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As galaxy surveys begin to measure the imprint of baryonic acoustic oscillations (BAO) on large-scale
structure at the subpercent level, reconstruction techniques that reduce the contamination from nonlinear
clustering become increasingly important. Inverting the nonlinear continuity equation, we propose an
Eulerian growth-shift reconstruction algorithm that does not require the displacement of any objects, which
is needed for the standard Lagrangian BAO reconstruction algorithm. In real-space dark matter-only
simulations the algorithm yields 95% of the BAO signal-to-noise obtained from standard reconstruction.
The reconstructed power spectrum is obtained by adding specific simple 3- and 4-point statistics to the
prereconstruction power spectrum, making it very transparent how additional BAO information from
higher-point statistics is included in the power spectrum through the reconstruction process. Analytical
models of the reconstructed density for the two algorithms agree at second order. Based on similar
modeling efforts, we introduce four additional reconstruction algorithms and discuss their performance.
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I. INTRODUCTION

Measuring the imprint of baryonic acoustic oscillations
(BAO) on large-scale structure is becoming increasingly
important for tightening constraints on cosmological param-
eters and probing the nature of dark energy and ΛCDM the
geometry of the universe; see e.g. [1] for a recent review. The
BAO lead to a bump in the 2-point halo correlation function
at separation r ∼ 150 Mpc, and to wiggles in the Fourier
space power spectrum.1 Measuring the BAO scale from this
provides a standard ruler for a physical scale at low redshift
which is very powerful in breaking parameter degeneracies
that would be present when considering the high-redshift
cosmic microwave background (CMB) alone (e.g. [3–7]).
Measuring the distinct large-scale BAO bump in the corre-
lation function or the corresponding wiggles in the power
spectrum is also very robust against potential astrophysical
and observational systematics.

Nonlinear gravitational clustering smears the sharp linear
BAO bump in the correlation function, mostly due to large-
scale bulk flows and cluster formation [2]. In a procedure
known as BAO reconstruction these large-scale shifts are
reversed to (partially) recover the linear BAO signal [8].
Slightly more generally, the goal of large scale structure
reconstruction is to restore information about the linear
modes that were corrupted by nonlinear structure formation.
In practice, BAO reconstruction works extraordinarily well
and reduces the uncertainty on the BAO scale significantly,
e.g. by a factor ofmore than 1.5 for BOSSDR11 [9] (see also
[10–14]). Reconstruction also reduces a small bias of the
BAO scale that is caused by nonlinear clustering. This has
been studied in detail analytically and in simulations
[15–23].
Although the standard Lagrangian reconstruction algo-

rithm works very well, there are several motivations to
explore new reconstruction algorithms, e.g.

(i) to provide more insight where additional BAO
information comes from,

(ii) derive algorithms more rigorously,
(iii) improve the methodology by requiring fewer model

assumptions for data processing,
(iv) increase BAO information further.

Motivated by this, we propose a number of new
reconstruction algorithms. Inspired by the Lagrangian
and Eulerian perspectives of fluid dynamics, where either
individual particle positions or fields like the mass density
are regarded as the fundamental dynamic variable, we
separate these reconstruction algorithms into two broad,
disjoint categories: Lagrangian reconstruction algorithms,
which involve displacing individual objects at some point

1This BAO imprint can be understood from a simple physical
picture by considering perturbations to an initially pointlike
overdensity at the origin [2]. Dark matter just gravitationally
clusters around the origin. Baryons and photons are tightly
coupled before recombination (z ≳ 1100) and undergo acoustic
oscillations, because infall due to gravitational clustering of
baryons is counteracted by photon pressure. As the universe
cools, baryons and photons decouple, so that photons free-stream
and baryons cluster in a spherical shell around the origin whose
radius is given by the distance the sound wave traveled between
the initial time and the time of decoupling; the BAO scale. The
dark matter in the origin and the baryons in the shell around the
origin subsequently cluster gravitationally and ultimately form
halos which are separated by the BAO scale. For realistic initial
overdensities, this effect is still present statistically.
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in the reconstruction process, and Eulerian reconstruction
algorithms, which do not involve displacing individual
objects at any point in the reconstruction process, e.g. by
operating only on density fields. In this notion “mixed”
algorithms like the standard BAO reconstruction, which
moves individual objects by a displacement field which
is calculated from the linearized continuity equation for
the mass density field, are still categorized as Lagrangian
because they move individual objects at some step of
the algorithm. A very simple (though not particularly
useful) example for an Eulerian reconstruction algorithm
is to suppress nonlinear peaks of the mass density by
subtracting the squared density from the original density,
i.e. δrecðxÞ ¼ δðxÞ − δ2ðxÞ, which does not involve dis-
placing any objects.
Although we cannot address all motivational bullet

points above at once, we use them as guidelines for
the Eulerian reconstructions introduced in this paper.
Addressing the first point, we find that the power spectrum
after our Eulerian reconstructions can be expressed as a
sum of the unreconstructed power spectrum and specific
simple 3- and 4-point statistics of the unreconstructed
density. This makes it very transparent and explicit how
the additional information on the BAO scale due to
reconstruction comes from specific higher order N-point
statistics of the unreconstructed density. Lagrangian recon-
structions must also use higher order N-point information
implicitly, because phase information of the density is used
so that a reconstructed power spectrum realization cannot
be obtained by any processing of a measured unrecon-
structed power spectrum alone. However, we are not aware
of any way to write this in the same transparent and explicit
form as for Eulerian reconstructions.
Second, our Eulerian growth-shift reconstruction algo-

rithm can be derived from the nonperturbative continuity
equation that follows from mass conservation. It is obtained
by expressing the time derivative of the nonlinear mass
density in terms of the nonlinear mass density and the
linearized velocity density. This is fully nonperturbative in
the mass density, which is important because reconstruction
is most interesting in the nonlinear regime where pertur-
bation theory breaks down. We connect this Eulerian
algorithm to the standard Lagrangian reconstruction algo-
rithm by showing that these two algorithms are equivalent
in second order perturbation theory. This theoretical con-
nection can be regarded as a new argument for the
robustness and success of the standard Lagrangian BAO
reconstruction in the nonlinear regime; it automatically
includes 3- and 4-point information in a specific form
imposed by the nonlinear continuity equation. Note how-
ever that this point of view is limited by the fact that the
nonlinear smoothing of the BAO is largely caused by third
order and higher order perturbations, while we only show
the equivalence of the algorithms up to second order. Still,
small but important BAO shifts are caused by second order
perturbations, and these shifts are reversed in a very similar

fashion for Eulerian and Lagrangian reconstructions due to
their equivalence at second order.
Third, the methodology of Lagrangian reconstructions

may be criticized for intermixing observed data with model
assumptions that should actually be tested by the data. To
see this, note that for Lagrangian reconstructions, the
observed data is processed by changing observed galaxy
positions according to a displacement field that is computed
from the same observed galaxy positions under certain
model assumptions (including assumptions on halo bias,
redshift space distortions, or general relativity). Thus, the
data and assumed fiducial model are mixed together before
performing the likelihood analysis that compares the
model-dependently processed data against other models.
Additionally, if the parameters for the displacement field
depend on external data sets (e.g. the CMB to obtain the
logarithmic growth rate through f ∼Ω0.55

m which holds in
general relativity), then the reconstructed density is strictly
speaking not independent from this external data set any
more, which may raise concerns about combining con-
straints on cosmological parameters from these data sets
without potentially double-counting information.
In practice, all of these concerns can of course be

modeled or simulated by displacing objects with fiducial
models that differ from the true simulated catalogs (e.g.
different values of bias and logarithmic growth rate). The
standard reconstruction algorithm seems to be rather robust
to such changes. For example, Ref. [10] found that using a
20%-high linear halo bias for the displacement field shifts
the BAO scale by only 1σ or 2% for their experimental
specifications. However, such shifts may be larger for other
survey geometries and need to be checked for every new
survey geometry [10]. Such tests should thus be an integral
part of every reconstruction analysis, but running them for
every survey geometry and BAO analysis renders the use of
reconstruction somewhat cumbersome and computation-
ally expensive. The Eulerian reconstructions proposed here
can ameliorate these complications, because they only
depend on the density field of the untransformed observed
galaxy positions, and model-independent transformations
of this field (like squaring it). Fiducial bias parameters
simply enter the final reconstructed power spectrum by
rescaling model-independently measured cross-spectra, so
varying these parameters is computationally trivial.
Finally, some of our Eulerian reconstruction algorithms

could in principle increase BAO information further, because
highly nonlinear scales are shifted differently than in
standard reconstruction. In 2LPT, all reconstruction algo-
rithms considered in this paper are equally well motivated, so
it is not clear a priori clear which one recovers most BAO
information. Comparing the performance of the algorithms
in simulations is one of the main goals of this paper.
The paper is organized as follows. We start by deriving

two new Eulerian reconstruction schemes that work at the
field level: First, the nonlinear continuity equation is used
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to derive the Eulerian growth-shift reconstruction algo-
rithm. Second, we construct an Eulerian F2 reconstruction
algorithm that subtracts the second order F2 part of the
density. We then put this into context by modeling the
standard Lagrangian BAO reconstruction and some pos-
sible alternative Lagrangian reconstruction methods with
2LPT. Section V provides a high-level overview of the six
reconstruction algorithms introduced in the previous sec-
tions. We then proceed with simulations and numerical
results, discussing the origin of additional BAO informa-
tion and the performance of all algorithms. Finally, we
summarize and conclude. Appendices present Lagrangian
modeling calculations, comparisons of reconstructions with
2D slices, a more formal motivation of the Eulerian F2

reconstruction using a Newton-Raphson iteration, and
details of the numerical analysis.

A. A. Notation and conventions

We use the following Fourier convention:2

fðkÞ ¼
Z

d3xe−ik·xfðxÞ; fðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xfðkÞ;

ð1Þ
i.e. the Fourier transform of the gradient of a function is

½∇f�ðkÞ ¼ ikfðkÞ: ð2Þ
Throughout the paper,q stands for Lagrangian configuration-
space coordinates and x for Eulerian configuration-space
coordinates, while k and ki denote Fourier-space wave
vectors. Coordinates and wave numbers are comoving. To
shorten expressions we writeZ �

ki

≡
Z

d3k1

ð2πÞ3
d3k2

ð2πÞ3 ð2πÞ
3δDðk − k1 − k2Þ: ð3Þ

Throughout the paper, second order Lagrangian
Perturbation Theory or 2LPT refers to expanding all terms
in LPT consistently in the linear density δ0 up toOðδ20Þ, i.e.
we do not include corrections beyond second order that
would follow e.g. by using the cumulant expansion theorem
(which would be an interesting extension).

II. EULERIAN GROWTH-SHIFT
RECONSTRUCTION FROM NONLINEAR

CONTINUITY EQUATION

A. Dark matter

We propose to reverse the nonlinear time evolution of
structures by starting with the observable nonlinear density
δðx; ηÞ today and going back in time by some time interval
Δη using a Taylor expansion in time,

δðx; η − ΔηÞ ≈ δðx; ηÞ − Δη∂ηδðx; ηÞ ≡ δrecðxÞ; ð4Þ

where η is conformal time, η ¼ R
a
0

d ln a0
a0Hða0Þ. The time deriva-

tive of the (nonlinear) density can be obtained from the
nonperturbative continuity equation that follows from mass
conservation. It states that any change of the mass density
in a particular volume element with time must be caused by
an equivalent in- or outflow of mass (described by the
divergence of the mass-weighted velocity or momentum),

∂ηδþ∇ · ½ð1þ δÞv� ¼ 0: ð5Þ

Here, v is the (nonlinear) peculiar velocity perturbation
which we assume to be curl-free with θ ≡∇ · v, i.e. vðkÞ ¼
−ikθðkÞ=k2. Writing out the spatial derivative gives

∂ηδðx; ηÞ ¼ −∇ · vðx; ηÞ − vðx; ηÞ ·∇δðx; ηÞ
− δðx; ηÞ∇ · vðx; ηÞ: ð6Þ

If we know the density and velocity fields then we can
directly use this in Eq. (4) to reconstruct the density at an
earlier time.
In practice, the locations of objects are easier to observe

than their peculiar velocities, so that the mass density is
typically much better known than the velocity field. At linear
order we can infer the velocity field from the mass density,

v0ðk; ηÞ ¼ fH
ik
k2

δ0ðk; ηÞ: ð7Þ

This relation is obtained from the perturbative expansion

δðx; ηÞ ¼ DðηÞδ0ðxÞ þOðD2δ20Þ; ð8Þ

where time and spatial dependence are described by the
linear growth function DðηÞ and the linear perturbation
δ0ðxÞ, respectively. The linearized continuity equation then
becomes

∇ · v0ðx; ηÞ ¼ −δ0ðxÞ∂ηDðηÞ ¼ −fHδ0ðx; ηÞ; ð9Þ

which implies Eq. (7). Here, f ¼ d lnD=d ln a is the
logarithmic growth rate and H ¼ aH is the comoving
Hubble parameter. The linear density δ0 in Eq. (7) is
unknown in observations, but it can be approximated by
the observed nonlinear density if small scales corrupted by
nonlinearities are smoothed out:

δ0ðkÞ ≈ δRðkÞ ≡WRðkÞδðkÞ; ð10Þ

whereWR is a smoothing kernel that is unity on large scales
k≲ R−1 and vanishes on small scales k≳ R−1. The smooth-
ing scale R should be chosen close to the scale where linear
perturbation theory breaks down. The corresponding
approximate velocity is

2The sign in the exponent is the same as in [15] but opposite
from [24].
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vðx; ηÞ ≈ −fHsðk; ηÞ; ð11Þ

where we defined

sðk; ηÞ ≡ −
ik
k2

WRðkÞδðk; ηÞ; ð12Þ

which coincides with the negative Zeldovich displacement.
The velocity divergence is simply

∇ · vðx; ηÞ ≈ −fHδRðx; ηÞ: ð13Þ

The density time derivative (6) then becomes

∂ηδðx; ηÞ ¼ fH½δRðx; ηÞ þ sðx; ηÞ ·∇δðx; ηÞ
þ δðx; ηÞδRðx; ηÞ�; ð14Þ

so that the Euler reconstructed field of Eq. (4) is given by

δrecðxÞ ¼ δðx; ηÞ − ΔηfH½sðx; ηÞ ·∇δðx; ηÞ
þ δðx; ηÞδRðx; ηÞ�: ð15Þ

We dropped the first term in the square brackets of Eq. (14)
because it describes linear time evolution but we only want
to reverse nonlinear time evolution when reconstructing the
linear density. The go-back time Δη is a free parameter, but
from now on we chooseΔη ¼ ðfHÞ−1 so that the coefficient
of the square brackets in Eq. (15) becomes −1. We call the
resulting algorithm Eulerian growth-shift reconstruction, or
short “EGS”,

δrecEGSðxÞ ¼ δðx; ηÞ − sðx; ηÞ ·∇δðx; ηÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
shift

− δðx; ηÞδRðx; ηÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
growth

;

ð16Þ

because it subtracts nonlinear growth and shift from the
nonlinear density at the field level. As desired, the right-hand
side of Eq. (16) depends only on the mass density δ and not
the velocity so it can be easily obtained from observations.
The shift and growth term in Eq. (16) are quadratic in the

nonlinear unreconstructed density. The 2-point correlation
function or power spectrum of the reconstructed density
thus involves specific 2-, 3- and 4-point statistics of the
unreconstructed density,

P̂δrecEGS;δ
rec
EGS

ðkÞ ¼ P̂δ;δðkÞ|fflfflffl{zfflfflffl}
2pt

−2P̂δ2;δðkÞ − 2P̂s·∇δ;δðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3pt

þP̂δ2;δ2ðkÞ þ P̂s·∇δ;s·∇δðkÞ þ 2P̂s·∇δ;δ2ðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4pt

; ð17Þ

where we sloppily wrote δ2 for δRðxÞδðxÞ. This makes it
very transparent how reconstruction adds information to the
power spectrum by combining information from 2-, 3- and
4-point statistics of the unreconstructed density.
In fact, the 3-point cross-spectra of δ2 or s ·∇δ with δ in

Eq. (17) do not just probe the 3-point function, but they
represent nearly optimal maximum-likelihood estimators
for the amplitudes of the contributions to the tree-level
3-point function due to nonlinear gravitational growth and
shift [24]. Roughly, they measure the projection of the
observed 3-point function on tree-level expectations, and
are thus expected to capture a significant fraction of the full
3-point information.
Note that the standard Lagrangian reconstruction method

also employs the continuity equation. However, it is only
used there in its fully linearized form, where both mass
density and velocity are linearized, to obtain the first order
velocity or displacement s0 ¼ −ik=k2δ0. We also use this
to approximate the velocity. In contrast to previous liter-
ature, we then plug this linearized velocity back into the
nonlinear continuity equation without linearizing the mass
density. The resulting density time derivative (14) is non-
perturbatively correct in the unsmoothed nonlinear density
[appearing on the left-hand side and in the last two
summands on the right-hand side of Eq. (14)]. It only
uses perturbation theory to approximate the factors in

Eq. (6) that involve the velocity, leading to s and δR in
Eqs. (14) and (16). Thus, the crucial difference to previous
approaches is that we use a form of the continuity equation
that is linearized only in the velocity but fully nonpertur-
bative in the mass density. Since reconstruction is most
useful on small scales where perturbation theory breaks
down, this nonperturbative motivation is very valuable.
An extension that goes beyond the scope of this paper

would be to use better approximations for the velocity
e.g. by using forward-modeling techniques or iterative
estimators.

B. Halos

Our derivation easily extends to biased tracers like halos
if we assume that they define a density field that exists even
at early times and that halos (or density peaks) are
conserved over time.3 The continuity equation for the halo
density is then

∂ηδh þ∇ · ½ð1þ δhÞvh� ¼ 0; ð18Þ

3We do not discuss the validity of this assumption, but see e.g.
[25,26] for related recent discussions. We also leave the extension
to nonlinear and nonlocal halo bias to future work, noting that we
focus on dark matter in this paper.
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so that

∂ηδh ¼ −∇ · vh − vh ·∇δh − δh∇ · vh: ð19Þ

We now proceed to approximate the halo velocity.
Assuming that the halo velocity follows the dark matter
(DM) velocity with some nonstochastic velocity bias,
vh ¼ bvv, and approximating the DM velocity as above
using the linearized continuity equation, gives

vhðkÞ ¼ bvvðkÞ ¼ fHbv
ik
k2

WRðkÞδðkÞ: ð20Þ

In practice we only know the halo density δh and not the
DM density δ, but ignoring higher order bias the two can be
related by δh ¼ b1δ so that

vhðkÞ ¼ fH
bv
b1

ik
k2

WRðkÞδhðkÞ: ð21Þ

The reconstruction algorithm is thus the same as for the DM
case, with an additional prefactor bv=b1, which rescales the
halo density to the halo velocity,

δrech;EGSðxÞ ¼ δhðx; ηÞ − ΔηfH
bv
b1

½shðx; ηÞ ·∇δhðx; ηÞ

þ δhðx; ηÞδh;Rðx; ηÞ�; ð22Þ

where we dropped the term that reverses linear time
evolution as in Eq. (15).
The power spectrum of the reconstructed halo density

(22) is a combination of halo 2-, 3- and 4-point statistics,
similar to the DM case of Eq. (17). The fiducial bias
parameters used for the reconstruction enter simply as
coefficients of halo cross-spectra. Changing these fiducial
bias parameters would simply up- or down-weight the
corresponding cross-spectra, making it computationally
trivial to obtain the reconstructed power spectrum for
varying fiducial bias parameters if all cross-spectra are
precomputed once. Such changes are more cumbersome for
Lagrangian reconstructions, where for every new fiducial
value of a bias parameter all particles need to be displaced
by the corresponding updated displacement field.

III. EULERIAN F2 RECONSTRUCTION TO
REMOVE 2ND ORDER PERTURBATIONS

While the previous section was based on linearizing only
the velocity but not the mass density in the continuity
equation, we now proceed by linearizing both the mass
density and velocity in all equations of motion for the DM
fluid (i.e. the continuity, Poisson and Euler equation).
Working at second order, we construct a different
Eulerian reconstruction algorithm that aims to reverse
the full second order part of the nonlinear density. As
shown in Appendix C, the same algorithm can be derived

slightly more formally by applying the Newton-Raphson
method to find the linear density that generates a given
observed density at second order.

A. Dark matter

Solving the equations of motion for DM perturbatively in
the density gives the solution δ ¼ δ0 þ δð2Þ þOðδ30Þ where
δ0 is the linear density and the second order part is given as
a sum of growth, shift and tidal term (e.g. [17,24,27,28]):

δð2ÞðxÞ ¼ 17

21
δ20ðxÞ|fflfflfflffl{zfflfflfflffl}

growth

−Ψ0ðxÞ ·∇δ0ðxÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
shift

þ 4

21
K2

0ðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
tidal

: ð23Þ

The linear displacement field is4

Ψ0ðkÞ ¼
ik
k2

δ0ðkÞ ð24Þ

and the tidal term is given by contracting the tidal tensor

Kij
0 ðkÞ ¼

�
kikj
k2

−
1

3
δðKÞij

�
δ0ðkÞ ð25Þ

to

K2
0ðxÞ ¼

3

2
Kij

0 ðxÞKij
0 ðxÞ; ð26Þ

where δðKÞij is the Kronecker delta. In Fourier space this
becomes

K2
0ðkÞ ¼

Z �

ki

P2ðk̂1 · k̂2Þδ0ðk1Þδ0ðk2Þ; ð27Þ

where P2 denotes the l ¼ 2 Legendre polynomial,

P2ðμÞ ¼
3

2

�
μ2 −

1

3

�
: ð28Þ

The second-order density of Eq. (23) is often written as a
convolution in Fourier space,

δð2ÞðkÞ ¼
Z

d3k1
ð2πÞ3 F2ðk1;k − k1Þδ0ðk1Þδ0ðk − k1Þ

¼
Z �

ki

F2ðk1;k2Þδ0ðk1Þδ0ðk2Þ; ð29Þ

where the shorthand notation
R �
ki
is defined by Eq. (3) and

the symmetrized F2 kernel contains growth, shift and tidal
parts analogously to Eq. (23),

4The Fourier convention used here differs from e.g. [24] so that
Ψhere ¼ −Ψthere. The convention used here agrees with [15].
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F2ðk1;k2Þ ¼
17

21
þ 1

2

�
k1
k2

þ k2
k1

�
k̂1 · k̂2 þ

4

21
P2ðk̂1 · k̂2Þ:

ð30Þ

To restore linear information from the nonlinear
observed density we try to estimate the second order part
(23) and subtract it out.5 In practice we do not know the
linear density δ0 that enters Eq. (23), but we can approxi-
mate it by the smoothed nonlinear density because linear
and nonlinear densities agree on large scales. There is some
freedom which fields in Eq. (23) should be smoothed or
linearized. Motivated by the asymmetric smoothing that
followed from the continuity equation in the last section,
we choose to smooth one of the two fields entering the
growth term δ2 and the tidal term K2, and we only smooth
Ψ but not ∇δ in the shift term. This defines the Eulerian F2

reconstruction “EF2”:

δrecEF2ðxÞ≡ δðxÞ− 17

21
δRðxÞδðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
growth

− sðxÞ ·∇δðxÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
shift

−
4

21
K2

RðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
tidal

;

ð31Þ

where δR is the smoothed nonlinear density, s is the
negative smoothed Zeldovich displacement given by
Eq. (12), and K2

RðxÞ ≡ 3
2
KijKij

R is a partially smoothed
tidal term where Kij is defined as in Eq. (26) but using the
nonlinear density δ instead of the linear density δ0, and Kij

R
is defined in terms of the smoothed nonlinear density δR
instead of δ0.
The Eulerian F2 reconstruction of Eq. (31) is similar to

the growth-shift reconstruction of Eq. (16); the shift terms
s ·∇δ are equal in both methods, while the growth term δRδ
has a slightly different coefficient, 17=21 instead of 1, and
the F2 reconstruction subtracts an additional tidal part.
Both methods agree with the unreconstructed density on
very large scales because the combination of quadratic
fields that is subtracted vanishes there (this follows by
considering the squeezed limit of the corresponding kernels
in Fourier space).

B. Halos

It is straightforward to extend this algorithm to halos if a
specific bias relation between DM and halos is assumed.
For example, if only linear and second order bias are taken
into account (neglecting tidal and velocity bias), we have

δhðxÞ ¼ b1½δ0ðxÞ þ F2½δ0; δ0�ðxÞ�
þ b2½δ20ðxÞ − hδ20ðxÞi� þOðδ30Þ; ð32Þ

where we wrote F2½δ0; δ0�ðxÞ ≡ δð2ÞðxÞ for the Fourier
transform of Eq. (29). At linear order δ0 ¼ δh=b1, so that
subtracting second-order parts from the nonlinear halo
density gives (ignoring smoothing, which should be
included)

δrech;EF2ðxÞ ¼ δhðxÞ −
1

b1
F2½δh; δh�ðxÞ

−
b2
b21

½δ2hðxÞ − hδ2hðxÞi�: ð33Þ

This is an estimator for the linear part b1δ0 of the halo
density given the nonlinear halo density δh. Note that this is
similar to the EGS reconstruction for halos given by
Eq. (22), but has slightly different coefficients and an
additional tidal term coming from the F2 kernel.
The algorithm can be extended to redshift space by

subtracting the second order part of the redshift space
density, which can be obtained by modifying the real space
F2 kernel to a redshift space version Z2 (see [29] for a
review). The form of the resulting terms is similar to that of
real space growth, shift and tidal terms from the F2 kernel,
but derivative operations differ in detail because of redshift
space distortions. Similarly, the EGS algorithm of the
previous section could be extended to redshift space by
inverting the redshift space continuity equation. However,
we leave these extensions for future work and restrict
ourselves to reconstructions for DM in real space in this
paper, which is somewhat cleaner and simpler. It should be
noted that in contrast to our Eulerian algorithms, the
standard Lagrangian BAO reconstruction algorithm, intro-
duced almost ten years ago [8], has been extended and
applied to redshift space, e.g. in Ref. [10].

IV. LAGRANGIAN RECONSTRUCTIONS

A. Possibilities

The standard BAO reconstruction algorithm, proposed
by [8] and denoted Lagrangian growth-shift “LGS”
reconstruction in this paper, works as follows. First, the
particles of a clustered catalog are displaced by the negative
Zeldovich displacement s to obtain a “displaced” catalog,
whose density is denoted δd½s�. Similarly, particles of a
random catalog are shifted by the same displacement field
to give a “shifted” catalog with density δs½s�. Then the
density difference δd½s� − δs½s� gives the reconstructed
density and suppresses only the nonlinear but not the
linear part of the density (see Appendix A).
As a simple extension we also consider clustered and

random catalogs shifted by the positive Zeldovich dis-
placement, −s. We denote the resulting densities δd½−s� and
δs½−s�. At first order in δ0 we have [following from

5More formally, one can model the nonlinear density in terms
of the linear one as δ ¼ δ0 þ F2½δ0; δ0� þ � � �. Then the goal is to
get δ0 from δ. This can be done with the Newton-Raphson root-
finding method, see Appendix C. The second step of this
corresponds to subtracting F2½δ; δ� from δ, which agrees with
the intuitive picture of subtracting out nonlinearities from the
nonlinear density.
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Eqs. (A3)–(A5) in Appendix A and ik · sðkÞ ¼
WRðkÞδ0ðkÞ]

δð1Þd ½s�ðkÞ ¼ ½1 −WRðkÞ�δ0ðkÞ ð34Þ

δð1Þs ½s�ðkÞ ¼ −WRðkÞδ0ðkÞ ð35Þ

δð1Þd ½−s�ðkÞ ¼ ½1þWRðkÞ�δ0ðkÞ ð36Þ

δð1Þs ½−s�ðkÞ ¼ WRðkÞδ0ðkÞ: ð37Þ

There are several possible combinations of these four
shifted/displaced catalogs that change the nonlinear part
of the density while keeping the linear part unchanged (for
arbitrary smoothing):

δrecLGS ≡ δd½s� − δs½s� ¼ δ0 þOðδ20Þ ð38Þ

1

2
fδd½s� þ δd½−s�g ¼ δ0 þOðδ20Þ ð39Þ

δd½s� þ δs½−s� ¼ δ0 þOðδ20Þ ð40Þ

δs½s� þ δd½−s� ¼ δ0 þOðδ20Þ ð41Þ

δrecLRR ≡ δ − cfδs½s� þ δs½−s�g ¼ δ0 þOðδ20Þ ð42Þ

δd½−s� − δs½−s� ¼ δ0 þOðδ20Þ; ð43Þ

where c in Eq. (42) is an arbitrary constant. Beyond first
order these combinations generally differ from each other.
For reconstructions of the linear density, the nonlinear

contributions to the nonlinear density should be sup-
pressed, particularly the growth and shift part. Modeling
all combinations by 2LPT shows that this is only the case
for two combinations (see Appendix A 4): First, the LGS
reconstruction algorithm of Eq. (38), which is just the
standard BAO reconstruction algorithm. Second, a new
Lagrangian random-random “LRR” reconstruction algo-
rithm, which is given by Eq. (42) if we choose c ¼ 1=2 (see
Appendix A 4),

δrecLRR ¼ δ −
1

2
fδs½s� þ δs½−s�g: ð44Þ

In this case, the reconstructed density is obtained as
follows. A random catalog is first shifted by the negative
Zeldovich displacement s to get δs½s�. The original random
catalog is also shifted by the positive Zeldovich displace-
ment −s to get δs½−s�. Then the mass densities of these two
shifted random catalogs are computed and added together.
Finally, half of that sum is subtracted from the original
density of the clustered catalog to obtain the reconstructed
density.

B. Lagrangian growth-shift and random-random
reconstructions

We now discuss the LGS and LRR algorithms in more
detail. The theoretical 2LPT expression for the standard
LGS method is [see Eq. (A32), using superscript “th” to
denote theoretical densities]

δrec;thLGS ðkÞ ¼ δthðkÞ −
Z �

ki

�
1þ k1

k2
k̂1 · k̂2

�

×WRðk2Þδ0ðk1Þδ0ðk2Þ; ð45Þ
or more succinctly in configuration space,

δrec;thLGS ðxÞ ¼ δthðxÞ − δ0;RðxÞδ0ðxÞ − s0ðxÞ ·∇δ0ðxÞ: ð46Þ
Here, δ0;R is the smoothed linear density and s0 is the
negative smoothed Zeldovich displacement computed from
the linear density δ0 analogously to Eq. (12). Thus, in this
2LPT model, LGS reconstruction subtracts growth and
shift terms from the nonlinear density δ, so that in 2LPT
theory the reconstructed density of the Lagrangian growth-
shift method of Eq. (38) agrees with that of the Eulerian
growth-shift method of Eq. (16), derived from the con-
tinuity equation for the nonlinear mass density.
Note that the statement here is that the reconstructed

densities agree at second order LPT. For the reconstructed
power spectrum this means that the tree level and “22” loop
contributions agree between the methods, whereas the “13”
loop correction (which is of the same order as the “22”
contribution) can differ between these algorithms because
the reconstructed densities may differ at third order, which
we do not model here; see Sec. VII A 3 for further
discussion of this point using simulations.
Details of the 2LPT calculation that leads to Eqs. (45)

and (46) are given in Appendix A. These results only
hold after introducing a new correction term that arises
from modeling the displaced clustered catalog such that
the displacement field s is evaluated at Eulerian instead
of Lagrangian positions; see Appendices A and B.
Similarly, modeling the random-random reconstruction

of Eq. (44) with 2LPT gives (see Appendix A 4)

δrec;thLRR ðkÞ ¼ δthðkÞ −
Z �

ki

�
2

3
þ 1

2

�
k1
k2

þ k2
k1

�
k̂1 · k̂2

þ 1

3
P2ðk̂1 · k̂2Þ

�
WRðk1ÞWRðk2Þδ0ðk1Þδ0ðk2Þ;

ð47Þ
The square brackets correspond to the part of the F2 kernel
that is generated by ½Lð1Þ�2 in 2LPT; see Eq. (A23). In
configuration space this becomes

δrec;thLRR ðxÞ ¼ δthðxÞ − 2

3
δ20;RðxÞ − s0ðxÞ ·∇δ0;RðxÞ

−
1

3
K2

0;RRðxÞ; ð48Þ
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where K2
0;RRðxÞ ¼ 3

2
Kij

0;RK
ij
0;R is defined in terms of the

smoothed linear density.
The nonlinear density before reconstruction can be

modeled by

δthðxÞ ¼ δ0ðxÞ þ
17

21
δ20ðxÞ −Ψ0ðxÞ ·∇δ0ðxÞ þ

4

21
K2

0ðxÞ
ð49Þ

at second order LPTor SPT. On large scales, δ0 ≈ δ0;R ≈ δR
and Ψ0 ≈ −s0 ≈ −s. Thus, both reconstruction methods
LGS and LRR cancel the shift termΨ · ∇δ exactly on large
scales as desired.
However, even at second order the reconstructions

do not perfectly recover the linear density δ0. For the
LGS method, the residual second order part of the density
after reconstruction is

δrec;thLGS ðkÞ−δ0ðkÞ¼
Z �

ki

��
17

21
−WRðk2Þ

�

þ½1−WRðk2Þ�
k1
k2
k̂1 · k̂2

þ 4

21
P2ðk̂1 · k̂2Þ

�
δ0ðk1Þδ0ðk2Þ: ð50Þ

On large scales, whereWRðk1Þ → 1, reconstruction reduces
the growth part from 17=21 to −4=21 and it fully removes
the shift term, but it does not change the tidal part of the
nonlinear density. On smaller scales, where WRðk1Þ → 0,
reconstruction does not change the second order part of the
density, which is reasonable because the linear displace-
ment field cannot be reliably estimated from the nonlinear
density any more on these scales, and still attempting to do
so may inadvertently enhance nonlinearities.6

For the LRR method the residual second order density is
similar,

δrec;thLRR ðkÞ − δ0ðkÞ ¼
Z �

ki

��
17

21
−
14

21
WRðk1ÞWRðk2Þ

�

þ ½1 −WRðk1ÞWRðk2Þ�
k1
k2

k̂1 · k̂2

þ
�
4

21
−

7

21
WRðk1ÞWRðk2Þ

�

× P2ðk̂1 · k̂2Þ
�
δ0ðk1Þδ0ðk2Þ: ð51Þ

For large scale modes, the growth term is reduced from
17=21 to 3=21, the shift term is removed entirely, and the
tidal term is changed from 4=21 to −3=21; on small scales

the second order part is again unchanged. Note that the
LRR method involves two smoothing kernel factors that
smoothen both displacement and density fields. This
aggressive smoothing may remove small-scale density
modes that could actually still be used if they were
displaced by large-scale displacements, at least for appli-
cations like measuring the BAO scale.
On the very largest scales, k → 0, the second order

residual densities given by the right-hand sides of Eqs. (50)
and (51) vanish. To see this, note that for k ≪ k1, k2, we
have k2 ¼ k − k1 ≈ −k1 corresponding to a squeezed
triangle configuration, so that k ≪ k1 ≈ k2. Then we get
P2ð−1Þ ¼ 1. For k1, k2 ≲ R−1, WRðkiÞ ¼ 1, and the right-
hand sides of Eqs. (50) and (51) become −4=21þ4=21¼0

and 3=21−3=21¼0, respectively. In the regime k1, k2≳R−1,
WRðkiÞ ¼ 0, and the right-hand sides of Eqs. (50) and (51)
both become 17=21 − 1þ 4=21 ¼ 0.

C. Lagrangian F2 reconstruction

The 2LPT theory expressions (45) and (47) for the LGS
and LRR methods [or the residual Eqs. (50) and (51)] can
be used to form a linear combination of these two
reconstruction algorithms that removes the full F2 kernel
(on scales that are not smoothed out) and still leaves the
first order part unchanged,7

δrecLF2 ≡
3

7
δrecLGS þ

4

7
δrecLRR ¼ 4

7
δþ 3

7
δd½s� −

5

7
δs½s� −

2

7
δs½−s�;

ð52Þ

where “LF2” stands for Lagrangian F2 reconstruction.
Indeed, at second order in LPT

δrec;thLF2 ðkÞ ¼ δthðkÞ −
Z �

ki

WRðk2Þ
��

9

21
þ 8

21
WRðk1Þ

�

þ
�
3

7
þ 4

7
WRðk1Þ

�
k1
k2

k̂1 · k̂2

þ 4

21
WRðk1ÞP2ðk̂1 · k̂2Þ

�
δ0ðk1Þδ0ðk2Þ; ð53Þ

where the kernel in curly brackets equals F2 for large scales
ki ≲ R−1, where WRðkiÞ ¼ 1, i.e. the full second order F2

part of the nonlinear density is subtracted on large scales as
desired. In 2LPT this Lagrangian F2 algorithm is equiv-
alent to the Eulerian F2 method (at the level of recon-
structed densities, and up to the freedom which fields to
smooth).

6Reversely, this fact could be exploited by applying
reconstruction only to modes or local environments for which
the velocity or displacement can be estimated reliably [21].

7Ignoring smoothing, there is exactly one linear combination
c1δrecLGS þ c2δrecLRR that works. To keep the correct shift term we
need c1 þ c2 ¼ 1. The growth term imposes c1 þ 2

3
c2 ¼ 17

21
. The

tidal term is fixed by the fact that the kernel needs to vanish in the
squeezed limit (or it imposes 1

3
c2 ¼ 4

21
). The only solution is c1 ¼

3
7
and c2 ¼ 4

7
.
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V. OVERVIEW OF RECONSTRUCTION
ALGORITHMS

Before discussing simulations and numerical results, we
briefly summarize all reconstruction algorithms in Table I
and in the following list. The Eulerian algorithms that
operate directly at the field level are:
(1) EGS: Eulerian growth-shift reconstruction (Sec. II)

Nonlinear growth and shift parts are subtracted
from the unreconstructed density δ,

δrecEGSðxÞ ¼ δðxÞ − δRðxÞδðxÞ − sðxÞ · ∇δðxÞ; ð54Þ
where δR is the smoothed density and s is defined in
Eq. (12). This follows from linearizing the velocity
but not the mass density in the nonlinear continuity
equation. The reconstructed power spectrum com-
bines the unreconstructed power and specific 3- and
4-point statistics of the unreconstructed density,
see Eq. (17).

(2) EF2: Eulerian F2 reconstruction (Sec. III)
Aiming to reverse the full second-order δð2Þ ∼

F2δ � δ part of the unreconstructed density, we form

δrecEF2ðxÞ ¼ δðxÞ − 17

21
δRðxÞδðxÞ − sðxÞ ·∇δðxÞ

−
4

21
K2

RðxÞ: ð55Þ

This is similar to the growth-shift reconstruction (54)
but an additional tidal K2

R part is subtracted and the
growth term has a slightly different coefficient. The
reconstructed power spectrum is again a combina-
tion of specific 2-, 3- and 4-point statistics of the
unreconstructed density similar to Eq. (17).

(3) ERR: Eulerian random-random reconstruction
This Eulerian algorithm resembles the Lagrangian

random-random LRR algorithm [see Eq. (47)],

δrecERR ¼ δðxÞ − 2

3
δ2RðxÞ − sðxÞ · ∇δRðxÞ − 1

3
K2

RRðxÞ:
ð56Þ

Additionally, we consider the corresponding Lagrangian
reconstruction algorithms that require displacing objects in
catalogs:

(1) LGS: Lagrangian growth-shift reconstruction
(Sec. IV B)
This is the standard BAO reconstruction algorithm

proposed in [8]: Objects in clustered and random
catalogs are displaced by the large-scale negative
Zeldovich displacement field s, and the difference
between the corresponding “displaced” and
“shifted” densities δd½s� and δs½s� gives the recon-
structed density,

δrecLGS ¼ δd½s� − δs½s�: ð57Þ

(2) LF2: Lagrangian F2 reconstruction (Sec. IV C)
The LGS and LRR methods are combined such

that the second order F2 part of the unreconstructed
density is subtracted on large scales,

δrecLF2 ≡
3

7
δrecLGS þ

4

7
δrecLRR: ð58Þ

(3) LRR: Lagrangian random-random reconstruction
(Sec. IV B)
This involves two oppositely shifted randoms:

Randoms are shifted by the negative Zeldovich
displacement, δs½s�, and by the positive Zeldovich
displacement, δs½−s�, and their mean is subtracted
from the observed density,

δrecLRR ¼ δ −
1

2
fδs½s� þ δs½−s�g: ð59Þ

The result agrees with the linear density at first order
and suppresses the nonlinear growth and shift term
at second order.

As explained before, the 2LPT model for the recon-
structed density of each Eulerian algorithm agrees with
the corresponding Lagrangian-reconstructed density,
although the algorithms are operationally very different.
All reconstruction algorithms leave the power spectrum
unchanged on the very largest scales and reverse non-
linearities on smaller scales in different ways.

VI. SIMULATIONS

To test the performance of the above reconstruction
algorithms, we ran several N-body simulations with the
FastPM code [30], derived from the parallel COLA [31]

TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve
displacements of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second
order LPT. The standard BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed
on the upper right.

Eulerian Lagrangian
Growth-shift δrecEGSðxÞ ¼ δðxÞ − δRðxÞδðxÞ − sðxÞ ·∇δðxÞ δrecLGS ¼ δd½s� − δs½s�
Full F2 δrecEF2ðxÞ ¼ δðxÞ − 17

21
δRðxÞδðxÞ − sðxÞ∇δðxÞ − 4

21
K2

RðxÞ δrecLF2 ¼ 3
7
δrecLGS þ 4

7
δrecLRR

Random-random δrecERR ¼ δðxÞ − 2
3
δ2RðxÞ − sðxÞ ·∇δRðxÞ − 1

3
K2

RRðxÞ δrecLRR ¼ δ − 1
2
fδs½s� þ δs½−s�g
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implementation of [13,32]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to
produce accurate large scale structure at a fraction of the
total computing time of a typical TreePM N-body simu-
lation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L ¼ 1380 Mpc=h per side and
evolve them from the initial redshift zi ¼ 99 to present time
with 80 time steps. From z ¼ 99 to z ¼ 1 we use a 40963

PM grid; at z < 1 we switch to a 61443 PM grid. We only
use a single snapshot at z ¼ 0.55, which is taken after 52
time steps. We run three independent realizations by
generating Gaussian random fields following an initial
DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is
obtained from a nowiggle power spectrum where BAO
wiggles are smoothed out. The cosmic variance caused by
broadband fluctuations can thus be canceled when compar-
ing wiggle and nowiggle simulations [33,34]. We assume a
flat ΛCDM cosmology (containing cold dark matter and
cosmological constant dark energy) with Ωm ¼ 0.272, h ¼
0.702, σ8 ¼ 0.807 for the N-body simulations. The con-
vergence of the simulations is discussed in Appendix D 1.
For all plots that do not require wiggle and nowiggle

simulations, we instead use “RunPB” N-body simulations
produced by Martin White with the TreePM N-body code
of [35]. These simulations were also used in [24,36,37].
They have 10 realizations of 20483 DM particles in a box
with side length L ¼ 1380 Mpc=h, and were started with
2LPT initial conditions at zi ¼ 75 for an initial power
spectrum with BAO wiggles (these simulations were not
run for an initial nowiggle power spectrum). The cosmol-
ogy is flat ΛCDM with Ωbh2 ¼ 0.022, Ωmh2 ¼ 0.139,
ns ¼ 0.965, h ¼ 0.69 and σ8 ¼ 0.82, and we again only
use one snapshot at z ¼ 0.55.
To speed up reconstructions we work with 1% DM

subsamples8 of clustered catalogs, where the same random
subset of particles is selected from wiggle and nowiggle
simulations. Random catalogs are generated by distributing
equally many particles randomly in the box. Densities are
computed on 5123 grids using the cloud-in-cell (CIC)
scheme. The CIC kernel is deconvolved from the density
grids. For densities that need to be smoothed when entering
in a reconstruction method we employ Gaussian smoothing
with kernel WRðkÞ ¼ expð− 1

2
k2R2Þ. Following [10,11] we

choose R ¼ 15 Mpc=h as the fiducial smoothing scale (see
Appendix D 2 for different smoothing scales).
For Eulerian reconstructions, we calculate quadratic

fields like ΨðxÞ ·∇δðxÞ by Fourier-transforming δðxÞ to
k space, multiply the result by appropriate filters like k=k2,

Fourier-transform the result back to x space and multiply
fields there. These fields are then combined according to
the particular reconstruction algorithm under consideration.
Finally, we measure the power spectrum of the recon-
structed density. For more details we refer the reader to [24]
where spectra of the same quadratic fields were measured.
For Lagrangian reconstructions, the displacement field s

is computed in k space using Eq. (12) (see also [38]). This
is then Fourier-transformed to x space and linearly inter-
polated to the locations of particles in clustered and random
catalogs. The particles are displaced according to the inter-
polated displacement field and the density of the displaced
catalogs is obtained with the CIC method. Finally we form
the power spectrum of the reconstructed density.
To cancel the broadband cosmic variance between

wiggle and nowiggle simulations when postprocessing
measured spectra for plots, we compute the required
combination of spectra (e.g. the fractional difference
between wiggle and nowiggle simulations) for each reali-
zation individually, and only average the final result over
realizations. Error bars are standard errors of the mean
obtained in this way, and estimated from the scatter
between realizations. Due to the cosmic variance cancella-
tion these errors are typically very small and we will
therefore omit them in most plots for clarity.

VII. NUMERICAL RESULTS

We now discuss how well the reconstruction algorithms
perform in simulations. For clarity we first discuss the
performance of the Eulerian and Lagrangian growth-shift
reconstructions EGS and LGS in isolation and study in
detail where additional BAO information comes from. This
is then followed by a more comprehensive comparison of
all algorithms in Sec. VII B. To be quantitative, we only
consider power spectra here. Appendix B compares the
algorithms at a somewhat more qualitative level using 2D
density slices, showing that the density changes due to
Eulerian and Lagrangian reconstructions are very similar
and agree with 2LPT expectations at the field level.

A. Growth-shift reconstructions

1. Overall comparison

Figure 1 shows power spectra before and after
reconstruction. For the Lagrangian LGS method, the
broadband shape is similar before and after reconstruction,
whereas the Eulerian EGS reconstruction adds additional
broadband power at high k. This is only true for the
particular smoothing that we use for the EGS method. For
example if we used symmetric smoothing where all fields
entering into quadratic fields are smoothed rather than just
one of them, then the broadband of the reconstructed power
agrees with that before reconstruction. However, symmetric
smoothing yields significantly lower BAO signal-to-noise
than asymmetric smoothing, which makes sense because

8For R ¼ 15 Mpc=h smoothing, the relative performance of
the reconstructions does not change qualitatively for 0.1% and
0.01% clustered subsamples, if the random catalogs for Lagran-
gian reconstructions contain as many particles as a 1% clustered
subsample.
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asymmetric smoothing allows small-scale fluctuations to be
shifted by large-scale flows, whereas symmetric smoothing
erases all small-scale information.
To highlight the BAO signal per k-mode, Fig. 2 shows

the fractional difference of spectra between simulations
with and without wiggles. After reconstruction, this frac-
tional difference has more pronounced wiggles than before
reconstruction and is closer to linear theory, implying an
enhanced BAO signal. The enhancement is similar for
Eulerian and Lagrangian reconstructions. Most (but not all)
of the signal can also be obtained by forming the cross-
spectrum between reconstructed and unreconstructed den-
sities, as shown by nonfilled symbols in Fig. 2.
Figure 3 shows the signal-to-noise-squared per k mode

estimated by assuming that the BAO signal is given by the
difference of power spectra between wiggle and nowiggle
simulations, and approximating the covariance with the
Gaussian expectation

covðP̂ðkÞ; P̂ðk0ÞÞ ¼ δk;k0
2

NmodesðkÞ
hP̂ðkÞi2; ð60Þ

where the number ofmodes per k-bin and the power spectrum
expectation value are computed from the simulations; see
AppendixD 3 for justification of this approximation. Figure 3
shows that the BAO signal-to-noise-squared is clearly
enhanced after EGSandLGS reconstructions. The algorithms
perform equally well for k ≤ 0.15 h=Mpc. On smaller scales,
the Lagrangian LGS algorithm performs slightly better than
the Eulerian EGS algorithm. This is caused by the larger
broadband noise of the EGS algorithm in this regime
(see Fig. 1).
To better quantify the overall performance, Fig. 4 shows

the cumulative BAO signal-to-noise-squared as a function
of kmax. The Lagrangian LGS reconstruction improves
the BAO signal-to-noise by a factor of 1.4 for
kmax ∼ 0.4h=Mpc. The Eulerian EGS algorithm yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
184=202

p
∼ 95% of the BAO signal-to-noise of the

LGS method. Thus, Eulerian and Lagrangian growth-shift
reconstructions perform very similarly, differing by less
than 5% in their total BAO signal-to-noise (see also
Table II later).
Using cross-spectra between reconstructed and unrecon-

structed densities instead of autospectra of reconstructed

FIG. 2 (color online). Illustration of the BAO signal: Fractional
difference of the power spectra in Fig. 1 between wiggle and
nowiggle simulations. Again, error bars are smaller than the
symbols.

FIG. 3 (color online). Signal-to-noise-squared for the BAO
wiggles as a function of wave number k. The signal is given by
the difference of the spectra specified in the legend between
wiggle and nowiggle simulations, S ¼ Pwiggle − Pnowiggle. The
squared noise is approximated by Eq. (60). Error bars are not
shown for clarity.

FIG. 4 (color online). Cumulative BAO signal-to-noise-squared
as a function of kmax for EGS and LGS reconstruction.

FIG. 1 (color online). Total DM power spectra before
reconstruction (black squares), after standard Lagrangian
growth-shift LGS reconstruction by particle displacements
(circles), and after Eulerian growth-shift EGS reconstruction
based on combining 2-, 3- and 4-point information (stars), for
1% subsamples of simulations with BAO wiggles. Filled symbols
show density autospectra, while open symbols show cross-
spectra between the densities before and after reconstruction.
Results are averaged over 3 realizations and error bars correspond
to the standard error of the mean (they are smaller than the
symbols except at very low k where their size is similar to that of
the symbols).
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densities degrades the cumulative signal-to-noise by ∼5%
for each of the two reconstruction methods.

2. 3-point vs 4-point

Does most of the additional BAO information gained by
reconstruction come from the 3-point or the 4-point
function of the unreconstructed density? To answer this,
we write the reconstructed density as

δrec ¼ δþ ðδrec − δÞ; ð61Þ
where δ is the unreconstructed density. For Eulerian
reconstructions, the density change due to reconstruction
is quadratic in the unreconstructed density, ðδrec − δÞ∼
Oðδ2Þ. The reconstructed power spectrum therefore splits
into 2-, 3- and 4-point parts as

hδrecjδreci ¼ hδjδi|ffl{zffl}
2pt

þ 2hðδrec − δÞjδi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
3pt

þhðδrec − δÞjðδrec − δÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4pt

:

ð62Þ
For example, the cross-spectrum between ðδrec − δÞ and δ is
a cross-spectrum between a field quadratic in δ and δ itself,

and is therefore given by a particularly integrated bispec-
trum of δ [24].
Simulation measurements of the terms on the right-

hand side of Eq. (62) are shown in Fig. 5. For EGS
reconstruction, the enhanced BAO signal is almost entirely
due to the 3-point part of the signal (thin solid), whereas the
additional signal from the 4-point (dash-dotted) is almost
negligibly small.
For Lagrangian reconstructions the difference between

reconstructed and unreconstructed densities is in general
not simply quadratic in the observed density any more,
because the reconstructed density is obtained by calculating
new densities from shifted and displaced catalogs that
cannot easily be related to the density of the original
catalog. It is therefore less transparent to study the role of
3- and 4-point signal in this case. Still, modeling
Lagrangian reconstruction from a Lagrangian theory per-
spective shows that reconstructed and unreconstructed
densities agree at first order in the linear density, so that
the leading-order difference between reconstructed and
unreconstructed densities is quadratic in the linear density;
see Eq. (46) and Appendix A. The spectra on the right-hand
side of Eq. (62) are therefore still related to 3- and 4-point
contributions if third order corrections are ignored. Figure 5
shows that for LGS reconstruction these spectra are similar
to EGS reconstruction, indicating that the enhanced BAO
signal from LGS reconstruction is also mostly due to the
effectively included 3-point signal.

3. 13 and 22 contributions to the 3-point part of the
reconstructed power spectrum

To further elucidate the origin of the enhanced BAO
signal after reconstruction we split the observed density δ
into linear and nonlinear part

δ ¼ δ0 þ ðδ − δ0Þ; ð63Þ
where δ0 is the linear density. Then, the 3-point-like term
from the last section splits into

hðδrec − δÞjδi ¼ hðδrec − δÞjδ0i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
∼hΔð3Þδ0iþOðδ6

0
Þ

þ hðδrec − δÞjðδ − δ0Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∼hΔð2Þδð2ÞiþOðδ6

0
Þ

:

ð64Þ

TABLE II. Total BAO signal-to-noise for kmax ¼ 0.4 h=Mpc for various reconstruction algorithms (obtained from Fig. 9, based on
simulations). “Perfect” refers to the BAO signal-to-noise of the linear density and “NoRec” to the BAO signal-to-noise of the measured
nonlinear density without performing any reconstruction. The second-to-last row shows how much of the signal-to-noise is lost
compared to performing the standard LGS reconstruction. The bottom row shows howmuch signal-to-noise is gained by reconstructions
compared to performing no reconstruction.

Growth-shift F2 reconstruction Random-random

Reconstruction method LGS EGS LF2 EF2 LRR ERR Perfect NoRec
BAO signal-to-noise 14.2 13.6 12.7 13.3 11.1 11.3 17.0 10.3
Compared against LGS �0% −4.7% −11% −6.3% −22% −21% þ19% −27%
Compared against NoRec þ38% þ31% þ23% þ29% þ6.9% þ8.8% þ64% �0%

FIG. 5 (color online). Illustration of 3- and 4-point contribu-
tions to reconstructed power spectra. The full reconstructed
power spectra (circles and stars) can be obtained by adding
the 3-point part (thin solid) and 4-point part (dash-dotted) to the
prereconstruction power spectrum (black squares); see Sec. VII
A 2 for details. The curves show differences of the spectra
specified in the legend between wiggle and nowiggle simulations,
divided by the theoretical linear nowiggle density power spec-
trum. At all k error bars estimated from the scatter between the
three realizations are roughly the same size as the thickness of the
colored curves and smaller than the size of the circle, star and
square symbols; they are not shown for clarity.
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Expanding

δrec − δ ¼ Δð2Þ þ Δð3Þ þ � � � ð65Þ

where ΔðnÞ is nth order in the linear Gaussian density δ0,
implies that the first term on the right-hand side of Eq. (64)
corresponds to a contraction ofΔð3Þ with δ0 at leading order
in δ0; we call this the “13” contribution. The second term on
the right-hand side of Eq. (64) corresponds to a “22”
contribution at leading order.
To see this more explicitly, we expand the field change

due to reconstruction up to third order in δ0,

δrec − δ ¼ Δð2Þ þ Δð3Þ ð66Þ

¼
Z
k1;k2

ð2πÞ3δDðk − k1 − k2ÞDðsÞ
2 ðk1;k2Þδ0ðk1Þδ0ðk2Þ

þ
Z
k1;k2;k3

ð2πÞ3δDðk − k1 − k2 − k3ÞDðsÞ
3

× ðk1;k2;k3Þδ0ðk1Þδ0ðk2Þδ0ðk3Þ ð67Þ

where DðsÞ
2 and DðsÞ

3 are symmetric kernels whose explicit
form depends on the reconstruction algorithm under con-
sideration. Then, the 13 contribution to Eq. (64) becomes

hΔð3ÞðkÞδ0ðk0Þi ¼ 3ð2πÞ3δDðkþ k0ÞPlinðkÞ

×
Z
k1

DðsÞ
3 ðk1;−k1;kÞPlinðk1Þ; ð68Þ

and similarly the 22 contribution is

hΔð2ÞðkÞδð2Þðk0Þi ¼ 2ð2πÞ3δDðkþ k0Þ

×
Z
k1;k2

ð2πÞ3δDðk − k1 − k2Þ

×DðsÞ
2 ðk1;k2ÞF2ðk1;k2Þ

× Plinðk1ÞPlinðk2Þ: ð69Þ

Figures 6 and 7 show the spectra on the right-hand side
of Eq. (64) measured from simulations. The linear density
δ0 is approximated by estimating the density of the initial
conditions of the simulations and rescaling it to z ¼ 0.55
with the linear growth factor. The measured 13 term has
pronounced BAO wiggles, which can be attributed to the
fact that the theoretical 13 term of Eq. (68) is proportional
to PlinðkÞ which has BAO wiggles.9 In contrast, the
measured 22 contribution in Fig. 6 oscillates out of phase
with the linear BAO wiggles, which shifts the BAO scale
inferred from scales k≲ 0.15 h=Mpc. This can be

FIG. 7 (color online). Same plot as before but including
broadband information by plotting spectra specified in the legend
in wiggle simulations divided by the theoretical linear nowiggle
density power spectrum. Error bars are roughly the same size as
the thickness of the curves at k ≲ 0.15 h=Mpc and twice that size
at higher k, but they are not shown for clarity. The plot shows the
average over the ten RunPB N-body realizations available to us.
For the three FastPM realizations that we ran for the previous plots
this looks very similar but slightly noisier because of the smaller
number of realizations.

FIG. 6 (color online). Separation of the reconstruction 3-point
part 2hðδrec − δÞjδi (thin solid) from Fig. 5 into “13” contribution
(dashed) and “22” contribution (dotted) according to Eq. (64),
measured from simulations for standard LGS reconstruction
(yellow) and EGS reconstruction (green). The linear density δ0
in the cross-spectra is approximated by the density of the simulation
initial conditions, rescaled to z ¼ 0.55with the lineargrowth factor.
Adding dotted to dashed curves gives the thin solid curve of the
same color. The curves show differences of the spectra specified in
the legend between wiggle and nowiggle simulations, divided by
the theoretical linear nowiggle density power spectrum. Error bars
of all colored curves estimated from the scatter between the three
realizations are roughly the same size as the thickness of the curves
at all k; they are not shown for clarity.

9This makes the approximation that the convolution of Plin
with D3 in Eq. (68) yields a broadband power that affects the
wiggles only in a subdominant way. Also, note that even at sixth
or higher order in δ0, the δ0ðk0Þ factor on the lhs implies that
Eq. (68) will always be of the form PlinðkÞ times some integral
over weighted power spectra, which can lead to further enhance-
ments of the BAO wiggles.
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understood perturbatively from the form of the theoretical
22 expression in Eq. (69) [15–17,39]. At higher k, the 22
contribution is opposite in phase to the linear BAO wiggles
and thus reduces the enhancement of BAO wiggles from
the 13 contribution.10

In summary, most of the additional BAO signal from
reconstruction is due to the 13-type part of the 3-point
contribution to the reconstructed power spectrum, whereas
the 22-type 3-point and the 4-point do not enhance the
signal much.
Figures 6 and 7 also compare the 13 and 22 contributions

between the Eulerian and Lagrangian growth-shift
reconstruction algorithms. These algorithms have the same
22 contributions at k≲ 0.15 h=Mpc, which is expected
because they are equivalent when modeled with 2LPT (see
Appendix A). In contrast, the 13 contributions differ even at
low k, which indicates that the algorithms differ at third
order in the linear density. This is not surprising since they
involve rather different transformations of the unrecon-
structed density. Since the 13 contribution is most impor-
tant for improving the BAO signal it may be worth
considering third order reconstruction algorithms that
subtract F3δ � δ � δ correctly. However, this goes beyond
the scope of this paper, and it should be noted that for
Eulerian reconstructions such an extension might suffer
from shot noise issues because e.g. δ3ðxÞ is very sensitive
to the largest peaks of the density. In this case, the standard
reconstruction method may be a more elegant solution,

because it successfully reverses nonlinear BAO smoothing
beyond second order without the need to cube any Eulerian
fields.
All spectra in Fig. 7 vanish on very large scales

(k≲ 0.05 h=Mpc) as expected because both reconstructed
and unreconstructed densities approach the linear density in
this regime.

4. Growth vs shift term

For Eulerian growth-shift reconstruction, δEGSrec ¼ δ−
δ2 − s · ∇δ, the power spectrum of the reconstructed
density can be split into six cross-spectra between unre-
constructed density δ, growth term δ2 and shift term s · ∇δ,
see Eq. (17). Figure 8 shows the cumulative BAO signal-
to-noise from each of these contributions.11 The cross-
spectrum between shift term and the density is most
important, which makes sense intuitively because this
term corresponds to shifting back large-scale flows. If
the reconstruction only included the shift term, δrec ¼ δ −
s ·∇δ (red solid in Fig. 8), then the improvement over
performing no reconstruction (black squares) is however
only half of the improvement obtained from the full EGS
reconstruction (green stars). Thus, the growth term is
subdominant but adds very significant signal-to-noise so
that it should not be omitted. Also, if the growth term was
not included, the reconstructed power spectrum would not
yield the linear power spectrum on large scales, so that such
a shift-only reconstruction scheme should not be taken
seriously in any case.

B. All reconstructions

So far we only discussed numerical results for the
growth-shift reconstructions. We will now turn to the F2
and random-random reconstructions introduced in Secs. III
and IV, and compare all reconstruction algorithms.
All six reconstruction methods are compared in Fig. 9 in

terms of their cumulative BAO signal-to-noise-squared as a
function of kmax. Table II shows the total BAO signal-to-
noise up to kmax ¼ 0.4 h=Mpc. Overall, the standard
Lagrangian growth-shift (LGS) algorithm works best.
Compared against that, the Eulerian growth-shift (EGS)
and Eulerian F2 (EF2) methods perform almost as well,
missing only 5% and 6% of the total BAO signal-to-noise,
respectively. The Lagrangian F2 (LF2) method turns out
slightly worse, missing 11% of the LGS signal-to-noise.
Both random-random reconstructions perform significantly
worse, missing more than 20% of the LGS signal-to-noise.

FIG. 8 (color online). Separation of EGS reconstruction in
contributions from growth term δ2 (blue) and shift term s · ∇δ
(red), see Eq. (17). The plot shows the cumulative BAO signal-to-
noise-squared of spectra specified by the legend. Green stars
show full EGS reconstruction, colored solid show reconstructions
if only the growth (blue) or only the shift term (red) is used.
Dashed lines show the signal-to-noise-squared of individual 3-
point contributions to the full EGS reconstruction. Dash-dotted
and dotted show 4-point contributions.

10If the kernels were known, BAO information from the
convoluted 22 contributions could still be extracted, but in
practice the kernels are only known in perturbation theory which
starts to break down on scales where reconstruction helps most,
so that more information can be extracted by the standard
approach of fitting an oscillatory function on top of a broadband
shape out to smaller scales.

11The individual signal-to-noise-squared curves in Fig. 8
cannot easily be combined by eye because there are nontrivial
correlations between the spectra. These are taken into account for
the full reconstructed signal-to-noise-squared because spectra are
combined realization by realization (which is equivalent to
combining δ and the growth and shift term at the field level
for each realization and then taking spectra of the resulting field).
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Note that the growth-shift and F2 algorithms perform
equally well on large and intermediate scales, k ≤
0.15 h=Mpc, as expected from 2LPT modeling, and they
only begin to differ on smaller scales. Thus, EGS, EF2 and
LF2 only perform slightly worse than LGS because they
partially miss highly nonlinear BAO information that the
LGS algorithm restores slightly better.
The EGS and EF2 methods may be useful for applica-

tions because they perform almost as well as the standard
LGS algorithm and have potential advantages due to their
Eulerian nature (e.g. they can be expressed as combinations
of 2-, 3- and 4-point functions of the unreconstructed
density). The LF2 method and the random-random meth-
ods are not competitive in terms of signal-to-noise so they
should not be used. The performance of ERR can be
improved by using asymmetric smoothing where only one
of the fields entering quadratic fields is smoothed; in this
case ERR performs almost as well as EF2 but still slightly
worse. For the LRR method it is less obvious how to reduce
the smoothing to improve it, and we do not investigate this
further.
So far we focused on the BAO signal-to-noise to assess

reconstruction performance. Another important aspect of
the standard LGS reconstruction is that it removes a shift of
the BAO scale induced by nonlinear clustering [19,40]. We
investigate this effect for our new algorithms as follows.
For every estimated power spectrum we construct the
fractional difference ðPwiggle − PnowiggleÞ=Pnowiggle shown
in Fig. 2. Then we fit this with the damped shifted linear
prediction Oðk=αÞ exp½−k2Σ2=2� for varying α and Σ,
where OðkÞ ≡ ½Plin

wiggleðkÞ − Plin
nowiggleðkÞ�=Plin

nowiggleðkÞ cor-
responds to the gray line in Fig. 2. Focusing on the
BAO wiggles, we fit over the range 0.083 h=Mpc ≤ k ≤
0.3 h=Mpc. Since the sample standard deviations estimated
from the scatter between three realizations are somewhat
uncertain for individual k bins, and since errors have no

broadband scale dependence because broadband cosmic
variance is canceled, we replace sample errors by their
average over all k bins, which gives a constant error
of 2 × 10−4.
Marginalizing over the damping parameter Σ, the best-fit

values for the BAO shift α − 1 after LGS, EGS, LF2, EF2,
LRR and ERR reconstructions are 0.003%, 0.01%, 0.06%,
0.03%, 0.13% and 0.13%, respectively, and 0.25% without
reconstruction. The 1σ fitting uncertainty is roughly 0.01%.
This shows that mitigation of the BAO shift is more efficient
for reconstructions that also yieldmoreBAO signal-to-noise.
In particular, for LGS, EGS and LF2 reconstructions the
residual BAO shift is at most 0.03%, which is negligibly
small for upcoming experiments. Within the fitting uncer-
tainty, the LGS and EGS reconstruction do not show
evidence for any residual BAO shift.
Our results are based on simulations and it is not clear

how to explain them within the framework of second order
perturbation theory where all methods agree up to smooth-
ing and should thus perform similarly well. The difference
in performance could be attributed to different smoothing
operations, e.g. theory expressions for the random-random
methods involve only the smoothed density, whereas theory
expressions for the other reconstruction methods involve
also unsmoothed fields so that e.g. small-scale modes are
shifted by large-scale smoothed displacements, which can
yield improved reconstructions. However this does not
explain the (small) differences between the LGS, EGS, LF2
and EF2 algorithms. These could be due to higher order
corrections in perturbation theory, which we have not
included in our modeling where the density was truncated
at second order in the linear density. The fact that the 13
part of the 3-point contribution to the reconstructed
power spectrum seems to be most important in simulations
(see Fig. 6) suggests that third-order corrections could be
responsible for the slightly different performances of the
LGS, EGS, LF2 and EF2 algorithms. We do not investigate
the performance differences of these algorithm in more
detail here because the LGS, EGS and EF2 algorithms
perform almost equally well.

VIII. CONCLUSIONS

Density reconstruction plays an important role in modern
cosmology by significantly improving BAO information
from galaxy surveys. In this paper we present three new
Eulerian reconstruction algorithms that operate directly
on the prereconstruction density field, and two new
Lagrangian reconstructions that displace objects in cata-
logs. These algorithms are physically and operationally
different from the conventionally used Lagrangian growth-
shift (LGS) reconstruction.
The Eulerian growth-shift (EGS) reconstruction algo-

rithm is derived by reversing the nonlinear continuity
equation, keeping the mass density fully nonperturbative
and only approximating the velocity density in terms of its

FIG. 9 (color online). Cumulative BAO signal-to-noise-squared
for reconstructed power spectra as a function of kmax measured
from simulations for three Eulerian reconstruction algorithms
(dashed colored) and the corresponding three Eulerian
reconstruction algorithms (solid colored). See Sec. V for a
summary of the algorithms. The signal-to-noise-squared of the
density before reconstruction (black) and of the linear density
(gray) are included for comparison.
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linear relation to the mass density. The resulting recon-
structed power spectrum is given by a particular combi-
nation of simple 2-, 3- and 4-point statistics of the
unreconstructed density. In our simulation setup, this
combination yields the same BAO signal-to-noise as the
standard LGS algorithm up to kmax ¼ 0.15 h=Mpc, and
95% of the signal-to-noise of the standard LGS algorithm
up to kmax ¼ 0.4 h=Mpc. The EGS and LGS reconstruction
algorithms are thus very similar in their ability to extract
additional BAO information.
With the goal of removing the entire second-order part of

the nonlinear density, i.e. nonlinear growth, shift and tidal
terms, we introduced Eulerian and Lagrangian F2 algo-
rithms.TheEulerianversion, EF2, performs almost aswell as
the growth-shift algorithms, missing only 6% of the BAO
signal-to-noise of the standard algorithm in our simulations.
The corresponding Lagrangian algorithm, LF2, performs
somewhat worse, likely because small-scale modes are
smoothed out too aggressively in this case. Motivated by
2LPT results, we also considered random-random recon-
structions, where random catalogs are shifted by the positive
and negative Zeldovich displacement. They turn out to
perform significantly worse than the other algorithms. In
summary, the standardLGS algorithmperforms best, but two
new Eulerian reconstruction algorithms, EGS and EF2,
perform almost equally well; see Fig. 9.
For all our Eulerian algorithms, the reconstructed power

spectrum is obtained by adding to the unreconstructed
power spectrum simple model-independent 3-point and 4-
point statistics of the unreconstructed density, like hδ2jδi or
hδ2jδ2i. This makes it very transparent how these Eulerian
reconstructions yield additional BAO information by
exploiting higher-order N-point statistics.
Modeling reconstructions in LPT and expanding all

fields consistently up to Oðδ20Þ shows that Eulerian and
Lagrangian reconstructions change the density in exactly
the same way (if a new correction term is included that
arises by modeling the displacement field of clustered
catalogs such that it is evaluated at Eulerian rather than
Lagrangian locations, which matters beyond linear order).
We confirmed in simulations that density changes due to
Eulerian and Lagrangian reconstructions look nearly the
same in 2D density slices, see Fig. 10. Given that Eulerian
and Lagrangian algorithms agree at the field level in theory
and simulations and that they enhance BAO information at
the power spectrum level in a very similar way, they can be
regarded as Eulerian and Lagrangian incarnations of the
same underlying reconstruction principles. By making this
connection one can argue that the standard Lagrangian
LGS reconstruction is partially so successful because it
automatically combines BAO information from specific
well-motivated 2-, 3- and 4-point statistics of the unrecon-
structed density. This provides a novel theoretical argument
for the robustness and success of the standard LGS
reconstruction algorithm.

Using specific splits of the mass density in simulations,
we show that most of the additional BAO signal-to-noise
from Eulerian reconstructions is due to 3-point statistics,
while 4-point statistics add very little. The 3-point con-
tribution can be split further into parts of type hδ0jδ30i and
hδ20jδ20i, where δ0 is the linear density. Our simulations
show that the 13 part of the 3-point contribution is
responsible for sharpening the BAO wiggles, whereas
the 22 part leads to shifts and damping of the wiggles,
in agreement with previous literature [15].
The specific 3-point statistics that enter Eulerian recon-

structions come in the form of cross-spectra of the
unreconstructed density with the squared unreconstructed
density, δ2, a shift term, s ·∇δ, and a tidal term, K2. The
same cross-spectra also arise when considering maximum-
likelihood estimators for the amplitudes of the components
of the tree-level DM bispectrum [24]. This suggests that the
bispectrum of the unreconstructed density does not contain
much additional BAO information beyond that already
recovered by reconstruction algorithms (i.e. the additional
BAO information that the bispectrum could in principle
yield is likely very correlated with the additional BAO
information in the reconstructed power spectrum compared
to the unreconstructed power spectrum). This intuitive
expectation should be tested more rigorously and quanti-
tatively in the future.
An important limitation of the results presented here is

that we restricted ourselves to dark matter in real space. We
leave the important extension to galaxies in redshift space
for future work. Our findings can also be extended in many
other directions. For example, it would be interesting to
study configuration space correlation functions in simu-
lations and theory, and to include higher order modeling
corrections. Ideas from previous studies [18,19,21] that aim
at optimizing the standard reconstruction algorithm, e.g. by
improved weightings or iterative reconstructions, could
also be applied to each of our new algorithms. Our results
could also be useful for improving combinations of BAO
analyses (fitting only for the BAO scale with templates)
with redshift space distortion analyses (using the full shape
of the redshift-space 2-point function), because the covari-
ance between these analyses could be expressed in terms of
covariances between 2-, 3- and 4-point functions that can
be modeled perturbatively. Ultimately it would be exciting
to apply the new algorithms to real data.
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APPENDIX A: LAGRANGIAN MODELING

This appendix models Lagrangian reconstruction algo-
rithms using the Lagrangian perspective of structure for-
mation following [15]. We start by modeling LGS
reconstruction nonperturbatively in terms of the displace-
ment field. To simplify this, we then review Lagrangian
perturbation theory and use it to model LGS reconstruction
perturbatively up to second order in the linear density.
Finally, we model all other Lagrangian reconstruction
algorithms mentioned in the main text. Throughout this
Appendix we include a second order correction term that
arises when assuming that clustered catalogs are displaced
from Eulerian rather than Lagrangian positions.

1. Nonperturbative Lagrangian modeling of
Lagrangian growth-shift reconstruction

In the Lagrangian picture of structure formation, initial
positions q in Lagrangian space are displaced by ΨðqÞ to
obtain Eulerian positions x,

x ¼ qþΨðqÞ: ðA1Þ

This can be related to the mass overdensity by [41]

δthðxÞ ¼
Z

d3qδDðx − q −ΨðqÞÞ − 1; ðA2Þ

where δD is the Dirac delta and we use superscript “th” to
denote theoretical mass densities. The Fourier transform is

δthðkÞ ¼
Z

d3xe−ik·xδthðxÞ ¼
Z

d3qe−ik·qðe−ik·ΨðqÞ − 1Þ:

ðA3Þ

The LGS-reconstructed density is obtained as follows.
First, the negative Zeldovich displacement s is calculated
from the nonlinear density with Eq. (12). This is used to
displace the original density, yielding the “displaced” field
δd which can be modeled by

δthd ðkÞ ¼
Z

d3qe−ik·qðe−ik·½ΨðqÞþsðxÞ� − 1Þ: ðA4Þ

The theory displacement Ψ is evaluated at the initial
Lagrangian position q, whereas the negative Zeldovich
displacement s obtained from the observations is evaluated
at the final Eulerian location x. Instead of sðxÞ previous
literature uses sðqÞ which misses a correction at second
order in the fields (this correction is investigated further
with simulations at the end of Appendix B). Next, a
uniform or random sample of particles is displaced by

the same vector s evaluated at the uniform positions q to get
the “shifted” field δs, which can be modeled by

δths ðkÞ ¼
Z

d3qe−ik·qðe−ik·sðqÞ − 1Þ: ðA5Þ

The difference of these two fields gives the reconstructed
density for the standard LGS reconstruction algorithm,

δrecLGS ≡ δd − δs; ðA6Þ

which can be modeled by

δrec;thLGS ðkÞ ¼
Z

d3qe−ik·qðe−ik·½ΨðqÞþsðxÞ� − e−ik·sðqÞÞ: ðA7Þ

This can be rearranged nonperturbatively to12

δrec;thLGS ¼ δth þ δrec;ðaÞLGS þ δrec;ðbÞLGS ; ðA9Þ

where δth models the nonlinear density before
reconstruction and we defined

δrec;ðaÞLGS ðkÞ ≡
Z

d3qe−ik·q

× ðe−ik·½ΨðqÞþsðqÞ� − e−ik·ΨðqÞ − e−ik·sðqÞ þ 1Þ:
ðA10Þ

An additional correction term (b) arises because the
clustered catalog displacement is evaluated at Eulerian
positions, sðxÞ, instead of Lagrangian positions, sðqÞ,

δrec;ðbÞLGS ðkÞ ≡
Z

d3qe−ik·qe−ik·ΨðqÞðe−ik·sðxÞ − e−ik·sðqÞÞ:

ðA11Þ

Expressing the exponentials in Eq. (A10) as power series
gives

δrec;ðaÞLGS ðkÞ ¼
Z

d3qe−ik·q
X∞
n¼2

Xn−1
m¼1

ð−iÞn
n!

n
m
½k ·ΨðqÞ�m

× ½k · sðqÞ�n−m; ðA12Þ

where only terms mixing Ψ and s survive (m ≥ 1 and
n −m ≥ 1). Similarly, if we write

12This can be seen by adding and subtracting δth given by
Eq. (A3), which yields

δrec;thLGS ðkÞ¼δthðkÞ

þ
Z
d3qe−ik·qðe−ik·½ΨðqÞþsðxÞ�−e−ik·sðqÞ−e−ik·ΨðqÞþ1Þ:

ðA8Þ
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sðxÞ ¼ sðqÞ þHðqÞ

for some function H [discussed in more detail later, see
Eq. (A28)], then Eq. (A11) becomes

δrec;ðbÞLGS ðkÞ ¼
Z

d3qe−ik·qe−ik·ΨðqÞ X∞
n¼1

Xn
m¼1

ð−iÞn
n!

n
m

× ½k ·HðqÞ�m½k · sðqÞ�n−m: ðA13Þ

All expressions above are fully nonperturbative in the
displacement field. They can be simplified further in
Lagrangian perturbation theory (LPT) which we briefly
review in the next section.

2. Review of Lagrangian perturbation theory (LPT)

In LPT the displacementΨ is expanded perturbatively in
powers of the linear density contrast δ0,

Ψ ¼ Ψð1Þ þΨð2Þ þ � � � ; ðA14Þ

where [42]

ΨðnÞðkÞ ¼ i
n!

Z Yn
i¼1

�
d3ki

ð2πÞ3
�
ð2πÞ3

× δDðk1 þ � � � þ kn − kÞLðnÞ

× ðk1;…;kn;kÞδ0ðk1Þ � � � δ0ðknÞ: ðA15Þ

The first and second order kernels are (see e.g. [29,43–46])

Lð1ÞðkÞ ¼ k
k2

; ðA16Þ

Lð2Þðk1;k2;kÞ ¼
2

7

k
k2

½1 − P2ðk̂1 · k̂2Þ�; ðA17Þ

where k̂ ≡ k=k and P2 is the l ¼ 2 Legendre polynomial.
The density contrast (A3) corresponding to this pertur-

bative displacement field is

δthðkÞ ¼ δð1ÞLPTðkÞ þ δð2ÞLPTðkÞ þ � � � ; ðA18Þ

where δð1ÞLPT ¼ δ0 and

δð2ÞLPTðkÞ ¼
Z

d3qe−ik·q
�
−ik ·Ψð2ÞðqÞ − 1

2
ðk ·Ψð1ÞðqÞÞ2

�
;

ðA19Þ

noting that ΨðnÞðqÞ are in Lagrangian configuration
space. To simplify the comparison with Eulerian SPT,
we write the second order field in terms of the kernel FLPT

2

defined by

δð2ÞLPTðkÞ ¼
Z �

ki

FLPT
2 ðk1;k2Þδ0ðk1Þδ0ðk2Þ; ðA20Þ

where we used the shorthand integral notation of Eq. (3).
The FLPT

2 kernel has components FLPT
2;11 from Ψð1ÞΨð1Þ in

Eq. (A19) and FLPT
2;2 from Ψð2Þ, i.e.

FLPT
2 ¼ FLPT

2;11 þ FLPT
2;2 ðA21Þ

with13

FLPT
2;11ðk1;k2Þ ¼

2

3
þ 1

2

�
k1
k2

þ k2
k1

�
k̂1 · k̂2 þ

1

3
P2ðk̂1 · k̂2Þ;

ðA23Þ

FLPT
2;2 ðk1;k2Þ ¼

1

7
−
1

7
P2ðk̂1 · k̂2Þ: ðA24Þ

This agrees with the F2 kernel from Eulerian SPT [22,46],

FLPT
2 ðk1;k2Þ ¼ FSPT

2 ðk1;k2Þ

¼ 17

21
þ 1

2

�
k1
k2

þ k2
k1

�
k̂1 · k̂2

þ 4

21
P2ðk̂1 · k̂2Þ: ðA25Þ

The FLPT
2;2 contribution from Lð2Þ does not change the shift

term, but it changes the amplitude of the growth term by
21% and that of the tidal contribution by 43%.

3. LGS reconstruction in 2LPT

Working in LPT and keeping terms up to second order in
the linear density δ0, the contribution (a) of Eq. (A12) to the
reconstructed density becomes

δrec;ðaÞLGS ðkÞ ¼ −
Z �

ki

½k ·Lð1Þðk1Þ�½k ·Lð1Þðk2Þ�

×WRðk2Þδ0ðk1Þδ0ðk2Þ; ðA26Þ

where we wroteΨðqÞ and sðqÞ in Fourier space in terms of
Lð1Þ. From Eqs. (A22) and (A23) we get [15]

13Note that for k ¼ k1 þ k2 we have

½k ·Lð1Þðk1Þ�½k ·Lð1Þðk2Þ� ¼
4

3
þ
�
k1
k2

þ k2
k1

�
k̂1 · k̂2

þ 2

3
P2ðk̂1 · k̂2Þ: ðA22Þ

Also note that since FLPT
2;11ðk1;−k1Þ ¼ 0 and FLPT

2;2 ðk1;−k1Þ ¼ 0

the corresponding contributions to δð2ÞLPT have zero spatial average,
hδð2;11ÞLPT ðxÞi ¼ 0 and hδð2;2ÞLPT ðxÞi ¼ 0.
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δrec;ðaÞLGS ðkÞ ¼ −
Z �

ki

2FLPT
2;11ðk1;k2ÞWRðk2Þδ0ðk1Þδ0ðk2Þ:

ðA27Þ

Next, we calculate at second order in LPT the correction
term (b) given by Eq. (A13) (coming from evaluating
clustered catalog displacements at Eulerian rather than
Lagrangian locations, see also Appendix B). At second
order we have

sðxÞ ≈ sðqÞ þ ðΨðqÞ · ∇ÞsðqÞ; ðA28Þ

so that Eq. (A13) becomes at second order

δrec;ðbÞLGS ðkÞ ≈ −i
Z

d3qe−ik·qe−ik·sðqÞk · ðΨðqÞ ·∇ÞsðqÞ:

ðA29Þ

Then

δrec;ðbÞLGS ðkÞ ¼
Z �

ki

ðk ·Lð1Þðk2ÞÞðk2 ·Lð1Þðk1ÞÞ

×WRðk2Þδ0ðk1Þδ0ðk2Þ ðA30Þ

¼
Z �

ki

�
1

3
þ k2
k1

k̂1 · k̂2 þ
2

3
P2ðk̂1 · k̂2Þ

�

×WRðk2Þδ0ðk1Þδ0ðk2Þ: ðA31Þ

Adding Eq. (A31) to (A27) cancels the tidal part and one of
the two shift terms of 2FLPT

2;11, so that the model for the total
reconstructed density becomes simply

δrec;thLGS ðkÞ ¼ δthðkÞ −
Z �

ki

�
1þ k1

k2
k̂1 · k̂2

�

×WRðk2Þδ0ðk1Þδ0ðk2Þ; ðA32Þ

which agrees with Eq. (45) in the main text and corresponds
to Eq. (46) in configuration space. Thus, in this LPT
picture, standard LGS reconstruction subtracts growth and
shift terms from the nonlinear density δ.
The second-order contribution to the density change

caused by reconstruction came from terms with kernels of
the type ðLð1ÞÞ2 but no Lð2Þ kernel contributed, which means
that this reconstruction cannot fully reverse second-order
nonlinearities [15]. We can generalize this statement using
Eq. (A12): At nth order LPT, part (a) of the reconstruction
does not have an explicit contribution from the kernel LðnÞ,
but only products of lower-order kernels Lðr1Þ � � �LðrsÞ (with
s ≥ 2 and

P
iri ¼ n). For example, at third order only

kernels of the type ðLð1ÞÞ3 and ðLð1ÞÞ2Lð2Þ contribute but
not Lð3Þ. The same statement is true for the (b) part of the

reconstruction given by Eq. (A13).14 Consequently, the
standard LGS reconstruction cannot fully remove any of
the “pure” LðnÞ contributions to the nonlinear density, unless
products of lower-order kernels conspire to agreewithLðnÞ. It
can of course still improve BAO information by removing
“nonpure” nonlinearities, e.g. of type ðLð1ÞÞ2, and this turns
out to be very successful in practice.

4. 2LPT models for 6 Lagrangian reconstructions

We introduced 6 possible Lagrangian reconstruction
algorithms in Sec. IV. At first order, they all agree with
the linear density, but at higher order they differ from
each other. This Appendix models these algorithms in 2LPT.
The four relevant densities for the reconstructions are

clustered catalogs displaced by s or −s, denoted by δd½s�
and δd½−s�, and random catalogs shifted by s or−s, denoted
by δs½s� and δs½−s�. We model them in 2LPT by expanding
Eqs. (A4) and (A5) consistently at Oðδ20Þ. For clustered
catalogs, the second order part gives

δð2Þd ½�s�ðkÞ ¼
Z �

ki

�
½1∓WRðkÞ�F2ðk1;k2Þ∓WRðk2Þ

×

�
1þ k1

k2
k̂1 · k̂2

�

þWRðk1ÞWRðk2ÞFLPT
2;11ðk1;k2Þ

�

× δ0ðk1Þδ0ðk2Þ: ðA33Þ
Here we used sðxÞ ¼ sðqÞ þHðqÞ, where Hð2ÞðqÞ ¼
ðΨð1ÞðqÞ ·∇Þsð1ÞðqÞ and −ik ·Hð2ÞðkÞ is given by
Eq. (A31). Also, note that the negative Zeldovich displace-
ment sðqÞ computed from the clustered catalog is

sð2ÞðkÞ ¼ −iLð1ÞðkÞWRðkÞ
Z �

ki

F2ðk1;k2Þδ0ðk1Þδ0ðk2Þ

ðA34Þ
at second order. For the shifted randoms, the second order
part is

δð2Þs ½�s�ðkÞ ¼
Z �

ki

f∓WRðkÞF2ðk1;k2Þ

þWRðk1ÞWRðk2ÞFLPT
2;11ðk1;k2Þg

× δ0ðk1Þδ0ðk2Þ: ðA35Þ
The reconstructed densities of Eqs. (38)–(43) up to second
order are then

14The only possibility where a summand in Eq. (A13) is not a
product of at least two fields is if m ¼ n ¼ 1, in which
case there is a contribution going like HðnÞ. However, Taylor
expanding HðqÞ ¼ sðqþΨÞ − sðqÞ in Ψ implies that this
is always a product of at least two fields that depend on L
kernels (schematically, suppressing derivatives and vectors,
H ∼Ψsþ 1

2
Ψ2sþ 1

6
Ψ3sþ � � �).
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δd½s� − δs½s� ¼ δ0ðkÞ þ
Z �

ki

�
F2ðk1;k2Þ −WRðk2Þ

�
1þ k1

k2
μ

��
δ0ðk1Þδ0ðk2Þ; ðA36Þ

1

2
fδd½s� þ δd½−s�g ¼ δ0ðkÞ þ

Z �

ki

fF2ðk1;k2Þ þWRðk1ÞWRðk2ÞFLPT
2;11ðk1;k2Þgδ0ðk1Þδ0ðk2Þ;

δd½s� þ δs½−s� ¼ δ0ðkÞ þ
Z �

ki

�
F2ðk1;k2Þ þ 2WRðk1ÞWRðk2ÞFLPT

2;11ðk1;k2Þ −WRðk2Þ
�
1þ k1

k2
μ

��
δ0ðk1Þδ0ðk2Þ;

δs½s� þ δd½−s� ¼ δ0ðkÞ þ
Z �

ki

�
F2ðk1;k2Þ þ 2WRðk1ÞWRðk2ÞFLPT

2;11ðk1;k2Þ þWRðk2Þ
�
1þ k1

k2
μ

��
δ0ðk1Þδ0ðk2Þ;

δ − cfδs½s� þ δs½−s�g ¼ δ0ðkÞ þ
Z �

ki

fF2ðk1;k2Þ − 2cWRðk1ÞWRðk2ÞFLPT
2;11ðk1;k2Þgδ0ðk1Þδ0ðk2Þ; ðA37Þ

δd½−s� − δs½−s� ¼ δ0ðkÞ þ
Z �

ki

�
F2ðk1;k2Þ þWRðk2Þ

�
1þ k1

k2
μ

��
δ0ðk1Þδ0ðk2Þ;

where μ ≡ k̂1 · k̂2. From the six possibilities, only combinations (A36) and (A37) suppress nonlinear growth and shift.

APPENDIX B: SLICE COMPARISONS

To compare reconstruction algorithms at the field level and
as an illustrative sanity check of their 2LPTmodels, wewrite

δrec ¼ δ − ðδ − δrecÞ: ðB1Þ

Here, δ − δrec is the nonlinear excess density that is
removed from the full nonlinear density when applying
reconstruction. Figure 10 shows 2D slices of this excess
density for the three Lagrangian reconstruction algorithms
(top) in comparison with the three corresponding Eulerian
algorithms (bottom). For each column of the plot, upper

FIG. 10 (color online). Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left),
random-random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities δ − δrec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density measured from
simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions in the upper panels with
2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR and ERR, twice the excess density is
shown to enhance color contrast. We use R ¼ 15h−1 Mpc Gaussian smoothing for the reconstructions. To highlight large scales, each
final field is additionally smoothed externally with a R ¼ 15h−1 Mpc Gaussian. The clustered catalog is obtained from a 1% random
subsample of one RunPB N-body realization; the random catalog from equally many randomly distributed particles.
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and lower panels are rather similar, i.e. Eulerian and
Lagrangian reconstructions change the density in a very
similar way. This shows qualitatively that Eulerian and
Lagrangian reconstructions agree with each other at the
field level on the large scales that are highlighted by these
slice plots. The agreement between upper and lower panels
in Fig. 10 also illustrates that second order LPT provides
an accurate description of the reconstruction algorithms on
large scales. The different Lagrangian reconstructions
shown in the different columns are also rather correlated,
but they differ somewhat, which is expected since the
2LPT models of these methods differ from each other.
Figure 11 shows some additional slice plots for reference

and comparison. The density before reconstruction is a few
times larger than typical changes due to reconstruction. The
growth term δRδ peaks at density peaks and troughs which
are amplified by squaring the field. The magnitude of the
shift term s · ∇δ is maximal at locations where the large-
scale Zeldovich displacement is aligned with the density
gradient, which is most pronounced near density peaks.
Since growth and shift terms have opposite signs near
density peaks, their combination cancels the largest peaks
to leave a smoother combined field (see Fig. 10).
Finally, we check if displaced clustered catalogs should

be modeled by evaluating the displacement field s at
Eulerian positions x rather than Lagrangian positions q,
which leads to the correction term (b) in Eq. (A9). The
panel on the right in Fig. 11 shows the expected excess
density for LGS reconstruction if that correction term is
ignored and only term (a) is used in Eq. (A9). The same plot
including the correction term (b) is shown in the bottom left
panel of Fig. 10. These two panels should be compared
with the top left panel of Fig. 10 which shows the true
excess density for the full LGS reconstruction. The impact
of term (b) is not large but it does significantly smoothen
some of the peaks and troughs of the density (slightly
difficult to see in the slices because colors are truncated)
and leads to slightly better agreement with the excess
density for the full LGS scheme. The slice plots thus

suggest that the correction (b) should be included in the
2LPT modeling, although its effect is not large.
It should also be noted that the Eulerian growth-shift

reconstruction derived at the beginning of the paper from
the continuity equation only agrees with the standard
Lagrangian reconstruction in 2LPT if the correction
(b) is included in the modeling of the latter. An Eulerian
reconstruction scheme that would only resemble term (a) of
Eq. (A9) yields a cumulative BAO signal-to-noise-squared
of ∼150 for kmax ¼ 0.4 h=Mpc in our simulations. This is
significantly less than that for the EGS method which
includes the correction term (b) and resembles the BAO
information of LGS reconstruction more closely. We take
this as additional evidence that term (b) should be included.

APPENDIX C: NEWTON-RAPHSON METHOD

We introduced Eulerian EF2 reconstruction in Sec. III by
subtracting from the nonlinear density the second order F2

part, which was approximated to be quadratic in the
observed rather than linear density. Here we take a more
formal approach to motivate this algorithm using the
Newton-Raphson iteration to find a linear density that
generates a given observed nonlinear density (at second
order). Note that our approach differs from the (more
complicated) iteration scheme proposed in [18], which is
based on maximizing the likelihood of the displacement
field under certain assumptions.
In Eulerian standard perturbation theory (SPT), the

theoretical nonlinear DM density δthNL is modeled in terms
of the linear density δ0 as

δthNLðxÞ ¼ δ0ðxÞ þ F2½δ0�ðxÞ þ � � � ; ðC1Þ

where the second-order perturbation is

F2½δ0�ðxÞ¼
17

21
δ20ðxÞ−Ψ0ðxÞ ·∇δ0ðxÞþ

4

21
K2

0ðxÞ; ðC2Þ

and the linear displacement Ψ0 and linear tidal term
are defined in terms of δ0 by Eqs. (24)–(26). We neglect

FIG. 11 (color online). Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels:
Individual growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied by -1). All
densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.
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higher-order terms like F3½δ0�ðxÞ in Eq. (C1). Given a fixed
observed nonlinear DM density δobs, our goal is to estimate
the linear density δ0 that generated this observed density,
i.e. we want to find δ0 such that

f½δ0� ≡ δ0 þ F2½δ0� − δobs ¼ 0; ðC3Þ

i.e. we want to find roots of the functional f with respect to
δ0. This can be achieved with the Newton-Raphson
iteration method, where the (N þ 1)th iteration step is

δðNþ1Þ
0 ðkÞ ¼ δðNÞ

0 ðkÞ −
Z

d3k0

ð2πÞ3 ðf
0½δðNÞ

0 �Þ−1k;k0f½δðNÞ
0 �k0 ;

ðC4Þ

where superscripts label iteration steps throughout this
section. f0 in Eq. (C4) is the functional derivative of f. This
is a linear operator that can be written in matrix form as

f0½δ0�k;k0 ¼df½δ0ðkÞ�
dδ0ðk0Þ

¼ δDðk−k0Þþ2F2ðk0;k−k0Þδ0ðk−k0Þ: ðC5Þ

For δ0 ≪ 1, the inverse of the derivative is then

ðf0½δ0�Þ−1k;k0 ¼ δDðk − k0Þ − 2F2ðk0;k − k0Þ
× δ0ðk − k0Þ þOðδ20Þ: ðC6Þ

The Newton-Raphson iteration scheme thus becomes

δðNþ1Þ
0 ðkÞ ¼ δobsðkÞ − F2½δðNÞ

0 �ðkÞ

þ 2

Z
d3k0

ð2πÞ3 F2ðk0;k − k0ÞδðNÞ
0 ðk − k0Þ

× ½δðNÞ
0 ðk0Þ − δobsðk0Þ� þOððδðNÞ

0 Þ3Þ: ðC7Þ

If we start the iteration with δð0Þ0 ¼ 0, then the first

iteration step gives δð1Þ0 ¼ δobs, i.e. the linear density is
approximated by the nonlinear observed density.15 The
second iteration step gives

δð2Þ0 ðxÞ ¼ δobs − F2½δobs� þOðδ3obsÞ ðC8Þ

¼ δobsðxÞ −
17

21
δ2obsðxÞ þΨobsðxÞ ·∇δobsðxÞ

−
4

21
K2

obsðxÞ þOðδ3obsÞ: ðC9Þ

This agrees with the EF2 algorithm from Sec. III (up to
smoothing, which we ignored here for simplicity).

APPENDIX D: NUMERICAL ANALYSIS
DETAILS

1. Simulation convergence tests

To check convergence of the FastPM simulations for the
quantities and plots relevant to this paper, we perform
several convergence tests. First, we generate a single FastPM

realization that matches the cosmology and phases of the
initial conditions of one of the TreePM RunPB simulations.
We then measure all auto- and cross-spectra between δ, δ2,
Ψ · ∇δ andK2, corresponding to 2-, 3- and 4-point statistics
required for Eulerian reconstructions. All spectra from
FastPM are slightly lower than the corresponding TreePM
RunPB spectra over the whole k range, and the deviations
are smallest at low k. The density power spectrum (2-point)
is less than 0.8% low over the whole k range, 3-point
spectra like hδ2jδi differ by less than 1% at k ≤ 0.2 h=Mpc
and by at most 1.5% at higher k. 4-point spectra like hδ2jδ2i
differ by less than 1.5% at k ≤ 0.2 h=Mpc and by at most
2% at higher k. This is true for full DM samples as well as
1% subsamples (with the same particles selected from
the RunPB and FastPM simulation). In summary, FastPM

simulations and TreePM RunPB simulations agree at the
2%-level.
Since BAO wiggles are only percent-level fluctuations

on top of the broadband shape of the power spectrum, even
differences at the 2% level could potentially be problematic
for BAO studies. We expect however that broadband
systematic inaccuracies in the simulations should cancel
out when forming differences between wiggle and now-
iggle simulations, as long as these systematics are present
in wiggle and nowiggle simulations, which is a reasonably
assumption. To test this more quantitatively we vary the
accuracy settings of the FastPM code and check if any results
depend on them: First, we run the same simulations with
only 20 time steps and starting redshift zi ¼ 9 (instead of
80 time steps and zi ¼ 99 used for the fiducial simulations).
Second, we also run them with 80 time steps and zi ¼ 9.
We generated every plot of this paper based on FastPM

simulations for the three different accuracy settings. All
plots agree almost perfectly between the three settings, and
changes are so small that they cannot be seen by eye.
Therefore, our results do not depend on the accuracy
settings of the FastPM code. This provides additional
evidence that the simulations are converged for the pur-
poses of this paper. For all plots that require nowiggle
simulations, we will only show plots for the fiducial FastPM
simulations with 80 time steps and zi ¼ 99 because they
should be most accurate. For plots that do not require
nowiggle simulations we use RunPB TreePM simulations
instead.

15We could as well start the iteration directly with δð0Þ0 ¼ δobs;
then the Nth step would agree with the (N þ 1)th step of the
iteration started with δð0Þ0 ¼ 0.
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2. Dependence on reconstruction smoothing scale

All numerical results in the main text assumed a fiducial
Gaussian smoothing scale of R ¼ 15 Mpc=h for the
reconstruction algorithms, which was found to be optimal
for the analysis in [10,11]. Here we briefly discuss how our
results depend on this choice. Figure 12 shows the
cumulative BAO signal-to-noise for different smoothing
scales R. For kmax ¼ 0.15 h=Mpc, Eulerian and Lagrangian
reconstructions perform very similarly independent of
smoothing scale, which is expected because the 2LPT
models of the algorithms agree. If smaller scales are
included, kmax ¼ 0.4 Mpc=h, Eulerian and Lagrangian
reconstructions still perform similarly for large smoothing
scale, R≳ 15 Mpc=h. In particular, EGS, EF2 and LGS all
have the same performance for R ¼ 30 Mpc=h. Towards
smaller smoothing scales, especially for R ∼ 5 Mpc=h, the
LGS and LF2 algorithms improve significantly, whereas
their Eulerian counterparts EGS and EF2 do not improve as
much. This shows the limitations of the Eulerian methods
on small scales k > 0.15 h=Mpc and small smoothing
scales R ∼ 5 Mpc=h, where Lagrangian algorithms seem
to work somewhat better; EGS misses up to 13% of the
total BAO signal-to-noise of LGS in the most extreme case
(for R ¼ 2.5 Mpc=h and kmax ¼ 0.4 h=Mpc). However, it
is important to note that the shot noise of our 1% DM
subsamples is unrealistically small, n̄−1 ¼ 31 Mpc3=h3.
For more realistic, higher shot noise levels, the shot noise
power starts to dominate on larger scales so that
reconstruction performance is expected to be optimal for
R ∼ 15 Mpc=h and decrease for smaller smoothing
scales [10]. We also checked that our results do not
qualitatively change if the Gaussian smoothing kernel is
replaced by a steeper logistic smoothing function
WR;SðkÞ ¼ 1=f1þ exp½Sðk − 1=RÞ�g, where we tried R ¼
5 Mpc=h and R ¼ 10 Mpc=h with S ¼ 100.

3. Gaussian covariance

Throughout this paper we assumed diagonal Gaussian
covariances given by Eq. (60). We briefly argue here why

this is a reasonable approximation for the purposes of
estimating the BAO signal-to-noise.
The non-Gaussian offdiagonal corrections to the power

spectrum covariance that become important in the non-
linear regime can be modeled by [47]

covðP̂ðkÞ; P̂ðk0ÞÞ ¼ hP̂ðkÞihP̂ðk0Þi
�
δk;k0

2

NmodesðkÞ
þ cNG

�
;

ðD1Þ

where the non-Gaussian correction cNG is independent of k
and k0. It arises from the non-Gaussian coupling of large
and small scale modes that leads to a broadband up- or
down-shift of the small-scale power spectrum depending on
the specific realization of large-scale modes in any given
realization (see e.g. [34]). In other words, in some real-
izations the ratio of wiggle over nowiggle power spectra
will be high over the whole k range, while in other
realizations that ratio will be low over the whole k-range
if large-scale modes happen to be different (we confirmed
this effect in our simulations). In any given realization, the
broadband rescaling of the power spectrum will be
absorbed by the broadband part when fitting for BAO
wiggles on top of some generic broadband function (as
done in practice). Therefore the non-Gaussian correction
cNG in Eq. (D1) does not affect the BAO signal-to-noise and
can be ignored for the purposes of this paper.
We confirmed in simulations that the variance of spectra

estimated from the mode-to-mode scatter in any single
realization is in excellent agreement with the Gaussian
expectation. The variance estimated from the scatter
between our FastPM realizations 1 and 2 also agrees with
this, but it is significantly larger when estimated from the
scatter between realizations 1 and 3 or 2 and 3. The reason
is that our realization 3 has a higher overall amplitude
over the whole k range than the other two realizations,
which is compatible with the arguments above and does not
affect the significance of BAO wiggles in any given
realization.

FIG. 12 (color online). Cumulative BAO signal-to-noise for varying Gaussian smoothing scale R, using scales up to kmax ¼
0.15 h=Mpc (left) or kmax ¼ 0.4 h=Mpc (right). Note that the shot noise in our setup is unrealistically small, n̄−1 ¼ 31 Mpc3=h3.
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