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Assuming a double-well bare potential for a self-interacting scalar field, with the Higgs vacuum
expectation value, it is shown that nonperturbative quantum corrections naturally lead to ultralight particles
of mass≃ 10−23 eV, if these nonperturbative effects occur at a time consistent with the electroweak phase
transition. This mechanism could be relevant in the context of Bose-Einstein condensate studies for the
description of cold dark matter. Given the numerical consistency with the electroweak transition, an
interaction potential for Higgs and dark matter fields is proposed, where spontaneous symmetry breaking
for the Higgs field leads to the generation of ultralight particles, in addition to the usual Higgs mechanism.
This model also naturally leads to extremely weak interactions between the Higgs and dark matter particles.
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I. INTRODUCTION

This paper aims at providing a dynamical mechanism
from which ultralight scalar particles arise naturally, and
which therefore could be relevant in the context of Bose-
Einstein condensate (BEC) dark matter (DM), proposed
initially in [1] and reviewed in [2]. Axions have also
been proposed as ultralight particles to contribute to DM,
for which a recent study can be found in [3] and a recent
review in [4].
Models based on BEC DM assume the existence of a

scalar particle for DM, light enough for its Compton
wavelength to be of the order of the size of a DM halo.
As a consequence, these scalars are in a coherent state, and
can be described by a BEC wave function. It is usually
assumed that condensed particles are nonrelativistic, in
order to describe cold DM, and that they decouple from the
Standard Model (SM) at some point in the early Universe.
The mechanism proposed here, based on a nonpertur-

bative effect in quantum field theory, explains how such
ultralight particle (m ≪ eV) can arise in the dressed theory,
starting from a bare theory which contains a typical SM
mass scale v. Such an effect is possible if the bare theory
has several degenerate minima, as the usual double-well
potential for a single scalar field: since the dressed potential
is necessarily convex [5], quantum corrections must be
strong enough to eliminate the concave part of the bare
potential, which allows for an ultrasmall ratio m=v.
Exploring the possible relevance of this mechanism to

BEC DM, we find that the picture is consistent with
nonperturbative quantum effects occurring at the electro-
weak phase transition, where these ultralight scalars could
appear. The stability of such a BEC halo is discussed, and
the repulsive self-interactions predicted by this mechanism,
although tiny, are enough to reduce substantially the range
of fluctuation wave vectors which could potentially lead to

a collapse of the condensate, under gravitational forces.
Finally, we propose common dynamics between the Higgs
and the DM particles, which explain how spontaneous
symmetry breaking for the Higgs field could imply the
generation of ultralight particles, in addition to the usual
Higgs mechanism. The corresponding bare potential for
Higgs/DM naturally leads to extremely weak interactions
between the Higgs and DM fields, after the nonperturbative
effect for DM has taken place.

II. CAUSALITY AND ULTRALIGHT PARTICLES

We review here the features of the convex effective
potential (¼ momentum-independent part of the one-
particle irreducible generating functional), for a finite
volume. This four-dimensional volume is interpreted as
the volume corresponding to the particle horizon, in a
cosmological context, after requiring that quantum correc-
tions should affect causally related events only.

A. Convexity of the effective potential

The convexity of the effective potential for a scalar
theory has been known for a long time, and is a conse-
quence of its definition in terms of a Legendre transform
[6]. In the situation where the bare potential has several
degenerate minima, convexity is achieved nonperturba-
tively, and cannot be obtained by a naive loop expansion.
The effective potential becomes convex between the two
minima of the bare potential, as a result of the contribution
of several nontrivial saddle points in the partition function
[7]. The construction of the convex effective potential has
been shown explicitly in [8], and we review here the results.
We start from the generic double-well bare potential

UbareðφÞ ¼
λ

24
ðφ2 − v2Þ2; ð1Þ

and define the partition function Z for a finite space time
volume V. The semiclassical calculation is done by taking*jean.alexandre@kcl.ac.uk
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into account both minima of the bare potential, in a saddle
point approximation, for the calculation of Z. The dressed
potential is then, for jφj ≤ v and in the limit of large space
time volume Vv4 ≫ 1,

UdressedðφÞ ¼
1

2V

�
φ

v

�
2

þ 1

12V

�
φ

v

�
4

þOðφ6Þ for jφj≤ v:

ð2Þ

As expected, this potential is convex, and higher orders in φ
are also suppressed by the volume (see Fig. 1). Outside the
minima of the bare potential jφj > v, quantum corrections
are perturbative, provided jφj is not too close to the
minimum v, for the “inside” and “outside” potentials to
match. Note that the dressed potential (2) is universal in the
sense that it depends on the bare vacuum expectation value
(vev) v only, and not on the bare coupling λ.
It has also been shown in [8] that the generalization to an

OðNÞ-symmetric scalar theory gives, for Vv4 ≫ 1,

UðNÞ
dressedð~φÞ ¼

N
2V

�
ρ

v

�
2

þ N2

4ðN þ 2ÞV
�
ρ

v

�
4

þOðρ6Þ

for jρj ≤ v; ð3Þ

where ρ ¼
ffiffiffiffiffiffiffiffiffiffi
~φ · ~φ

p
, and the case of a complex scalar field is

obtained for N ¼ 2.
The nonperturbative mechanism described here can be

understood with the tunneling effect. For a finite volume,
tunneling between different vacua is allowed, such that the
partition function is dominated by several saddle points,
which leads to a convex effective potential. As a conse-
quence, for finite volume, no spontaneous symmetry
breaking occurs. It is only in the limit where the volume
goes to infinity that spontaneous symmetry breaking can
take place, and the system chooses one vacuum among a
continuous set of degenerate vacua.
Finally, a comment on the Higgs mechanism might be

appropriate at this point. From the construction shown in
[8], one can understand that a convex dressed potential
cannot be obtained if the scalar field if coupled to a gauge
field. Indeed, in this situation, one needs to fix a gauge in
order to define the path integral, such that the minima of the
bare potential are not equivalent, and quantum fluctuations
are built up from one scalar vacuum only, defined by the
choice of gauge.
In what follows we will focus on the case N ¼ 1, since

we are looking for a neutral scalar field to represent DM.

B. Dynamical generation of ultralight particles

In the limit of infinite volume, the potential (2) becomes
flat between the minima of the bare potential. This
corresponds to the “Maxwell construction” in Statistical
Mechanics, arising when two phases coexist in a system. In
quantum field theory, this flattening means that the true
vacuum is a superposition of the different bare vacua [9].
This effect has motivated studies of inflation [10], but in
this paper we will not take the limit of infinite volume.
Instead we consider the finite space time volume of
causally related events V ¼ l40, where l0 is the particle
horizon defined at a specific time t0 to be determined
below, and where quantum corrections drive the bare
potential (1) to its dressed form (2). One identifies then
the dressed potential (2) with the expression

UdressedðφÞ≡ 1

2
m2φ2 þ g

24
φ4; ð4Þ

to find that the mass m and the coupling constant g are

m ¼ 1

vl20
; g ¼ 2

ðvl0Þ4
: ð5Þ

From the previous expression, the large volume condition
leads to the inequalities

FIG. 1. Convexity of the effective potential as obtained in [8],
based on a semiclassical approximation to calculate the partition
function. The effective potential (continuous line) is nonpertur-
bative for φ2 ≪ v2, where the features of the bare potential
(dotted line) are suppressed by the volume, as a consequence of
the contribution of the two bare vacua. For φ2 ≫ v2, only one
bare vacuum dominates the partition function, and quantum
corrections are perturbative. The region φ2 ≃ v2 is sketched here
to match the two previous regimes.
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1

v
≪ l0 ≪

1

m
; ð6Þ

showing that, necessarily, the dressed mass m is small
compared to the bare vev v. We now consider the value
m≃ 10−23 eV, which is typical in the context of BEC DM
[11,12]. Also, in order to introduce a typical SM mass
scale, we set v to the Higgs vev v ¼ 246 GeV. We find then
that the particle horizon is

l0 ≃ 12 cm; ð7Þ

corresponding to the cosmological time

t0 ¼ l=2≃ 2 × 10−10 s; ð8Þ

for a radiation-dominated Universe. It is interesting to see
that the choice of the Higgs vev for v leads to a
cosmological time consistent with the electroweak phase
transition, which suggests that the value m≃ 10−23 eV
could indeed be related to this transition. Finally, the large
volume assumption is satisfied, since vl0 ∼ 1017, which
leads to

g ∼ 10−68: ð9Þ

Although this coupling is extremely small, it contributes in
a nontrivial way to the stability of the condensate, as
explained below, because of the ultralight scalar mass. We
finally note here that detailed models for self-interacting
BEC DM are studied in [13].

III. STABILITY FEATURES OF THE
CONDENSATE

We present here two arguments towards the stability of
the BEC DM halo, one related to the static halo, and the
other related to its cosmological evolution.

A. Gravitational collapse versus repulsive
self-interaction

The authors of [14] consider small fluctuations of the
nonrelativistic condensate, after linearizing the correspond-
ing equation of motion and studying the evolution in time
of these fluctuations. They conclude that any repulsive
interaction between scalars stabilizes the condensate, but
any attractive interaction induces instabilities through low
wave vector fluctuations. In our present case, two effects
compete: the attractive self-gravitation of the condensate
and the dynamical repulsive self-interaction controlled
by g > 0.
It is explained in [14] that, if one takes into account

gravity only, fluctuations with wave vector k evolve in time
as expð�γ0ðkÞtÞ, with

γ0ðkÞ ¼
k
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGnm3

k2
− k2

s
; ð10Þ

where n is the number density of scalars of massm andG is
the Newton constant. It is easy to see that γ0 vanishes for
the critical wave vector k⋆0 given by

k⋆0
m

¼
�
16πGn

m

�
1=4

: ð11Þ

(i) For k > k⋆0, γ0 is purely imaginary and fluctuations
are purely oscillatory: the homogeneous configura-
tion of the condensate is stable.

(ii) For k < k⋆0, γ0 is real and the condensate is desta-
bilized by low k-modes: the condensate collapses.

The typical mass density of our galaxy is

ρgal ≃ 1 GeVcm−3; ð12Þ

and the number density of scalars is thus

n≃ 1 GeVcm−3
10−23 eV

≃ 1020 eV3; ð13Þ

such that, together with G≃ 10−56 eV−2, one finds

k⋆0
m

≃ 10−3: ð14Þ

The fluctuation wavelengths ≃k−1 which could destabilize
the condensate are therefore much larger than the BEC halo
radius ≃m−1. If one takes into account the repulsive
interaction controlled by the coupling constant (9), γ0ðkÞ
is replaced by [14]

γðkÞ ¼ k
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− gn
2m

þ 16πGnm3

k2
− k2

s
; ð15Þ

and the critical wave vector k⋆ which satisfies γðk⋆Þ ¼ 0 is
now given by

�
k⋆
m

�
2

¼ gn
4m3

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 256πGm5

g2n

s �
: ð16Þ

Numerically, one finds

k⋆
m

≃ 10−16 ≪ k⋆0
m

; ð17Þ

which reduces enormously the range of modes which
potentially could destabilize the condensate. A more
detailed analysis would be required, going beyond the
linearized equation of motion for fluctuations, to conclude
on the definite stability of the condensate. But one can see

DYNAMICAL MECHANISM FOR ULTRALIGHT SCALAR … PHYSICAL REVIEW D 92, 123524 (2015)

123524-3



here that the repulsive interaction predicted by the present
model provides a huge improvement to the BEC halo
stability.

B. Time evolution

The dressed potential (2) holds as long as jφj ≤ v, but
this condition remains valid for later times t > t0, since the
energy density decreases. More precisely, the equation of
motion for the field is

φ̈þ 3H _φþm2φ ¼ 0; ð18Þ

where the Hubble parameter is H ¼ ð2tÞ−1 for the
radiation-dominated era. We neglect here the backreaction
of the scalar’s dynamics on gravity, which is assumed
to be determined by radiation. Since Hðt0Þ≃ 4×
10−6 eV ≫ m, one can initially neglect the mass term in
Eq. (18), which can be integrated once to give

_φ ¼ _φ0

�
t0
t

�
3=2

; ð19Þ

where _φ0 is a constant, corresponding to an initial con-
dition. The energy density is then, if one neglects the
potential term m2φ2=2,

ρ ¼ 1

2
ð _φ0Þ2

�
t0
t

�
3

; ð20Þ

and is proportional to the sixth inverse power of the scale
factor aðtÞ ¼ t1=2, consistently with [12]. The approxima-
tion (20) is not valid anymore around the time t1, when the
Hubble parameter Hðt1Þ becomes equal to m. This time is

t1 ≃ 3 × 107 s; ð21Þ

which is still during the radiation-dominated era. A more
detailed analysis can be found in [12], showing that the
energy density goes on decreasing, such that the amplitude
of the field remains smaller than the bare vev v, and the
potential (2) remains appropriate for the description of
noninteracting ultralight particles.

IV. HIGGS/DM DYNAMICS

We suggest here common dynamics to the Higgs and the
ultralight DM particles, given the above numerical coinci-
dence. The motivation is to generate ultralight particles
simultaneously with the Higgs mechanism. As shown here,
the nonvanishing vev of the Higgs field could also generate
the double-well bare potential for the DM neutral field,
which therefore would lead to ultralight scalars, after
nonperturbative quantum corrections.
For simplicity, we consider the Abelian Higgs model,

and extend it with the neutral DM scalar φ,

L ¼ − 1

4
FμνFμν þDμϕðDμϕÞ⋆ þ 1

2
∂μφ∂μφ

−Ubareðϕϕ⋆;φ2Þ; ð22Þ
where ϕ is the complex Higgs field and Dμ is the covariant
derivative. The potential is chosen as

Ubare ¼
gH
24

½ðϕϕ⋆ − v2Þ2 þ ðϕϕ⋆ − φ2Þ2�; ð23Þ

which is minimized for the field values

ðϕϕ⋆Þ0 ¼ φ2
0 ¼ v2: ð24Þ

Because the Higgs field is coupled to the gauge field, its
vev v is unique and is determined by spontaneous sym-
metry breaking. But this is not the case for real field φ
which, for a given Higgs field configuration, sees the two
bare minima � ffiffiffiffiffiffiffiffiffi

ϕϕ⋆p
. The nonperturbative mechanism

described in Sec. II leads then to the DM effective potential

Ueff
DM ¼ 1

2V
φ2

ϕϕ⋆ þ
1

12V
φ4

ðϕϕ⋆Þ2 þOðφ6Þ for φ2 < ϕϕ⋆:

ð25Þ
We then parametrize the Higgs field in the usual way,

ϕ≡ vþ ξþ iη; ð26Þ
where ξ is the dynamical Higgs field and the Goldstone
mode η is absorbed as a longitudinal component of the
vector field, and is therefore ignored in what follows. An
expansion of ϕϕ⋆ around v2, to the second order in ξ,
leads to

Ueff
DMðφ; ξÞ ¼

1

2V

�
φ

v

�
2

þ 1

12V

�
φ

v

�
4 − 1

V
φ2ξ

v3

þ 3

2V
φ2ξ2

v4
þ � � � ; ð27Þ

where dots represent higher-order interactions terms. The
(lowest-order) interactions Higgs-DM are thus:

(i) A decay process Higgs → DM-DMwhich, given the
ultrasmall ratio m=mHiggs ≃ 10−34, leads to relativ-
istic DM particles, not contributing to the BEC.
These relativistic DM particles are predicted in BEC
DMmodels [2], and consist in a small portion of DM
particles. This cubic interaction also represents an
annihilation of two DM particles into a Higgs
particle, which is kinematically possible with rela-
tivistic DM only.

(ii) A scattering process Higgs-Higgs → DM-DM or
Higgs-DM → Higgs-DM, which is repulsive and
therefore stabilizes further the DM halo, according
to the analysis of Sec. III A.

These two interactions are highly suppressed though,
by coupling constants which are proportional to
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ðVv4Þ−1 ≃ 10−68, and therefore are not detectable. This
conclusion holds as long as the amplitude of φ2 is smaller
than v2, where DM particles see the effective potential (27).
In a regime where the number density of DM particles is
such that φ2 > v2 though, the potential seen by these
particles consists in perturbative corrections to the bare
potential (23), such that the interaction DM/Higgs could be
detected. The critical field value φ2 ¼ v2 characterizing the
transition between perturbative and nonperturbative effec-
tive potentials (see Fig. 1) corresponds to an energy density
of the order Ueff

DMðv; 0Þ≃ V−1, and therefore to the number
density of DM particles,

ncrit ¼
Ueff

DMðv; 0Þ
m

¼ v
l20
¼ 246 GeV

ð12 cmÞ2 ≃ 1057 eV3: ð28Þ

The ratio between ncrit and the number density (13) of DM
in the galaxy is huge,

ncrit
ngal

¼ 1037; ð29Þ

but can be achieved during the quark-gluon plasma phase
generated in heavy-ion collisions. Indeed, the critical
energy density for a quark-gluon plasma to be created
corresponds to the proton energy density,

ρprot ≃ 1 GeV fm−3; ð30Þ

whose ratio with the galaxy energy density (12) is

ρprot
ρgal

¼ 1039: ð31Þ

An experimental signature for the present model through
the study of quark-gluon plasma might therefore be
possible, although much more work needs to be done in
this direction.

V. CONCLUSION

The main point in this paper consists in the identifica-
tions (5), which allow the hierarchy between the scales m
and v in a natural way, and predict that ultralight particles
have repulsive self-interactions which improves the stabil-
ity of the BEC DM. The consistency of the picture with the
electroweak transition shows a new avenue to explore: the
link between the Higgs particle and dark matter. Both
particles could see the same vev, but behave in a different
way, according to their coupling to gauge fields: the Higgs
field sees perturbative quantum corrections, whereas the
additional scalar, blind to gauge fields, undergoes non-
perturbative corrections and becomes ultralight. The
common dynamics between the Higgs and the DM fields,
presented in Sec. IV, is a first step in the direction of a
potential unification of the two fundamental origins of mass
in the Universe.
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