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We discuss the nature of phase transitions in the fermionic King model which describes tidally
truncated quantum self-gravitating systems. This distribution function takes into account the escape of
high-energy particles and has a finite mass. On the other hand, the Pauli exclusion principle puts an upper
bound on the phase-space density of the system and stabilizes it against gravitational collapse. As a
result, there exists a statistical equilibrium state for all accessible values of energy and temperature. We
plot the caloric curves and investigate the nature of phase transitions as a function of the degeneracy
parameter in both microcanonical and canonical ensembles, extending the work of Chavanis [Int. J. Mod.
Phys. B 20, 3113 (2006)] for box-confined configurations. We consider stable and metastable states and
emphasize the importance of the latter for systems with long-range interactions. Phase transitions can
take place between a “gaseous” phase unaffected by quantum mechanics and a “condensed” phase
dominated by quantum mechanics. The phase diagram exhibits two critical points, one in each ensemble,
beyond which the phase transitions disappear. There also exists a region of negative specific heats and a
situation of ensemble inequivalence for sufficiently large systems. In the microcanonical ensemble,
gravitational collapse (gravothermal catastrophe) results in the formation of a small degenerate object
containing a small mass. This is accompanied by the expulsion of a hot envelope containing a large mass.
In the canonical ensemble, gravitational collapse (isothermal collapse) leads to a small degenerate object
containing almost all the mass. It is surrounded by a tenuous envelope. We apply the fermionic King
model to the case of dark matter halos made of massive neutrinos following the work of de Vega, Salucci,
and Sanchez [Mon. Not. R. Astron. Soc. 442, 2717 (2014)]. The gaseous phase describes large halos and
the condensed phase describes dwarf halos. Partially degenerate configurations describe intermediate-
size halos. We argue that large dark matter halos cannot harbor a fermion ball because these nucleus-halo
configurations are thermodynamically unstable (saddle points of entropy). Large dark matter halos may
rather contain a central black hole resulting from a dynamical instability of relativistic origin occurring
during the gravothermal catastrophe. We relate the existence of black holes to the microcanonical critical
point and determine the minimum halo mass above which black holes can form. We also compare
fermionic and bosonic models of dark matter and discuss the value of the mass of the dark matter particle
in each case.
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I. INTRODUCTION

Self-gravitating systems have a very particular thermo-
dynamics first investigated by Antonov [1] and Lynden-
Bell and Wood [2] in relation to stellar systems such as
globular clusters made of classical point-mass stars. A first
curiosity is the existence of negative specific heats [2]. It is
well known in astrophysics that self-gravitating systems
have negative specific heats [3]. However, when considered
from the viewpoint of statistical mechanics, this property
leads to an apparent paradox since the specific heat must be
positive in the canonical ensemble as it measures the
variance of the fluctuations of energy. As first understood
by Thirring [4], and further discussed by Lynden-Bell and
Lynden-Bell [5], this paradox is solved by realizing that the
statistical ensembles are inequivalent. Negative specific

heats are allowed in the microcanonical ensemble
(MCE) while they are forbidden in the canonical ensemble
(CE).1 The inequivalence of statistical ensembles is not
restricted to self-gravitating systems. It may arise in other
systems with long-range interactions due to the nonaddi-
tivity of the energy [6]. However, the statistical mechanics
of self-gravitating systems presents specific difficulties
[7–9] that are absent in other systems with long-range
interactions.

1MCE describes an isolated system evolving at fixed energy
while CE describes a dissipative system coupled to a thermal bath
fixing its temperature. For the sake of completeness, we shall
consider the two ensembles in this paper even if MCE is usually
the most relevant to describe astrophysical systems.
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First, there is no statistical equilibrium state in a strict
sense because a self-gravitating system in an infinite
domain has no maximum of entropy or free energy.2

There are not even critical points of entropy or free energy
because the isothermal self-gravitating sphere, correspond-
ing to the Boltzmann distribution coupled to the Poisson
equation, has infinite mass [11]. Therefore, the statistical
mechanics of self-gravitating systems is essentially an out-
of-equilibrium problem [12]. The absence of a statistical
equilibrium state in an unbounded domain is related to the
fact that self-gravitating systems like globular clusters have
the tendency to evaporate [13]. However, evaporation is a
slow process so that, on an intermediate time scale, self-
gravitating systems appear to be self-confined. Further-
more, stellar systems like globular clusters are never totally
isolated from the surroundings. In practice, they feel the
tides of a nearby galaxy. As a result, the stars escape when
they reach sufficiently high energies. This implies that the
density profile of the cluster vanishes at a finite radius R
interpreted as a tidal radius.
There are two possibilities to solve the infinite mass

problem of the self-gravitating isothermal sphere. A first
possibility, introduced by Antonov [1], is to enclose the
system within a “box” so as to artificially prevent its
evaporation. The box radius mimics the tidal radius of more
realistic systems. This procedure is appreciated by theorists
first because it is simple, and second because it allows
one to develop a rigorous statistical mechanics of self-
gravitating systems based on the ordinary Boltzmann
distribution. However, for astrophysical applications, this
model is too idealized because self-gravitating systems in
nature are not enclosed in boxes! Another possibility is to
take the evaporation of high-energy stars into account and
use the King model [14]. This is a truncated Boltzmann
distribution obtained from the usual Boltzmann distribution
by subtracting a constant term so that the distribution
vanishes at the escape energy. This distribution has a finite
mass. It can be derived from a kinetic theory based on the
classical Landau equation [14].
Even when self-gravitating systems are confined in

boxes, or when evaporation is properly taken into account
by using the King model, a second difficulty arises which is
now related to the fact that self-gravitating systems have
the tendency to collapse [13]. In the box model, it is
found that statistical equilibrium states exist only above a
critical energy Ec ¼ −0.335GM2=R in MCE and above a
critical temperature Tc ¼ GMm=ð2.52RkBÞ in CE, both

discovered by Emden [15]. The series of equilibria of
classical isothermal spheres has the form of a spiral and
these critical points correspond to turning points of energy
and temperature. Stable configurations have a density
contrast ρð0Þ=ρðRÞ < 709 in MCE and ρð0Þ=ρðRÞ <
32.1 in CE [1,2,7,16–19]. There are more stable states
in MCE than in CE due to ensemble inequivalence (a stable
equilibrium state in CE is always a stable equilibrium state
in MCE but not the converse [6]). These configurations are
metastable (local entropy maxima in MCE and local free
energy maxima in CE)3 but their lifetime is considerable
since it scales as eN (except close to the critical point) [19].
For globular clusters with N ∼ 106 this lifetime is so great
that metastable states can be considered as stable states.4
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FIG. 1. Series of equilibria of the classical King model. It has a
snail-like (spiral) structure but only the part of the curve up to CE
in the canonical ensemble and up to MCE in the microcanonical
ensemble is stable (the region between CE and MCE where the
specific heat is negative corresponds to a region of ensemble
inequivalence).

2We can always increase the entropy at fixed mass and energy
in MCE and we can always increase the free energy at fixed mass
in CE by spreading the system to infinity (see Appendixes A and
B of Ref. [10]). The absence of a statistical equilibrium state in an
unbounded domain can also be directly inferred from the fact that
the integrals defining the density of states in MCE and the
partition function in CE diverge at large distances [7].

3There is no global maximum of entropy or free energy. In
MCE, one can always increase the entropy at fixed mass and
energy by forming a binary star surrounded by a hot halo. The
entropy diverges when the binary is made tighter and tighter, and
the halo hotter and hotter (see Appendix A of Ref. [10]). In CE,
one can always increase the free energy by approaching the
particles at the same point. The free energy diverges when a Dirac
peak containing all the particles is formed (see Appendix B of
Ref. [10]). The absence of a strict statistical equilibrium state in a
box can also be directly inferred from the divergence of the
density of states in MCE and from the divergence of the partition
function in CE at small distances [7,20].

4When the system is in a metastable state, the spontaneous
formation of a binary star surrounded by a hot halo in MCE
(S → þ∞) or the spontaneous formation of a Dirac peak in CE
(J → þ∞) is a very rare event since its probability scales as e−N .
Indeed, in order to leave a metastable state, the system has to
overcome a huge barrier of entropy or free energy whose height
scales as N. This requires very particular correlations and takes
too much time to be physically relevant.
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Similar results are obtained with the classical King model
(see Fig. 1) as shown by Katz [21] and further analyzed in
Ref. [22] (Paper I). Therefore, a self-gravitating system can
reach a statistical equilibrium state described by the King
model (truncated Boltzmann distribution) at sufficiently
high energies and at sufficiently high temperatures, even if
there is no statistical equilibrium state in a strict sense
[7–9]. However, for E < Ec or T < Tc, there is no
statistical equilibrium state anymore and the system under-
goes gravitational collapse.5 This is called gravothermal
catastrophe [2] in MCE and isothermal collapse [17] in CE.
In MCE, the gravothermal catastrophe leads to a binary star
surrounded by a hot halo [23]. In CE, the isothermal
collapse leads to a Dirac peak containing all the particles
[24]. Therefore, the result of the gravitational collapse is to
form a singularity: a “binary starþ hot halo” in MCE and a
“Dirac peak” in CE [9].
These results have been obtained from a thermodynam-

ical approach, pioneered by Antonov [1] and Lynden-Bell
and Wood [2] (see also Refs. [7–10,16–19]), where the
maximization of the Boltzmann entropy at fixed mass and
energy in MCE or the minimization of the Boltzmann free
energy in CE are considered in order to get the “most
probable” state. These results have been confirmed by a
more rigorous statistical mechanics approach, developed
by Horwitz and Katz [25,26] and de Vega and Sanchez
[27,28], starting directly from the density of states in MCE
or from the partition function in CE and using field-
theoretical methods. By using the theory of large devia-
tions, one can show on general grounds that these two
approaches are physically equivalent [6].
The previous results are valid for classical particles such

as stars in globular clusters. If we now consider a gas of
self-gravitating fermions, gravitational collapse stops when
the system becomes degenerate as a consequence of the
Pauli exclusion principle. In that case, the singularity (tight
binary or Dirac peak) is smoothed out and replaced by a
compact object which is a completely degenerate “fermion
ball” similar to a white dwarf star. At finite temperature,
this compact object is surrounded by a dilute atmosphere
(vapor) so that the whole configuration has a “core-halo”
structure. Therefore, when quantum mechanics is properly
accounted for, the system is stabilized against gravitational
collapse. In that case, there exists an equilibrium state for
any accessible value of energy and temperature. We can
therefore study phase transitions between a “gaseous
phase” unaffected by quantum mechanics and a

“condensed phase” dominated by quantum mechanics.6

The nature of these phase transitions has been discussed
in detail by Chavanis [29–34] (see a review in Ref. [9]) in
the case where the fermions are confined within a box.
Similar phase transitions are obtained if, instead of quan-
tum particles, we consider classical particles and regularize
the gravitational potential at short distances [31,35–38]
or take into account the finite size of the particles by
considering a hard-spheres gas [7,29,34,39–41]. For com-
pleteness, we should also mention the seminal paper of
Lynden-Bell and Lynden-Bell [5] and the series of papers
by Miller and collaborators [42–48] who studied phase
transitions in the system of concentric spherical gravitating
shells introduced by Hénon [49]. Even if the details of the
phase transitions depend on the specific form of the small-
scale regularization, the phenomenology of these phase
transitions is relatively universal, as described in Ref. [9].
In the present paper, we extend the study of Ref. [9] to the
fermionic King model. This extension is important because
the fermionic King model is more realistic than box
models. Furthermore, the fermionic King model may have
applications in astrophysics and cosmology. Indeed, it may
provide a realistic model of dark matter halos made of
massive neutrinos.
The observation of the rotation curves of galaxies has

revealed that the galaxies are surrounded by a halo of dark
matter [50]. The nature of dark matter remains unknown
and constitutes one of the greatest challenge of modern
cosmology. The cold dark matter (CDM) model is suc-
cessful at describing the large-scale structures of the
Universe but it encounters many problems at the scale
of galactic or subgalactic structures. In particular, CDM
simulations [51] lead to r−1 cuspy density profiles at
galactic centers (at the scales of the order of 1 kpc and
smaller) while most rotation curves indicate a smooth core
density [52]. On the other hand, the predicted number of
satellite galaxies around each galactic halo is far beyond
what we see around the Milky Way [53]. It is therefore

5In practice, the energy and the temperature slowly decrease
with time due to collisions and evaporation until a point at which
there is no equilibrium state anymore (see Appendix A). In that
case, the system collapses. This corresponds to a saddle-node
bifurcation. Therefore, the lifetime of stellar systems is controlled
by evaporation and gravitational collapse.

6For self-gravitating fermions, there exists a strict statistical
equilibrium state (global maximum of entropy or global maxi-
mum of free energy) for all accessible values of energy and
temperature. There may also exist metastable states (local
maxima of entropy or local maxima of free energy) that are as
much, or even more, relevant than fully stable states. Indeed, the
choice of the equilibrium state depends on a notion of “basin of
attraction” and the metastable states may be reached more easily
from generic initial conditions than the fully stable states that
require very particular correlations. For example, in order to pass
from the gaseous phase to the condensed phase, the system must
cross a huge barrier of entropy or free energy and evolve through
an intermediate phase in which some particles must approach
very close to each other. Inversely, to pass from the condensed
phase to the gaseous phase, the system must cross a huge barrier
of entropy or free energy and evolve through an intermediate
phase in which some particles must escape from the condensate.
The probability of such events is extremely low so that, in
practice, the system remains in the metastable phase [9,19].
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necessary to develop new models of dark matter in order to
solve these problems (cusp problem and missing satellite
problem).
Several authors [9,29,30,54–74] have proposed to

describe dark matter halos as a gas of fermions.7 The
Pauli exclusion principle avoids density cusps at the halo
center and solves the problems of the CDM model. The
necessity of taking quantum mechanics into account in the
physics of galactic halos was demonstrated by Destri, de
Vega, Salucci and Sanchez [70–74] (denoted DdVSS
below). Quantum mechanics is particularly relevant for
compact dwarf halos. Indeed, DdVSS [70–74] have shown
that compact (small) dark matter halos are quantum
(degenerate) objects stabilized against gravitational col-
lapse by the Pauli exclusion principle while large (gaseous)
halos are classical (nondegenerate) objects stabilized by
thermal motion (intermediate size halos are stabilized by
both). Using the fact that the smallest known dark matter
halo is completely degenerate, DdVSS [70–74] obtained a
lower bound of about 2 keV=c2 on the mass of the fermions
(other authors [75] obtained a smaller lower bound of about
m ¼ 200 eV=c2 based on the analysis of the velocity
dispersion of dwarf spheroidal galaxies). The dark matter
particle may be a sterile neutrino [76,77].8 In these studies,
the usual Fermi-Dirac distribution is used. However, at
finite temperature, this distribution coupled to the Poisson
equation leads to models of dark matter halos with an
infinite mass (because the density decreases as r−2 at large
distances). This prevents one from determining the caloric
curves of dark matter halos and studying the thermody-
namical stability of the configurations (the problem is
mathematically ill posed). If we want to obtain the caloric
curves of dark matter halos (which is the main objective of
this paper), it is indispensable to go beyond the usual
Fermi-Dirac distribution and use a model that has a
finite mass.
We propose to describe dark matter halos by the

fermionic King model. This model takes into account
the evaporation of high-energy particles and has a finite
mass. This model was introduced by Ruffini and Stella [55]
as a heuristic extension of the classical King model to the
case of fermions. It was introduced independently by
Chavanis [63,80] who derived it from a kinetic theory
based on the fermionic Landau equation. As explained in
Paper I, the fermionic King model can describe either a gas
of fermions (e.g. massive neutrinos) at statistical equilib-
rium or a collisionless system of particles (classical or
quantum) experiencing a process of violent relaxation of
Lynden-Bell’s type [62,63,80–82]. In Paper I, we have
considered large dark matter halos for which quantum

mechanics is negligible. We have shown that such halos are
relatively well described by the classical King model at, or
close to, the limit of microcanonical stability (see Fig. 2).9

At that point, the King profile can be approximated by
the modified Hubble profile [13]. It has an isothermal
core, an isothermal halo, and a polytropic envelope of
index n ¼ 5=2. The density profile is flat in the core and
decreases as r−3 in the halo. The marginal King profile and
the modified Hubble profile are relatively similar to the
Burkert profile [52] that gives a good fit of many dark
matter halos.10

For large dark matter halos, the problems of the CDM
model (density cusps and missing satellites) are solved by
thermal effects, not by quantum mechanics. This corre-
sponds to warm dark matter (WDM). However, quantum
mechanics becomes important for dwarf and intermediate
size halos. In this paper, in order to describe all types of
dark matter halos, we consider the fermionic King model
with an arbitrary level of quantum degeneracy.
The density profiles and rotation curves of self-

gravitating fermions describing dark matter halos have

7There are also several studies describing dark matter halos as
a gas of bosons (see Paper I for a detailed list of references).

8A sterile neutrino with a mass in the keV=c2 range may have
been detected recently as a dark matter constituent [78,79].

9The classical King model defines a one-parameter family of
distribution functions parametrized by the concentration param-
eter k. This family of distribution functions is plotted in Fig. 18 of
Paper I for different values of k. The Boltzmann distribution
corresponds to k → þ∞. However, we have shown in Paper I that
the King model becomes unstable when k > kMCE ¼ 7.44. We
have also given arguments according to which dark matter halos
should be described by the King model at, or close to, the point of
marginal stability k ¼ kMCE. Therefore, the curve called King in
Fig. 2 corresponds to the marginal King model with k ¼ kMCE. It
physically differs from the isothermal (Boltzmann) distribution,
corresponding to k → þ∞.

10The Burkert profile [52] fitting observations has a flat core
and a density profile that decreases as r−3 at large distances. The
NFW profile [51] fitting N-body simulations also decreases as
r−3 at large distances but presents a cusp ρ ∝ r−1 for r → 0
(instead of a core) in contradiction with the observations [52].
The modified Hubble profile [13] has a flat core and a density
profile that decreases as r−3 at large distances, similarly to the
Burkert profile. The modified Hubble profile is a particular case
of the family of density profiles introduced empirically by Moore
et al. [83] and de Vega and Sanchez [73,74] [it corresponds to the
indices ðα; β; γÞ ¼ ð2; 3; 0Þ in Ref. [83] and to the index α ¼ 3=2
in Refs. [73,74]]. These authors mention that this profile gives a
good fit of the observations of dark matter halos (it may even fit
dark matter halos better than the Burkert profile). However, no
rigorous justification is given for such profiles and for the value of
the selected indices, except for the fact that they provide a good fit
of dark matter halos. Our approach, that is based on the physically
motivated King model, provides a justification of their empirical
results by showing that the asymptotic behavior r−3 of the density
profile that is common to the NFW, Burkert and modified Hubble
profiles (and that determines the indices in the profiles of
Refs. [73,74,83]) corresponds to the marginal King model that
has an asymptotic logarithmic slope αMCE ¼ −d ln ρ=d ln r≃ 3
(see Fig. 20 of Paper I). This justifies why the observed density
profile of dark matter halos decreases as r−3 (marginal King)
instead of r−2 (isothermal). We refer to Sec. VII.H of Paper I for a
detailed discussion of this issue.
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been obtained by several authors in the past [9,29,30,54–74]
with an emphasis recently given by DdVSS [70–74].
However, these curves are often based on the usual
Fermi-Dirac distribution, which has the undesirable feature
of having an infinite mass (because it decreases as r−2 for
r → þ∞). In our paper, we provide density profiles and
rotation curves based on the fermionic King model, which
has a finitemass. This distinction is important. In Paper I (see
in particular Sec. VII H),we showed that close to the point of
marginal stability, the density profile of the King model
decreases at large distances as r−3 [in agreement with the
observational Burkert profile [52] and with the numerical
Navarro-Frenk-White (NFW) profile [51]] instead of r−2

(corresponding to the isothermal sphere). These remarks
concern the tail of the density profile. On the other hand, we
recall that the density profiles of self-gravitating fermions
based on the Fermi-Dirac distribution or on the fermionic
King model present, like the Burkert profile (and unlike the
NFW profile), a central core (instead of a cusp) due to
quantumpressure and/or thermal pressure, as emphasizedby
DdVSS [70–74].
The paper is organized as follows. In Sec. II, we

introduce the fermionic King model. This distribution
function is appropriate to describe dark matter halos if
they are made of massive neutrinos at statistical equilibrium
or if they have experienced a violent relaxation of Lynden-
Bell’s type. In Sec. III, we discuss general properties of the
fermionic King model. We show that it generically has a
polytropic core of index n ¼ 3=2, a classical isothermal
halo, and a polytropic envelope of index n ¼ 5=2. In
Sec. IV, we study the nature of phase transitions in the

fermionic King model depending on the value of the
degeneracy parameter (i.e. the size of the system). We
emphasize the importance of metastable states in systems
with long-range interactions. In Sec. V, we plot the density
profiles and the rotation curves of the fermionic King
model. We discuss their ability to describe dark matter
halos. We follow the series of equilibria for increasing
concentration parameter. We argue in connection with
DdVSS [70–74] that large dark matter halos are non-
degenerate, intermediate size halos are partially degenerate,
and dwarf halos are completely degenerate. We show that
gravitational collapse in MCE results in the formation of a
small degenerate object containing a small mass accom-
panied by the expulsion of a hot envelope containing a large
mass. By contrast, gravitational collapse in CE leads to a
small degenerate object containing almost all the mass
surrounded by a tenuous envelope. In Secs. VI–IX, we
argue that large dark matter halos cannot contain a fermion
ball because this nucleus-halo structure is thermodynami-
cally unstable (saddle point of entropy). This may explain
why black holes are observationally favored over fermion
balls at the center of galaxies. In Appendix A, we discuss
subtle issues concerning the dynamical and thermodynam-
ical stability of the fermionic King model. In Appendix B,
we give arguments according to which MCE is more
appropriate than CE to describe dark matter halos. In
Appendix C, we introduce dimensionless quantities that
can be related to observations. In Appendix D, we compare
fermionic and bosonic models of dark matter and discuss
the value of the mass of the dark matter particle in each
case. In Appendix E, we determine whether dark matter
halos are classical or quantum objects depending on their
mass. In Appendix F, we determine the temperature of dark
matter halos. In Appendix G, we determine the maximum
mass of relativistic compact objects that dark matter halos
may contain at their center. In Appendix H, we argue that
large dark matter halos may harbor a central black hole and
we determine the minimum halo mass above which black
holes can form. In Appendix I, we discuss general scenarios
of formation of dark matter halos depending on the nature
of the dark matter particle.

II. MODELS OF DARK MATTER HALOS
BASED ON STATISTICAL MECHANICS

We consider the possibility that dark matter halos can be
described by the fermionic King model defined by
[55,63,80]

f ¼ η0
1 − eβðϵ−ϵmÞ

1þ eβϵþα if ϵ ≤ ϵm; ð1Þ

and f ¼ 0 if ϵ ≥ ϵm. Here, fðr; vÞ gives the mass density of
particles with position r and velocity v, ρðrÞ ¼ R

fðr; vÞdv
gives the mass density of particles with position r, η0 ¼
gm4=h3 is the maximum accessible value of the distribution
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FIG. 2. Normalized rotation curve of the classical King model
at the point of marginal stability (full line) compared with the
modified Hubble profile (dotted line) and Burkert profile (dashed
line). All these profiles coincide up to the halo radius. The
similarities and the differences between the marginal King profile
(k ¼ kMCE ¼ 7.44) considered in Ref. [22] and the isothermal
(Boltzmann) profile (k → þ∞) considered by DdVSS [70–74]
are discussed in detail in Sec. VII.H. of Ref. [22].
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function fixed by the Pauli exclusion principle (m is the
mass of the particles, h is the Planck constant, and g ¼
2sþ 1 is the spin multiplicity of the quantum states11),
ϵ ¼ v2=2þ ΦðrÞ is the individual energy of the particles by
unit of mass, ΦðrÞ is the gravitational potential determined
by the Poisson equation ΔΦ ¼ 4πGρ, ϵm is the escape
energy, β ¼ m=kBT is the inverse temperature, and ϵF ¼
−α=β is the chemical potential (Fermi energy).12

For ϵm → þ∞, we recover the Fermi-Dirac distribu-
tion f ¼ η0=ð1þ eβϵþαÞ.
In the nondegenerate limit α → þ∞, we recover the

classical King model f ¼ η0e−βϵm−α½e−βðϵ−ϵmÞ − 1� which
reduces to the Boltzmann distribution f ¼ η0e−ðβϵþαÞ for
ϵm → þ∞.
The fermionic King model (1) can be derived from a

kinetic theory based on the fermionic Landau equation by
looking for a quasistationary state of this equation such that
f ¼ 0 at ϵ ¼ ϵm [63,80].
The fermionic King model (1) will be of the form of

Eq. (I-17)13 provided that βϵm þ α can be treated as a
constant along the series of equilibria. We write this
constant as

A≡ η0e−βϵm−α: ð2Þ

Using Eq. (2), the fermionic King model can be rewritten as

f ¼ A
η0
A − eβϵþα

1þ eβϵþα : ð3Þ

It is of the form of Eq. (I-17) with F ðxÞ¼ðμ−exÞ=ð1þexÞ
where we have introduced the degeneracy parameter
μ ¼ η0=A. The function F ðxÞ vanishes at x0 ¼ ln μ and
we check that Eq. (2) satisfies the general relation βϵm þ
α ¼ x0 of Paper I. Using Eq. (2), the fermionic King model
can also be rewritten as

f ¼ A
e−βðϵ−ϵmÞ − 1

1þ A
η0
e−βðϵ−ϵmÞ

: ð4Þ

It is of the form of Eq. (I-19) with F sðxÞ ¼
ðe−x − 1Þ=ð1þ e−x=μÞ. By construction F sð0Þ ¼ 0.
In the nondegenerate limit α → þ∞, we recover the

classical King model. Using Eq. (3) it can be written as

f ¼ A

�
η0
A
e−ðβϵþαÞ − 1

�
; ð5Þ

corresponding to F ðxÞ ¼ μe−x − 1. Alternatively, using
Eq. (4), it can be written as

f ¼ A½e−βðϵ−ϵmÞ − 1�; ð6Þ

corresponding to F sðxÞ ¼ e−x − 1.
Finally, following the method of Paper I, we can

determine the generalized entropy (I-9) associated with
the King model. For the fermionic King model we get

CðfÞ¼A

��
1þ f

A

�
ln

�
1þ f

A

�
−
f
A

�

þη0

��
1−

f
η0

�
ln

�
1−

f
η0

�
þ f
η0

�
− ln

�
η0
A

�
f ð7Þ

and for the classical King model we obtain

CðfÞ ¼ A

��
1þ f

A

�
ln

�
1þ f

A

�
−
f
A

�
− ln

�
η0
A

�
f: ð8Þ

We note that our description of the self-gravitating Fermi
gas is based on a mean-field approximation where the
correlations between particles are neglected (except for
the exclusion principle) and on the Thomas-Fermi (TF)
approximation where the quantum potential (accounting for
the Heisenberg uncertainly principle) is also neglected.
These approximations are commonly made to describe self-
gravitating fermions such as electrons in white dwarf stars,
neutrons in neutron stars, and massive neutrinos in dark
matter halos. Hertel and Thirring [84,85] have established
that these approximations are rigorously valid in a proper
thermodynamic limit where N → þ∞.

III. THE FERMIONIC KING MODEL

In this section, we apply the general formalism devel-
oped in Paper I to the case of the fermionic King model.

A. The distribution function

The fermionic King model is defined by

f ¼ A
e−βðϵ−ϵmÞ − 1

1þ 1
μ e

−βðϵ−ϵmÞ if ϵ ≤ ϵm; ð9Þ

f ¼ 0 if ϵ ≥ ϵm; ð10Þ

where ϵm is the escape energy at which the particles leave
the system (f ¼ 0) and μ ¼ η0=A is the degeneracy
parameter. For ϵ → −∞, the fermionic King distribution
tends to a constant value f → μA ¼ η0 so it is equivalent to
a polytropic distribution of index n ¼ 3=2 [13]. For
intermediate energies, it can be approximated by the

11In the numerical applications, we shall take s ¼ 1=2 and
g ¼ 2.

12The preceding relations are written in the case where dark
matter is a quantum gas made of fermions (e.g. massive
neutrinos) at statistical equilibrium. They remain valid if dark
matter is a collisionless gas undergoing a process of violent
relaxation of Lynden-Bell’s type [62,63,80–82]. In that case, the
physical meaning of η0 and β is different as explained in Paper I.

13Here and in the following (I-x) refers to Eq. (x) of Paper I.
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Boltzmann distribution f ∼ Ae−βðϵ−ϵmÞ. For ϵ → ϵ−m, it
reduces to f ∼ Aβðϵm − ϵÞ=ð1þ 1=μÞ so it is equivalent
to a polytropic distribution of index n ¼ 5=2 [13].
Therefore, the fermionic King model generically describes
a cluster with a polytropic core of index n ¼ 3=2, a
classical isothermal halo, and a polytropic envelope of
index n ¼ 5=2. The proportion of these different regions
depends on the concentration parameter k ¼ βðϵm − Φ0Þ as
shown in the sequel. The distribution function fðϵÞ is
represented in Fig. 3.
The fermionic King distribution is of the form of

Eq. (I-19) with

F sðxÞ ¼
e−x − 1

1þ 1
μ e

−x : ð11Þ

The asymptotic behaviors of the functions InðzÞ defined in
Paper I with Eq. (11) for small and large values of z are
easily obtained. For z → 0, using the fact that F sðxÞ ∼
−x=ð1þ 1=μÞ for x → 0, we get

InðzÞ ∼
1

1þ 1
μ

8π

ð2nþ 1Þð2nþ 3Þ z
ð2nþ3Þ=2: ð12Þ

For z → þ∞, using the fact that F sðxÞ → μ for x → −∞,
we get

InðzÞ ∼
4πμ

2nþ 1
zð2nþ1Þ=2: ð13Þ

B. The equation of state

The normalized gravitational potential is defined by
χðrÞ ¼ β½ϵm − ΦðrÞ�. For χ → þ∞, using Eqs. (I-27),
(I-37) and (13), we find that

ρ ∼ A

�
2

β

�
3=2 4π

3
μχ3=2; p ∼

1

3
A

�
2

β

�
5=2 4π

5
μχ5=2;

ð14Þ

leading to the equation of state

p ∼
1

5

�
3

4πη0

�
2=3

ρ5=3: ð15Þ

This polytropic equation of state of index n ¼ 3=2 is valid
at high densities.
For χ → 0, using Eqs. (I-27), (I-37) and (12), we find that

ρ ∼ A

�
2

β

�
3=2 8π

15

1

1þ 1
μ

χ5=2;

p ∼
1

3
A

�
2

β

�
5=2 8π

35

1

1þ 1
μ

χ7=2; ð16Þ

leading to the equation of state

p ∼
1

7

�
15

4πAβ

�
2=5

�
1þ 1

μ

�
2=5

ρ7=5: ð17Þ

This polytropic equation of state of index n ¼ 5=2 is valid
at low densities.
For intermediate densities, we obtain an isothermal

equation of state p ∼ ρ=β.
For Φ → −∞, the density is related to the gravitational

potential by ρðΦÞ ∝ ð−ΦÞ3=2 which corresponds to a
polytropic distribution of index n ¼ 3=2. For intermediate
values of Φ, we get the Boltzmann distribution
ρðΦÞ ∝ e−βΦ. For Φ → ϵ−m, the density is related to the
gravitational potential by ρðΦÞ ∝ ðϵm − ΦÞ5=2 which cor-
responds to a polytropic distribution of index n ¼ 5=2. The
relation ρðΦÞ is represented in Fig. 4.
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FIG. 3. The distribution function fðϵÞ in scaled variables
showing the polytropic core, the isothermal halo, and the
polytropic envelope.
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FIG. 4. The density ρðΦÞ in scaled variables showing the
polytropic core, the isothermal halo, and the polytropic envelope.
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C. The polytropic limit k → 0

In the limit k → 0, the function χ is always small, so we
can use the approximation (12) everywhere. As a result,
the King model is equivalent to a pure polytrope
(p ¼ Kρ1þ1=n) of index n ¼ 5=2 and polytropic constant
K ¼ ð1=7Þð15=4πAβÞ2=5ð1þ 1=μÞ2=5. The degeneracy
parameter μ affects the value of the polytropic con-
stant but its effect is weak when μ ≫ 1. The differential
equation (I-33) reduces to the Lane-Emden equation (I-
77). The results of Paper I can be easily generalized
to account for the μ dependence of the different
quantities when k → 0. We get ~R ∼ 20.0ð1þ 1=μÞ2= ~β2,
~β ∼ 5.77ð− ~EÞ1=2ð1 þ 1=μÞ, ~R ∼ −3=ð5 ~EÞ, ~β ¼
2.02k1=3ð1 þ 1=μÞ2=3, ~R ∼ 4.90k−2=3ð1 þ 1=μÞ2=3, and
~E ∼ −0.123k2=3ð1þ 1=μÞ−2=3. We also note that
ϵ → −3=5, η ∼ −ξ1θ01k ∼ 0.409k, K → 4.93, ~ρ0∼
0.584k2ð1 þ 1=μÞ−2, ~σ20 ∼ 0.141k2=3ð1 þ 1=μÞ−2=3, and
βσ20 ∼ ð2=7Þk.

D. The completely degenerate limit k → þ∞
In the limit k → þ∞, we can use the approximation (13)

everywhere. As a result, the fermionic King model is
equivalent to a pure polytrope (p ¼ Kρ1þ1=n) of index
n ¼ 3=2 and polytropic constant K ¼ ð1=5Þð3=4πη0Þ2=3.
This corresponds to the completely degenerate limit,
valid at T ¼ 0, in which the distribution function is f ¼
η0Hðϵ − ϵFÞ where HðxÞ is the Heaviside function and
ϵF ¼ −α=β is the Fermi energy. We note that, in this limit,
the Fermi energy coincides with the escape energy since
Eq. (2), which can be rewritten as ϵm − ϵF ¼ ð1=βÞ ln μ,
reduces to ϵF ¼ ϵm for β → þ∞. Defining θ ¼ χ=k and
ξ ¼ ζ=

ffiffiffi
k

p
, we find that the differential equation (I-33)

reduces to the Lane-Emden equation

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θ3=2; ð18Þ

θð0Þ ¼ 1; θ0ð0Þ ¼ 0; ð19Þ

corresponding to a polytrope n ¼ 3=2 [11]. Solving this
equation numerically, we obtain ξ1 ¼ 3.65 and
θ01 ¼ −0.203. Using the theory of polytropes, we can
analytically obtain the radius Rmin and the energy Emin
of the completely degenerate cluster at T ¼ 0. This
corresponds to the ground state of the self-gravitating
Fermi gas. Proceeding as in Paper I, we get

MR3 ¼ χ

η20G
3

ð20Þ

and

E ¼ −
3G2M7=3η2=30

7χ1=3
; ð21Þ

where χ ¼ 9ω3=2=2048π4 ¼ 5.97 × 10−3. Introducing the
dimensionless variables defined in Paper I, we obtain

~Emin ¼ −
3

7χ1=3
1

ð8 ffiffiffi
2

p
πÞ2=3 μ

2=3 ¼ −0.219μ2=3; ð22Þ

~Rmin ¼ χ1=3ð8
ffiffiffi
2

p
πÞ2=3μ−2=3 ¼ 1.96μ−2=3: ð23Þ

These two quantities are related to each other by
~Emin ¼ −3=7 ~Rmin. From Eqs. (I-42), (18) and (19), we
also find that

~β ∼
�

3

4πμ

�
2=3

ð−ξ21θ01Þ4=3k ∼ 1.45μ−2=3k → þ∞: ð24Þ

Finally, we note that ϵ→−3=7, η∼−ξ1θ01k ∼0.741k→þ∞,
K → ð5=2Þð1 − ξ1θ

0
1Þ ¼ 4.35, ~ρ0 → ð4πμ=3Þ2=ð−ξ21θ01Þ2 ¼

2.40μ2, ~σ20 → 0.276μ2=3, and βσ20 ∼ ð2=5Þk.

E. The degeneracy parameter μ

An important quantity in the theory is the degeneracy
parameter μ ¼ η0=A. Since A has the dimension of a typical
distribution function hfi, the degeneracy parameter can be
rewritten as μ ¼ η0=hfi. It represents the ratio between the
maximum distribution function η0 fixed by the Pauli
exclusion principle and the typical distribution function
of the system hfi. If we write hfi ∼MR−3V−3 where
M is the typical mass of the system, R its typical radius
and V its typical velocity, and use a virial-type relation
V ∼ ðGM=RÞ1=2, we obtain hfi ∼ G−3=2M−1=2R−3=2. As a
result, the degeneracy parameter μ ∼ η0G3=2M1=2R3=2 coin-
cides, up to a multiplicative constant, with the degeneracy
parameter μbox introduced in the study of box-confined self-
gravitating fermions (see Sec. 5.5 of Ref. [9]). As discussed
in more detail in Ref. [9], μ is a measure of the size of the
system. Large values of μ correspond to large dark matter
halos and small values of μ correspond to small dark matter
halos. We shall keep this interpretation in mind in our
analysis.
We have argued in Paper I that A should be kept fixed

along a series of equilibria. Since η0 is given, μ can be
regarded as a dimensionless measure of A. Fixing A is
equivalent to fixing μ. Therefore, each series of equilibria is
characterized by a given value of A or, equivalently, by a
given value of μ.

IV. PHASE TRANSITIONS IN THE FRAMEWORK
OF THE FERMIONIC KING MODEL

A detailed study of phase transitions in the self-
gravitating Fermi gas has been performed by Chavanis
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[29–34] (see a review in Ref. [9]) in the case where the
fermions are confined within a box. In this section, we
extend this study to the case of the fermionic King model.
This extension is important because this model has a finite
mass so it does not require the introduction of an artifi-
cial box.

A. Series of equilibria

The series of equilibria βðEÞ of the fermionic King
model is represented in Fig. 5 for different values of μ. The
method of construction of the series of equilibria is
described in Paper I for a general distribution function
of the form f ¼ fðϵÞ with f0ðϵÞ < 0. We recall that A is
fixed along a series of equilibria and that the thermody-
namical parameters β and E correspond to the dimension-
less parameters ~β and ~E of Paper I. On the other hand, S and
J refer to S=M and J=M. We also recall that, for each value
of μ, the series of equilibria is parametrized by the
concentration parameter k ¼ βðϵm − Φ0Þ going from k ¼
0 at ðE; βÞ ¼ ð0; 0Þ to k ¼ þ∞ at ðE; βÞ ¼ ðEmin;þ∞Þ
where EminðμÞ is the minimum accessible energy (ground
state) corresponding to T ¼ 0 [see Eq. (22)]. The concen-
tration parameter k is a monotonically increasing function
of the normalized central density as shown in Fig. 6.
The shape of the series of equilibria βðEÞ of the

fermionic King model crucially depends on the value of
the degeneracy parameter μ as shown in Fig. 5. In the
nondegenerate limit μ → þ∞, we recover the spiral cor-
responding to the classical King model (see Fig. 1).
However, for smaller values of μ, we see that the effect
of quantum mechanics (Pauli exclusion principle) is to
unwind the spiral. Depending on the value of μ, the series of
equilibria can have different shapes. In the following, we
consider two typical series of equilibria, one corresponding

to a relatively large value of μ equal to 104 (Sec. IV B) and
one corresponding to a relatively small value of μ equal to
100 (Secs. IV C and IV D).

B. Large halos in MCE: μ ¼ 104

For μ ¼ 104 (large halos), the series of equilibria of the
fermionic King model is represented in Fig. 7. It has a Z-
shape structure.
In this section, and in the next one, we assume that the

system is isolated. In that case, the control parameter is the
energy E and the relevant statistical ensemble is MCE. In
MCE, we must determine maxima of entropy at fixed mass
and energy. Since the curve βðEÞ is multivalued, phase
transitions occur in MCE. Using the Poincaré theorem (see
Paper I), we deduce that all the states on the upper branch of
the series of equilibria are entropy maxima (EM) until the
first turning point of energy MCE1. For large values of μ,
this critical energy is close to the energy Ec ¼ −1.54
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FIG. 5. Series of equilibria of the fermionic King model for
different values of μ. The thick line corresponds to the classical
King model (μ → þ∞). Note that for large values of μ, the
minimum energy EminðμÞ corresponding to T ¼ 0 is outside the
frame of the figure.

0 10 20 30 40
k

10
-6

10
0

10
6

ρ 0

μ = 100

μ = 10000

FIG. 6. Central density normalized by ð4πGÞ3A2M2 as a
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corresponding to the classical King model (μ → þ∞). At
that point, the curve turns clockwise so that a mode of
stability is lost. This mode of stability is regained at the
second turning point of energy MCE2 at which the curve
turns anticlockwise. The corresponding energy E�ðμÞ
depends on the value of μ and tends to E�ðμÞ → 0 for
μ → þ∞. The configurations on the branch between
MCE1 and MCE2 are saddle points (SP) of entropy while
the configurations on the lower branch after MCE2 are EM.
The solutions on the upper branch are stable (EM).

They are nondegenerate and have a smooth density profile.
They form the “gaseous phase” unaffected by quantum

mechanics (see solution A in Figs. 8 and 9). The solutions
on the lower branch are also stable (EM). They have a core-
halo structure consisting of a degenerate nucleus (fermion
ball) surrounded by a dilute atmosphere (vapor). They form
the “condensed phase” dominated by quantum mechanics
(see solution C in Figs. 8 and 9). The nucleus (condensate)
is equivalent to a completely degenerate self-gravitating
fermion ball at T ¼ 0 with the maximum phase-space
density η0. It is stabilized against gravitational collapse by
the Pauli exclusion principle. The solutions on the inter-
mediate branch are unstable (SP). They are similar to the
solutions of the gaseous phase but they contain a small
embryonic degenerate nucleus, like in the condensed phase,
playing the role of a “germ” in the language of phase
transitions (see solution B in Figs. 8 and 9). These solutions
form a barrier of entropy that the system has to cross in
order to pass from the gaseous phase to the condensed
phase, or inversely (see Ref. [9] for more details).
If we compare the entropy of the solutions (see Fig. 10),

we expect a first-order microcanonical phase transition to
take place at a transition energy EtðμÞ where the entropy of
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FIG. 8. Normalized density profiles corresponding to the
different phases of the fermionic King model with μ ¼ 104

and E ¼ −0.876. Here and in the following figures, the radial
distance is scaled by 1=ð4πGM1=3A2=3Þ and the density by
ð4πGÞ3A2M2. The “core-halo” structure of solutions B and C
comprising a dense degenerate nucleus (fermion ball) surrounded
by an atmosphere is clearly visible.
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the gaseous phase and the entropy of the condensed phase
become equal. The transition energy EtðμÞ can also be
obtained by performing a Maxwell construction (see the
vertical plateau in Fig. 11) [9]. ForE > Et the gaseous phase
is fully stable [global entropy maximum (GEM) at fixed
mass and energy] while the condensed phase is metastable
[local entropy maximum (LEM) at fixed mass and energy].
ForE < Et the gaseous phase ismetastable (LEM)while the
condensed phase is fully stable (GEM). The strict caloric
curve is obtained by keeping only the fully stable states (see
Fig. 12). It is marked by a discontinuity of the inverse
temperature β ¼ ∂S=∂E at E ¼ EtðμÞ. Equivalently, the
first derivative of the entropy is discontinuous at the
transition (see Fig. 10). This characterizes a microcanonical
first-order phase transition. The specific heatC ¼ dE=dT is
also discontinuous at the transition. IfEt > Egas (whereEgas

is the energy corresponding to the first turning point of
temperature) the specific heat passes from a positive to a
negative value. If Et < Egas, the specific heat is always
negative at the transition (the crossover occurs for μ≃
8.02 × 105 and Et ¼ Egas ¼ −0.189; see the intersection
between Et and Egas in Fig. 29).
However, for systems with long-range interactions, the

metastable states are long-lived because the probability that
a fluctuation triggers a phase transition and drives the
system towards the fully stable state is extremely weak.
Indeed, the system has to cross the entropic barrier played
by the solution on the intermediate branch.14 For systems
with long-range interactions, the height of the entropic
barrier scales linearly with the number N of particles and,
consequently, the probability of transition scales like e−N .
ForN ≫ 1, the transition is a very rare event. Therefore, the

metastable states are extremely robust. They have consid-
erably large lifetimes scaling as eN [9,19]. The micro-
canonical first-order phase transition at Et does not take
place in practice and, for sufficiently large values of N, the
system remains frozen in the metastable phase past the
transition energy Et. Accordingly, the strict caloric curve of
Fig. 12 is not physical. The physical microcanonical caloric
curve is the one shown in Fig. 13 which takes the
metastable states into account. It is obtained from the
series of equilibria of Fig. 7 by discarding only the unstable
saddle points of entropy that form the intermediate branch.
The phase transitions of the fermionic King model are

summarized in Fig. 14. At E ¼ 0−, the system is in the
gaseous phase where quantum mechanics is completely
negligible. At some transition energy Et, a first-order phase
transition is expected to occur and drive the system towards
the condensed phase dominated by quantum mechanics.
However, gaseous states are still metastable, and long-
lived, beyond this point so the first-order phase transition
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14To pass from the gaseous phase to the condensed phase, the
system must spontaneously form a small nucleus where the
particles are closely packed together. To pass from the condensed
phase to the gaseous phase, the system must spontaneously form
a massive atmosphere.
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does not take place in practice. If we decrease the energy,
the system remains in the gaseous phase until the critical
energy EcðμÞ at which the gaseous phase disappears. This
is similar to a spinodal point in the language of phase
transitions. For E < EcðμÞ, the system undergoes a gravi-
tational collapse (gravothermal catastrophe). This corre-
sponds to a saddle-node bifurcation. However, the collapse
stops when the core of the system becomes degenerate. In
that case, it ends up in the condensed phase. The system has
a “core-halo” structure with a degenerate nucleus sur-
rounded by a nondegenerate atmosphere. The condensate
results from the balance between the gravitational attraction
and the pressure due to the Pauli exclusion principle. This is
a very compact object equivalent to a completely degen-
erate fermion ball at T ¼ 0. Since the collapse is accom-
panied by a discontinuous jump of entropy (see Fig. 10),
this is sometimes called a microcanonical zeroth-order
phase transition. If we now increase the energy, the system
remains in the condensed phase until the critical energy
E�ðμÞ at which the condensed phase disappears. Indeed, the
first-order phase transition expected at EtðμÞ does not take
place in practice due to the long lifetime of the metastable
states. For E > E�ðμÞ, the system undergoes an “explo-
sion” reversed to the collapse and returns to the gaseous
phase. In this sense, we can describe a hysteretic cycle in
MCE (see the arrows in Figs. 10 and 14). These micro-
canonical phase transitions exist only above a microca-
nonical critical point μMCP ¼ 1980 (see Sec. IV E).

C. Small halos in MCE: μ ¼ 100

For μ ¼ 100 (small halos), the series of equilibria is
represented in Fig. 15. It has an N-shape structure. Since
the curve βðEÞ is univalued there is no phase transition in
MCE. All the configurations are fully stable (GEM).
However, there is a sort of condensation (clustering) as
the energy is progressively decreased (see Figs. 16 and 17).
At high energies, the equilibrium states are nondegenerate.

At intermediate energies, between the energies Egas and
Econd corresponding to the extrema of temperature, the
caloric curve displays a region of negative specific heats
(C ¼ dE=dT < 0). In this region, the equilibrium states
have a “core-halo” structure with a partially degenerate
nucleus and a nondegenerate envelope (atmosphere). As
energy is further decreased, the nucleus becomes more and
more degenerate and contains more and more mass. At the
minimum energy Emin, corresponding to T ¼ 0, all the
mass is in the completely degenerate nucleus. In that case,
the atmosphere has been swallowed and the system reduces
to a pure fermion ball with a maximum phase-space density
η0 fixed by the Pauli exclusion principle.
The entropy versus energy curve SðEÞ is represented in

Fig. 18. Since S00ðEÞ ¼ −1=ðCT2Þ, the entropy displays a
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convex intruder (S00 > 0) in the region of negative specific
heat (C < 0). For systems with long-range interactions, for
which the energy is nonadditive, the region of negative
specific heat in the caloric curve (see Fig. 15) and the
convex intruder in the entropy versus energy curve (see
Fig. 18) are allowed in MCE.

D. Small halos in CE: μ ¼ 100

In this section, we consider a dissipative system in
contact with a thermal bath imposing its temperature T.
In that case, the control parameter is the temperature T
and the relevant statistical ensemble is CE. In CE, we
must determine maxima of free energy at fixed mass.
Considering again the case μ ¼ 100 (small halos), we note
that the series of equilibria EðβÞ represented in Fig. 19 is
multivalued. This gives rise to canonical phase transitions.
Using the Poincaré theorem, we deduce that all the states on
the left branch of the series of equilibria are free energy
maxima (FEM) until the first turning point of temperature

CE1. For large values of μ, this critical temperature is close
to the temperature Tc ¼ 0.613 corresponding to the
classical King model (μ → þ∞). At that point, the curve
turns clockwise so that a mode of stability is lost. This
mode of stability is regained at the second turning point of
temperature CE2 at which the curve turns anticlockwise.
The corresponding temperature T�ðμÞ depends on the value
of μ and tends to T�ðμÞ → þ∞ for μ → þ∞. The con-
figurations on the branch between CE1 and CE2 are SP of
free energy while the configurations on the right branch
after CE2 are FEM.
The configurations on the left branch are stable (FEM).

They form the “gaseous phase” (see solution A’ in Figs. 16
and 17). The solutions on the right branch are also stable
(FEM). They form the “condensed phase” (see solution C’
in Figs. 16 and 17). They have a very tenuous atmosphere.
The solutions on the intermediate branch are unstable (SP).
These solutions (see solution B’ in Figs. 16 and 17) form a
barrier of free energy that the system has to cross in order to
pass from the gaseous phase to the condensed phase, or
inversely [9].
If we compare the free energy of the configurations (see

Fig. 20), we expect a canonical first-order phase transition
to take place at a transition temperature TtðμÞ where the
free energy of the gaseous phase and the free energy of the
condensed phase become equal.15 The transition temper-
ature TtðμÞ can also be obtained by performing a Maxwell
construction (see the horizontal plateau in Fig. 22) [9]. For
T > Tt the gaseous phase is fully stable [global free energy
maximum (GFEM) at fixed mass] while the condensed
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FIG. 18. Entropy versus energy for μ ¼ 100.
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15We note that for large values of μ, secondary canonical first-
order phase transitions appear, as shown in Fig. 21, due to the
winding of the series of equilibria (see Fig. 5). However, this is
essentially a mathematical curiosity because these phase tran-
sitions take place between unstable saddle points of free energy.
As a result they may not be physical.
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phase is metastable [local free energy maximum (LFEM) at
fixed mass]. For T < Tt the gaseous phase is metastable
(LFEM) while the condensed phase is fully stable (GFEM).
The strict caloric curve in CE is obtained by keeping only

the fully stable states (see Fig. 23). It is marked by a
discontinuity of the energy E ¼ −∂J=∂β at T ¼ TtðμÞ.
Equivalently, the first derivative of the free energy is
discontinuous at the transition (see Fig. 20). This character-
izes a canonical first-order phase transition. The specific
heat C ¼ dE=dT is also discontinuous at the transition.
It is instructive to compare the strict canonical caloric

curve of Fig. 23 with the microcanonical caloric curve of
Fig. 15 for the same value of the degeneracy parameter
μ ¼ 100. We see that the region of negative specific heats in
MCE is replaced by an isothermal phase transition (plateau)
in CE that connects the gaseous phase (left branch) to the
condensed phase (right branch). This corresponds to a
situation of strict ensemble inequivalence: the energies
between E1 and E2 are accessible in MCE but not in CE.
However, for systems with long-range interactions, the

metastable states must be considered as stable states as
explained previously. The canonical first-order phase tran-
sition at Tt does not take place in practice because, for
sufficiently large values of N, the system remains frozen in
the metastable phase past the transition temperature Tt.
Therefore, the strict caloric curve of Fig. 23 is not physical.
The physical canonical caloric curve is the one shown in
Fig. 24 which takes the metastable states into account. It is
obtained from the series of equilibria of Fig. 19 by
discarding only the unstable saddle points of free energy
that form the intermediate branch. These configurations lie
in the region of negative specific heats that is forbidden in
CE. As a result, the region of physical ensemble inequi-
valence corresponds to the energies between Egas and Econd.
These energies are accessible in the microcanonical ensem-
ble but not in the canonical ensemble (compare Figs. 15
and 24).
The phase transitions of the fermionic King model in CE

are summarized in Fig. 25. For T → þ∞, the system is in
the gaseous phase where quantum mechanics is completely
negligible. At some transition temperature Tt, a first-order
phase transition is expected to occur and drive the system
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towards the condensed phase. However, gaseous states are
still metastable, and long-lived, beyond this point so the
first-order phase transition does not take place in practice.
Therefore, if we decrease the temperature, the system
remains in the gaseous phase until the critical temperature
TcðμÞ at which the gaseous phase disappears. This is similar
to a spinodal point in the language of phase transitions. For
T < TcðμÞ, the system undergoes a gravitational collapse
(isothermal collapse). This corresponds to a saddle-node
bifurcation.However, the collapse stopswhen the core of the
system becomes degenerate. In that case, it ends up in the
condensed phase. The system has a “core-halo” structure
with a degenerate nucleus surrounded by a nondegenerate
atmosphere. The condensate results from the balance
between the gravitational attraction and the pressure due
to the Pauli exclusion principle. This is a very compact
object equivalent to a completely degenerate fermion ball at
T ¼ 0. Since the collapse is accompanied by a discontinu-
ous jump of free energy (see Fig. 20), this is sometimes
called a canonical zeroth-order phase transition. If we now
increase the temperature, the system remains in the con-
densed phase until the critical temperature T�ðμÞ at which
the condensed phase disappears. Indeed, the first-order
phase transition expected at TtðμÞ does not take place in
practice because of the long lifetime of themetastable states.
For T > T�ðμÞ, the system undergoes an “explosion”
reversed to the collapse and returns to the gaseous phase.
In this sense, we can describe a hysteretic cycle in the
canonical ensemble (see the arrows in Figs. 20 and 25).
Preliminary numerical simulations illustrating this hyster-
etic cycle for self-gravitating fermions have been performed
in Ref. [86]. These canonical phase transitions exist only
above a canonical critical point μCCP ¼ 10.1 (see Sec. IV E).

E. Microcanonical and canonical critical points

The deformation of the series of equilibria of the
fermionic King model as a function of the degeneracy

parameter μ (∼ system’s size) is represented in Fig. 5. There
exist two critical points in the problem, one in each
ensemble.
For μ < μCCP ≃ 10.1, the curve βðEÞ is monotonic, so

there is no phase transition. For μ > μCCP ≃ 10.1, the curve
EðβÞ is multivalued so that a canonical phase transition
takes place. At the canonical critical point μCCP, the caloric
curve EðβÞ presents an inflection point and the canonical
phase transition disappears (see Fig. 26). At that point the
specific heat is infinite. For μ > μMCP ≃ 1980, the curve
βðEÞ is multivalued so that a microcanonical phase tran-
sition takes place (in addition to the canonical phase
transition that exists for any μ > μCCP). At the micro-
canonical critical point μ ¼ μMCP, the caloric curve βðEÞ
presents an inflection point and the microcanonical phase
transition disappears (see Fig. 27). At that point the specific
heat vanishes.
Therefore, for μ > μMCP, the system exhibits a

microcanonical and a canonical phase transition, for
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μCCP < μ < μMCP the system exhibits only a canonical
phase transition, and for μ < μCCP the system does not
exhibit any phase transition. We recall, however, that
because of the presence of long-lived metastable states,
the first-order phase transitions are not physically relevant.
Only the zeroth-order phase transitions that occur at Ec in
MCE and at Tc in CE (spinodal points) are relevant. We
also recall that the secondary turning points of energy and
temperature that appear for large values of μ are not
physically relevant because they concern unstable saddle
points. Only the first and the last turning points of energy
and temperature are physically relevant. Therefore, despite
the mathematical complexity of the spiral that appears for
large values of μ, the physical nature of the phase
transitions remains relatively simple.

F. Phase diagrams

Typical caloric curves illustrating microcanonical and
canonical phase transitions are shown in Figs. 11 and 22
respectively. The phase diagram of the fermionic King
model can be directly deduced from these curves by
identifying characteristic energies and characteristic
temperatures.
In CE, we denote by Tt the temperature of transition

(determined by the equality of the free energies of the two
phases), Tc the end point of the metastable gaseous phase
(first turning point of temperature), and T� the end point of
the metastable condensed phase (last turning point of
temperature). The canonical phase diagram is represented
in Fig. 28. It shows in particular the canonical critical point

μCCP ¼ 10.1 at which the canonical phase transition
disappears.
In MCE, we denote by Et the energy of transition

(determined by the equality of the entropy of the two
phases), Ec the end point of the metastable gaseous phase
(first turning point of energy), and E� the end point of the
metastable condensed phase (last turning point of energy).
We also denote by Egas the energy at which we enter the
zone of negative specific heat (first turning point of
temperature) and Econd the energy at which we leave the
zone of negative specific heat (last turning point of temper-
ature). Finally, we introduce the minimum energy Emin
(ground state). The microcanonical phase diagram is
represented in Fig. 29. It shows in particular the micro-
canonical critical point μMCP ¼ 1980 at which the micro-
canonical phase transition disappears.

V. DENSITY PROFILES AND ROTATION CURVES
OF THE FERMIONIC KING MODEL

In this section, we study how the density profiles and the
rotation curves of the fermionic King model depend on the
values of μ, E, and T. We also discuss their ability at
describing dark matter halos. In Secs. VA–VCwe consider
MCE and in Secs. V D–V F we consider CE.

A. The effect of increasing μ for fixed E > Ec

We consider the series of equilibria of Fig. 7 correspond-
ing to μ ¼ 104. We take an energy E ¼ −0.876 larger than
the critical energy Ec ¼ −1.54 of gravitational collapse
(gravothermal catastrophe). At that energy, the system can
be found in three different states: a gaseous phase (solution
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A), an embryonic phase (solution B), and a condensed
phase (solution C). We study the evolution of the solutions
A, B and C as μ increases.
For large values of μ, the series of equilibria rotates

several times before unwinding (see Figs. 30 and 31
obtained for μ ¼ 109 ≫ 1). The branches A and B
approach each other while the branch C moves away.
For μ → þ∞, the branches A and B superimpose while the
branch C coincides with the β ¼ 0 axis (see Fig. 30). In this
limit, we recover the spiral corresponding to the classical
King model (see Fig. 1).

Solution A (gaseous phase) does not significantly change
with μ and tends to the classical King distribution for μ →
þ∞ (see Figs. 32–34). Since the classical King model close
to the point of marginal microcanonical stability
(Ec ¼ −1.54) describes large dark matter halos relatively
well (see Paper I), and since the chosen energy E ¼ −0.876
is relatively close to Ec, we shall take the asymptotic profile
of Figs. 32–34 as a reference in our discussion (see the
dotted lines in Figs. 35–40).
Solution B (embryonic phase) is similar to solution A

(gaseous phase) except that it contains a small embryonic
nucleus of high density. This is a completely degenerate
compact object equivalent to a fermion ball at T ¼ 0.
Therefore, solution B has a core-halo structure. The mass,
the size and the absolute value of the potential energy of the
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FIG. 30. Series of equilibria of the fermionic King model with
μ ¼ 109. For large but finite values of μ, the series of equilibria
winds up and makes several turns before finally unwinding. A
mode of stability is lost each time the curve winds up (rotates
clockwise) and a mode of stability is regained each time the curve
unwinds (rotates anticlockwise). Therefore, only the part of the
series of equilibria before the first turning point and after the last
turning point is stable.
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and hence unphysical.
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nucleus decrease as μ increases. As a result, for μ ≫ 1,
solutions A and B have almost the same temperature
(βA ≃ βB) and the profiles A and B coincide outside of
the nucleus (see Figs. 35–37). This is why the branches A
and B in the series of equilibria superimpose for μ → þ∞
(see Fig. 30). Still, the two solutions A and B are physically
distinct. In particular, solution B is unstable as further
discussed in Sec. VI.
Solution C (condensed phase) is very different from

solution A (gaseous phase) and from solution B (embryonic
phase). Like solution B, it has a core-halo structure. It

contains a small degenerate nucleus with high density
(condensate) that has a small mass and a small radius.
However, unlike solution B, the nucleus has a very negative
potential energy. Since energy is conserved in MCE, this
implies that the halo must be very hot. This is why βC is
small (see Fig. 30). Since the halo is hot, it expands at very
large distances (see Figs. 38–40). The mass and the size of
the nucleus decrease as μ increases while the absolute value
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FIG. 34. Circular velocity profile of the gaseous phase for
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classical King model, except that it contains a small embryonic
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solution B approaches solution A (gaseous phase; dotted line)
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radii. The presence of a small nucleus (fermion ball) where
vc ∝ r, followed by a plateau where vc ∝ r−1=2, manifests itself
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system (see Fig. 37). However, these distances are probably not
accessible to observations. Furthermore, these solutions are
thermodynamically unstable (saddle points of entropy) so this
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of its potential energy increases.16 The mass, radius, and
temperature of the halo increase as μ increases. For
μ → þ∞, the mass and the radius of the nucleus tend to
zero but its potential energy tends to −∞. The temperature
of the halo tends to þ∞ in order to conserve the energy.
The radius of the halo also tends to þ∞. Therefore, for

μ → þ∞, we recover the singular “binary þ hot halo”
structure with infinite entropy corresponding to the strict
equilibrium state of classical self-gravitating systems in
MCE (see footnote 3). For finite values of μ, quantum
mechanics provides a regularization of this singular struc-
ture: the “tight binary” is replaced by a “fermion ball”
whose size is fixed by quantum mechanics. The resulting
structure has a finite entropy.
We now describe the form of the physical caloric curve

when μ → þ∞. For μ > μMCP the physical caloric curve
always looks like Fig. 13 (the spiral that develops for large
values of μ does not play any role since it is made of
unstable states). The upper branch (gaseous phase) does not
change much with μ. For μ > μMCP it almost coincides with
the classical King model (μ → þ∞). The collapse energy
EcðμÞ is close to −1.54. The lower branch (condensed
phase) depends sensibly on μ. For μ → þ∞, the explosion
energy E�ðμÞ tends to zero and the minimum energy
EminðμÞ tends to −∞. The transition energy EtðμÞ also
tends to zero. This implies that the gaseous phase corre-
sponds to metastable states (LEM) while the condensed
phase corresponds to fully stable states (GEM). For μ →
þ∞ the condensed states are singular and have an infinite
entropy. They are made of a “tight binary” (a degenerate
core with a small mass but a huge potential energy)
surrounded by a hot halo with T → þ∞. As a result, the
branch of condensed states coincides with the x axis at
β ¼ 0. Therefore, in the μ → þ∞ limit, the physical caloric
curve is formed by the metastable gaseous branch of Fig. 1
up to MCE plus a singular stable condensed branch at
β ¼ 0 coinciding with the x axis (tight binary þ hot halo).
On the other hand, the saddle points are superposed to the
spiral and to the branch of gaseous states although they
have a very different structure presenting a germ.

B. The effect of decreasing E for fixed μ > μMCP

We consider a value of μ larger than μMCP ¼ 1980 for
which a microcanonical phase transition (collapse) takes
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FIG. 38. Density profile of the condensed phase (solution C) for
different values of μ in logarithmic scales (the central density
increases with μ). For increasing μ, solution C contains a small
degenerate nucleus with a relatively small mass but a more and
more negative potential energy. As a result, the halo becomes
hotter and hotter in order to conserve the total energy. This is why
it forms a sort of plateau with constant density that extends at
larger and larger distances. The resulting profile is very different
from solution A (gaseous phase; dotted line) corresponding to the
classical King model.
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16The scaling of the mass, size, and potential energy of the
nucleus as a function of μ were obtained analytically in Ref. [29]
for box-confined self-gravitating fermions.
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place at the critical energy Ec ∼ −1.54. Specifically, we
choose μ ¼ 104 (large halo) corresponding to the caloric
curve represented in Fig. 14. We start from the gaseous
phase (solution A) and progressively decrease the energy.
This is a natural evolution since the concentration param-
eter kðtÞ increases with time as the system slowly evap-
orates until an instability takes place (see Appendix A). As
a result, the system follows the series of equilibria from
high energies to low energies. For Ec < E < 0 (corre-
sponding to 0 ≤ k ≤ kMCE), the system is nondegenerate. It
can be described by the classical King model. When E → 0
(corresponding to k → 0), the system is equivalent to a
polytrope of index n ¼ 5=2. When E is close to Ec
(corresponding to k ∼ kMCE), the classical King profile
can be approximated by the modified Hubble profile. This
profile provides a good description of large dark matter
halos (see Paper I). When E < Ec, the gaseous phase
(solution A) disappears and the system undergoes a
gravitational collapse towards the condensed phase
(solution C). This corresponds to a saddle-node bifurcation.
According to the discussion of Sec. VA, the gravitational
collapse in MCE (gravothermal catastrophe) results in the
formation of a compact degenerate object (fermion ball at
T ¼ 0) of much smaller mass and size than the initial
cluster. This is accompanied by the expulsion of a hot and
massive envelope at very large distances. Since the
envelope is dispersed at large distances, only the degenerate
object remains at the end. Therefore, when E < Ec, the
system forms a compact object and ejects an envelope. This
could be a mechanism leading to the formation of dwarf
dark matter halos that are completely degenerate and whose
dimensions are much smaller than the dimensions of large
dark matter halos.17

This evolution is reminiscent of the red-giant phase
where a star, having exhausted its nuclear fuel, collapses
into a white dwarf and ejects its outer layers by forming a
planetary nebula. This is also reminiscent of the supernovae
explosion phenomenon leading to a degenerate compact
object such as a neutron star or a black hole and to the
expulsion of a massive envelope. We may wonder if a
similar scenario can take place (or has already taken place!)
at the galactic scale. We may speculate that large dark
matter halos are described by stable classical King models
with k < kMCE but that some halos can reach the critical
value k ¼ kMCE and collapse to give birth to degenerate

dwarf dark matter halos of much smaller mass and size,
with the expulsion of a massive envelope. We emphasize,
however, that this phenomenon takes considerably much
more time (of the order of the Hubble time) than the
supernova phenomenon (a few seconds) since the grav-
othermal catastrophe is a rather slow process.

C. The effect of decreasing E for fixed μ < μMCP

We consider a value of μ smaller than μMCP ¼ 1980 for
which there is no microcanonical phase transition (no
collapse). Specifically, we choose μ ¼ 100 (small halo)
corresponding to the caloric curve represented in Fig. 15.
We start from E ¼ 0 and progressively decrease the energy.
At high energies, the system is nondegenerate. It can be
described by the classical King model. When E → 0, the
solution is equivalent to a polytrope of index n ¼ 5=2. As E
decreases, the solutions become partially degenerate. They
have a core-halo structure but the distinction between the
core and the halo is not clear-cut (see Figs. 16 and 17). The
core can be approximated by a polytrope of index n ¼ 3=2
and the halo can be approximated by a polytrope of index
n ¼ 5=2. These solutions lie in the region of negative
specific heats between Egas and Econd. When E → Emin, the
solutions are completely degenerate (ground state). They
coincide with a polytrope of index n ¼ 3=2. The size of the
cluster decreases as the energy decreases.

D. The effect of increasing μ for fixed T > TC

We now develop the same discussion in CE. We consider
the series of equilibria of Fig. 19 corresponding to μ ¼ 100.
We take a temperature T ¼ 0.971 larger than the critical
temperature Tc ¼ 0.613 of gravitational collapse (iso-
thermal collapse). At that temperature, the system can be
found in three different states: a gaseous phase (solution
A’), an embryonic phase (solution B’), and a condensed
phase (solution C’). We study the evolution of the solutions
A’, B’ and C’ as μ increases.
For large values of μ, the branches A’ and B’ approach

each other while the branch C’ moves away. For μ → þ∞,
the branches A’ and B’ superimpose while the branch C’ is
rejected to E → −∞ (see Fig. 30). In this limit, we recover
the spiral corresponding to the classical King model
(see Fig. 1).
The description of solutions A’ (gaseous phase) and B’

(embryonic phase) is similar to the description of solutions
A and B in MCE (see Sec. VA). However, the description
of solution C’ (condensed phase) is different from that of
solution C in MCE. Like solution C, it has a core-halo
structure. It contains a small degenerate nucleus with high
density (condensate) surrounded by a nondegenerate halo.
However, unlike solution C, the nucleus contains almost all
of the mass while the halo is very tenuous. Actually, the
halo is almost absent from the density profile C’ in Fig. 16.
This is in sharp contrast with the density profile C in Fig. 8
in MCE that shows an extended halo. The fact that almost

17This is not the only mechanism. Dwarf halos are thought to
result from the Jeans instability of a spatially homogeneous
primordial gas. Then, they merge to form larger structures during
hierarchical clustering. However, it is not impossible that large
halos having reached the point of gravothermal instability
collapse again to form smaller structures. We can see in Fig. 38
that, for large values of μ, the size of the degenerate object that
forms after collapse (full line) is smaller than the size of the initial
halo (dotted line) by about 3 orders of magnitude (or more). This
is consistent with the difference of size between dwarf and large
dark matter halos (see Table I of Ref. [71]).
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all the mass is in the nucleus explains why EC0 is very
negative (see Fig. 30). The size of the nucleus decreases as
μ increases while its mass and the absolute value of its
potential energy increase (see footnote 16). For μ → þ∞,
the radius of the nucleus tends to zero but its mass tends to
M. Therefore, for μ → þ∞, we recover the “Dirac peak”
with infinite free energy corresponding to the strict equi-
librium state of classical self-gravitating systems in CE (see
footnote 3). For finite values of μ, quantum mechanics
provides a regularization of this singular structure: the
“Dirac peak” is replaced by a “fermion ball” whose size is
fixed by quantum mechanics. The resulting structure has a
finite free energy.
We now describe the form of the physical caloric curve

when μ → þ∞. For μ > μCCP, the physical caloric curve
always looks like Fig. 24 (the spiral that develops for large
values of μ does not play any role since it is made of
unstable states). The left branch (gaseous phase) does not
change much with μ. For μ > μCCP it almost coincides with
the classical King model (μ → þ∞). The collapse temper-
ature TcðμÞ is close to 0.613. The right branch (condensed
phase) depends sensibly on μ. For μ → þ∞, the explosion
temperature T�ðμÞ tends toþ∞. The transition temperature
TtðμÞ also tends toþ∞. This implies that the gaseous phase
corresponds to metastable states (LFEM) while the con-
densed phase corresponds to fully stable states (GFEM).
For μ → þ∞, the condensed states are singular and have an
infinite free energy. They are made of a “Dirac peak”
containing all the mass. As a result, the branch of
condensed states (vertical line) is rejected to E → −∞.
Therefore, in the μ → þ∞ limit, the physical caloric curve
is formed by the metastable gaseous branch of Fig. 1 up to
CE plus a singular stable condensed branch at E ¼ −∞
(Dirac peak). On the other hand, the saddle points are
superposed to the spiral and to the branch of gaseous states
although they have a very different structure presenting
a germ.

E. The effect of decreasing T for fixed μ > μCCP
We consider a value of μ larger than μCCP ¼ 10.1 for

which a canonical phase transition (collapse) takes place at
the critical temperature Tc ¼ 0.613. We start from the
gaseous phase and progressively decrease the temperature.
This is a natural evolution since the concentration param-
eter kðtÞ increases with time as the system slowly evap-
orates until an instability takes place (see Appendix A). As
a result, the system follows the series of equilibria from
high temperatures to low temperatures. For T > Tc (cor-
responding to 0 ≤ k ≤ kCE), the system is nondegenerate. It
can be described by the classical King model. When T →
þ∞ (corresponding to k → 0), the system is equivalent to a
polytrope of index n ¼ 5=2. When T is close to Tc
(corresponding to k ∼ kCE) the classical King profile can
still be approximated by a polytrope n ¼ 5=2. Such a
profile does not account for the observations of large dark

matter halos (see Paper I). This suggests that CE is not
relevant to describe dark matter halos (see Appendix B).
When T < Tc, the gaseous phase (solution A’) disappears
and the system undergoes a gravitational collapse towards
the condensed phase (solution C’). This corresponds to a
saddle-node bifurcation. According to the discussion of
Sec. V D, the gravitational collapse results in the formation
of a compact degenerate object (fermion ball at T ¼ 0) of
small size and high density that contains almost all the mass
of the initial cluster. This object has only a very tenuous
atmosphere with a small mass that is hardly visible. The
mass of the nucleus increases as the temperature decreases
and, at T ¼ 0, all the mass is in the nucleus. Therefore,
when T < Tc, the system forms a compact object contain-
ing almost all the mass. There is almost no atmosphere
(solution C’ in Fig. 16). This is very different from the
gravitational collapse in MCE that leads to a degenerate
object with a small mass and the expulsion of a massive
atmosphere (see Fig. 38). Therefore, the collapse in CE
cannot account for the formation of dwarf dark matter halos
because their observed mass is much smaller than the mass
of large dark matter halos. This is another argument that
CE is not relevant to describe dark matter halos (see
Appendix B).

F. The effect of decreasing T for fixed μ < μCCP
We consider a value of μ smaller than μCCP ¼ 10.1 for

which there is no canonical phase transition (no collapse).
We start from T → þ∞ and progressively decrease the
temperature. At high temperatures, the system is non-
degenerate. It can be described by the classical King
model. When T → þ∞, the solution is equivalent to a
polytrope of index n ¼ 5=2. As T decreases, the solutions
become partially degenerate. They have a core-halo struc-
ture but the distinction between the core and the halo is not
clear-cut. The core can be approximated by a polytrope of
index n ¼ 3=2 and the halo can be approximated by a
polytrope of index n ¼ 5=2. When T → 0, the solutions are
completely degenerate. They correspond to a polytrope of
index n ¼ 3=2. The size of the cluster decreases as the
temperature decreases.

VI. CAN LARGE DARK MATTER HALOS
HARBOR A FERMION BALL?

Many observations have revealed that galaxies and dark
matter halos contain a very massive object at their center.
This compact object is usually interpreted as a black hole.
Alternatively, some authors have suggested that this object
could actually be a fermion ball made of the same matter as
the rest of the halo. Indeed, some configurations of the self-
gravitating Fermi gas at finite temperature have a nucleus-
halo structure resembling a large dark matter halo with a
small compact object at the center (see Secs. IV and V).
This nucleus-halo structure is particularly clear in the
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embryonic phase (solution B). These solutions are similar
to the gaseous phase (solution A) except that they contain a
small degenerate nucleus. The halo has the form of a King-
truncated classical isothermal gas consistent with the
observations of large dark matter halos (Burkert profile)
and the nucleus has the form of a degenerate fermion ball.
When μ is large, the fermion ball is very small so it does not
affect the structure of the halo. The corresponding density
profiles and rotation curves are represented in Figs. 35–37
(see also solution B in Figs. 41–43). The nucleus creates a
secondary peak and a dip in the rotation curve at very small
radii that may not be resolved observationally. This type of
nucleus-halo configurations has been obtained by several
authors [9,57,62,68,69]. Some of them [68] made the
interesting suggestion that the fermion ball could mimic
the effect of a central black hole. However, these authors
[68] did not investigate the stability of such configurations.
Our study (see also Refs. [9,29,62]) shows that these
structures (solution B) are thermodynamically unstable
(i.e. unreachable) because they are saddle points of entropy
at fixed mass and energy. Therefore, large dark matter halos
should not contain a degenerate nucleus (fermion ball).
This is an important prediction of our study.18 The fact that
fermion balls are not observed at the center of galaxies (a
central black hole is indeed observationally favored over a
fermion ball [87,88]) is in agreement with our result.
We note that the solutions of the condensed phase

(solution C) also have a core-halo structure with a degen-
erate nucleus and a nondegenerate envelope. These sol-
utions are thermodynamically stable. However, in that case,
the nucleus formed by gravitational collapse releases an
enormous energy that heats the envelope and disperses it at

very large distances. As a result, only the degenerate object
remains at the end. These solutions do not resemble a large
dark matter halo with a central nucleus because the
atmosphere is too hot (compare solutions B and C in
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FIG. 41. Density profiles of the gaseous phase (solution A),
embryonic phase (solution B) and condensed phase (solution C)
for μ ¼ 109 and E ¼ −0.876 corresponding to the caloric curve
of Fig. 30. Solution A corresponds to the classical King model
close to the critical point. This solution is stable and gives a good
agreement with the observations of dark matter halos. Solution B
is similar to solution A except that it contains a small fermion ball
that could mimic a central black hole. However, this solution is
thermodynamically unstable. Solution C is made of a fermion ball
surrounded by a hot halo that is ejected at large distances. This
solution is stable but it does not agree with the observations of
dark matter halos.

10
-8

10
-4

10
0

10
4

r

10
-4

10
-2

10
0

v c

E = - 0.876

 μ = 109

A

B

C

FIG. 42. Circular velocity profiles in logarithmic scale of the
gaseous phase (solution A), embryonic phase (solution B) and
condensed phase (solution C) for μ ¼ 109 and E ¼ −0.876.
Solution A is stable and agrees with the observations of dark
matter halos. Solution B is similar to solution A except that it
presents a secondary peak and a dip due to the presence of the
fermion ball. This solution is thermodynamically unstable.
Solution C is stable but it does not agree with the observations
of dark matter halos.

18Some caution should be taken. We have shown that the
solutions B are thermodynamically unstable. This means that
they are unstable with respect to a “collisional” evolution.
However, as discussed in Appendix A, they are Vlasov dynami-
cally stable. This means that they are stable with respect to a
“collisionless” evolution. On the other hand, even if we consider
their thermodynamical instability, we note that these structures
are saddle points of entropy. Therefore, they are unstable only for
some particular perturbations. As a result, provided that they
appear spontaneously from a collisionless relaxation (which is,
however, very unlikely because these structures are also saddle
points of Lynden-Bell’s entropy, and hence a very improbable
outcome of violent relaxation), they may persist for a long time,
as long as the system does not spontaneously generate the
dangerous perturbations that destabilize them. On the other hand,
even if a destabilizing perturbation is produced, it may have a
small growth rate. Therefore, it may be possible to observe a
fermion ball at the center of a dark matter halo as a transient
structure. Recalling that the fermion ball in solution B corre-
sponds to a “germ” triggering a gravitational collapse (see
Sec. IV B), their observation would be the signal of a phase
transition to come. Finally, we should recall that our stability
analysis assumes that the parameter A is fixed along the series of
equilibria. It is not known whether other assumptions can change
the results of the stability analysis and make the solutions B
stable.
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Figs. 35–40 and in Figs. 41–43). However, the nucleus
alone resembles a dwarf halo that is a completely degen-
erate object without atmosphere.
In conclusion, dark matter halos cannot harbor a fermion

ball, unlike the proposition that has been made in the past
[68], because the nucleus-halo structures that have been
considered by these authors are unreachable: they corre-
spond to saddle points of entropy at fixed mass and energy.
As a result, dark matter halos should be either everywhere
nondegenerate (solution A) or everywhere completely
degenerate with an atmosphere dispersed at large distances
(solution C). They cannot be made of a completely
degenerate nucleus (fermion ball) surrounded by a non-
degenerate halo similar to the halo of the gaseous phase
because these intermediate structures (solution B) are
thermodynamically unstable. Therefore, it should not be
possible to observe a dark matter halo with a fermion ball.19

This may explain why black holes at the center of galaxies
are observationally favored over fermion balls [87,88].
Similar results apply in the case where dark matter is

made of bosons instead of fermions. Slepian and Goodman
[89] have calculated equilibrium states of a self-gravitating
gas of self-interacting bosons at finite temperature. They
obtained nucleus-halo configurations made of a classical
isothermal halo and a nucleus equivalent to a Bose-Einstein

condensate (BEC) at zero temperature. The BEC is the
counterpart of the fermion ball. They determined the
density profiles and the rotation curves of these configu-
rations and obtained results very similar to those obtained
in Figs. 35–37 (see also solution B in Figs. 41–43) for
fermions.20 They argued that these nucleus-halo structures
are not consistent with observations because the rotation
curves do not show the secondary peak and the dip
corresponding to the presence of the nucleus. Actually,
when the nucleus is very small, it is not clear whether
the secondary peak can be resolved observationally.
Therefore, their argument should be considered with
caution. Anyway, it can be shown that these nucleus-halo
structures are thermodynamically unstable [90], similarly
to solutions B in the case of fermions. Therefore, they
should not be observed in nature. Note, however, that
noncondensed configurations of self-gravitating bosons at
sufficiently high temperatures may describe large dark
matter halos, totally condensed configurations of self-
gravitating bosons (BEC) at low temperatures may
describe dwarf halos, and partially condensed configura-
tions may describe intermediate-size halos (the temper-
ature may be effective as discussed at the end of
Appendix F).

VII. CAN LARGE DARK MATTER HALOS
HARBOR A BLACK HOLE?

We have seen in the previous section that the presence of
a fermion ball at the center of large dark matter halos is
unlikely because these nucleus-halo structures are unreach-
able: they are saddle points of entropy. The presence of a
central black hole is more likely [87,88]. These black holes
could be formed by the mechanism discussed by Balberg
et al. [91] if dark matter is collisional [92]. In that case,
large dark matter halos may undergo a gravothermal
catastrophe when E < Ec. The increase of the density
and temperature of the core during the collapse can trigger a
dynamical (Vlasov) instability of general-relativistic origin
leading to the formation of a black hole. During this
process, only the core collapses. This can form a black
hole of large mass without affecting the structure of the
halo. Therefore, this process leads to large halos compatible
with the Burkert profile for r > 0 but harboring a central
black hole at r ¼ 0.
In this scenario, the presence of black holes at the center

of dark matter halos is conditioned by the possibility that
dark matter halos may undergo a gravothermal catastrophe.
Now, when quantum mechanics is taken into account, as in
the fermionic King model, an important result of our study
is the existence of a microcanonical critical point μMCP
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FIG. 43. Circular velocity profiles in linear scale of the
gaseous phase (solution A), embryonic phase (solution B)
and condensed phase (solution C) for μ ¼ 109 and
E ¼ −0.876. Solution A is stable and agrees with the observa-
tions of dark matter halos. Solution B is similar to solution A
except that it presents a spike at the origin due to the presence
of the fermion ball. This solution is thermodynamically
unstable. Solution C is stable but it does not agree with the
observations of dark matter halos.

19If we observe a dark matter halo, it should not contain a
fermion ball. Inversely, if we observe a fermion ball, it should not
be surrounded by a dark matter halo (the atmosphere has been
expelled far away). It should not be possible to observe
simultaneously a dark matter halo and a fermion ball.

20This confirms the claim made in Paper I that it is not possible
at present to distinguish between fermionic and bosonic models
of dark matter because they lead to very similar results. There-
fore, the bosonic models cannot be rejected a priori.
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below which the microcanonical phase transition (gravo-
thermal catastrophe) is suppressed. Roughly speaking, this
result implies that “large” dark matter halos (μ > μMCP) that
are nondegenerate can undergo a gravothermal catastrophe
(although this is not compulsory21) and contain a central
black hole while “small” dark matter halos (μ < μMCP) that
are quantum objects stabilized by the Pauli exclusion
principle cannot contain a central black hole because they
do not experience a gravothermal catastrophe. This result
seems to qualitatively agree with the observations.
Therefore, the presence (or absence) of black holes at
the center of galaxies may be connected to the existence of
a microcanonical critical point (μMCP ¼ 1980) in the
fermionic King model. In Appendix H, we provide a more
quantitative criterion for the presence of a black hole
at the center of dark matter halos based on these
considerations.

VIII. COMPARISON WITH OTHER WORKS

In a recent paper, Ruffini et al. [93] revived the
suggestion of Bilic et al. [68] that dark matter halos
may contain a fermion ball at their center rather than a
black hole. Although this suggestion is interesting, we
would like to emphasize again that it is not obvious. To that
purpose, as a complement to the discussion of Sec. VI (see
Figs. 41–43), we offer another illustration of our results by
taking a degeneracy parameter μ ¼ 109, appropriate to
large dark matter halos, and selecting an energy E ¼ −1.02
so that several (seven) solutions to the equations of

hydrostatic equilibrium exist (see Figs. 44 and 45). The
following description clarifies the structure of the series of
equilibria of the fermionic King model and makes our
previous arguments more precise.
Solution (1) is nondegenerate (nonquantum) and has a

concentration parameter k1 < kMCE below the limit of
instability. Solutions (2) and (3) are also nondegenerate
but they have higher concentration parameters kMCE <
k2 < k3 above the limit of instability. Degeneracy (quan-
tum) effects start to come into play when the series of
equilibria rotates anticlockwise. As is clear in Fig. 45,
solutions (3’), (2’), (1’) are similar to solutions (3), (2),
(1) except that they contain a small degenerate nucleus
(fermion ball) at their center. These “nucleus-halo”
solutions are similar to those obtained by Ruffini et al.
[93] (and previously in Refs. [9,57,62,68,69]). However,
we stress that these solutions are thermodynamically
unstable (and hence unreachable) because they are saddle
points of entropy at fixed mass and energy. Only solutions
(1) and (4) are stable. As shown in Paper I, solution (1) is
relatively close to the modified Hubble profile, which is
itself close to the empirical Burkert profile fitting obser-
vations. It is a pure classical gaseous solution without a
fermion ball at its center. It provides a good description of
large dark matter halos. On the other hand, solution (4)
which lies on the lower branch of Fig. 30 is a pure
condensed (quantum) solution with a hot envelope ejected
at infinity (see Fig. 45). It may describe completely
degenerate dwarf halos, but it cannot describe large halos
with a fermion ball because it is very different from the
Burkert profile.
Therefore, according to thermodynamics and equilib-

rium statistical mechanics, the existence of “nucleus-halo”
solutions having the form of a fermion ball at
T ¼ 0 surrounded by a thermal halo is not granted
since these structures are saddle points of entropy at fixed
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FIG. 44. Series of equilibria of the fermionic King model for
μ ¼ 109. We show the different solutions corresponding to an
energy E ¼ −1.02.
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FIG. 45. Density profiles of the different solutions correspond-
ing to a degeneracy parameter μ ¼ 109 and an energy E ¼ −1.02.

21It is possible that a proportion of large dark matter halos have
a concentration parameter k < kMCE and have not undergone core
collapse (these halos do not contain a black hole) while some
halos have reached the critical threshold k ¼ kMCE and have
undergone core collapse (these halos contain a black hole).
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mass and energy. They are therefore less likely than pure
halo solutions without a central compact object, resembling
the Burkert profile, studied in Paper I. We note that the
works of Refs. [68,93] were done in general relativity,
while our study uses Newtonian gravity, but we do not
think that this difference alters our conclusions.
Finally, we would like to mention that we do not

completely reject the possibility of finding fermion balls
at the center of dark matter halos. We just point out a
difficulty in interpreting them as equilibrium structures
since they are saddle points of entropy. However, equilib-
rium statistical mechanics says nothing about time scales.
As suggested in footnotes 18 and 22, “nucleus-halo”
configurations could be out-of-equilibrium structures per-
sisting for very long times, of the order of the Hubble time.
More work is needed to clarify these different issues.

IX. DIFFERENCES BETWEEN LARGE AND
DWARF HALOS

The structure of dark matter halos crucially depends
on their size through the value of the degeneracy
parameter μ.
For large halos with μ > μMCP ¼ 1980, the series of

equilibria is represented in Fig. 14. It displays an instability
(gravothermal catastrophe) when E < Ec. When μ ≫
μMCP, two possibilities can occur: (i) the system collapses
into a fermion ball and expels a halo at very large distances
so that only the degenerate object remains at the end
(see Fig. 38)22; (ii) a general-relativistic instability develops
before the system reaches equilibrium, and the system
forms a central black hole surrounded by a halo not affected
by the collapse [91]. In that case, we get a halo compatible
with the Burkert profile but containing a central black hole.
This may explain the presence of black holes in large dark
matter halos. When μ > μMCP is not very large, the system
may be stabilized by quantum mechanics before the
relativistic instability leading to a black hole takes place.
In that case, one obtains a core-halo configuration with a
fermion ball surrounded by a halo that is not too much
dispersed (see solution C in Fig. 8). However, the structure
of the halo is affected by the collapse of the core so that it is
different from the Burkert profile.
For dwarf and intermediate-size halos with μ < μMCP,

the series of equilibria is represented in Fig. 15. There is no
instability (no gravothermal catastrophe) because the col-
lapse is prevented by quantum mechanics. In that case,

there is no possibility to form black holes. This may explain
why dwarf and intermediate-size halos do not contain black
holes. These halos are partially or completely degenerate
quantum objects. When μ < μMCP, all the configurations of
the fermionic King model are stable. The solutions in the
region of negative specific heat have a core-halo structure
with a partially degenerate nucleus surrounded by a non-
degenerate atmosphere. However, in that case, the distinc-
tion between the nucleus and the halo is not clear-cut. In
particular, the profile of these solutions (see Fig. 16) is very
different from the nucleus-halo configurations that have
been considered in the literature (see Fig. 8).
Obviously, several configurations of dark matter halos

are possible within the fermionic King model making the
study of this model very rich. The system can be non-
degenerate (large halos), partially degenerate (intermedi-
ate-size halos), or completely degenerate (dwarf halos).
We can obtain core-halo configurations with a wide
diversity of nuclear concentration depending on μ (i.e.
the size of the system) and E. This may account for the
diversity of dark matter halos observed in the Universe.
Large dark matter halos are nondegenerate classical
objects. They may contain a black hole. Small halos
are degenerate quantum objects. They should not contain a
black hole. Our approach is the first attempt to determine
the caloric curves of dark matter halos. This allows us to
study the thermodynamical stability of the different
configurations and to reject those that are unstable. In
particular, we have shown that the nucleus-halo configu-
rations considered in the past (as in Fig. 35) are thermo-
dynamically unstable (saddle points of entropy). More
work is needed to relate our theoretical results to the
observations.

X. CONCLUSION

In this paper, we have studied the thermodynamical
properties of the fermionic King model. The fermionic
King model is interesting from the viewpoint of statistical
mechanics for the following reasons. (i) It takes into
account the evaporation of high-energy particles. As a
result, the system has a finite mass without having to
introduce an artificial box. (ii) It takes into account the
Pauli exclusion principle for fermions.23 As a result, the
system is stabilized against gravitational collapse and there

22This is the equilibrium state of the fermionic King model for
E < Ec. Note, however, that the collapse process can take a very
long time in practice so that, on intermediate times, one should
observe a contracting fermion ball surrounded by a halo similar to
the halo before collapse (see Fig. 5 of Ref. [86] for a preliminary
numerical simulation). We stress that this nucleus-halo structure
is an out-of-equilibrium structure.

23The Pauli exclusion principle is justified by quantum
mechanics. As explained in Paper I, if the evolution of the
particles is collisionless, an exclusion principle similar to the
Pauli exclusion principle arises because of dynamical constraints
brought by the Vlasov equation. After a phase of violent
relaxation, the system is expected to reach a quasistationary
state described by the Lynden-Bell distribution function that is
similar to the Fermi-Dirac distribution [62,81,82]. A fermionic
King model can also be introduced in the context of the theory of
violent relaxation in order to make the mass of the Lynden-Bell
distribution function finite [63,80].
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exists a nonsingular equilibrium state (with a finite entropy
and a finite free energy) for all accessible energies Emin ≤
E ≤ 0 and for all temperatures T ≥ 0. (iii) It exhibits
interesting phase transitions between gaseous states and
condensed states similar to those described in Ref. [9] for a
gas of self-gravitating fermions enclosed within a box. Of
course, the form of the caloric curves and the values of the
critical parameters differ quantitatively from the box model
since the equilibrium states are different but the phenom-
enology of the phase transitions is the same.
We have studied the nature of phase transitions in the

fermionic King model as a function of the degeneracy
parameter μ which is a measure of the size of the system.
For μ → þ∞, we recover the classical King model
(Paper I). For finite values of μ, phase transitions can take
place between a “gaseous” phase unaffected by quantum
mechanics and a “condensed” phase dominated by quan-
tum mechanics. The phase diagram exhibits two critical
points, one in each ensemble. The microcanonical critical
point corresponds to μMCP ¼ 1980 and the canonical
critical point corresponds to μCCP ¼ 10.1. For μ > μMCP,
there exist microcanonical and canonical first-order phase
transitions. For μCCP < μ < μMCP, only canonical first-
order phase transitions are present. For μ < μCCP, there
is no phase transition at all. There also exists a region of
negative specific heats and a situation of ensemble inequi-
valence when μ > μCCP. We have mentioned that meta-
stable states have considerable lifetimes. As a result, the
first-order phase transitions do not take place in practice.
The physical phase transitions correspond to zeroth-order
phase transitions associated with spinodal points and
saddle-node bifurcations.
The fermionic King model also provides a realistic

model of dark matter halos and, as such, is interesting
from the viewpoint of astrophysics and cosmology. Large
dark matter halos are nondegenerate objects stabilized by
thermal pressure [70–74] so the classical King model can
be used. We have shown in Paper I that the marginally
stable King model in MCE provides a good description of
large dark matter halos. Its density profile is flat in the core
and decreases at large distances as r−3, similarly to the
Burkert profile [52] that fits a large number of
galactic rotation curves.24 We note that, for large dark
matter halos, the cusp problem of the CDMmodel is solved
by finite-temperature effects, without the need to invoke
quantum mechanics. Therefore, WDM may account for the
observations of large dark matter halos. By contrast,
quantum mechanics must be taken into account in smaller
dark matter halos. Dwarf dark matter halos are completely
degenerate objects stabilized by quantum pressure (Pauli

exclusion principle) [70–74] so they are equivalent to
polytropes of index n ¼ 3=2. In that case, the cusp problem
is solved by quantum mechanics, not by thermal effects.
Intermediate-size halos are partially degenerate (they are
stabilized both by quantum and thermal pressure) [70–74]
so they can be described by the fermionic King model at
finite temperature.
In order to summarize our results, it is relevant to follow

the series of equilibria from low values of the concentration
parameter k → 0 (high energies E → 0 and high temper-
atures T → þ∞) to high values of the concentration
parameter k → þ∞ (low energies E → Emin and low
temperatures T → 0). This evolution is natural because
the concentration parameter kðtÞ of dark matter halos
increases monotonically with time due to collisions
and evaporation until an instability takes place (see
Appendix A). Different evolutions are possible depending
on the value of μ and according to whether we work in
MCE or CE.
We first summarize our results in MCE.
(i) If μ > μMCP (large halos), the series of equilibria is

represented in Fig. 7. For Ec ≤ E ≤ 0 (correspond-
ing to 0 ≤ k ≤ kMCE), the system is in the gaseous
phase (upper branch). The solutions of this branch
(solution A) are nondegenerate. They correspond to
the classical King model. They may describe large
dark matter halos for which quantum mechanics is
negligible. The marginal King profile at E ¼ Ec
(corresponding to k ¼ kMCE) can be approximated
by the modified Hubble profile. This is the last stable
state on the gaseous branch. It accounts relatively
well for the observation of large dark matter halos
(see Paper I).25 For E < Ec, the gaseous branch
disappears and the system collapses. Gravitational
collapse in MCE results in the formation of a
completely degenerate object with a much smaller
mass and radius than the original halo accompa-
nied by the expulsion of a hot massive envelope
(solution C). Since the envelope is expelled at
large distances, only the completely degenerate
object remains at the end. These objects may
correspond to dwarf dark matter halos that are
completely degenerate and that have a much
smaller mass than large dark matter halos.
Nucleus-halo solutions (solution B) are attractive
because they are similar to large dark matter halos

24The r−3 decay at large distances is also consistent with the
NFW profile [51]. However, unlike the NFW profile, the margin-
ally stable King model has a flat core density (in agreement with
the observations and with the Burkert profile) instead of a cuspy
profile.

25Large dark matter halos that are observed at present are
expected to have a concentration parameter close to kMCE. The
concentration parameter cannot be much smaller than kMCE
because kðtÞ increases with time and the halos are relatively
old. The concentration parameter cannot be larger than kMCE
because above kMCE the King profiles are unstable and the system
collapses. These arguments may explain why large dark matter
halos are relatively well described by the marginal King profile
with k ¼ kMCE.
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(solution A) with a fermion ball at the center that
could mimic a central black hole. However, we
have shown that these structures are thermody-
namically unstable. Therefore, when μ > μMCP,
only two types of equilibrium structures are
stable: the nondegenerate solutions (solution A)
corresponding to large dark matter halos and the
completely degenerate solutions with a dispersed
atmosphere (solution C) corresponding to dwarf
dark matter halos. Nucleus-halo configurations
(solution B) are unreachable. Note that instead
of forming a completely degenerate dwarf halo
(solution C), the gravitational collapse (gravother-
mal catastrophe) can trigger a dynamical insta-
bility of general-relativistic origin and lead to the
formation of a black hole [91]. In that case, we
obtain a nondegenerate large halo (solution A)
harboring a central black hole.

(ii) If μCCP < μ < μMCP (intermediate-size halos), the
series of equilibria is represented in Fig. 15. In that
case, the evolution of the system along the series of
equilibria is more progressive, without a sudden
jump corresponding to a phase transition (collapse).
Since there is no gravothermal catastrophe, there is
no possibility to form black holes. At high energies,
the solutions are nondegenerate. At intermediate
energies, in the region of negative specific heats,
the solutions are partially degenerate. They have a
core-halo structure but the distinction between the
degenerate core and the nondegenerate halo is not
clear-cut. At low energies, the solutions are com-
pletely degenerate.

(iii) If μ < μCCP (dwarf halos), the evolution is similar to
the previous case except that there is no region of
negative specific heat. In that case, quantum effects
are relatively strong along the whole series of
equilibria.

We now summarize our results in CE.
(i) If μ > μCCP, the series of equilibria is represented in

Fig. 19. For T ≥ Tc (corresponding to 0 ≤ k ≤ kCE),
the system is in the gaseous phase (left branch). The
solutions of this branch (solution A’) are nondegen-
erate. They correspond to the classical King model.
Because of ensemble inequivalence, the value of the
concentration parameter corresponding to the mar-
ginal King profile in CE is smaller than in MCE
(see Paper I). As a result, the marginal King profile
at Tc (corresponding to k ¼ kCE) is very different
from the modified Hubble profile (corresponding to
k ¼ kMCE). It almost coincides with a polytrope n ¼
5=2 that is the exact solution of the King model for
T → þ∞. This profile does not correspond to the
observations of large dark matter halos. This is an
observational evidence that CE may not be appro-
priate to describe dark matter halos. For T < Tc, the

gaseous branch disappears and the system collapses.
Gravitational collapse in CE results in the formation
of a completely degenerate object with a small
radius but a large mass, of the same order as the
mass of the original halo. This compact object is
surrounded by a very tenuous envelope with a small
mass that is hardly visible (solution C’). Therefore,
the isothermal collapse leads to a small degenerate
object of the same mass as the initial halo. Since
dwarf dark matter halos have a much smaller mass
than large dark matter halos, this result is not
consistent with observations. This is another obser-
vational evidence that CE may not be appropriate to
describe dark matter halos.

(ii) If μ < μCCP, the evolution of the system along the
series of equilibria is more progressive, without a
sudden jump corresponding to a phase transition
(collapse). In that case, quantum effects are rela-
tively strong along the whole series of equilibria.

From these results, we conclude that MCE is more
appropriate to describe dark matter halos than CE: (i) the
marginally stable King profile in MCE is consistent with
the observations of large dark matter halos while the
marginally stable King profile in CE is not; (ii) the
gravitational collapse in MCE leads to a small completely
degenerate compact object with a much smaller mass than
the initial halo (and the expulsion of a hot massive
envelope) while the gravitational collapse in CE leads to
a small completely degenerate compact object with the
same mass as the initial halo (with almost no atmosphere).
Therefore the gravitational collapse in MCE can account
for the difference of mass between large and dwarf halos (a
factor 1000 or more according to Table 1 of Ref. [71]) while
the gravitational collapse in CE does not. That MCE
provides a better description than CE is consistent with
the fact that dark matter halos are rather isolated objects.
Therefore a microcanonical description is more adapted
than a canonical description which assumes that the system
is dissipative and coupled to a thermal bath.
We note that the idea that dark matter halos contain a

fermion ball mimicking a central black hole [68] is very
attractive but, unfortunately, our study shows that these
nucleus-halo structures (solution B) are unreachable
because they are saddle points of entropy. Therefore,
fermion balls should not be observed at the center of large
dark matter halos (see, however, footnotes 18 and 22). It is
more likely that dark matter halos contain a central black
hole [91].
In future works, we will take general relativity into

account. We will also relate the caloric curves that we have
obtained to the observations of dark matter halos in order to
show that the fermionic King model can account for the
diversity of dark matter halos observed in the Universe.
Finally, we will explore other models of dark matter such as
the bosonic model. In our opinion, we cannot favor one
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model over the other for the moment. We note, however,
that de Vega and Sanchez [94] give arguments excluding
the possibility that dark matter is bosonic.

APPENDIX A: DYNAMICAL VERSUS
THERMODYNAMICAL STABILITY

In this appendix, we discuss subtle issues concerning the
dynamical and thermodynamical stability of self-gravitat-
ing systems.

1. Thermodynamical stability

For t → þ∞, a self-gravitating system of fermions is
expected to reach a statistical equilibrium state described by
the Fermi-Dirac distribution (I-1). This distribution func-
tion is the solution of the maximization problems (I-10) and
(I-11) with the Fermi-Dirac entropy

S ¼ −
Z

½f ln f þ ðη0 − fÞ lnðη0 − fÞ�drdv: ðA1Þ

These maximization problems determine the most probable
distribution of particles at statistical equilibrium, i.e. the
macrostate that is represented by the largest number of
microstates. In the classical (nondegenerate) limit, the
Fermi-Dirac distribution (I-1) reduces to the Boltzmann
distribution (I-2) and the Fermi-Dirac entropy (A1) reduces
to the Boltzmann entropy

S ¼ −
Z �

f ln

�
f
η0

�
− f

�
drdv: ðA2Þ

If the system is isolated, the evolution of the distribution
function is governed by the fermionic Landau equation

∂f
∂t þv ·

∂f
∂r−∇Φ ·

∂f
∂v

¼ ∂
∂vμ

Z
dv1Kμν

�
f1ð1−f1=η0Þ

∂f
∂vν−fð1−f=η0Þ

∂f1
∂vν1

�
;

ðA3Þ

Kμν ¼ 2πG2m lnN
u2δμν − uμuν

u3
; ðA4Þ

where f ¼ fðr; v; tÞ, f1 ¼ fðr; v1; tÞ, and u ¼ v1 − v. The
collision term on the right-hand side of Eq. (A3) models
the effect of two-body encounters between particles.26

The fermionic Landau equation conserves mass and energy
and monotonically increases the Fermi-Dirac entropy

(H theorem). This corresponds to MCE. Alternatively, if
the system is in contact with a thermal bath fixing the
temperature, the evolution of the distribution function is
governed by the fermionic Kramers equation

∂f
∂t þ v ·

∂f
∂r −∇Φ ·

∂f
∂v

¼ ∂
∂v ·

�
D

�∂f
∂v þ βfð1 − f=η0Þv

��
: ðA5Þ

The term on the right-hand side of Eq. (A5) models the
interaction with the thermal bath. The fermionic Kramers
equation conserves mass and monotonically increases the
Fermi-Dirac free energy (H theorem). This corresponds to
CE. The classical Landau equation and the classical
Kramers equation are recovered for f ≪ η0. A derivation
of these kinetic equations is given in Refs. [80,95,96].
As recalled in the Introduction, there is no statistical

equilibrium state for classical or quantum self-gravitating
systems in an unbounded domain because the maximiza-
tion problems (I-10) and (I-11) with the Boltzmann entropy
or with the Fermi-Dirac entropy have no solution. When
coupled to the Poisson equation, the Boltzmann distribu-
tion and the Fermi-Dirac distribution have infinite mass.
The absence of a statistical equilibrium state simply reflects
the fact that a system of particles has the tendency to
evaporate. As a result, the kinetic equations (A3) and (A5)
do not relax towards a steady state but display a permanent
evolution driven by evaporation. In practice, evaporation is
a slow process and it may be relevant to consider some form
of confinement in order to describe the structure of the
system on intermediate time scales.
A first possibility to avoid evaporation is to enclose the

systemwithin a box [1,2]. Themaximization problems (I-10)
and (I-11) have been studied for classical particles described
by the Boltzmann entropy in Refs. [1,2,7,9,16–19] and for
fermions described by the Fermi-Dirac entropy in
Refs. [9,29–34]. For classical particles, there exist equilib-
rium states only above a critical energy Ec in MCE and only
above a critical temperature Tc in CE. These equilibrium
states are metastable but they are long-lived. Below Ec in
MCE, the system undergoes a gravothermal catastrophe
leading to a tight binary surrounded by a hot halo (at the
collapse time, the singular density profile has infinite central
density but zero central mass). Below Tc in CE, the system
undergoes an isothermal collapse leading to a Dirac peak
containing all the particles. If the particles are fermions, these
singular structures (tight binary and Dirac peak) are regu-
larized by quantum mechanics. In that case, the collapse
stops when the system becomes degenerate because of the
Pauli exclusion principle. As a result, there exist equilibrium
states at all accessible energies and at all temperatures. This
gives rise to phase transitions between a gaseous phase and a
condensed phase.

26Depending on the nature of collisions, different kinetic
equations can be considered. The fermionic Landau equation
can be used to model systems with long-range interactions and
the fermionic Boltzmann equation can be used to model systems
with short-range interactions.
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Instead of working within an artificial box, we can use
the classical and fermionic King models. The study of Katz
[21] and our study show that we get the same phenom-
enology as when we work in a box. One difference is the
absence of states with positive energy since the system is
self-bound. There is also, of course, a qualitative change in
the form of the series of equilibria and in the values of the
critical points. Apart from that, the results are very similar.
In this analogy, the generalized entropies defined by
Eqs. (I-9) and (8) for the classical King model and by
Eqs. (I-9) and (7) for the fermionic King model play the
same role as the Boltzmann entropy (A2) and the
Fermi-Dirac entropy (A1) in the case of box-confined
configurations. As a result, it is natural to interpret the
maximization problems (I-10) and (I-11) as conditions of
thermodynamical stability for tidally truncated isothermal
distributions (classical or quantum). As explained in Paper
I, in order to relate the turning points of energy and
temperature to a change of microcanonical and canonical
stability (Poincaré theorem), we must keep A fixed along
the series of equilibria. Therefore, the parameter A is the
counterpart of the box radius R for box-confined systems.
We note, however, that the analogy with thermodynam-

ics remains heuristic (and maybe incorrect) because the
King model is an out-of-equilibrium model. Indeed, the
system keeps evolving by losing mass and energy as a
result of evaporation. Therefore, it is not quite clear if one
can use arguments of equilibrium thermodynamics to study
the stability of the King model. Another possibility is to use
kinetic theory.27 The King distribution is a quasistationary
solution of the Landau equationwith coefficients that slowly
change with time because of evaporation. During the colli-
sional evolution, the system becomes more and more
isothermal so the concentration parameter kðtÞ increases
monotonically with time. If we consider the nondegenerate
limit (gaseous phase) and plot the Boltzmann entropy SB
calculated with the King distribution [Eqs. (I-9), (6) and
(A2)] as a function of k, we obtain the curve reported in
Fig. 46. We see that SB increases monotonically for
k < k� ¼ 7.04, then decreases. Since kðtÞ increases with
time, a decrease of SBðkÞ is not physically possible because
it would violate the H theorem associated with the Landau
equation. This implies that the King distribution is unstable
for k > k�. At that point, the system undergoes a gravo-
thermal catastrophe and experiences core collapse. This
instability takes it away from the King sequence. This
argument was first put forward by Lynden-Bell and
Wood [2]. Cohn [23] confirmed numerically that the actual
path of evolution departs from the King sequence at some
critical k� corresponding to the maximum of SBðkÞ. The
value of k� obtained by Cohn [23] is slightly different from
ours. We obtain K� ¼ 7.84 (k� ¼ 7.04) by fixing A while

Cohn obtained K� ¼ 9.3 (k� ¼ 8.82) by scaling the King
distribution to the mass and energy of the evolutionary
model. We have also represented in Fig. 46 the evolution of
the generalized entropy S calculated with the King distri-
bution [Eqs. (I-9), (6) and (8)] as a function of k. As shown in
Paper I, it reaches its extremal value at kMCE ¼ 7.44. It is a
little bit disturbing to see that this extremumvalue is actually
a minimum and that SðkÞ decreases for k < kMCE. There is
no paradox, however, since the Landau equation satisfies an
H theorem for SB, not for S. Therefore, Smay decrease with
time. However, these considerations indicate that, for open
systems, the Boltzmann entropy SB and the generalized
entropy S (both calculatedwith the King distribution) have a
different physical meaning. The Boltzmann entropy SB is
appropriate to interpret the dynamical evolution of the
system in relation to the H theorem (kinetic theory), and
the generalized entropy S is appropriate to deduce stability
limits from the series of equilibria of the King model by
using the Poincaré theory.
We can make an additional comment. The value of the

critical concentration k� ¼ 8.82 obtained by Cohn [23] is
slightly larger than the value kMCE ¼ 7.44 obtained from
the Poincaré theory by fixing A. This suggests that the
gravothermal catastrophe occurs slightly later than pre-
dicted by Katz [21] and in Paper I. This allows the slope α
of the density profile to be substantially smaller than 3 (the
slope corresponding to k� ¼ 8.82 is α ¼ 2.52). A larger
value of the critical concentration slightly improves
the agreement between the marginal King model and the
Burkert profile. On the other hand, we remark that the
critical concentration k� ¼ 8.82 obtained by Cohn [23] is
relatively close to the value k0MCE ¼ 8.50 obtained from the
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FIG. 46. Evolution of the Boltzmann entropy SBðkÞ calculated
with the King distribution [Eqs. (I-9), (6) and (A2)] along the
series of equilibria. It increases and reaches a maximum at k� ¼
7.04 (corresponding to K� ¼ 7.84). By contrast, the entropy of
the King model SðkÞ [Eqs. (I-9), (6) and (8)] decreases and
reaches a minimum at kMCE ¼ 7.44 (corresponding to
KMCE ¼ 8.13). In the two cases, the value of A is fixed so the
energy changes as k increases.

27We restrict our discussion to MCE for the reasons explained
in Appendix B.
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Poincaré theory by fixing R (see Sec. VI of Paper I). It is
not clear whether this is a coincidence or if it bears a deeper
meaning than is apparent at first sight.

2. Dynamical stability

In the previous section, the system was assumed to have
reached a statistical equilibrium state described by the
fermionic King model as a result of collisions. In that case,
the Fermi-Dirac distribution arises from the quantum
properties of the particles (fermions). However, collisions
generally take a very long time to establish a statistical
equilibrium state (except possibly in the dense core of the
system). For self-gravitating systems with a large number
of particles, the collisional relaxation time is in general
much larger than the age of the Universe because it scales
with the number of particles as ðN= lnNÞtD, where tD is the
dynamical time [13]. As a result, most self-gravitating
systems are collisionless and their evolution is governed by
the Vlasov equation

∂f
∂t þ v ·

∂f
∂r −∇Φ ·

∂f
∂v ¼ 0: ðA6Þ

It can be shown that any steady state of the Vlasov
equation of the form f ¼ fðϵÞ with f0ðϵÞ < 0 is linearly
[13], and even nonlinearly [97], dynamically stable.
Therefore, all the King distributions are dynamically stable,
whatever their degree of concentration k. The maximization
problems (I-10) and (I-11) provide only sufficient, but not
necessary, conditions of dynamical stability. That a stronger
dynamical stability criterion exists for the Vlasov equation
is due to the fact that this equation conserves an infinite
number of integrals, beyond mass and energy—the so-
called Casimir integrals [97,98].
However, stability analysis does not explain how a

collisionless self-gravitating system reaches a steady state.
Collisionless relaxation is actually a very nontrivial concept
related to mechanisms known as violent relaxation, phase
mixing, and nonlinear Landau damping [13]. This form of
relaxation takes place on a very short time scale of the order
of a few dynamical times tD. It is therefore very relevant in
astrophysics where the collisional relaxation time is very
long. Assuming ergodicity, the quasistationary state (QSS)
that results from violent relaxation can be predicted from
the statistical theory of Lynden-Bell [62,81,82]. In that
approach, the QSS reached by the system is the solution of
the maximization problem (I-10) where S is the Lynden-
Bell entropy defined by Eq. (A1) with a bar on f (it
represents the coarse-grained distribution). The Lynden-
Bell distribution, given by Eq. (I-1) with a bar on f, is
similar to the Fermi-Dirac distribution but the reason has
nothing to do with quantum mechanics. To avoid the
infinite-mass problem arising in Lynden-Bell’s theory,
we can consider the fermionic King model defined by
Eq. (1) with a bar on f [63,80]. The maximization problem
(I-10) with the entropy defined by Eqs. (I-9) and (7) with a

bar on f determines the most probable coarse-grained
distribution f̄ resulting from the intertwinement of the fine-
grained distribution function f. While all the distribution
functions of the form f̄ ¼ f̄ðϵÞ with f̄0ðϵÞ < 0 are dynami-
cally stable, some of them are more probable than others.
This is the difference between Vlasov dynamical stability
and Lynden-Bell thermodynamical stability. For example,
in the dilute limit, all the King distributions (interpreted as
tidally truncated Lynden-Bell distributions) are Vlasov
dynamically stable but only the King distributions with k <
kMCE are Lynden-Bell thermodynamically stable, i.e. “most
probable” (local maxima of entropy at fixed mass and
energy). On the other hand, while the fine-grained distri-
bution function fðr; v; tÞ is the solution of the Vlasov
equation (A6), the coarse-grained distribution function
f̄ðr; v; tÞ is not. It is the solution of a kinetic equation that
has the form of the fermionic Landau equation (A3) with a
bar on f [63,80]. This equation conserves mass and energy
and satisfies an H theorem for the Lynden-Bell entropy.
Therefore, the study of the collisionless relaxation is, in
some sense, similar to the study of the collisional relax-
ation. Because of this analogy, the same arguments apply
except that the distribution function f must be viewed as
the coarse-grained distribution function f̄. The main
differences between collisionless and collisional relaxation
are the following: (i) the time scale of collisionless
relaxation is much shorter than the time scale of collisional
relaxation; (ii) the equilibrium distribution of collisionless
systems undergoing violent relaxation is similar to the
Fermi-Dirac distribution even if the particles are classical
while the equilibrium distribution of collisional systems is
the Boltzmann distribution for classical particles and the
Fermi-Dirac distribution for fermions; (iii) the evolution of
collisionless systems stops when the system has reached a
virialized state (on the coarse-grained scale) while colli-
sional systems undergo a permanent evaporation.

APPENDIX B: MICROCANONICAL VERSUS
CANONICAL ENSEMBLE

For the sake of completeness, we have considered both
microcanonical and canonical ensembles in the thermody-
namical analysis of the King model. However, we give
below some arguments according to which MCE is more
appropriate than CE to describe dark matter halos.

(i) Most self-gravitating systems such as galaxies and
globular clusters are isolated rather than being
coupled to a thermal bath [13]. This is the case
for dark matter halos also. Therefore, the Boltzmann
and the Landau equations (MCE) are more appro-
priate than the Kramers equation (CE) to describe
the dynamics of dark matter halos.

(ii) The King model can be derived from the Landau
equation whose diffusion coefficient DðvÞ depends
on the velocity of the particles and decreases as 1=v3
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for v → þ∞. This decay law is crucial in order to
obtain the King model [14,63,80,81,99]. Since the
diffusion coefficient appearing in the Kramers equa-
tion is constant, the King model cannot be rigorously
derived from that equation.

(iii) The King profile at the limit of microcanonical
stability kMCE ¼ 7.44 can be approximated by the
modified Hubble and Burkert profiles that fit a
wide diversity of rotation curves of galaxies. By
contrast, the King profile at the limit of canonical
stability kCE ¼ 1.34 is very different from the
modified Hubble and Burkert profiles. In CE,
only the King distributions that are close to a
polytrope n ¼ 5=2 are stable, and these distribu-
tions are very different from the observed struc-
ture of dark matter halos. Since kCE < kMCE as a
result of ensemble inequivalence, the King pro-
files with k≃ kMCE that are similar to the modi-
fied Hubble and Burkert profiles are stable in
MCE but not in CE. Therefore, from the obser-
vation viewpoint, MCE gives better results than
CE. This is because it contains a larger sequence
of stable King models than CE as a result of
ensemble inequivalence (i.e. because of the con-
straint resulting from the conservation of energy).
As a matter of fact, all the observationally relevant
King profiles are unstable in CE.

(iv) The consideration of MCE solves the apparent
contradiction faced by Merafina and Ruffini [56].
These authors studied the dynamical stability of the
classical King model and found, in the nonrelativ-
istic regime, that it becomes unstable for k > 1.3654
(in our notations). They concluded therefore that
“the configurations integrated by King are not in the
stable branch”. However, their stability criterion
corresponds to the criterion of canonical stability
kCE ¼ 1.34 (the small difference between 1.3654
and 1.34 is probably a numerical effect). Since
globular clusters are isolated, they should be treated
in MCE where the limit of stability is kMCE ¼ 7.44.
In this proper ensemble, most of the configurations
integrated by King are stable. Therefore, there is no
contradiction. The same remark applies to dark
matter halos.

(v) The gravitational collapse of a large dark matter halo
of mass M ∼ 1012M⊙ in MCE leads to a small
compact degenerate object containing amuch smaller
massM ∼ 106M⊙ than the initial halo, accompanied
by the expulsion of a hot and massive envelope (see
Sec. V B). The compact object may correspond to a
dwarf dark matter halo (see Table 1 of Ref. [71]). By
contrast, the gravitational collapse of a large dark
matter halo inCE leads to a small compact degenerate
object containing almost all the mass of the initial
halo, surrounded by a very tenuous atmosphere (see
Sec. V E). The compact object cannot correspond to a

dwarf dark matter halo because its mass is too large.
Therefore, from the observation viewpoint, MCE
gives better results than CE.

(vi) If the dark matter halos were coupled to a thermal
bath (CE), they would all have the same temperature
while observations reveal that their temperature (or
their velocity dispersion) depends on their size (see
Table 1 of Ref. [71]). By contrast, isolated systems
(MCE) have different energies, and hence different
temperatures.

(vii) That the temperature depends on the size of the halos
may be in favor of Lynden-Bell’s theory of violent
relaxation [81] where T is an out-of-equilibrium
temperature that has no reason to be the same for
all clusters. In the Lynden-Bell theory, only MCE
makes sense since this theory is based on the Vlasov
equation that applies to an isolated collisionless
system (fixed E).

(viii) Violent relaxation leads to core-halo structures with a
density slope α ¼ 4 [100–103]. These configurations
are consistentwith aKingmodel of index k ∼ 5. They
are stable in MCE but unstable in CE. This is another
argument that MCE is more relevant than CE.

Remark: We would like to make clear that we consider
here the thermodynamical stability of the fermionic King
distribution. This implies that we are considering the
stability of the system with respect to a collisional evolution
or with respect to a violent relaxation on the coarse-grained
scale (both described by the fermionic Boltzmann or
Landau equation). We have seen that the fermionic King
distributions are not always thermodynamically stable, and
this puts interesting constraints on these distributions. On
the other hand, we recall that the fermionic King distribu-
tions, and more generally all the distribution functions of
the form f ¼ fðϵÞ with f0ðϵÞ < 0, are nonlinearly dynami-
cally stable with respect to the Vlasov equation describing a
collisionless evolution [97]. The maximization problems
(I-10) and (I-11) only provide sufficient, but not necessary,
conditions of dynamical stability [98].

APPENDIX C: THE FUNCTIONS R, F, G, AND H

In Paper I, we have introduced the functions

R
rh

¼ ζ1ðkÞ
ζhðkÞ

≡RðkÞ; ðC1Þ

Mh

ρ0r3h
¼ −4π

χ0½ζhðkÞ�
ζhðkÞ

≡ FðkÞ; ðC2Þ

σ20
Gρ0r2h

¼ 8π

3

1

ζ2hðkÞ
I2ðkÞ
I1ðkÞ

≡ GðkÞ; ðC3Þ

where rh is the halo radius such that ρðrhÞ=ρ0 ¼ 1=4 [72].
These functions have been computed for the classical King
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model. For the fermionic model, we introduce the addi-
tional function

η0σ
3
0

ρ0
¼ μ

3
ffiffiffi
3

p I2ðkÞ3=2
I1ðkÞ5=2

≡HðkÞ; ðC4Þ

which gives the ratio between the maximum value of the
distribution function η0 ¼ gm4=h3 fixed by the Pauli
exclusion principle and the typical central phase-space
density ρ0=σ30. To obtain the right-hand side of Eq. (C4),
we have used Eqs. (I-28), (I-96) and (I-97). We also note
that the exact central distribution function is f0 ¼ AF sð−kÞ
so that

η0
f0

¼ ek þ μ

ek − 1
: ðC5Þ

For the fermionic King model, we have the following
asymptotic results. For k → 0, we getRð0Þ ¼ 2.74, Fð0Þ ¼
1.89, Gð0Þ ¼ 0.944 (see Paper I), HðkÞ∼15ð1þμÞ=
ð56π ffiffiffi

7
p

kÞ∼3.22×10−2ð1þμÞk−1, and η0=f0∼ð1þμÞ=k.
For k → þ∞, we get Rðþ∞Þ ¼ 1.61, Fðþ∞Þ ¼
−4πθ0h=ξh ¼1.99, Gðþ∞Þ ¼ 8π=ð5ξ2hÞ ¼ 0.975, Hðþ∞Þ ¼
3=ð20π ffiffiffi

5
p Þ ¼ 2.14 × 10−2, and η0=f0 → 1 where we have

used ξh ¼ 2.27 and θ0h ¼ −0.360 for a polytrope n ¼ 3=2.
For a given value of μ, Eq. (C5) can be used to determine

the value of the concentration parameter k above which
the system is degenerate. If we consider that the system is
degenerate when f0 > η0=ν, where ν is a number that
depends on our degree of precision (e.g. ν ¼ 10), we find
that the system is degenerate when k> ln½ðμþνÞ=ðν−1Þ�.
Inversely, for a given value of k we find that the system
is degenerate when μ < ðν − 1Þek − ν. As an illustration,
taking k ¼ kMCE ¼ 7.44, we find that the system is
degenerate at that point when μ < 15300.
We can use the functions F, G,H to relate the theoretical

results of the fermionic King model to the observations.
This is beyond the scope of the present paper but this will
be considered in a future work.
Remark: The functions defined by Eqs. (C1)–(C4) have

been introduced by DdVSS [70–74] in relation to the usual
Fermi-Dirac distribution. Our approach is different since
our definitions apply to the fermionic King model with an
energy cutoff. To avoid confusion, we recall that the
functions InðkÞ appearing in Eqs. (C1)–(C4) do not
correspond to the Fermi integrals used in Refs. [70–74]
but to the functions defined by Eq. (I-25).

APPENDIX D: FERMIONIC VERSUS
BOSONIC DARK MATTER

In this appendix, we determine the mass of the particles
that compose dark matter halos according to whether they
correspond to fermions, bosons without self-interaction, or
bosons with self-interaction. We use Newtonian gravity. The
Newtonian approximation is valid when 2GM=Rc2≪1.

This condition can be rewritten as M=M⊙ ≪ 0.339R=km
or as M=M⊙ ≪ 1.04 × 1013R=pc. From this criterion it is
easy to see that dark matter halos are nonrelativistic and that
they can be treated by Newtonian gravity.
The smallest known dark matter halo is Willman 1 that

has rh ¼ 33 pc, ρ0 ¼ 6.8M⊙=pc3, Mh ¼ 0.39 × 106M⊙,
and σ0 ¼ 4 km=s [71,72]. To determine the mass of the
particles that compose dark matter halos, we consider that
this most compact halo is completely degenerate (for
fermions) or completely condensed (for bosons), i.e., that
it corresponds to the ground state (T ¼ 0) of a self-
gravitating Fermi or Bose gas. We compare the results
with those obtained by considering that large dark matter
halos such as the Medium Spiral (with rh ¼ 1.9 × 104 pc,
ρ0 ¼ 7.6 × 10−3M⊙=pc3, Mh ¼ 1.01 × 1011M⊙ and
σ0 ¼ 76.2 km=s) are completely degenerate or completely
condensed. This is incorrect but this estimate has been
made in the past, so it is interesting to do the comparison.
A completely degenerate system of self-gravitating

fermions at T ¼ 0 has the mass-radius relation MR3 ¼
1.49 × 10−3h6=ðG3m8Þ [11]. This gives

m
eV=c2

¼ 2.27 × 104
�
pc
R

�
3=8

�
M⊙
M

�
1=8

: ðD1Þ

Using the values of M and R corresponding to Willman 1,
we obtain a fermion mass m ¼ 1.23 keV=c2. This is the
typical mass28 obtained by DdVSS [70–74]. This particle
could be a sterile neutrino [76,77]. In the past, some authors
[54–59] have determined the fermion mass by considering
that large dark matter halos are completely degenerate.
Using the values ofM and R corresponding to the Medium
Spiral, this leads to a fermion mass m ¼ 28.8 eV=c2. This
is the typical mass obtained in Refs. [54–59]. However, if
large dark matter halos were completely degenerate there
would not be smaller halos such as Willman 1. Therefore,
this prediction is not correct. Furthermore, the density
profiles and the rotation curves of large dark matter halos
do not correspond to those of a completely degenerate self-
gravitating Fermi gas. In the fermionic scenario, large dark
matter halos are nondegenerate tidally truncated isothermal
systems described by the classical King model (see
Paper I).
A completely condensed system of self-gravitating

bosons (BEC) without self-interaction at T ¼ 0 has the

28This result assumes that (i) Willman 1 is completely
degenerate, and that (ii) the observational values of rh and Mh
are accurate. More precise observational data may change the
value of the particle mass m but its order of magnitude should
remain the same. On the other hand, if the distribution function of
the halos corresponds to the Lynden-Bell distribution function
instead of the Fermi-Dirac distribution function, we must divide
η0 ¼ 2m4=h3 by 2 since ηLB0 ¼ ηPauli0 =2 (see footnote 11 in Paper
I). This implies that the particle mass m must be multiplied by
21=4 giving m ¼ 1.46 keV=c2.
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mass-radius relation MR ¼ 9.95ℏ2=ðGm2Þ [104–106].
This gives

m
eV=c2

¼ 9.22 × 10−17
�
pc
R

�
1=2

�
M⊙
M

�
1=2

: ðD2Þ

Using the values of M and R corresponding to Willman 1,
we obtain a boson massm ¼ 2.57 × 10−20 eV=c2. This is a
new prediction. In the past, some authors [107] have
determined the boson mass by considering that large dark
matter halos are completely condensed. Using the values of
M and R corresponding to the Medium Spiral, this leads to
a boson mass m ¼ 2.10 × 10−24 eV=c2. This is the typical
mass obtained in Ref. [107]. However, the Medium Spiral
cannot be completely condensed otherwise there would not
be smaller halos such as Willman 1. Therefore, this
prediction is not correct. In the bosonic scenario, large
dark matter halos have a solitonic core (BEC) surrounded
by an envelope made of scalar radiation (see footnote 5 of
Paper I and the end of Appendix F). It is the envelope that
fixes their size.
A completely condensed systemof self-gravitating bosons

(BEC) with self-interaction at T ¼ 0 in the Thomas-Fermi
limit has a unique radius R ¼ πðaℏ2=Gm3Þ1=2 (a is the
scattering length) [108–112]. This gives

�
fm
a

�
1=3

�
m

eV=c2

�
¼ 6.73

�
pc
R

�
2=3

: ðD3Þ

Using the value of R corresponding to Willman 1, we obtain
ðfm=aÞ1=3ðmc2=eVÞ ¼ 0.654. This is a new prediction. In
order to determine the mass of the bosons, we need another
relation. This relation is provided by the constraint σ=m <
1.25 cm2=g set by the Bullet Cluster [113], where σ ¼ 4πa2

is the self-interaction cross section. Assuming that the bound
is reached (this gives an upper bound on the mass and on the
scattering length of the bosons) we get ða=fmÞ2ðeV=mc2Þ ¼
1.77 × 10−8. From these two constraints, we obtain m ¼
1.69 × 10−2 eV=c2 and a ¼ 1.73 × 10−5 fm. This boson
mass is in agreement with the limit m < 1.87 eV=c2

obtained from cosmological considerations [114]. In the
past, some authors [110] have determined the ratiom=a1=3 by
considering that large dark matter halos are completely
condensed. Using the value of R corresponding to
the Medium Spiral, we obtain ðfm=aÞ1=3ðmc2=eVÞ ¼
9.45 × 10−3. The constraint from the Bullet Cluster then
yields m ¼ 1.05 × 10−4 eV=c2 and a ¼ 1.36 × 10−6 fm.
However, for the same reason as the one given for non-
interacting bosons, this prediction is not correct.
The mass m ¼ 2.57 × 10−20 eV=c2 obtained for bosons

without self-interaction gives a lower bound on the mass
of the bosonic dark matter particle. Inversely, the mass
m ¼ 1.69 × 10−2 eV=c2 obtained for self-interacting
bosons in the Thomas-Fermi limit gives an upper bound

on the mass of the bosonic dark matter particle. Therefore,
we predict29 that the mass of the bosonic particle is in
the range 2.57 × 10−20 eV=c2 < m < 1.69 × 10−2 eV=c2.
The TF limit is valid for sufficiently large scattering
lengths. An estimate of the critical scattering length can
be obtained by substituting m¼2.57×10−20 eV=c2 in the
relation ðfm=aÞ1=3ðmc2=eVÞ¼0.654. This gives ac¼6.07×
10−59fm. For a < ac, the mass of the bosonic particle is
m ¼ 2.57 × 10−20 eV=c2 and for ac<a<1.73×10−5 fm
the mass of the bosonic particle is 2.57×10−20<mc2=eV¼
0.654ða=fmÞ1=3<1.69×10−2.
We note that, for a given dark matter particle massm, the

ground state of self-interacting bosons determines the
radius of the most compact dwarf halos while the ground
states of fermions and noninteracting bosons determine
their mass-radius relation.
Finally, we can make the following remark. In the

fermionic model, large dark matter halos are classical
(see Appendix E) so we have the relation σ20 ¼ kBT=m.
Introducing relevant scales, this can be rewritten as

m
eV=c2

¼ 7.74 × 1012
�
m=s
σ0

�
2 T
K
: ðD4Þ

For the medium spiral, σ0 ¼ 76.2 km=s. If we argue that
the temperature is in the Kelvin range, as is the case for the
radiation background, and take T ∼ 1 K, we obtain
m ¼ 1.33 keV=c2. Thus, we find that the fermion mass
is in the keV=c2 range. This is a completely different
argument than the one given previously (relying on the
ground state of the self-gravitating Fermi gas) but we may
find confidence in the fact that these two arguments lead to
similar results.

APPENDIX E: QUANTUM VERSUS
CLASSICAL HALOS

Once we know the mass of the dark matter particle (see
Appendix D), we can determine if a given halo is quantum
(Fermi degenerate or Bose condensed) or classical. We first
consider the case of fermions. The parameter

H ¼ 2m4σ30
ρ0h3

ðE1Þ

measures the degree of degeneracy of the core of
dark matter halos (see Appendix C). Using the results of
Sec. III D, we find that a completely degenerate system
of self-gravitating fermions at T ¼ 0 has H0 ¼ 0.0214. On
the other hand, one can show that a self-gravitating Fermi

29As in footnote 28, this prediction assumes that Willman 1 is
completely condensed and that the observational values of rh and
Mh are reliable. Our prediction could be improved when more
precise data are available.
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gas is nondegenerate (classical) when H > 1 [90].
Introducing scaled variables, the parameter H can be
written as

H ¼ 1.03 × 10−24
�

m
eV=c2

�
4
�

σ0
m=s

�
3
�
M⊙=pc3

ρ0

�
: ðE2Þ

According to the discussion of Appendix D, we take a
fermion mass m ¼ 1.23 keV=c2. For Willman 1, we find
H ¼ 0.0221≃H0, a value expected for a completely
degenerate system (this is how the mass m ¼ 1.23keV=c2

has been obtained). For the Medium Spiral, we find H ¼
1.35 × 105 ≫ 1 indicating that this system is nondegener-
ate.30 We can also compute H for a globular cluster with
rh ¼ 10 pc, ρ0 ¼ 8 × 103M⊙=pc3, Mh ¼ 6 × 105M⊙,
σ0¼7km=s, and m�¼M⊙¼1.12×1066 eV=c2 [13]. In that
case, we get the huge number H ¼ 6.80 × 10247 ≫ 1.
We now evaluate the parameter H in the case where

dark matter is made of bosons. It is shown in Appendix F
that the core of the halo is condensed (BEC) when
H < 4.86 × 10−2 and noncondensed (thermal bosons)
when H > 4.86 × 10−2. If we take a mass m ¼ 2.57 ×
10−20 eV=c2 appropriate to noninteracting bosons (see
Appendix D), we find that H ¼ 4.23 × 10−93 for dwarf
halos such as Willman 1 and H ¼ 2.62 × 10−86 for large
halos such as the Medium Spiral, indicating that their core
is always condensed. If we take a mass m ¼ 1.69 ×
10−2 eV=c2 appropriate to self-interacting bosons, we also
find that both dwarf halos such as Willman 1 (H ¼
7.91 × 10−22) and large halos such as the Medium
Spiral (H ¼ 4.89 × 10−15) are quantum (Bose condensed)
objects.
These results are potentially very important because they

can help determining if dark matter is made of fermions or
bosons. Indeed, in the fermion case (m ¼ 1.23 keV=c2),
small dark matter halos are quantum objects while large
dark matter halos are classical objects. By contrast, in the
boson case (m ¼ 2.57 × 10−20 eV=c2 in the noninteracting
case or m ¼ 1.69 × 10−2 eV=c2 in the self-interacting
case), small and large dark matter halos are quantum
objects. They have a core-halo structure made of a solitonic
core surrounded by a halo of scalar radiation (see footnote 5
of Paper I and the end of Appendix F).
Since the surface density Σ0 ¼ ρ0rh is approximately the

same for all the halos [72], it is relevant to express H in
terms of this quantity. Using the results of Appendix C, we
obtain

H ¼ 2m4G3=2M5=4
h

Σ3=4
0 h3

GðkÞ3=2
FðkÞ5=4 : ðE3Þ

As shown in Paper I, the functions FðkÞ and GðkÞ do
not sensibly change with k. Taking FðkÞ ∼ 1.8 and
GðkÞ ∼ 0.95, and introducing relevant scales, we obtain

H ¼ 1.29 × 10−19
�

m
eV=c2

�
4
�
Mh

M⊙

�
5=4

�
M⊙=pc2

Σ0

�
3=4

:

ðE4Þ

Considering that Σ0 ¼ 120M⊙=pc2 is the same for all the
halos, and assuming that dark matter is made of fermions
with mass m ¼ 1.23 keV=c2, we find that the halos are
degenerate (H < 1) for Mh < 2.97 × 106M⊙ and classical
(H > 1) for Mh > 2.97 × 106M⊙. Therefore, the majority
of the observed halos reported in Table 1 of Ref. [71] are
classical. Still, the dwarf halos that correspond to the
ground state of the self-gravitating Fermi gas are crucially
important for determining the mass of the dark matter
particle [71].
Assuming that dark matter is made of bosons of mass

m¼2.57×10−20 eV=c2 (noninteracting) or m ¼ 1.69 ×
10−2 eV=c2 (self-interacting), we find that all the observed
halos are quantum/Bose condensed (H < 4.86 × 10−2). The
bosonic halos would become classical (H>4.86×10−2) for
Mh>1.11×1079M⊙ or Mh>9.53×1020M⊙, respectively.
Finally, assuming that dark matter is made of particles

with mass m ∼ GeV=c2, corresponding to the CDM
model, we find that all the observed halos are classical
(H ≫ 1). These halos would become quantum for
Mh < 1.44 × 10−3M⊙. This bound is so small that quan-
tum mechanics can be neglected in the CDM model.
Therefore, if the CDM model were valid, we should
observe halos of any size. The fact that we do not observe
halos below the size of Willman 1 shows that there exists a
minimum scale in the Universe (ground state) that is fixed
by quantum mechanics (fermions or bosons).

APPENDIX F: THE TEMPERATURE
OF THE HALOS

The results of the previous section can be expressed in
terms of the temperature of the halos. We first consider the
case of fermions. We have seen that the halos are classical if
H ¼ 2m4σ30=ρ0h

3 > 1. Since σ20 ¼ kBT=m for a classical
isothermal equation of state, the classical limit corresponds
to T > TF where

kBTF ¼ 24=3π2ℏ2ρ2=30

m5=3 ðF1Þ

is the Fermi temperature. The halos are nondegenerate for
T > TF and degenerate for T < TF. The parameter H can

30We have to be careful that the observed central density ρ0 ¼
7.6 × 10−3M⊙=pc3 reported in Table 1 of Ref. [71] may be an
apparent one. Large dark matter halos may contain a central
nucleus (or a black hole) of very small size and huge density ρ00 ≫
ρ0 that may not be resolved observationally (see Appendix H).
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be rewritten as H ¼ ðT=TFÞ3=2. Introducing scaled varia-
bles, we obtain

TF

K
¼ 1.27 × 103

�
ρ0

M⊙=pc3

�
2=3

�
eV=c2

m

�
5=3

: ðF2Þ

Using the results of Sec. VII.E of Paper I, the temperature
of classical halos is given by kBT¼GðkÞmGρ0r2h¼
GðkÞmGΣ0rh¼½GðkÞ=FðkÞ�mGMh=rh¼½GðkÞ=FðkÞ1=2�×
mGΣ1=2

0 M1=2
h with FðkÞ∼1.8 and GðkÞ ∼ 0.95. Introducing

scaled variables, we obtain

T
K
¼ 5.28 × 10−10

m
eV=c2

ρ0
M⊙=pc3

�
rh
pc

�
2

; ðF3Þ

T
K
¼ 5.28 × 10−10

m
eV=c2

Σ0

M⊙=pc2
rh
pc

; ðF4Þ

T
K
¼ 2.93 × 10−10

m
eV=c2

Mh

M⊙
pc
rh

; ðF5Þ

T
K
¼ 3.94 × 10−10

m
eV=c2

�
Σ0

M⊙=pc2

�
1=2

�
Mh

M⊙

�
1=2

: ðF6Þ

On the other hand, Eq. (D4) can be written as

T
K
¼ 1.29 × 10−13

m
eV=c2

�
σ0
m=s

�
2

: ðF7Þ

These different equations can be directly obtained from
Eq. (2.38) of Ref. [73]. We note that these relations are valid
only for classical halos. In the quantum regime, we take
them as a rough approximation of the halo temperature.
This is sufficient for an order-of-magnitude estimate. Let us
make a numerical application. We take a fermion mass
m ¼ 1.23 keV=c2. For dwarf halos such as Willman 1, we
find that T ¼ 4.81 × 10−3 K and TF ¼ 2.23 × 10−2 K so
these halos are quantum. For large halos such as the
Medium Spiral, we find that T ¼ 1.78 K and TF ¼ 3.48 ×
10−4 K so these halos are classical. This is of course
equivalent to the results of Appendix E.
We now turn to the case of bosons. The condensation

temperature of the bosons, estimated at the center of the
halo, is

Tc ¼
2πℏ2ρ2=30

kBζ2=3m5=3 ; ðF8Þ

with ζ ¼ 2.61. The bosons are condensed for T < Tc
and noncondensed for T > Tc. We note that the condensa-
tion temperature (F8) has the same scaling as the
Fermi temperature (F1). They differ by a factor TF=Tc ¼
21=3πζ2=3 ¼ 7.51. Therefore

Tc

K
¼ 169

�
ρ0

M⊙=pc3

�
2=3

�
eV=c2

m

�
5=3

: ðF9Þ

Writing σ20 ¼ kBT=m, the parameter H defined by
Eq. (E1) can be written as H ¼ 4.86 × 10−2ðT=TcÞ3=2. It
measures the degree of condensation of dark matter halos.
The bosons are condensed (quantum halos) when H <
4.86 × 10−2 and noncondensed (classical halos) when
H > 4.86 × 10−2. Let us make a numerical application.
We take a mass m ¼ 2.57 × 10−20 eV=c2 appropriate to
noninteracting bosons. For dwarf halos such as Willman 1,
we find T ¼ 1.00 × 10−25 K and Tc ¼ 2.72 × 1035 K.
For large halos such as the Medium Spiral, we find T ¼
3.72 × 10−23 K and Tc ¼ 2.92 × 1033 K. We now take a
mass m ¼ 1.69 × 10−2 eV=c2 appropriate to self-interact-
ing bosons. For dwarf halos such as Willman 1, we find
T ¼ 3.49 × 10−8 K and Tc ¼ 5.45 × 105 K. For large
halos such as the Medium Spiral, we find T ¼ 1.27 ×
10−5 K and Tc ¼ 5.87 × 103 K. In all cases, T ≪ Tc. The
same conclusion is reached if we assume that the halos are
in equilibrium with the radiation background at ∼3 K.
Therefore, if dark matter is made of bosons, all the halos are
quantum (Bose condensed) objects. This is valid for both
noninteracting and self-interacting bosons. Since T ≪ Tc,
we can consider in excellent approximation that all bosonic
halos are at T ¼ 0.
This result leads, however, to an apparent contradiction.

Indeed, if the halos are self-gravitating BECs at T ¼ 0
made of self-interacting bosons, they should all have the
same radius R ¼ πðaℏ2=Gm3Þ1=2, which is clearly not the
case. If the halos are self-gravitating BECs at T ¼ 0 made
of noninteracting bosons, their radius should decrease with
their mass as R ¼ 9.95ℏ2=ðGMm2Þ which is in contra-
diction with the observations revealing that the radius of
dark matter halos increases with their mass. A possibility to
resolve this apparent contradiction is to assume that
bosonic dark matter halos at T ¼ 0 have a core-halo
structure with a solitonic core (BEC), which is a stationary
solution of the Gross-Pitaevskii-Poisson equation, sur-
rounded by a halo of scalar radiation in which the density
decreases as r−3 similarly to the NFW [51] and Burkert [52]
profiles. This core-halo structure may result from a process
of gravitational cooling [115]. The extended halo of
radiation behaves as an effective isothermal atmosphere
with a temperature Teff ≠ 0 that has to be taken into
account in order to determine the size of the dark matter
halos. Because of this atmosphere, dark matter halos may
have a radius much larger than the radius of the soliton
(BEC). Actually, the most compact dwarf dark matter halos
such as Willman 1 are purely solitonic objects. They have
just a solitonic core (BEC) without an atmosphere.
Therefore, their size is equal to the size of the soliton.
By contrast, large dark matter halos are extended objects
with a core-halo structure. They have a solitonic core
(BEC) surrounded by an extended atmosphere made of
scalar radiation. It is the radiative atmosphere that fixes the
size of large dark matter halos. The atmosphere can be
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much larger than the size of the soliton (core). The presence
of the radiative atmosphere solves the apparent paradox that
BEC halos at T ¼ 0 should all have the same radius (in the
self-interacting case) or that their radius should decrease
with their mass (in the noninteracting case), in contra-
diction with the observations. In this way, there is no
paradox when the bosonic dark matter halos are treated as a
system at T ¼ 0.

APPENDIX G: MAXIMUM MASS OF
RELATIVISTIC COMPACT OBJECTS

Once we know the mass of the dark matter particle (see
Appendix D), we can determine the maximummass and the
minimum radius fixed by general relativity of a completely
degenerate (for fermions) or completely condensed (for
bosons) compact object at T ¼ 0. While we have argued
that large dark matter halos should not contain such objects
at their center (at least in the form of the solutions B in
Figs. 8, 35 and 41, because these solutions are saddle points
of entropy), it is nevertheless interesting to make the
numerical application.
If dark matter is made of fermions, the maximum mass is

Mmax ¼ 0.376ðℏc=GÞ3=2=m2 and the minimum radius is
Rmin ¼ 9.36GMmax=c2 [116]. Introducing scaled variables,
we get

Mmax

M⊙
¼6.13×1017

�
eV=c2

m

�
2

;
Rmin

km
¼13.8

Mmax

M⊙
: ðG1Þ

For m ¼ 1.23 keV=c2, we obtain Mmax ¼ 4.05 × 1011M⊙
and Rmin ¼ 0.181 pc.
If dark matter is made of noninteracting bosons, the

maximum mass isMmax ¼ 0.633ℏc=Gm and the minimum
radius is Rmin ¼ 9.53GMmax=c2 [117]. Introducing scaled
variables, we get

Mmax

M⊙
¼8.48×10−11

eV=c2

m
;

Rmin

km
¼14.1

Mmax

M⊙
: ðG2Þ

For m ¼ 2.57 × 10−20 eV=c2, we obtain Mmax ¼ 3.30 ×
109M⊙ and Rmin ¼ 1.51 × 10−3 pc.
If dark matter is made of self-interacting bosons, the

maximum mass is Mmax ¼ 0.307ℏc2
ffiffiffi
a

p
=ðGmÞ3=2 and

the minimum radius is Rmin¼6.25GMmax=c2 [118].
Introducing scaled variables, we get

Mmax

M⊙
¼ 1.12

�
a
fm

�
1=2

�
GeV=c2

m

�
3=2

; ðG3Þ

Rmin

km
¼ 9.27

Mmax

M⊙
: ðG4Þ

For ðfm=aÞ1=3ðmc2=eVÞ ¼ 0.654, we obtain Mmax ¼
6.70 × 1013M⊙ and Rmin ¼ 20.2 pc. We note that this

estimate depends on the mass m and scattering length a
of the bosons only through the ratio m3=a.
Remark: The large values Mmax ∼ 109 − 1013M⊙ of the

maximum mass of the compact objects (fermion balls or
BECs) that we have obtained suggest that these compact
objects, if they exist at the center of dark matter halos, are
nonrelativistic (M� ≪ Mmax). By comparison, the typical
mass of the black holes that are thought to be hosted at the
center of the galaxies is MBH ∼ 104–107M⊙ (the mass of
Sgr* is ∼4 × 106M⊙). General-relativistic configurations
(fermion balls or BECs) approaching the maximum mass
could be attained in the central compact cores observed in
active galactic nuclei.

APPENDIX H: A CRITERION FOR THE
POSSIBLE EXISTENCE OF A BLACK HOLE AT

THE CENTER OF DARK MATTER HALOS

It is known that certain dark matter halos contain a
central black hole. In Sec. VII, we have argued that “large”
halos may contain a black hole because they can experience
a gravothermal catastrophe while “small” halos should not
contain a black hole because the gravothermal catastrophe
is prevented by quantum mechanics. In this appendix, we
determine a more precise criterion for the possible exist-
ence of a black hole at the center of dark matter halos.
To that purpose, we use the parameters of the box

model [9] that are more convenient for numerical applica-
tions. In this model, the degeneracy parameter is μbox ¼
η0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512π4G3MR3

p
. If we identify R with the halo radius rh

and M with the halo mass Mh, and introduce relevant
scales, we obtain

μbox ¼ 6.41 × 10−17
�

m
eV=c2

�
4
�
Mh

M⊙

�
1=2

�
rh
pc

�
3=2

: ðH1Þ

Our criterion for the possible existence of a black hole at the
center of dark matter halos is that the system can undergo a
gravothermal catastrophe. This is the case when μbox is
above the microcanonical critical point μboxMCP ¼ 2670 [9].31

Now, μbox can be related to the parameter H. Using the
results of Appendix C, we get

μbox ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
512π4

p FðkÞ1=2HðkÞ
GðkÞ3=2 : ðH2Þ

As shown in Paper I, the functions FðkÞ and GðkÞ do not
sensibly change with k. Taking FðkÞ ∼ 1.8 and GðkÞ∼
0.95, we obtain μbox ≃ 324H. Therefore, our criterion for
the existence of a black hole at the center of a dark matter
halo can be written asH > 8.24. Takingm ¼ 1.23 keV=c2,
and using Eq. (E4), this corresponds to a halo mass

31Actually, μ must be substantially larger than μboxMCP so that the
gravothermal catastrophe is sufficiently efficient to allow the
system to enter the relativistic regime and trigger the dynamical
instability to a black hole [91].
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Mh > 1.60 × 107M⊙. By comparison, the canonical criti-
cal point μboxCCP ¼ 83 [9] corresponds to H ¼ 0.256 and to a
halo mass Mh ¼ 9.96 × 105M⊙.
In conclusion, large dark matter halos of mass Mh >

1.60 × 107M⊙ can experience a gravothermal catastrophe
and may contain a central black hole. Small dark matter
halos of mass Mh < 1.60 × 107M⊙ should not contain a
black hole because they cannot experience a gravothermal
catastrophe.
As we have seen in Appendixes E and F, bosonic dark

matter halos are quantum objects at T ¼ 0. As a result, they
cannot experience a gravothermal catastrophe and should
not contain a black hole. They instead contain a central
solitonic object (BEC) surrounded by a halo of scalar
radiation. Therefore, the nature of the object that lies at the
center of dark matter halos (black hole or BEC) may tell us
the nature of dark matter (fermions or bosons).
Remark: Concerning solution B in Fig. 41, correspond-

ing to a dark matter halo harboring a central fermion ball
(possibly unstable), we can show that the fraction of mass
contained in the nucleus scales asM� ∝ Mh=μ1=2 whereMh

is the halo mass [29]. Since μ ∼H ∼M5=4 [from Eq. (E4)]
we get the scaling M� ∝ M3=8

h .

APPENDIX I: SCENARIOS OF FORMATION
OF DARK MATTER HALOS

In this appendix, we discuss different scenarios of
formation of dark matter halos depending on the nature
of the dark matter particle.
We first assume that dark matter is made of classical

particles (i.e. heavy particles of mass m ∼ GeV=c2) as in
the CDM model. Initially, dark matter can be considered as
a spatially homogeneous gas at T ¼ 0. The velocity of
sound cs ¼ 0. This distribution is unstable and undergoes
gravitational collapse (Jeans instability). Since the classical
Jeans wave number kJ ¼

ffiffiffiffiffiffiffiffiffiffiffi
4πGρ

p
=cs → þ∞ for cs → 0,

the gas is unstable at all wavelengths and, consequently,
structures form at all scales. There is no ground state so we
expect to observe dark matter halos of all sizes.
Furthermore, small halos are cuspy because nothing pre-
vents the divergence of the density resulting from gravi-
tational collapse. Cusps are preserved during successive
mergings (hierarchical clustering) so that large halos are
also cuspy. As we know, these results do not agree with
observations: halos are cored (cusp problem) and they are
not observed below a certain scale (missing satellite
problem). This suggests that quantum mechanics has to
be taken into account.32

We now assume that dark matter is made of fermions.
Initially, dark matter can be considered as a spatially
homogeneous gas described by the relativistic Fermi
distribution f ¼ ηPauli0 =ð1þ epc=kBTÞ where ηPauli0 ¼
gm4=h3 is the Pauli bound [119]. The maximum value
of the distribution function is f0 ∼ ð1=2ÞηPauli0 ¼
ðg=2Þm4=h3. At later times, the gas is nonrelativistic and
collisionless, described by the Vlasov-Poisson system. A
spatially homogeneous distribution is unstable and under-
goes gravitational collapse (Jeans instability). The fer-
mionic Jeans wave number kJ ¼

ffiffiffiffiffiffiffiffiffiffiffi
12πG

p ð8π=3Þ1=3×
m4=3ρ1=6=h, obtained from Eq. (15), is finite so that
quantum mechanics prevents the formation of small-scale
structures and fixes a ground state. This produces a sharp
cutoff in the power spectrum. In the linear regime, some
regions of overdensity form. When the density has suffi-
ciently grown, these regions collapse under their own
gravity at first in free fall. Then, as nonlinear gravitational
effects become important at higher densities, these regions
undergo damped oscillations (due to an exchange of kinetic
and potential energy) and finally settle into a QSS on a
coarse-grained scale. This corresponds to the process of
violent relaxation first reported by Lynden-Bell [81] for
stellar systems like elliptical galaxies.33 This process is
related to phase mixing and nonlinear Landau damping. It
is applied here to dark matter. In this context, the QSSs
represent dark matter halos. Because of violent relaxation,
the halos are almost isothermal and have a core-halo
structure. The density of the core is relatively large and
can reach values at which quantum effects or Lynden-Bell’s
type of degeneracy are important.34 On the other hand, the
halo is relatively hot and behaves more or less as a classical
isothermal gas. Actually, it cannot be exactly isothermal
otherwise it would have an infinite mass. The finite
extension of the halo may be due to incomplete violent
relaxation [81]. The extension of the halo may also be
limited by tidal effects. In that case, the complete configu-
ration of the system can be described by the fermionic King
model [63,80]. As we have demonstrated, the fermionic
King model can show a wide diversity of configurations
with different degrees of nuclear concentration. The system
can be everywhere nondegenerate, everywhere completely
degenerate, or have a core-halo structure with a degenerate
core and a nondegenerate halo. Small halos, that are
compact, are degenerate. Their flat core is due to quantum
mechanics. Assuming that the smallest and most compact
observed dark matter halo of mass Mh ¼ 0.39 × 106M⊙

32Another possibility is to consider WDM with T ≠ 0. In that
case, the Jeans wave number kJ and the maximum value of the
distribution function f0 are determined by thermal effects (i.e. by
the velocity dispersion of the particles).

33The domain of validity of Lynden-Bell’s theory is a com-
plicated and still open question due to the lack of efficient mixing
(ergodicity) in some cases. For recent works on this topic see,
e.g., Refs. [120–122] and references therein.

34In the case of dark matter, the Lynden-Bell bound and the
Pauli bound are of the same order, differing by a factor of 2, since
ηLB0 ¼ f0 ¼ ηPauli0 =2 ¼ ðg=2Þm4=h3.
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and radius rh ¼ 33 pc (Willman 1) is completely degen-
erate (T ¼ 0) leads to a fermion mass of the order of
1.23 keV=c2 [70,71]. These particles may be sterile neu-
trinos [76,77]. Small halos can merge with each other to
form larger halos. This is called hierarchical clustering. The
merging of the halos also corresponds to a process of
collisionless violent relaxation. Large halos, that are dilute,
are nondegenerate. Their flat core is due to thermal
effects.35 Knowing the mass of the fermions, we can
deduce from the observations that halos of mass 0.39 ×
106M⊙ < Mh < 2.97 × 106M⊙ are quantum (degenerate)
objects while halos of mass Mh > 2.97 × 106M⊙ are
classical (nondegenerate) objects [70,71]. In the classical
limit, numerical simulations of violent relaxation generi-
cally lead to configurations presenting an isothermal core
and a halo whose density decreases as r−α with α ¼ 4 [100–
103]. These configurations are relatively close to Hénon’s
isochrone profile. They can be explained by models of
incomplete violent relaxation [123–125]. A density slope
α ¼ 4 in the halo is also consistent with a King profile of
concentration k ∼ 5 (see Paper I). If the halos were truly
collisionless, they would remain in a virialized configura-
tion. However, if the core is dense enough, collisional
effects can come into play and induce an evolution of the
system on a long time scale (driven by the gradient of
temperature—the velocity dispersion σ2ðrÞ—between the
core and the halo) during which the concentration param-
eter kðtÞ increases while the slope αðtÞ of the density profile
decreases much like in globular clusters [23]. We now have
to distinguish between small halos of mass Mh < 1.60 ×
107M⊙ (i.e. μ < μMCP ¼ 1980) and large halos of mass
Mh > 1.60 × 107M⊙ (i.e. μ > μMCP). For small halos
(Mh < 1.60 × 107M⊙), the series of equilibria (see
Fig. 15) does not present any instability so that kðtÞ
increases and αðtÞ decreases regularly due to collisions
and evaporation. These halos are degenerate. They are
stabilized against gravitational collapse by quantum
mechanics. As a result, they do not experience the
gravothermal catastrophe so they should not contain black
holes. For large halos (Mh > 1.60 × 107M⊙), the series of
equilibria (see Fig. 14) presents an instability at
kMCE ¼ 7.44. Because of collisions and evaporation, the
concentration parameter increases from k ∼ 5 correspond-
ing to a density slope α ¼ 4 (a typical outcome of violent
relaxation) up to the critical value kMCE ¼ 7.44 correspond-
ing to a density slope α ∼ 3. Less steep halos (α < 3) are
unstable (k > kMCE). Large halos are expected to be
close to the point of marginal stability (see solution A in
Figs. 8, 32 and 41). At that point, the King profile can be
approximated by the modified Hubble profile that is
relatively close to the Burkert profile fitting observational

halos. Some halos may be stable (k < kMCE) but some
halos may undergo a gravothermal catastrophe (k > kMCE).
In that case, they experience core collapse. The evolution is
self-similar. The system develops an isothermal core
surrounded by a halo with a density slope α ¼ 2.2
[23,91]. The core radius decreases with time while the
central density and the central temperature increase. The
halo does not change. The specific heat of the core is
negative. Therefore, by loosing heat to the profit of the
halo, the core grows hotter and enhances the gradient of
temperature with the halo so the collapse continues. This is
the origin of the gravothermal catastrophe [2]. For weakly
collisional classical systems (globular clusters), core col-
lapse leads to a finite-time singularity with a profile ρ ∝
r−2.2 at t ¼ tcoll. The singularity has infinite density but
contains no mass. It corresponds to a tight binary sur-
rounded by a hot halo [23]. However, for collisional dark
matter halos, the situation is different. If the particles are
fermions, and if the mass of the halo is not very large
(μ > μMCP not very large), the gravothermal catastrophe
stops when the core of the system becomes degenerate.
This leads to a configuration with a small degenerate
nucleus (condensed state) surrounded by an extended
atmosphere that is relatively different from the structure
of the halo before collapse (see solution C in Figs. 8 and
38). However, the formation of this equilibrium structure
can be very long (of the order of the Hubble time) so that,
on an intermediate time scale, the system is made of a
contracting fermion ball surrounded by an atmosphere that
is not too much affected by the collapse of the core.
Alternatively, if the halo mass is large (μ > μMCP large),
during the gravothermal catastrophe the system can
develop a (Vlasov) dynamical instability of general-rela-
tivistic origin and form a central black hole without
affecting the structure of the halo [91]. In this way, the
system is similar to the halo before collapse (Burkert
profile) except that it contains a central black hole.36

Large halos should not contain a fermion ball because
these nucleus-halos structures (solution B in Figs. 8, 35
and 41) are unreachable (saddle points of entropy).

35Here, the temperature is effective and it must be understood
in the sense of Lynden-Bell.

36More precisely, the core collapse of large fermionic dark
matter halos (Mh > 1.60 × 107M⊙) is a two-stages process. In a
first stage [91], the core collapses while the halo does not change.
Only the density, the radius and the temperature of the core
change. This creates strong gradients of temperature between the
core and the halo. At sufficiently high temperatures (achievable if
μ > μMCP is large) the system becomes relativistic and triggers a
dynamical instability leading to a black hole with a large mass.
Alternatively, if μ > μMCP is not very large, quantum mechanics
can stop the increase of the central density and central temperature
before the system enters the relativistic regime. In that case, core
collapse stops. Then, in a second stage (never studied until now
because it requires quantum simulations), the temperature uni-
formizes between the core and the halo. Therefore, the halo heats
up and extends at large distances until an equilibrium state with a
uniform temperature T is reached (solution C in Figs. 8 and 38).
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We now assume that dark matter is made of bosons
without self-interaction. Since the temperature of the
Universe is very low, they form a BEC so they are described
by the Schrödinger-Poisson system. These equations are
equivalent to fluid equations with a quantum potential Q ¼
−ℏ2Δ ffiffiffi

ρ
p

=2m
ffiffiffi
ρ

p
(Heisenberg). Initially, the distribution of

dark matter is spatially homogeneous. This distribution is
unstable and undergoes gravitational collapse (Jeans insta-
bility). The Jeans wave number kJ ¼ ð16πGm2ρ=ℏ2Þ1=4
[111,126] is finite so that quantum mechanics prevents the
formation of small-scale structures and fixes a ground state.
In the linear regime, some regions of overdensity form. In
the nonlinear regime, these overdensity regions oscillate
and settle into a compact bosonic object through the
radiation of a complex scalar field. This corresponds to
the process of gravitational cooling first reported by Seidel
and Suen [115] in the context of boson stars. It is extended
here to dark matter. This process is similar to violent
relaxation. The resulting structures correspond to dark
matter halos. Because of gravitational cooling, the halos
have a core-halo configuration. The core is equivalent to a
self-gravitating BEC at T ¼ 0 (soliton) stabilized against
gravitational collapse by the Heisenberg uncertainty prin-
ciple. The halo corresponds to quantum fluctuations and
scalar radiation. It behaves similarly to a thermal halo.
Assuming that the smallest and most compact observed
dark matter halo (Willman 1) is completely condensed
without a halo (no quantum fluctuation) implies that the
boson mass is m ¼ 2.57 × 10−20 eV=c2. Knowing the
mass of the bosons, we can deduce from the observations
that all the dark matter halos in the Universe are Bose
condensed (T ≪ Tc). They have a condensed core (soliton)
and are surrounded by a halo of scalar waves that gives
them their proper size. Although the true thermodynamic
temperature T ¼ 0, everything happens as if the halos have
a core-halo structure with a core at T ¼ 0 (soliton) and a
halo with an effective temperature Teff ≠ 0.
Self-interacting bosons are described by the Gross-

Pitaevskii-Poisson system. These equations are equivalent
to fluid equations with a quantum potential Q ¼
−ℏ2Δ ffiffiffi

ρ
p

=2m
ffiffiffi
ρ

p
(Heisenberg) and a pressure p ¼

2πaℏ2ρ2=m3 due to the self-interaction. Self-interacting
bosons can experience a Jeans instability. In the TF
approximation, the Jeans wave number is given by kJ ¼
ðGm3=aℏ2Þ1=2 [111] and its general expression (valid
beyond the TF approximation) is given by Eq. (139) of
Ref. [111]. This finite Jeans wave number prevents the
formation of small-scale structures and fixes a ground state.

The linear Jeans instability is followed by a nonlinear
process of gravitational cooling, as in the case of non-
interacting bosons. The resulting dark matter halo has a
core-halo structure. The core is equivalent to a self-
gravitating BEC at T ¼ 0 (soliton) stabilized against
gravitational collapse by the self-interaction of the par-
ticles. The halo corresponds to quantum fluctuations and
scalar radiation. Assuming that the smallest and most
compact observed dark matter halo (Willman 1) is com-
pletely condensed without a halo (no quantum fluctuation),
we obtain the ratio ðfm=aÞ1=3ðmc2=eVÞ ¼ 0.654 between
the mass of the bosons and their scattering length (see
Appendix D). Using the constraint of the Bullet Cluster, we
get m ¼ 1.69 × 10−2 eV=c2 and a ¼ 1.73 × 10−5 fm.
Knowing the mass of the bosons, we can deduce from
the observations that all the dark matter halos in the
Universe are Bose condensed (T ≪ Tc). They have a
condensed core (soliton) and are surrounded by a halo
of scalar waves that gives them their proper size.
In conclusion, dark matter halos made of fermions of

massm ¼ 1.23 keV=c2 are quantum object forMh<2.97×
106M⊙ and classical objects for Mh>2.97×106M⊙. Small
halos are degenerate. Large halos are nondegenerate. They
may contain a central black hole but not a central fermion
ball (see Sec. VI). Dark matter halos made of bosons of
mass m ¼ 2.57 × 10−20 eV=c2 (noninteracting case) or
m ¼ 1.69 × 10−2 eV=c2 (self-interacting case) are quantum
objects for all relevant sizes. They have a solitonic core
surrounded by a halo of scalar radiation. Since fermionic
and bosonic dark matter halos present different character-
istics (the first may contain a black hole and the second a
solitonic BEC), it should be possible to determine which of
them better agrees with the observations. This may allow us
to determine the nature of the dark matter particle. It is also
important to perform cosmological simulations taking
quantum mechanics into account. This was claimed by
Feynman long ago: “I’m not happy with all the analysis that
go with just the classical theory, because nature is not
classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it does not look so
easy.” (See Ref. [127] and Appendix A of Ref. [71].) Recent
simulations have been performed in Refs. [128–130] for
noninteracting bosons. The case of fermions and self-
interacting bosons should also be considered. We guess
that future years will see the development of exciting
quantum cosmological simulations of fermions and bosons.
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