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The dynamics of the tilted axisymmetric Bianchi IX cosmological models are explored allowing energy
flux in the source fluid. The Einstein equations and the continuity equation are presented treating the
equation of state w and the tilt angle of the fluid λ as time-dependent functions, but when analyzing the
phase space w and λ are considered free parameters and the shear, the vorticity and the curvature of
the spacetime span a three-dimensional phase space that contains seven fixed points. One of them is an
attractor that inflates the universe anisotropically, thus providing a counterexample to the cosmic no-hair
conjecture. Also, examples of realistic though fine-tuned cosmologies are presented wherein the rotation
can become significant towards the present epoch but the shear stays within the observational bounds. The
examples suggest that the model used here can explain the parity-violating anomalies of the cosmic
microwave background. The result significantly differs from an earlier study, where a nonaxisymmetric
Bianchi IX type model with a tilted perfect dust source was found to induce too much shear for
observationally significant vorticity.

DOI: 10.1103/PhysRevD.92.123529 PACS numbers: 98.80.-k, 95.36.+x

I. INTRODUCTION

Cosmological observations provide compelling evidence
that our Universe at large scales is well described by the
homogeneous, isotropic and spatially flat standard model
called the ΛCDM [1]. The common explanation for this
featurelessness is that inflation, while also at the same time
giving birth to small initial seeds of structure, wipes out all
inhomogeneities from the exponentially expanding back-
ground. Furthermore, even the initial structure generated by
inflation seems to be of a vanilla nature, as the data remains
consistent with the primordial spectrum from quantum
fluctuations of a single field with perfectly Gaussian and
isotropic statistical properties [2].
However, not all the observational data comply with this

picture, in particular the anomalies in the cosmic microwave
background (CMB) [3–5]. If of cosmological origin, these
anisotropic statistical features in the temperature fluctua-
tions of the CMB could be regarded as a hint of physics
beyond the simplest ΛCDM parametrization of cosmology.
As the anomalies are most significant at the largest CMB
angles [6], thus (roughly) corresponding to the scale of dark
energy, it is natural to consider (slightly) imperfect fields in
the present Universe that could both accelerate the back-
ground expansion and generate the observed deviations
from isotropy [7–9]; see also e.g. Refs. [10–14].On the other
hand, the anisotropies could have been generated (or
retained) by nonstandard inflationary dynamics due to for
example vector fields [15–21] or quadratic curvature cor-
rections to gravity [22,23].
However, such an anisotropic expansion during either

the early (inflation) or the late (dark energy) accelerated

stages of the Universe, has a limited promise of actually
explaining the CMB anomalies, because the latter are
mainly parity violating but shear does not distinguish
handedness. It is this oddness that is the most unexpected
and difficult to explain with the existing models. Proposed
late-time origins for a parity violation include spontaneous
isotropy breaking [24], an imperfect dark energy field [25]
and effects due to our peculiar velocity with respect to the
CMB [26]. The primordial spectrum itself could contain
dipole and other odd contributions only in the context of
noncommutative theories [27], but parity-violating primor-
dial modulations of the perturbations and thus of the
resulting CMB temperature field might be generated by
nontrivial multifield dynamics during inflation [28] or
reheating [29], or by breaking translation invariance with
isocurvature perturbations [30] or domain walls [31,32].
The questionwe shall pursue here iswhether ourUniverse

could be realistically described by a spacetime with slight
anisotropies that distinguish orientation in a way that would
explain the parity-violating CMB anomalies. A natural
framework for this is provided by the Bianchi class B
models that describe homogeneous but anisotropic space-
times that allow for rotation [33,34]. Such models are
sufficiently general to incorporate parity-violating cosmo-
logical features (unlike Bianchi class A models that allow
only for even asymmetries) but due to remaining symmetries
(we consider locally rotationally symmetric Bianchi mod-
els) are simple enough to be tractable. Indeed, it has been
shown that the CMB anomalies can be very well fitted by a
Bianchi class B type VIIh template [3,35], but only the
anomalies: the cosmological parameters of the best-fit
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Bianchi template model are in strong disagreement with the
rest of the cosmological data [35,36]. This suggests itmay be
worthwhile to explore different or more elaborate Bianchi
type B cosmologies.
We are thus lead to consider generalizations of the

above-cited anisotropic inflation and imperfect dark energy
models that have been previously discussed, as far as we
know, only in the context of Bianchi class A spacetimes.
A rather generic property of perfect-fluid cosmological

spacetimes is that they tend to isotropize, which is also the
reason for the difficulty of reconciling the Bianchi VIIh
rotating universe with realistic cosmology. This property is
reflected in a cosmic no-hair conjecture suggesting that
anisotropies will not survive in inflating spacetimes [37,38].
Behind the conjecture is a theorem stating that initially
expanding homogeneous cosmological models, which
satisfy Einstein’s equations with a positive cosmological
constant and the dominant and strong energy conditions, can
evolve only so that they either collapse or approach the de
Sitter solution while at the same time making the universe
isotropic. The only exception is a Bianchi IX type universe,
where the curvature can come with the positive sign and
could thus in principle cancel the driving effect of shear and
energy density to the expansion [37,38]. As mentioned
above however, several examples have been found where
anisotropies can be supported in the presence of imperfect
fluids, and refinements of the cosmic no-hair theorem have
been formulated [39].
Motivated by these considerations, we will specialize

here to cosmologies in the Bianchi class B type IX models.
In order to possibly generate vorticity, we include a “tilted”
energy source, i.e. a fluid whose rest frame does not
coincide with the cosmic rest frame, and furthermore it
turns out that this requires that the fluid has an energy flux
that is fixed by consistency conditions. When analyzing the
phase space, for simplicity, we will assume that the fluid
can be characterized by a constant equation of state and that
the tilt angle remains constant during the cosmic evolution.
This defines our two-parameter phenomenological model
of tilted dark energy in a universe allowing rotation. From
this simple starting point emerge already interesting pos-
sibilities such as anisotropic inflation. Since Misner’s
classic mixmaster paper [40], studies of Bianchi IX
cosmologies in the literature have been undertaken in
the contexts of loop quantum cosmology [41,42], chaotic
dynamics [43,44] and viscous fluids [45,46], but not to our
knowledge in the presence of tilt and heat flux.
The structure of the paper is as follows. We first specify

the model in Sec. II and derive its governing differential
equations, then analyze its phase space in Sec. III; in
particular we locate the fixed points there and investigate
their stability properties. In Sec. IV we then consider the
possible cosmological applications of the model, focusing
on the new anisotropic features we could generate without
running into conflict with observational upper bounds on

them. The paper is concluded by Sec. V and a few details
are confined to Appendices A–C.

II. THE MODEL

We shall work in the framework of the axisymmetric
Bianchi IX cosmological model, where the line element
is [40]

ds2 ¼ −dt2 þ e2αðtÞþ2βðtÞ½ðω1Þ2 þ ðω2Þ2�
þ e2αðtÞ−4βðtÞðω3Þ2; ð1Þ

with the one-forms ωi given as

ω1 ¼ sinψdθ − sin θ cosψdϕ; ð2Þ

ω2 ¼ cosψdθ þ sin θ sinψdϕ; ð3Þ

ω3 ¼ cos θdϕþ dψ : ð4Þ

There are five nonzero components of the Einstein tensor
Ea
b using the line element (1); however, E1

1 ¼ E2
2 and

E2
3 ¼ cosðθÞðE3

3 − E1
1Þ, and thus only three of them are

independent.
We consider the energy-momentum tensor to be com-

posed from a perfect fluid and energy flux,

Ta
b ¼ ½ρðtÞ þ pðtÞ�uaub þ pðtÞgab þ qaub þ uaqb; ð5Þ

where ρðtÞ is the matter density, pðtÞ is the pressure, and
the energy flux vector qa is orthogonal to ua. We take the
four-velocity to be

ua ¼ ðcosh½λðtÞ�; 0; 0; sinh½λðtÞ�e2βðtÞ−αðtÞÞ; ð6Þ

which satisfies the normalization condition uaua ¼ −1.
The “tilt” vanishes in the limit λ → 0. We assume that the
fluid obeys,

pðtÞ ¼ wðtÞρðtÞ: ð7Þ

Using the nondiagonal components of the Einstein
equations1 (Ea

b ¼ Ta
b) and the orthogonality condition

(qaua ¼ 0), the components of the energy flux vector
are found:

q0¼−q3 tanh½λðtÞ�e2βðtÞ−αðtÞ; q1 ¼ 0; q2 ¼ q3 cosθ;

q3¼−ðpðtÞþρðtÞÞsinh½λðtÞ�cosh
2½λðtÞ�

cosh½2λðtÞ� eαðtÞ−2βðtÞ: ð8Þ

Hence, after the dynamics of α, β, p, ρ, λ, and θ are known,
the dynamics of the energy flux is describable. Therefore,

1We set 8πG ¼ 1.
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we can study the dynamics of the system without paying
attention to the energy flux and consequently we neglect it
from now on. However, the presence of the energy flux in
the energy-momentum tensor is crucial, because in the
absence of the energy flux the equations would be con-
sistent only if w ¼ −1 or λ ¼ 0. In a sense, the role of the
heat flux is to allow w and λ to vary freely. The energy
conditions for the energy-momentum tensor (5) are not

affected by the tilt and heat flux as discussed in
Appendix A. Moreover, by defining an auxiliary function

WðtÞ≡ 1

2

�
1 − wðtÞ þ wðtÞ þ 1

cosh½2λðtÞ�
�
; ð9Þ

the energy-momentum tensor (5) can now be recast as

T ¼

0
BBBB@

−WðtÞρðtÞ 0 0 0

0 wðtÞρðtÞ 0 0

0 0 wðtÞρðtÞ 0

0 0 ½WðtÞ − 1�ρðtÞ cosðθÞ ½wðtÞ þWðtÞ − 1�ρðtÞ

1
CCCCA: ð10Þ

We can now determine the suitable kinematical scalars
and spatial curvature of the metric, in terms of which to
present the Einstein field equations. The covariant defi-
nitions of the kinematical quantities in the 3þ 1 formalism
read as follows [34,47] [where the covariant time and space
derivatives are defined, respectively, as _f ¼ uaf;a and
f;a ¼ ðδba þ ubuaÞf;b]:

ωab ≡ u½a;b� − _u½aub�; σab ≡ uða;bÞ − _uðaubÞ −
1

3
Θhab;

Θ≡ ua;a; _ua ≡ ua;bub: ð11Þ
These are, respectively, the vorticity, the traceless shear, the
expansion and the acceleration tensors associated to
the fluid and subject to the conditions ωðabÞ ¼ σ½ab� ¼ 0,
ωabub ¼ σabub ¼ 0, σaa ¼ 0 and ua _ua ¼ 0. From these
quantities we can then construct the kinematical scalars,
that for the line element (1) and the four-velocity (6) turn
out to be

ω≡ ðωabω
ab=2Þ1=2 ¼ 1

2
sinh½λðtÞ�e−ðαðtÞþ4βðtÞÞ;

σ ≡ ðσabσab=2Þ1=2 ¼
ffiffiffi
3

p
cosh½λðtÞ�β0ðtÞ;

_u≡ ð _ua _uaÞ1=2 ¼ sinh½λðtÞ�½α0ðtÞ − 2β0ðtÞ�;
Θ ¼ 3 cosh½λðtÞ�α0ðtÞ; ð12Þ

where ω is the vorticity, σ is the shear, Θ is the expansion,
and _u is the acceleration scalar, respectively. The spatial
curvature scalar (i.e. the Ricci scalar of the three-dimensional
constant-t hypersurfaces) for the line element (1) is

3R ¼ 1

2
ð4e6βðtÞ − 1Þe−2ðαðtÞþ4βðtÞÞ: ð13Þ

Using Eqs. (6), (7) and (10) and the above definitions, the
Einstein equations Ea

b ¼ Ta
b assume the form of a constraint

equation and twodynamical first-order differential equations:

−WðtÞρðtÞ¼−
3RðtÞ
2

−
ΘðtÞ2

3cosh2½λðtÞ�þ
σðtÞ2

cosh2½λðtÞ� ;

wðtÞρðtÞ¼−
ωðtÞ2

sinh2½λðtÞ�−
ΘðtÞ2

3cosh2½λðtÞ�þ
ΘðtÞσðtÞffiffiffi
3

p
cosh2½λðtÞ�−

σðtÞ2
cosh2½λðtÞ�−

2Θ0ðtÞ
3cosh½λðtÞ�þ

σ0ðtÞffiffiffi
3

p
cosh½λðtÞ� ;

½wðtÞþWðtÞ−1�ρðtÞ¼−
3RðtÞ
2

þ 2ωðtÞ2
sinh2½λðtÞ�−

ΘðtÞ2
3cosh2½λðtÞ�−

2ΘðtÞσðtÞffiffiffi
3

p
cosh2½λðtÞ�−

σðtÞ2
cosh2½λðtÞ�−

2Θ0ðtÞ
3cosh½λðtÞ�−

2σ0ðtÞffiffiffi
3

p
cosh½λðtÞ� :

ð14Þ

The conservation of stress-energy ∇aTab ¼ 0 results in the differential equation

0 ¼ 1

3
ðρðtÞsech½λðtÞ�ðΘðtÞð3wðtÞ þ 4WðtÞ − 1Þ − 2

ffiffiffi
3

p
ΣðtÞðWðtÞ − 1ÞÞ þ 3ðρðtÞW0ðtÞ þWðtÞρ0ðtÞÞÞ: ð15Þ

However, we still need to determine the evolution of 3R and ω in order to form an autonomous system. This can be achieved
by differentiating both sides of the definitions of ω and 3R given in Eqs. (12)–(13), and then reapplying Eqs. (12)–(13),
giving
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3R0ðtÞ ¼ −3RðtÞ
�

2ΘðtÞ
3 cosh½λðtÞ� þ

2σðtÞffiffiffi
3

p
cosh½λðtÞ�

�

þ 4
ffiffiffi
3

p
ωðtÞ2σðtÞ

sinh½λðtÞ�2 cosh½λðtÞ� ; ð16Þ

ω0ðtÞ ¼ −ωðtÞ
�

ΘðtÞ
3 cosh½λðtÞ� þ 4

σðtÞffiffiffi
3

p
cosh½λðtÞ�

�
: ð17Þ

This completes the system of dynamical equations in terms
of the variables in the 1þ 3 formalism [34,47].
To apply the techniques of dynamical system analysis in

cosmology2 [33], it is convenient to rewrite the system in
terms of dimensionless, expansion-normalized variables.
For this purpose we find it most suitable to employ the
Hubble rate that in the presence of tilt is defined by

HðtÞ≡ ΘðtÞ
3 cosh½λðtÞ� : ð18Þ

We then define the dynamical variables as follows:

ΣðtÞ≡ σðtÞffiffiffi
3

p
cosh½λðtÞ�HðtÞ ; KðtÞ ¼ −

3RðtÞ
6HðtÞ2 ;

VðtÞ ¼ ωðtÞ
sinh½λðtÞ�HðtÞ ; ΩðtÞ ¼ ρðtÞ

3HðtÞ2 : ð19Þ

These are identified, respectively, as the dimensionless
expansion-normalized shear, spatial curvature and vorticity
associated to the spacetime geometry, and finally the
energy density associated to the fluid source. By assuming
the universe to be monotonically expanding and treating α
as the time variable, we have for any function fðtÞ that

f0ðtÞ
HðtÞ ¼

f0ðtÞ
α0ðtÞ ¼ f0ðαÞ: ð20Þ

This choice of time variable enables us to eliminate the
Hubble rate from the resulting system of equations. Indeed,
after some simple manipulations, Eqs. (14), (15), (16), and
(17) can bewritten using the dimensionless quantities (19) as

Σ0ðαÞ ¼ −1þ 2KðαÞ þ ΣðαÞ2 þ ðϵ − 3ÞΣðαÞ
þ VðαÞ2 þΩðαÞ; ð21Þ

Ω0ðαÞ ¼ ΩðαÞ
�
2ϵþ 2ΣðαÞ − 4þ 1 − 3w − 2ΣðαÞ

WðαÞ
�

−
ΩðαÞ
WðαÞW

0ðαÞ; ð22Þ

V 0ðαÞ ¼ VðαÞðϵ − 4ΣðαÞ − 1Þ; ð23Þ

K0ðαÞ ¼ −2fKðαÞ½−ϵþ 1þ ΣðαÞ� þ ΣðαÞVðαÞ2g; ð24Þ

where we have defined ϵ≡ −H0ðtÞ=HðtÞ2. The four
dynamical equations are subject to the constraints

ϵ ¼ 1

2
½3w − 1�ΩðαÞ − KðαÞ þ 2þ Σ2ðαÞ; ð25Þ

1 ¼ WðαÞΩðαÞ þ KðαÞ þ Σ2ðαÞ: ð26Þ
The first constraint means simply that the ϵ in the four
dynamical equations should be considered as a shorthand
notation for the function of the four variables (the physical
meaning of ϵ is explained shortly), but the second equation,
representing the Friedmann constraint, reduces the dimen-
sionality of the system to three.
Having now set up the dynamical system in a convenient

form, we proceed to analyze its phase space.

III. THE PHASE SPACE ANALYSIS

In this section, w and λ are treated as variables for
simplicity and we investigate the phase space of the three-
dimensional autonomous system3 obtained by eliminating
the curvatureusing thegeneralizedFriedmannequation (26),
employing the analysis methods described in many text-
books, e.g. Refs. [33,48]. Even though the curvature is no
longer among the set of differential equations, it can be
solved using the generalized Friedmann equation. We will
do this in the subsequent sections to track the curvature.
We also follow ϵ at each fixed point. That is of interest

because this so-called slow-roll parameter gives us directly
information about the overall expansion rate of the uni-
verse. Namely, the geometrical mean, a, of the scale factor
is a ¼ eα, and hence,

ϵ≡ −
H0ðtÞ
HðtÞ2 ¼ −

α00

ðα0Þ2 ¼ −
a00

a · ðα0Þ2 þ 1;

and thus ϵ < 1 indicates acceleration and ϵ > 1 deceler-
ation. From Eqs. (25) and (26) we furthermore see that

ϵ¼ 1 in the curvature-filled universe;

ϵ¼ 3 in the shear-filled universe;

ϵ¼ 2−
1

1þ sechð2λÞ in the dust-filled universe;

ϵ¼ 2 in the radiation-filled universe;

ϵ¼ 0 in the dark-energy-filled universe:

At each fixed point in the phase space, ϵ is a constant.

2For more recent applications to anisotropic cosmologies, see
for example Refs. [7,8,15,17,21,44] in the Introduction.

3We could of course write down the three dynamical equa-
tions (21), (22), (23), and (24) with the constraints (25) and (26)
inserted explicitly but that would hardly give more insight into
the properties of the system.
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We note that the tilt appears in the dynamical equations
only in the combination W ¼ ð−wþ 1þ wþ1

coshð2λÞÞ=2. In the

limit of vanishing tilt,W always reduces to unity. In the limit
of strongly tilted cosmology,W reduces toW → 1=2 for dust
and W → 1=3 for radiation. If w ¼ −1, the dynamical
equations are explicitly independent of λ, but the equation
for the vorticity, Eq. (23), still holds. Thus, to possibly rotate
the universe we need only a tilted fluid. The implicit
dependence on λ is that Eq. (23) does not exist iff λ ¼ 0.
After these preliminary considerations, we are ready to

list our results for the fixed points and their properties.

A. The fixed points of the system

We found seven solutions to the set of equations
V 0 ¼ Ω0 ¼ Σ0 ¼ 0. In the following, we will present these
fixed points and study their stability in the parameter space
ðλ; wÞ, where−∞<λ<∞ and−1≤w≤1.4We use an asterisk
on quantities evaluated at each respective fixed point.

1. The fixed points allowing rotation

The two fixed points,

V� ¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − 3wÞwþ 8ðW − 1ÞW þ 1

ð1 − 5WÞ2
s

;

K� ¼ 3ðð2 − 3wÞwþ 8ðW − 1ÞW þ 1Þ
4ð1 − 5WÞ2 ;

Ω� ¼ −
3ðw − 6W þ 1Þ
ð1 − 5WÞ2 ;

Σ� ¼ 3wþ 2W − 1

10W − 2
; ð27Þ

differing only by the sign of the vorticity V�, exist when the
inequality

0 ≤ ð2 − 3wÞwþ 8ðW − 1ÞW þ 1 ð28Þ

is satisfied. It is convenient to note that condition (28)
implies that 0 < 5W − 1 must hold too. The area restrained
by Eq. (28) is depicted in Fig. 1, where also the stability of
the fixed points is indicated by color. The left panel of
Fig. 1 is drawn by evaluating the real part of each
eigenvalue at each point separately. The eigenvalues are
given in Appendix B. The dotted curves represent the
parameter values for which at least one eigenvalue of
the stability matrix is zero and the stability cannot be
determined using the linearization method. Moreover,
K� ¼ V� ¼ 0 on the dotted curves (for further details,
see Appendix B 1). The right panel of Fig. 1 indicates that
these fixed points can represent the overall expansion of a
curvature-, shear-, dust-, or radiation-dominated epoch.

2. The fixed point where only the vorticity does not exist

The fixed point where all the effective energy sources
contribute to the expansion (but the vorticity disappears) is

V� ¼ 0;

K� ¼ 3

4

�ð2 − 3wÞw
ð1 − 2WÞ2 þ 1

�
;

Ω� ¼ −
3w

ð1 − 2WÞ2 ;

Σ� ¼ 3wþ 2W − 1

4W − 2
: ð29Þ

The stabilities and values of the slow-roll parameter ϵ are
depicted in the parameter space in Fig. 2. These fixed points
can present any expansion rate as ϵ can take the value of
any real number. The curve where the fixed points are not
defined is w ¼ ½coshð2λÞ − 1�−1; furthermore ϵ → ∞ when

1.1 1.2 1.3 1.4 1.5
cosh 2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
w

0.0

0.5
1.0w

1.0
1.2

1.4

cosh 2

1.0

1.5

2.0

2.5

3.0

FIG. 1 (color online). The left panel shows the stability properties of the fixed point (27): the orange area denotes saddle fixed points
(repulsive in one direction) in the parameter space, the dotted curves are where the stability of the fixed points cannot be determined
using the linearization method and in the gray zone V takes imaginary values. The vorticity and the curvature are zero on the curve
between the orange and the gray areas. The right panel shows the corresponding values of ϵ.

4The governing equations depend on λ only via coshð2λÞ. Due
to the properties of the hyperbolic cosine function, the studied
range −∞ < λ < ∞ can be presented at the range 0 ≤ λ < ∞.
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approaching the curve from the negative w side and ϵ →
−∞ when approaching from the positive w side. This
feature is absent without tilt. In the region where the fixed
points are stable, i.e. when

w2
− < w < 0; ð30Þ

we can have 1 < ϵ < 3=2. For the eigenvalues and curves
w2
i , see Appendix B 2.
The full stability of the w ¼ 0 solutions cannot be solved

using the simplest Lyaponov method. The linear method
showed the fixed point to be stable on this curve in the shear
and the vorticity directions. Using the center manifold
theorem, we find the lowest-order approximation in the
dust direction to be

Ω0ðαÞ ¼ −
2sech2ð2λÞ
sechð2λÞ þ 1

Ω2ðαÞ: ð31Þ

From this equation we can deduce that the fixed point is
unstable in the dust direction: if the system is perturbed in
the positive dust direction, it will return to the fixed point,
but if the system is perturbed in the negative dust direction,
it will continue in the negative direction. Consequently,
when w ¼ 0, the system has no stable fixed points.

3. The fixed point allowing stable inflation
with shear-hair

The nontrivial fixed point where the vorticity and the
curvature disappear is at

V� ¼ 0;

K� ¼ 0;

Ω� ¼ 3ðw − 1Þð3w − 4W þ 1Þ
Wð−3wþ 2W þ 1Þ2 ;

Σ� ¼ 2 − 2W
−3wþ 2W þ 1

: ð32Þ

This situation is depicted in Fig. 3. The fixed point can
represent any expansion rate as it exists for −∞ < ϵ < ∞.
The curve where the fixed points are not defined is
w ¼ ð1þ 2 coshð2λÞÞ=ð−1þ 4 coshð2λÞÞ; moreover ϵ →
∞ when approaching the curve from the negative w side
and ϵ → −∞ when approaching from the positive w side.
This feature is absent without tilt. There exists a wide
region of parameter space where the fixed point is stable,
i.e. when

w < w3
−: ð33Þ

The eigenvalues and w3
− are presented in Appendix B 3.

Furthermore, the right panel of Fig. 3 shows ϵ ≈ 0 when
w ≈ −1. Therefore, this fixed point gives a counterexample
to the cosmic no-hair conjecture.

4. The shear universe fixed points

The system includes two fixed points where only the
shear does not vanish:

V� ¼ K� ¼ Ω� ¼ 0 and Σ� ¼ �1: ð34Þ

The eigenvalues of the negative dimensionless shear fixed
point are �

6; 6;
3 − 3w
W

�
; ð35Þ

and the eigenvalues of the positive dimensionless shear
fixed point are �

−2; 2;
−3wþ 4W − 1

W

�
: ð36Þ

Both fixed points are always saddle points and have ϵ ¼ 3
for all w and λ.

w2

w2

w1
2

w3
2

2 4 6 8 10 12 14
cosh 2

1.0

0.5
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0.5

1.0
w

1.00.50.00.51.0

w

10
20

30

cosh 2

1

0

1

2

3

40

FIG. 2 (color online). The left panel shows the stability properties of the fixed point (29). In the orange areas the solution is a saddle
point (repulsive in one direction in the lighter colored regions and in two directions in the darker colored regions), in the white area the
fixed point is stable, and on the black curves the fixed point does not exist. Dotted curves (including w ¼ 0) denote where the
linearization method cannot recognize the stability properties. If λ → ∞, then w2þ → 1 and w2

−, w2
1, and w2

3 converge to zero. The right
panel shows the corresponding ϵ values.

P. SUNDELL and T. KOIVISTO PHYSICAL REVIEW D 92, 123529 (2015)

123529-6



5. The curvature and shear universe fixed points

The system includes another fixed point independent of
the tilt angle and the equation-of-state parameter:

V� ¼Ω� ¼ 0 and K� ¼ 3=4 and Σ� ¼ 1=2: ð37Þ
The eigenvalues of the fixed point are�

−
3

2
;−

3

2
;−

3w
W

�
: ð38Þ

These are all negative if w ∈ ð0; 1�, thus describing a stable
fixed point. The solution is not an attractor if the fluid
dilutes slower than dust, w ∈ ½−1; 0Þ, since then the relative
contribution of the fluid energy density will dominate in the
end. In the case where w ¼ 0, the stability cannot be
determined using the linear method, but as in this case this
fixed point coincides with Eq. (29), we already know it is
unstable. This solution expands with the rate given by
ϵ ¼ 3=2, regardless of w and λ.

IV. COSMOLOGICAL APPLICABILITY

In this section we consider the possible cosmological
relevance of the models. First we will discuss the role of
dynamical variables of the system (19), and then construct
explicit examples of early and late cosmologies with
nontrivial but potentially viable anisotropic dynamics.

A. On the anisotropies

Here we briefly discuss various possible effects that
seem to emerge in these anisotropic models. In particular,
we report the observations that (1) the shear-free condition
could be supported with the tilt, (2) the rotation might grow
in special cases, (3) strong tilt can have a freezing effect
on the evolution and (4) we obtain anisotropically accel-
erating solutions. The last two of these we illustrate with
some numerical solutions obtained by integrating our full

equations of motion. The numerical solutions are in
complete agreement with the analytic considerations of
the previous section.

1. Shear

Cosmological observations constrain the shear to be very
small in the post-recombination universe. In particular, the
CMB is compatible with at most jΣj≲ 10−4 at the decou-
pling [2]. This appears to be problematic if we want to have
otherwise sizable anisotropies, since according to Eq. (21),
curvature as well as vorticity act as sources for the shear.
Thus, generically in viable cosmologies we expect to have
only small effects from each of these terms, since it is
otherwise difficult to keep the shear under control. We will
present in the following some examples with nontrivial but
small cosmological effects from anisotropies in the pres-
ence of shear. We have found both stable and unstable fixed
points with nonvanishing shear, of which Eq. (32) can
accommodate accelerating expansion and can thus describe
anisotropic inflation.
With special fine-tuning however, one might eliminate

the shear from the anisotropic fixed points (27) and (29) [the
shear is zero in the fixed point (32) iff λ ¼ 0 or w ¼ −1].
The fine-tuning required is the specific relation between the
fluid parameters cosh 2λ ¼ −ð1þ 1=wÞ=2 that singles out a
zero-measure family of models in the w < 0 half of the
parameter space. We will not investigate these special cases
further here, but mention that it might be interesting to
consider them as a possible realization of the so-called shear-
free condition in cosmology; see Refs. [13,49,50] on
theoretical and phenomenological aspects of shear-free
cosmologies.

2. Rotation

The vorticity determines an infinitesimal rotation in an
infinitesimal proper time interval [47]. Its role differs from
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FIG. 3 (color online). The left panel shows the stability properties of the fixed point (32). In the white region the fixed point is
an attractor, and it is a saddle point in the orange regions (repelling in one direction in the lighter and two directions in the darker
shaded areas). On the black curves the fixed point is not defined, and on the dotted curves (including w ¼ 0) a Lyaponov exponent
has a vanishing real part. If λ → ∞, then w3þ → 1, w3

3 → 1=2, w3
2 → 1=5 and w3

− → 0. The right panel shows the values of ϵ.

ANISOTROPIC COSMOLOGY AND INFLATION FROM A … PHYSICAL REVIEW D 92, 123529 (2015)

123529-7



the shear and curvature anisotropies, as the vorticity decou-
ples from the expansion. By this we mean that it does not
enter the constraints (26) and (25) and thus does not act as an
effective energy source for the expansion, but rather affects
the dynamics of the overall scale factor indirectly via its
dynamical impact on the evolution of the curvature and the
shear. Furthermore, the redshift of a distant object is not
directly dependent on V either, because it does not affect the
separation between two successive spatial hypersurfaces
[47]. The fixed point where the vorticity is not zero, Eq. (27),
is always a saddle point and can represent the shear-, the
curvature-, the radiation- or the matter-dominated epochs
according to possible ϵ values.
From the evolution equation (23) we see that the

condition for the vorticity to grow is ϵ > 1þ 4Σ. Thus,
in a shear-free case we cannot increase the rotation in an
accelerating universe. Negative shear could however cata-
lyze the growth of vorticity.

3. Tilt

For strongly tilted models, coshð2λÞ ≫ 1, the time
passing along the trajectories of the system may slow
down. Let us illustrate this “freezing” effect with numerical
solutions. Choosing a positive-density matter with the
equation of state w ¼ 0, we experimentally find that the
fixed point (37) appears to attract a wide range of solutions.
The rate at which the solutions converge to this attractor
however can depend considerably upon the tilt angle λ of
the matter fluid. This is seen in Fig. 4, where trajectories

approaching the fixed point (37) are drawn with an
appreciable tilting angle. We set the tilt to λ ¼ 3 and
evolve models with various initial conditions; all the curves
appear to stop evolving after five e-folds, where V ≈ 0 and
Σ ≈ 0.5 (the left panel). However, allowing the integration
to continue much longer, say 200 000 e-folds longer, we
notice that all the curves do still approach the fixed point
(37) along the line V ¼ 0 and Σ ¼ 0.5 (the right panel). In
contrast, with say λ ¼ 0.1, the system is close to the fixed
point (37) already in tens of e-folds. One of the dynamical
effects of the tilt is thus obviously that it slows down or
“freezes” the evolution (at least in some corners of the
phase space near the fixed points).

4. Inflation

The fixed point (29) in the system can represent a
universe in a stable exponentially expanding phase
(ϵ ≈ 0). The shear is nonzero at the fixed point, unless
λ ¼ 0 or w¼−1. If w is slightly larger than negative unity,
the universe is approximately in an inflationary phase
regardless of the tilt. However, a nonzero tilt makes the
expansion faster and induces shear. Hence, this fixed point
represents a counterexample to the cosmic no-hair con-
jecture. As expected, this requires violating of the strong
energy condition (namely, w < −1=3; see Appendix A).
The amount of shear is connected to the rate of expansion in
this point, and is thus not arbitrary if we want to have
inflation. In the limit of large tilt, these quantities are given
solely by the equation of state of the fluid:
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FIG. 4 (color online). Trajectories in a dust-filled universe with λ ¼ 3. In the left panel, the system has evolved for 1000 e-folds
starting from different initial values, but none of the trajectories seemingly has evolved after five e-folds. In the right panel, the same
trajectories have had an additional 200 000 e-folds time to evolve, in which time all of them have nearly reached the fixed point (37).
Hence, after five e-folds the trajectories do evolve slowly along the same line parallel to the Ω axis, where V ¼ 0 and Σ ¼ 0.5. See
Sec. IVA 3 for further discussion.
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Σ�→
1þw
2−4w

; ϵ� →
3ð1þwÞ
2−4w

; when λ→∞: ð39Þ

These limiting values are reached with good accuracy
with λ of order a few. Remarkably, we can have both the
shear and the expansion rate within the desired ranges.
Namely, the near–de Sitter inflation with ϵ≲ 0.05 that is
required to produce the observed tilt of the scalar
fluctuation spectrum [2] is perfectly compatible with
a shear at the level of a few percent, which is the
maximal amount allowed by constraints on the
anisotropy [35] (in fact, with large enough tilt sim-
ply Σ� ¼ ϵ=3).
Numerical examples of cosmologies converging to the

anisotropic inflationary attractor are shown in Fig. 5,
with the model parameters set as w ¼ −0.99 and λ ¼ 4.
Trajectories are shown with four qualitatively different
initial conditions, including an isotropic case corre-
sponding to standard inflationary expansion. We see
that, from all the initial conditions, the universe ends
up in the inflationary fixed point that efficiently brakes
the rotation but retains a finite shear supported by
the tilt.

B. Bianchi IX cosmology with
late-time anisotropies

We will construct here an explicit example of full
cosmological evolution. The purpose is to find a concrete
scenario wherein the cosmological parameters fit the
observations and the anisotropies are not too large to be
immediately ruled out by the CMB bounds, but wherein we
could still generate a small amount of rotation (that could
have relevance to the large-angle CMB anomalies). We
consider a scenario where dark energy is tilted. The
equations to integrate are Eqs. (21)–(26), but in order to
describe a full realistic cosmic history, we also need to
include dust and radiation and supplement the correspond-
ing terms in these equations. At low redshifts we then
expect that our tilted dark energy component will begin to
dominate the energy budget (over dust and radiation) and in
addition to accelerating the universe, introduce slight
anisotropic features. The aim of the numerical study is
to investigate the detailed dynamics within the latter
transition period as well as at the time of decoupling.
In this setup then dust and radiation are comoving with

the coordinates and the dark energy fluid is tilted with
respect to them. To distinguish dust, radiation, and dark
energy from each other, we can still treat the variables (19)
as effective ones and merely decompose the energy-
momentum tensor (5) as

Tab ¼ ðρ2 þ p2Þnanb þ p2gab þ ðρ3 þ p3Þnanb
þ p3gab þ ðρ1 þ p1Þua1ub1 þ p1gab þ qa1u

b
1 þ ua1q

b
1;

ð40Þ

where na ¼ ð1; 0; 0; 0Þ is the four-velocity comoving with
the coordinates and

ua1 ¼ ðcoshðλ1Þ; 0; 0; sinhðλ1Þe2βðtÞ−αðtÞÞ ð41Þ

is the four-velocity of the tilted fluid and λ1 is the exact
tilt of the tilted fluid with respect to the comoving
coordinates. The details of the decomposition are given
in Appendix C.
By using the energy-momentum tensor (40), the relevant

field equations become

ϵ ¼ 1

2
½3w3 − 1�Ω3ðαÞ þ

1

2
½3w2 − 1�Ω2ðαÞ

þ 1

2
½3w1 − 1�Ω1ðαÞ − KðαÞ þ 2þ Σ2ðαÞ; ð42Þ

1 ¼ Ω3ðαÞ þ Ω2ðαÞ þW1Ω1ðαÞ þ KðαÞ þ Σ2ðαÞ; ð43Þ

when it comes to the two constraint equations, and the four
dynamical equations of motion generalize to

FIG. 5 (color online). Four solutions of the system, where
w ¼ −0.99 and λ ¼ 4, are drawn in the vicinity of the stable
fixed point (29). There the system is in an exponentially
accelerating state, ϵ ≈ 0.005, where V� ¼ 0, Σ� ≈ 1.7 × 10−3

and Ω� ≈ 1.005, hence presenting a counterexample to the
cosmic no-hair conjecture. The solid curve starts from where
an isotropic inflation would occur, but it also evolves to the
anisotropic fixed point.
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Σ0ðαÞ ¼ −1þ 2KðαÞ þ ΣðαÞ2 þ ðϵ − 3ÞΣðαÞ þ VðαÞ2 þΩ1ðαÞ þ Ω2ðαÞ þΩ3ðαÞ; ð44Þ

Ω0
1ðαÞ ¼ Ω1ðαÞ

�
2ϵþ 2ΣðαÞ − 4þ 1 − 3w1 − 2ΣðαÞ

W1

�

−
Ω0

2ðαÞ þ Ω2ðαÞ½3ð1þ w2Þ − 2ϵ� þ Ω0
3ðαÞ þ Ω3ðαÞ½3ð1þ w3Þ − 2ϵ�

W1

; ð45Þ

V 0ðαÞ ¼ ðϵ − 4ΣðαÞ − 1ÞVðαÞ; ð46Þ

K0ðαÞ¼−2fKðαÞ½−ϵþ1þΣðαÞ�þΣðαÞVðαÞ2g; ð47Þ

where W1 ≡ ð−w1 þ 1þ w1þ1
coshð2λ1ÞÞ=2, Ωi ¼ κρi=ð3H2Þ and

wi ¼ pi=ρi (i ¼ f1; 2; 3g). Like in Sec. II, the conserva-
tion of the energy-momentum tensor yields only one
equation, even though the decomposition of Tμν results in
two new functions. To obtain a closed system, we are
required to impose two new equations. The geometrical
mean of the expansion is eα, and hence by imposing
ρi ∝ e−3ð1þwiÞα we find in terms of the dimensionless
variables

Ω0
iðαÞ ¼ ΩiðαÞ½2ϵ − 3ð1þ wiÞ�: ð48Þ

Using this relation for Ω2 and Ω3, Eq. (45) simplifies to

Ω0
1ðαÞ ¼ Ω1ðαÞ

�
2ϵþ 2ΣðαÞ − 4þ 1 − 3w − 2ΣðαÞ

W1

�
:

ð49Þ

After choosing appropriate values for the parameters wi
and λ1, Eqs. (42), (43), (44), (46), (47), (48) and (49)
constitute a full autonomous system which we use to
describe the evolution of the universe from the radiation-
dominated epoch to the present time. Even though earlier
we discussed a setup where dark energy is tilted with
respect to dust and radiation, the aforementioned equations
are derived without assuming which fluid is tilted. Hence
in the subsequent sections, we give special attention to
tilted dark energy scenarios, but employ other possibil-
ities too.

1. Numerical solution

We studied the above specified system of equations (42),
(43), (44), (46), (47), (48) and (49) numerically in order to
quantify the amount of fine-tuning required for the system
to describe viable late-time cosmology, including the CMB
anomalies. In practice by viability we now mean that with
anisotropies kept at the maximum of some percent level,
the system should evolve through radiation- and matter-
dominated eras as usual, and then near the present epoch

approach a dark-energy-dominated solution so that ΩΛ ≈
0.7 and Ωd ≈ 0.3 and Ωr ∼ 10−5 today. The time from the
decoupling to the present time then corresponds to
lnð1100Þ ≈ 7 e-folds (with shear at the maximum percent
level, the expansion is direction independent to a good
approximation). From Eq. (12) it appears that the tilt should
not be too strong in order to avoid generating too much
shear in the expansion. We thus impose λ ≤ 1=100, and
furthermore choose the fluids to be dark energy, dust and
radiation.
According to our numerical analysis, the solutions

satisfying the above-described conditions all originate from
the vicinity of the negative or positive fixed point (34).
However, not all the initial conditions close to the fixed
points (34) lead to the desired type of solutions, but the
initial conditions need to be carefully chosen. From the
vicinity of either of the fixed points (34), the solutions
enter the radiation-dominated era similarly, but can lead to
different late-time cosmologies. Nevertheless, constraining
K and V from the above appears to be sufficient to keep the
anisotropies negligible, independently of the sign of Σ,
which fluid is tilted or the amount of tilt (as long as
λ ≤ 1=100). These results indicate that inflation is not
required to vaporize shear for viable late-time cosmology to
occur. Let us consider examples where some shear is left
after inflation.
Example A: The tilted fluid is dark energy and

λ ¼ 1=100. The initial conditions are given in Table I
and the solution is drawn in Fig. 6, showing the dynamical
variables as functions of the number of e-folds (α). In
addition, the values of the dynamical quantities at the
decoupling and at the present time are tabulated in Table I.
We observe the emergence of three epochs: the radiation-,
the dust- and the dark-energy-dominated expansions, the
latter finally converging to the attractor (29) as expected.
Also the shear, the vorticity and the curvature are drawn in
the figure, though they are almost indistinguishable. They
reach the peak of their dynamical significance around the
matter–dark energy equality, where we roughly have
Σ ≈ −0.0007, K ≈ −0.004, and V ≈ 0.05. Eventually these
will decay with the accelerated expansion, since also shear
given by the asymptotic future solution (29) vanishes
when w ¼ −1.
Let us study this example further. According to our

numerical simulations, at the beginning of the radiation
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epoch only the conditions jKj ≲ 10−10 and jVj≲ 10−5 are
to be satisfied to ensure small enough anisotropies during
late-time cosmology. These conditions are remarkably
similar to those stipulated for the standard ΛCDM model
referred to as the flatness problem. Breaking the con-
dition for K would make either jΣj too large at the
decoupling or both jΣj and jKj too large during the
transition from dust-dominated to dark-energy-dominated
eras. Also the vorticity is constrained from above, since
too much rotation would boost the Σ and K during the
transition period. In addition to these initial conditions, of

course, we need to choose the relative amounts of the
three types of energy densities, Ωi’s, suitably to have
proper radiation, dust and dark energy epochs. The initial
condition for Σ is then to be determined using Eq. (43).
Further numerical analysis indicates that, at the accuracy
presented in Table I and Fig. 6, the results of Example A
are not dependent on the size of λ (assuming λ≲ 1=100)
and hold for both signs of V and irrespectively of which
fluid is tilted.
Example B: Let us consider the same scenario as in

Example A, but change the sign of the initial shear. The

TABLE I. The initial values for the dynamical variables of the models in Examples A and B are given; the exact value of the shear is to
be calculated from the generalized Friedmann equation (43), but only its approximative value is presented in this table. The systems are
solved using these initial data and the values of the dynamical variables at the decoupling time and at the present time are reported with
one digit accuracy.

ΩΛ Ωd Ωr Σ V K

Example A—positive initial shear
Initially 1 × 10−19 5 × 10−3 0.99 ≈7.07107 × 10−2 1 × 10−5 −1 × 10−10

At the Decoupling ∼ 1 × 10−9 0.7 0.3 9 × 10−5 2 × 10−3 −6 × 10−6

Present Time ∼ 0.7 0.3 1 × 10−4 −6 × 10−4 4 × 10−2 −3 × 10−3

Example B—negative initial shear
Initially 1 × 10−19 5 × 10−3 0.99 ≈ − 7.16378 × 10−2 1 × 10−5 −1 × 10−10

At the Decoupling ∼ 1 × 10−9 0.7 0.3 −8 × 10−5 3 × 10−3 −6 × 10−6

Present Time ∼ 0.7 0.3 1 × 10−4 1 × 10−3 7 × 10−2 −3 × 10−3

FIG. 6 (color online). Bianchi IX cosmological models—Example A on the left side and Example B on the right side—describing the
evolution of the universe from the radiation-dominated epoch to the dark-energy-dominated epoch. The system is solved using
Eqs. (42), (43), (44), (46), (47), (49) and (48) and the initial conditions in Table I. The horizontal axis is the number of e-folds from the
present time. All the evolving quantities are plotted in the upper panels, whereas the behavior of V, Σ, and K is magnified close to the
horizontal axis in the lower panels.
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initial conditions are given in Table I and the solution is
drawn in Fig. 6. In addition, the values of the dynamical
quantities at the decoupling and at the present time are
tabulated in Table I. The system appears identical to that in
Example A apart from Σ and V. From the figure it can be
seen that the ratio jV=Σj takes the higher value at α ∼ −0.5
in the case of negative initial shear and at the same α
the shears take opposite signs. From Table I we see that
these conclusions hold at the decoupling and present
time too. Further numerical analysis indicates that the
same constraints as in Example A, namely jKj≲ 10−10

and jVj ≲ 10−5, apply here for the same reasons. Moreover,
at the accuracy presented in Table I and Fig. 6, the system in
this example is not altered by changing the fluid that is tilted,
the size of λð≲1=100Þ or the sign of V.
Example C: Let us study Examples A and B using

different values for the initial vorticity. We impose the
initial values

ð0.01 × VAB; 0.1 × VAB;VAB; 10 × VABÞ;

where VAB denotes the initial value for V used in Examples
A and B, i.e. VAB ¼ 1 × 10−5, and represents the results in
Table II and in Fig. 7. Furthermore, the evolution of Σ and
V corresponding to the initial value X × VAB is denoted by
ΣX and VX in Fig. 7, respectively. For example, the curves
Σ0.01 and V0.01 describe the evolution of Σ and V corre-
sponding to the initial vorticity 0.01 × VAB. The effects of
changing the initial V appear similar in both cases. Curves
Σ0.01 and Σ0.1 are indistinguishable for both cases in Fig. 7,
indicating that the initial V ≲ 0.1VAB has a negligible effect
on the evolution of Σ. Increasing the initial vorticity further
induces a positive contribution to the shear and vorticity in
both cases around the time of dust–dark energy equality.
Qualitatively the behavior is similar but quantitatively
weaker at the decoupling and at the present time (see
Table II). Increasing the initial vorticity V ≲ VAB by an
order of magnitude induces an order-of-magnitude growth
for V but a negligible growth for Σ at the decoupling. The
results are independent of the amount of tilt, assuming
λ≲ 1=100, and which fluid is tilted.

TABLE II. The values of V and Σ at the decoupling and at the present time corresponding to different initial values for the vorticity are
presented. Here, 0.01 × VAB, 0.1 × VAB, VAB, and 10 × VAB represent different initial vorticities (see Example 3) and on the left side the
values correspond to positive initial shear (see Example A) and on the right side the values correspond to negative initial shear (see
Example B).

0.01 × VAB 0.1 × VAB VAB 10 × VAB 0.01 × VAB 0.1 × VAB VAB 10 × VAB

At the decoupling At the decoupling
V 3 × 10−5 3 × 10−4 3 × 10−3 3 × 10−2 2 × 10−5 2 × 10−4 2 × 10−3 2 × 10−2

Σ −9 × 10−5 −9 × 10−5 −9 × 10−5 3 × 10−4 8 × 10−5 8 × 10−5 9 × 10−5 2 × 10−4

At the present time At the present time
V 7 × 10−4 7 × 10−3 7 × 10−2 3 × 10−1 4 × 10−4 4 × 10−3 4 × 10−2 3 × 10−1

Σ −2 × 10−3 −2 × 10−3 −1 × 10−3 4 × 10−1 −1 × 10−3 −1 × 10−3 −6 × 10−4 3 × 10−2

FIG. 7 (color online). The evolution of Σ and V in two Bianchi IX cosmological models is integrated using several initial values for the
vorticity, where the initial shear is positive (left plot) and negative (right plot). Curves denoted by Vi and Σi represent the evolutions of
the vorticity and the shear, respectively, and the subscript refers to the initial value of the vorticity (see Example 3). The curves Σ0.01 and
Σ0.1 are indistinguishable from each other in both panels.
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The peculiar feature that all the result are independent of
the size of λ≲ 1=100 and which fluid is tilted implies that
the evolution of the anisotropies is decoupled from the fluid
for a small enough tilt.5 In the corner of the phase space
studied above, the anisotropies reach their peak values
during the matter–dark energy transition. This is no surprise,
because after that point they can no longer grow as they
approach the asymptotic future solution (29) cutting all the
hair of the anisotropy when w ¼ −1, and hence this location
is at least a localmaximumof anisotropies. Because the shear
and vorticity also appear to be decoupled for a small enough
tilt and vorticity at the beginning of the radiation era, the
results obtained here differ significantly form another
Bianchi type IX realization [51], where even a small vorticity
was found to induce considerable shear. In Ref. [51] the
authors found the maximum value for the present-time
vorticity to be ∼3.9 × 10−13 for a nonaxisymmetric
Bianchi IX metric sourced by a tilted perfect fluid including
only dust. A roughly 10 orders ofmagnitude difference in the
results suggests that different realizations of the Bianchi IX
spacetime can yield remarkably different results. In the light
of Ref. [51] and our numerical examination, the model used
here has the potential to explain the anomalies in the CMB
and late-time expansion simultaneously.

V. CONCLUSIONS

We investigated the dynamics of the tilted axisymmetric
Bianchi IX model with a fluid allowing energy flux. The
cosmological application we had in mind was the gener-
alization of anisotropic inflation and anisotropic dark
energy models to generate parity-violating imperfect fea-
tures at cosmological scales. The latter could perhaps then
be manifest in the large-angle anomalies of the CMB. In the
framework of the Bianchi IX model, accommodating a tilt
of the fluid required us to introduce a heat flux for
consistency. In general, the Einstein equations and the
continuity equation are given by treating the equation of
state w and the tilt angle of the fluid λ as time-dependent
functions, enabling us to consider realistic multifluid
scenarios, but for simplicity the phase space was studied
by reducing w and λ to parameters.
We performed a dynamical system analysis, identifying

seven fixed points in the cosmological phase space and
determining their stability for given model parameters w
and λ, which we considered in the ranges −1 ≤ w ≤ 1 and
−∞ < λ < ∞. Only one of the fixed points allows for
rotation, but always describes nonaccelerating expansion.
The fixed points generically include a non-negligible
amount of shear, which can then be accompanied by the

curvature with or without the tilted fluid energy density. Of
particular interest for possible applications is an inflating
attractor in which the amount of shear is given by the tilt
of the fluid. The vorticity in general has a different status in
the system compared with the other dynamical variables, as
the vorticity does not contribute directly to the expansion
rate.
The anisotropically accelerating fixed point can be

relevant to both early inflation and dark energy models.
We did some preliminary numerical investigations of both
types of scenarios, verifying that indeed realistic cosmo-
logical evolutions can be constructed. The late-time
solutions have the potential to explain both the parity-
preserving and -violating anomalies of the CMB, which is
unexpected in the light of earlier studies of the subject [51].
Our numerical studies indicate that the only fine-tuning the
late-time solutions require is to set the curvature very close
to zero after inflation. The fixed point (29) retains a
constant amount of shear (when w ∼ −1 and λ ≠ 0) with
the expansion, even if it is accelerating, thus providing a
counterexample to the cosmic no-hair conjecture. Though
many such counterexamples have been presented (see the
Introduction for an incomplete list of references), they have
not been previously (to our knowledge) devised by exploit-
ing tilt and energy flux.
It could be very interesting to study further the observa-

tional implications of such possible imperfections in the
source fluid. Determining the precise signatures from
relaxing the standard assumptions qa ¼ 0 and λ ¼ 0 could
allow us to falsify the proposed origin of cosmic anomalies
as a tilted dark energy (or inflaton). However, before such a
proposal could be promoted from the present phenomeno-
logical exploration into a more convincing alternative
cosmology, we needed to develop also the theoretical
underpinnings of the model. It would be desirable to
describe the fluid by a Lagrangian field theory, instead of
adding it as a parametrized energy component by hand. In
particular, in the present context the precise form of the heat
flux was fixed by mathematical consistency rather than
physical motivations. To describe the dynamics of the fluid
more properly, wewould guess one probably needs to allow
in general time-dependent wðαÞ and λðαÞ, and the dynamics
for these should be determined from the Lagrangian prin-
ciple for the fundamental degrees of freedom for the fluid.
Despite these challenges, we believe our results could

provide an interesting starting point for further explorations
of rotating universes filled by some kind of tilted dark
energy.
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APPENDIX A: ENERGY CONDITIONS

The energy-momentum tensor (5) does not violate the
weak or dominant energy conditions. For some parameter
values w and λ, it does however, break the strong energy
condition. The strong energy condition for Eq. (5) reads,
using the results of Ref. [52] for our case,

ρ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwþ 1Þ2tanh2ð2λÞ

q
þ wþ 1

�
≥ 0;

ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwþ 1Þ2sech2ð2λÞ

q
þ 2w

�
≥ 0: ðA1Þ

For w ≥ 0, the above conditions are satisfied for any λ, but
the latter of the conditions is violated by any λ if w < −1=3.
Thus neither the tilting of the fluid nor the implied energy
flux changes the usual bound for the violation of the strong
energy condition.

APPENDIX B: EIGENVALUES

1. The rotating fixed point (27)

The eigenvalues E1
i of the stability matrix of the fixed

points (27) are

E1
1 ¼ 3

3wþ 2W − 1

5W − 1
; E1

2 ¼ 3

ffiffiffiffiffi
W

p ðw −WÞ þ ffiffiffiffi
A

p
=2ffiffiffiffiffi

W
p ð5W − 1Þ ;

E1
3 ¼ 3

ffiffiffiffiffi
W

p ðw −WÞ − ffiffiffiffi
A

p
=2ffiffiffiffiffi

W
p ð5W − 1Þ ; ðB1Þ

where A¼−2wð3w2þw−3Þþ8ðwþ14ÞW2þ40ðw−1ÞwW−
92W3−28Wþ2. The dotted curves separating the different
areas in Fig. 1 are

w1
� ¼ cosh2ð2λÞ − 2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 2 coshð2λÞp Þ coshð2λÞ þ 2

coshð2λÞðcoshð2λÞ þ 4Þ − 2
:

ðB2Þ

Curves w1
� satisfy the equality in Eq. (28) and the

equations E2 ¼ K� ¼ V� ¼ 0.

2. The nonrotating matter-scaling fixed point (29)

The eigenvalues E2
i of the stability matrix of the fixed

points (29) are

E2
1 ¼ −

3

2

3wþ 2W − 1

2W − 1
;

E2
2 ¼ −

3

4

Wðw − 2W þ 1Þ − ffiffiffiffi
B

p

ð1 − 2WÞW ;

E2
3 ¼ −

3

4

ðWðw − 2W þ 1Þ þ ffiffiffiffi
B

p Þ
ð1 − 2WÞW ; ðB3Þ

where B¼Wð−24w3þw2ðWþ16Þþwð28W2−30Wþ8Þþ
ð1−2WÞ2WÞ. The curves separating the different areas in
Fig. 2 are obtained from the equations Ei ¼ 0 (dotted) and
1=Ei ¼ 0 (solid), i ¼ f1; 2; 3g. These curves are

w2
1 ¼

−1
2 coshð2λÞ þ 1

; w2
2 ¼ 0;

w2
3 ¼

1

coshð2λÞ − 1
; w2

4 ¼
coshð2λÞ þ 1

coshð2λÞ − 1
; ðB4Þ

w2
� ¼ 1 − coshð2λÞ þ cosh2ð2λÞ � coshð2λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ð2λÞ − 2 coshð2λÞ þ 5

p
2cosh2ð2λÞ þ 2 coshð2λÞ − 1

; ðB5Þ

and it is easy to verify that they approach zero or unity as given in Fig. 2. Theþ case of Eq. (B5) yields the lower bound for
the inequality (30).

3. The nonrotating flat matter-scaling fixed point (32)

The eigenvalues Ei of the stability matrix of the fixed points (32) are

E1 ¼ −
3ðw − 1Þð3w − 4W þ 1Þ
2Wð−3wþ 2W þ 1Þ ;

E2 ¼
3ð−3w2 þ 2wþ ð1 − 2WÞ2Þ

Wð−3wþ 2W þ 1Þ ;

E3 ¼
−9w2 þ 6wþ 24W2 − 24W þ 3

−6wW þ 4W2 þ 2W
: ðB6Þ

The curves separating the different areas in Fig. 3 are obtained from the equations Ei ¼ 0 (dotted) and 1=Ei ¼ 0 (solid),
i ¼ f1; 2; 3g. These curves are
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w3
1 ¼ 1; w3

2 ¼
coshð2λÞ þ 2

5 coshð2λÞ − 2
;

w3
� ¼ 1 − coshð2λÞ þ cosh2ð2λÞ � coshð2λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ð2λÞ − 2 coshð2λÞ þ 5

p
2cosh2ð2λÞ þ 2 coshð2λÞ − 1

; ðB7Þ

~w3
� ¼ 2 − 2 coshð2λÞ þ cosh2ð2λÞ � 2 coshð2λÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 2 coshð2λÞp
cosh2ð2λÞ þ 4 coshð2λÞ − 2

; w3
3 ¼

2 coshð2λÞ þ 1

4 coshð2λÞ − 1
: ðB8Þ

At the limit λ → ∞, the behavior of the curves w3
�, w

3
2, and

w3
3 is given in Fig. 3.

APPENDIX C: DECOMPOSITION OF THE
ENERGY-MOMENTUM TENSOR

In the set of equations (21)–(26), the fluid variableΩ can
be considered as an effective “total” fluid, whose density
consists of a combination of separate components Ωi, as
Ω ¼ ΣiΩi. The effective or the total equation-of-state
parameter w describes how the density of the total fluid
is related to its pressure and the effective tilt illustrates how
much the total fluid is tilted with respect to the normals of
the surfaces of homogeneity. In this sense, the quantities Σ,
K, V, and qa are also to be considered as effective.
Therefore, we can decompose Ω and qa into the “original”
components, but still treat the other quantities in their
effective forms.

Consider twofour-velocities,uc1¼ðcoshðλ1Þ;0;0;sinhðλ1Þ=ffiffiffiffiffiffi
g33

p Þ and nc ¼ ð1; 0; 0; 0Þ. The average (or effective) four-
velocity, uc, is the linear combination auc1 þ bnc, where a
and b are constants so that ucuc ¼ −1. By introducing a
shifted angle λ implicitly via

a ¼ sinhðλÞ
sinhðλ1Þ

; and b ¼ coshðλÞ − sinhðλÞ
sinhðλ1Þ

coshðλ1Þ;

the new four-velocity is nothing but uc ¼ ðcoshðλÞ; 0; 0;
sinhðλÞ= ffiffiffiffiffiffi

g33
p Þ. Hence, the tilt angle λ can be interpreted as

an average (or effective) tilt of the combination of the fluids
with respect to the reference frame.
The relations between the effective and exact fluid

densities, state parameters and tilt angles can now be
obtained by equating the tensors (5) and (40). However,
a simpler expression is achieved by expressing Eq. (40)
using W1,

T¼

0
BBBBB@
−W1ðtÞρ1ðtÞ−

P
3
i¼2wiðtÞρiðtÞ 0 0 0

0
P

3
i¼1wiðtÞρiðtÞ 0 0

0 0
P

3
i¼1wiðtÞρiðtÞ cosðθÞðW1ðtÞ−1Þρ1ðtÞ

0 0 0 ½w1ðtÞþW1ðtÞ−1�ρ1ðtÞþ
P

3
i¼2wiðtÞρiðtÞ

1
CCCCCA;

ðC1Þ

and equating Eqs. (10) and (C1), yielding

ρðtÞ¼ ρ1ðtÞþρ2ðtÞþρ3ðtÞ; wðtÞ¼w1ðtÞρ1ðtÞþw2ðtÞρ2ðtÞþw3ðtÞρ3ðtÞ
ρ1ðtÞþρ2ðtÞþρ3ðtÞ

; WðtÞ¼W1ðtÞρ1ðtÞþρ2ðtÞþρ3ðtÞ
ρ1ðtÞþρ2ðtÞþρ3ðtÞ

: ðC2Þ

Substituting these expressions into Eqs. (21)–(26) yields Eqs. (42)–(47) if wi and λ1 are constants.
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