky
½ðCαγ

l þ Nαγ
l ÞðCβδ

l þ Nβδ
l Þ

þ ðCαδ
l þ Nαδ

l ÞðCβγ
l þ Nβγ

l Þ�; ðA4Þ

where α, β, γ, δ ∈ fT; E; B; κcg, and fsky accounts for the
loss of information due to partial sky coverage [87,88].
Noise spectra are generated for each observable given input
noise properties such as CMBmap sensitivities. We assume
additive white noise for the CMB,

TABLE III. Fiducial values and step sizes for the numerical
derivatives, chosen to be small enough to minimize error in the
Taylor expansion of the two-sided derivative, while keeping
numerical stability in the derivatives from the CAMB power
spectra. The fiducial value of Ωe ¼ 0.007 is at the upper
95% confidence level given current data [81].

Parameter Fiducial value Step size

Ωbh2 0.0222 0.0008
Ωch2 0.1197 0.0030
102θA 1.0409 0.0050
109As 2.196 0.1
ns 0.9655 0.010
τ 0.078 0.020
Σmν (meV) 60 20
Ωk 0 0.01
w0 −1 0.3
wa 0 0.6
Neff 3.046 0.080
Ωe 0.007 0.002

TABLE IV. Specification for the Planck and WMAP experiments used in the analysis, assuming white-noise properties. We define
Planck-2015 to reproduce the constraints from Planck 2015 data; for Planck-pol we use the Planck Blue Book scaling factors to convert
to polarization. For WMAP-pol we recover an optical depth uncertainty that matches the WMAP9 data. When combining with S3 and
S4, we include Planck-pol data across the full fsky ¼ 0.44 at large scales (l < lS3=S4

min ) and across fsky ¼ 0.2 in the multipole range
lS3=S4
min < l < 2500, as the useful Planck data and S3=S4 will likely not overlap completely. Our results are insensitive to the exact

choice of this nonoverlapping region size. When using WMAP-pol data we substitute it in at large scales (l < lS3=S4
min ) over fsky ¼ 0.74.

Experiment fsky ν=GHz lmin lmax FWHM=arcmin ΔT=μK-arcmin ΔP=μK-arcmin

Planck-2015 0.44 30, 44, 70, 100,
143, 217, 353

2 2500 33, 23, 14, 10, 7,
5, 5, 5

145, 149, 137,
65, 43, 66, 200

� � �, � � �, 450, � � �, � � �, � � �, � � �

Planck-pol 0.44 � � �, � � �, 450, 103, 81,
134, 406

WMAP-pol 0.74 33, 41, 64, 94 2 1000 41, 28, 21, 13 � � �, � � �, 298, 296 425, 420, 424, � � �
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Nαα
l ¼ ðΔTÞ2 exp

�
lðlþ 1Þθ2FWHM

8 ln 2

�
; ðA5Þ

for α ∈ fT; E; Bg, where ΔT (ΔP for polarization) is the
map sensitivity in μK-arcmin and θFWHM is the beam width.
This is an optimistic approximation: Real noise-spectra
from ground-based experiments have a dominant contri-
bution from atmospheric variance at large scales (see, e.g.,
Fig. 4 of Das et al. [82]). The atmosphere is weakly
polarized, and hence the white-noise approximation is
better in E and B than T. The CMB lensing reconstruction
noise is calculated using the quadratic-estimator formalism
[7]. As described in the main text, we neglect non-Gaussian
terms in the power spectrum covariance, and we also
neglect the BB spectrum as it does not contribute signifi-
cantly to upcoming constraints and has a highly non-
Gaussian covariance [40].

We add information from BAO experiments by comput-
ing the BAO Fisher matrix,

FBAO
ij ¼

X
k

1

σ2f;k

∂fk
∂θi

∂fk
∂θj ; ðA6Þ

where fk ≡ fðzkÞ ¼ rs=dVðzkÞ is the sound horizon at
photon-baryon decoupling rs over the volume distance
dV to the source galaxies at redshift zk. These real and
forecast data are reported in Table V.
The total Fisher information matrix is given by the sum

of the CMB and BAO Fisher matrices, and is inverted to
forecast parameter covariances. An alternative Markov
Chain Monte Carlo (MCMC) approach using simulated
data can be taken to account for non-Gaussianity of the
posterior (e.g., [29]), but the Gaussian approximation is
likely increasingly good as the data quality improve from
Planck through S3 to S4.
Our forecasting code, OXFISH, has been developed for

this analysis and is used to forecast parameter covariance
matrices in one coherent PYTHON package. The code
interfaces with the CAMB code for evaluation of power
spectra. We compare with real data or previous work where
possible. We construct the Planck-2015 (P15) specification,
given in Table IV, to produce constraints that match the
ΛCDM uncertainties from the Planck Collaboration [21],
with the beam sizes and noise levels matching the detector
sensitivities in [89].
We also forecast the neutrino mass constraint from

P15þ BAO, finding σðΣmνÞ ¼ 103 meV. Placing the
peak of the posterior at the fiducial Σmν ¼ 60 meV, this
corresponds to Σmν < 245 meV at 95% confidence, com-
parable to the actual result of Σmν < 230 meV [21]. This
includes joint light-curve supernovae (JLA SNe) data and
an H0 prior, but these are expected to have a small impact.
We also agree with [30–32] on the neutrino mass constraint
for the S4þ DESI data combination, finding σðΣmνÞ ¼
15 meV if we assume that the reionization bump is
measured.
We use the following parameters for the curves in

Fig. 10: Solid curve, fΩbh2 ¼ 0.0222; Ωch2 ¼ 0.0120;
Σmν ¼ 3 meV; τ ¼ 0.067; 102θA ¼ 1.0417; 109As ¼
2.15; ns ¼ 0.9647; σ8 ¼ 0.835; H0 ¼ 68.0g; dashed
curve, fΩbh2¼0.0222;Ωch2¼0.0119;Σmν¼117meV;τ¼
0.089;102θA¼1.0399;109As¼2.24;ns¼0.9663;σ8¼0.822;
H0¼66.6g.

TABLE V. Specification for current BAO-15 data (top) and
forecast DESI data (bottom). We derive the expected fractional
uncertainties on rs=dV for DESI from the fractional errors on
DA=rs and HðzÞ forecast in [25]. Using the rs=dV observable
discards information in redshift-space distortions of the galaxy
correlation function by treating the clustering as isotropic. The
absolute values correspond to a ΛCDM model with Σmν ¼
60 meV.

Experiment Redshift σðrs=dV Þ
ðrs=dV Þ (%) σðrs=dVÞ References

6dFGRS 0.106 4.83 0.0084 [50]
SDSS MGS 0.15 3.87 0.015 [51]
LowZ 0.32 2.35 0.0023 [20]
C-MASS 0.57 1.33 0.000 71 [20]
DESI 0.15 1.89 0.0041 [25]

0.25 1.26 0.0017
0.35 0.98 0.000 88
0.45 0.80 0.000 55
0.55 0.68 0.000 38
0.65 0.60 0.000 28
0.75 0.52 0.000 21
0.85 0.51 0.000 18
0.95 0.56 0.000 18
1.05 0.59 0.000 17
1.15 0.60 0.000 16
1.25 0.57 0.000 14
1.35 0.66 0.000 15
1.45 0.75 0.000 16
1.55 0.95 0.000 19
1.65 1.48 0.000 28
1.75 2.28 0.000 41
1.85 3.03 0.000 52
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