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By definingQ as a function which realizes the energy transference between the bulk and the boundary of
spacetime, as we interpret it here in the framework of the flat case of Hořava-Lifshitz cosmology, we
discuss the validity of the second law of thermodynamics in light of the sign changes of Q (changes in the
direction of energy transference) and its consequences through the cosmic evolution, in particular, whether
the thermal equilibrium between the bulk and the boundary is reached or not. Additionally, we discuss
possible phase transitions experienced by the bulk and the boundary (seen as sign changes in their heat
capacities) through the cosmic evolution. The energy density in the bulk is modeled under a holographic
perspective. As far as we know, currently there is not observational data on the bulk-boundary interaction.
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I. INTRODUCTION

An open question is whether the Universe is or is not a
thermodynamical system. If this were true, the second law
must be satisfied by any cosmological model that attempts
to coherently describe the evolution. On the other hand, if
the Universe is not a thermodynamical entity, it is still an
interesting problem to explore. If the Universe admits a
thermodynamical description, we must also speak of its
physics regarding thermal equilibrium. But it seems very
difficult to consider equilibrium and the possibility to attain
it, for instance, between different present species (interact-
ing or not). As we will see, an analogue situation is verified
in Hořava-Lifshitz (HL) cosmology when we think about
the bulk-boundary interaction.
Bulk-boundary interaction can lead to a new perspective

for studying the cosmic evolution, and the HL cosmology [1]
provides a good scenario to develop it [2]. In this work, we
analyze the thermodynamical aspects for the aforementioned
interactionwhere the emphasiswill be focused on the thermal
equilibrium, if exists, and the second law. A crucial point is to
analyze if the second law is satisfied or not in this cosmology;
a holographic philosophy will be used for modeling the

energy density present at the bulk. 8πG ¼ c ¼ 1 unitswill be
used throughout this work.
The paper is organized as follows. InSec. IIwewill discuss

briefly someaspects of the functionQ. InSec. III, considering
the framework of theHL cosmology (flat case)we discuss the
bulk and boundary temperatures and the second law. In
Sec. IV, we study the model by introducing a holographic
scheme for the energy density present at the bulk. In Sec. V,
we discuss the phase transitions experienced by the bulk and
the boundary of the spacetime through the cosmic evolution.
Finally, Sec. VI is devoted to conclusions.

II. Q FUNCTION

When two interacting fluids are considered, different
Ansätze for Q (this function measures the energy trans-
ference between both fluids) can be seen in the literature,
for instance,

Q ¼ 3λHρ; ð1Þ
where λ is a constant parameter to be determined by
observations, and this Q does not experience any sign
changes through the evolution [3]. Either way, the “Ansatz
philosophy” for the function Q, is a first approximation to
describe the interaction according to the observational data
[3,4]. In the present work, we will use Eq. (1) as an example
of an interaction function between the bulk and the
boundary, and later the case of a Q function which exhibits
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sign changes. Another approach, used here, is based on the
holographic philosophy [2,5,6], where we can obtain an
explicit form forQ after using some parametrization over ω
(equation-of-state parameter) or q (deceleration parameter).
For this case, it is possible to visualize sign changes in Q, a
fact that is interesting if we are thinking, for instance, about
eventual phase transitions experienced by the bulk or the
boundary of the spacetime. The authors of Ref. [6] found
some phase transitions (sign changes in the heat capacity)
experienced by two interacting fluids, dark energy under a
holographic scheme and dark matter considered as a
pressureless fluid.

III. BULK/BOUNDARY INTERACTION AND
THERMODYNAMICS

In the framework of the flat HL gravity we study its
cosmology and the projectable version of this theory
preserves the diffeomorphism invariance [1]. Here, the
dynamical equation governing the cosmology is given by

ηð2 _H þ 3H2Þ ¼ −p ¼ −ωρ; ð2Þ

and the energy density satisfies the nonconservation
equation

_ρþ 3Hð1þ ωÞρ ¼ −Q; ð3Þ

where ρ represents the energy density present at the bulk, η
is a dimensionless constant parameter associated to diffeo-
morphism invariance (this parameter is well confined to the
range 0 < η < 1; see Ref. [2]) andQ is the interaction term.
In the HL cosmology, Q comes from the theory as an
“integration constant” and it is not imposed by hand as
done for the treatment of two interacting fluids. In Ref. [2]
it was shown that in the HL cosmologyQ does not vanish at
late times; in fact, it never vanishes. Therefore, the thermal
equilibrium between the bulk and the boundary of the
spacetime cannot be reached. In consequence, we do not
share the idea that equilibrium can take place during late
times or the idea of a conservation equation for ρ as was
done in Ref. [7]. An interesting discussion over restrictions
on the thermal equilibrium between dark energy and the
cosmological horizon can be seen in Ref. [8].

(i) Bulk temperature
The Gibbs equation for the fluid at the bulk reads

TbdSb ¼ dðρVÞ þ pdV ¼ ρV

�
dV
V

þ dρ
ρ

�
; ð4Þ

and by using the deceleration parameter defined
by q ¼ −ð1þ _H=H2Þ and V ¼ ð4π=3ÞH−3 (where
H−1 is the radius of the Hubble horizon), we obtain

Tb
_Sb ¼ ρV

�
3ð1þ ωÞð1þ qÞH þ _ρ

ρ

�
; ð5Þ

so that, after using Eqs. (2) and (3), we have

Tb
_Sb ¼

8π

3
η

�
q − 1

2

ω

�

×

�
3ð1þ ωÞq −

3ω

2ðq − 1
2
Þ
�

Q
3ηH3

��
: ð6Þ

By using the integrability condition

∂2Sb
∂Tb∂V ¼ ∂2Sb

∂V∂Tb
;

we can obtain the evolution equation for the bulk
temperature [9]

dTb

Tb
¼ −3H

�∂p
∂ρ

�
dt ¼ 3

dz
1þ z

ω → TbðzÞ ¼

¼ C exp
�
3

Z
dz

1þ z
ωeff

�
; ð7Þ

where ωeff is given by

ωeff ¼ ω

�
1þ 1

2ðq − 1=2Þ
�

Q
3ηH3

��
; ð8Þ

where we have used again Eqs. (2) and (3). So, we
have

TbðzÞ ¼ C0 exp

�
3

Z
dz

1þ z
ω

�
1þ 1

2ðq − 1=2Þ

×

�
Q

3ηH3

���
; ð9Þ

where C0 is a constant. In Sec. IV we will show the
form of Eq. (9) by using different choices for Q.

(ii) Boundary temperature
According to the holographic principle, the

Hubble horizon (the boundary) has a temperature
given by the simple expression

Th ¼
H
2π

; ð10Þ

and the associated entropy is given by [10]

Sh ¼ 8π2H−2 → Th
_Sh ¼ 8πð1þ qÞ: ð11Þ

In Sec. IV, we show that by using in Eq. (2) a
holographic energy density, we obtain the following
expression for ThðzÞ:

MIGUEL CRUZ, SAMUEL LEPE, and FRANCISCO PEÑA PHYSICAL REVIEW D 92, 123511 (2015)

123511-2



ThðzÞ
Thð0Þ

¼ ð1þ zÞ3=2 × exp

�
q1

�
1

1þ z

�
1þ z̄

2ð1þ zÞ − 1

�
−
�
1þ z̄
2

− 1

���
; ð12Þ

where we have used the parametrization qðzÞ ¼ 1=2þ q1ðz − z̄Þ=ð1þ zÞ2 [11], where both quantities q1 and z̄ are
defined as positive. Then, we have TbðzÞ from the HL cosmology given by Eq. (9) and ThðzÞ from a holographic
scheme given by Eq. (12). Under this scope we will study the second law.

(iii) Second law
According to Eqs. (6) and (11), we can write

_Sb þ _Sh ≥ 0 →
8π

Tb
η

�
q − 1

2

ω

��
ð1þ ωÞq −

ω

2ðq − 1
2
Þ
�

Q
3ηH3

��
þ 8π

Th
ð1þ qÞ ≥ 0; ð13Þ

where we have to consider the following two
conditions: for Q > 0 the energy flow goes from
the bulk to the boundary of spacetime and forQ < 0
the energy flows in the opposite direction. Now,
from Eq. (13) we write

Q
3ηH3

≤ 2

��
q − 1

2

ω

�
qð1þ ωÞ þ ð1þ qÞ 1

η

�
Tb

Th

��
;

ð14Þ

and, by recalling Eq. (2), ρH−2=2η¼ðq− 1
2
Þ=ω>0,

we must have q > 1=2 and ω > 0 or q < 1=2 and
ω < 0 always. In Sec. IV we will compare both
members of Eq. (14), for different choices of the
function Q in order to verify the second law
[whether or not the inequality given in Eq. (14) is
satisfied].

IV. HOLOGRAPHIC ENERGY DENSITY
AND Q FUNCTION

Before introducing a holographic energy density, we
start by using the Ansatz given in Eq. (1). In this case, if we
use Eq. (2) we can obtain

Q
3ηH3

¼ 2λ

�
q − 1

2

ω

�
> 0; ð15Þ

and then, according to Eq. (8) we haveωeff ¼ ωþ λ. In this
case the bulk temperature becomes

TbðzÞ ¼ C0ð1þ zÞ3λ exp
�
3

Z
dz

1þ z
ω

�
; ð16Þ

where C0 is a constant. Now, for the energy density we use
the holographic model given by [12]

ρðzÞ ¼ 3½α − βð1þ qÞ�H2ðzÞ: ð17Þ

Replacing this last expression in Eq. (3), after a straightforward calculation we obtain

Q
3ηH3

ðzÞ ¼ −
�
2

�
1 −

α

η
þ
�
β

η

�
ð1þ qÞ

��
q −

1

2

�
þ
�
β

η

�
ð1þ zÞ dq

dz

�
: ð18Þ

In Ref. [2] it was shown that Q, given in Eq. (18),
experiences sign changes through the evolution. For
instance, by using the aforementioned qðzÞ parametrization
we can see explicitly those sign changes. Also, from
Eqs. (2) and (17) we can obtain the relation

q − 1
2

ω
¼ 3

2

�
α

η
−
�
β

η

�
ð1þ qÞ

�
→ ω ¼

¼ 2

3

�
q − 1

2

α
η − ðβηÞð1þ qÞ

�
: ð19Þ

Finally, the horizon temperature can be obtained by
replacing Eq. (17) in Eq. (2), so that we can obtain (by
recalling that Th ¼ H=2π)

d ln

�
ThðzÞ
Thð0Þ

�
¼

�
1þ ðαηÞωðzÞ
1þ ð3β

2ηÞωðzÞ

�
d ln ð1þ zÞ3=2; ð20Þ

and if we consider Eq. (19) alongside the q parametrization
given before, we obtain
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ωðzÞ ¼ 2q1
3

z − z̄

ðαη − 3β
2ηÞð1þ zÞ2 − ðβηÞq1ðz − z̄Þ ; ð21Þ

and then, the solution for Th is given in Eq. (12). We
end this section with a brief discussion about thermal
equilibrium between the bulk and the boundary. When
we think about thermal equilibrium, we do it in the
framework of classical thermodynamics, where the
thermal equilibrium is reached when both temperatures
are equal and stay equal throughout the evolution.
However, in this case the thermal equilibrium appears
difficult to achieve. A thermodynamical criterion to
visualize if the thermal equilibrium is kept once it is

reached, is verifying that the sum of both heat capacities
(bulk and boundary) stays negative. Given that the heat
capacity of the horizon (boundary) is always negative
Ch ¼ Thð∂Sh=∂ThÞ ¼ −4=T2

h, in Fig. 1 we observe sign
changes in the sum of the heat capacities of the bulk and
the boundary, Cb and Ch respectively; this is a signal of
nonthermal equilibrium. The negativity of the sum
extends somewhat towards the near future and then
experiences a sign change as well as in the recent past;
here we have used the function Q with one change of
sign through the evolution. A similar behavior can be
observed when we consider a function Q with two sign
changes or none. So, according to Fig. 1, the thermal
equilibrium (negativity of Ch þ Cb) can be seen as a
transient stage, at least, in the framework of the present
discussion. Nothing else can be said. It is difficult to
conceive of thermal equilibrium also, if, for instance we
are thinking about the (quantum) concept of entangle-
ment: the bulk and the boundary (seen as two interact-
ing systems) should reach the thermal equilibrium and,
sooner or later, maintain it together with the growth of
the entanglement entropy, but, if we look at Ref. [13]
we can see that the aforementioned scheme has not been
rigorously proven (despite the list of evidences given
there). By using Eqs. (6)–(8), it is straightforward to
obtain the heat capacity of the bulk, Cb ¼
Tbð∂Sb=∂TbÞ ¼ −ð6πTbThωeffÞ−1fðzÞ, where fðzÞ is
given by the rhs of Eq. (6); as shown in Fig. 1 this
heat capacity does not have a definite sign through the
cosmic evolution.

V. THE SECOND LAW AND PHASE
TRANSITIONS

From Fig. 2, we can see that forQ > 0, the second law is
always satisfied, independently of the following conditions:
Tbð0Þ < Thð0Þ, Tbð0Þ ¼ Thð0Þ or Tbð0Þ > Thð0Þ. Recent
results given by the observational data indicate that Q ≠ 0,

FIG. 1 (color online). We see sign changes in Cb þ Ch for one
sign change in the functionQ; towards the future the negativity of
this sum occurs in a narrow range of z. Similar behaviors can be
observed if we consider two sign changes or none for the
function Q.

FIG. 2 (color online). According to Eq. (14), whose right-hand side is represented by the blue line and Eq. (15) besides the quotient
Tb=Th given from Eqs. (16) and (12), we can see that the inequality given in Eq. (14) is fully satisfied, i.e., the second law is satisfied.
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but, the question of whether the function Q is always
positive is still open.
If we consider one sign change (one zero) in the function

Q, from Fig. 3, we can visualize a strong dependence on the
values of Tbð0Þ and Thð0Þ when speaking of the validity of
the second law. For the case when Tbð0Þ < Thð0Þ we
observe a violation region from z0 ≈ 0.047 towards the
future and a nonviolation region from z0 to the past. When
Tbð0Þ ¼ Thð0Þ, we observe a violation region of the second
law in the future, and finally, for the case when Tbð0Þ >
Thð0Þ we observe a narrow region in the recent past
0.047 ≤ z ≤ 0.19 where the second law is violated.
Based on some results exposed in the Appendix, for the

case shown in Fig. 4, we can observe that the second law is
satisfied; nevertheless the sign (three zeros) of Q changes.
What does it mean? Whatever it is, in the absence of
observational data for both temperatures, Tbð0Þ and Thð0Þ,
we cannot say anything conclusive yet. So, apparently, we
have problems with the second law only when Q
experiences one sign change. In other words, everything
seems to indicate that the second law is fulfilled if the
function Q stays positive. But in the case shown in
Fig. 4, the second law is also satisfied although Q
experiences three sign changes. This fact redounds what
has been said, that is, based on this analysis we cannot
say anything conclusive.

FIG. 3 (color online). According to Eqs. (14) and (18), with β ¼ 0, and the quotient Tb=Th given from Eqs. (9) and (12), we can see
regions where the second law is violated and this occurs independently of the values of Tbð0Þ and Thð0Þ. As in Fig. 2 we represent the
right-hand side of Eq. (14) by a blue line.

FIG. 4 (color online). According to Eq. (14) and the expression forQ given in Eq. (18), the quotient Tb=Th given in Eqs. (9) and (12) is
shown. In this case, the second law is also satisfied; the right-hand side of Eq. (14) is represented in the right-hand side plot. The
behavior of Q and its three signs changes is shown: Qð−0.2 < z < 0.38Þ > 0, Qð0.38 < z < 12.2Þ < 0 and Qðz > 12.2Þ > 0. We note
that Qðz → ∞Þ → 0 and Qðz → −1Þ diverges. A maximum of QðzÞ is localized around z ¼ 0.
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Finally, according to Figs. 5 and 6, we can visualize
phase transitions, independently of the behavior of Q
(with or without sign changes). This fact is itself
interesting to study, at least in HL cosmology. Finally,
in Fig. 7 at least where Q > 0, we do not observe phase
transitions.

A. Plots

All the involved parameters are taken from Ref. [2]:
α=η ¼ 0.6, β=η ¼ 0.1, q1 ¼ 3.36 and z̄ ¼ 0.54, and in
Eq. (16) we have used 0.6 < λ < 1. In all cases, we have
used the ω parametrization given in Eq. (21). Additionally,
we have added an Appendix where we show explicitly the
involved integrals expressed all in terms of elemental
functions.

VI. FINAL REMARKS

We have discussed the second law in HL cosmology
by using a Q-interaction function, which measures the
energy transference between the bulk and the boundary
of the spacetime besides a holographic model for the
energy density in the bulk. By using a Q function which
does not experience sign changes through the cosmic
evolution, we have verified the second law, but, after
using a Q function which experiences one sign change,
we observe problems with the second law, that is, the
second law is verified except in a narrow region in the
recent past 0.047 ≤ z ≤ 0.19 when we consider
Tbð0Þ > Thð0Þ, the second law is verified except in
the future when we consider Tbð0Þ ¼ Thð0Þ and, if we
consider Tbð0Þ < Thð0Þ, we observe a violation of the
second law at the region z < 0.047. But, when we
consider a Q function which experiences three sign
changes, the second law is satisfied independently of
the values of Tbð0Þ and Thð0Þ.
On the other hand, if we have Q > 0 always, we can see

a phase transition in the future, namely, the bulk temper-
ature increases even if the bulk is losing energy. When Q
experiences one sign change (in the past), we also observe
phase transitions towards the future. And, when Q expe-
riences three sign changes, we do not observe phase
transitions.
So, if the second law must be respected during cosmic

evolution even in the presence of interaction, then, accord-
ing to what is shown here, Q should not change sign (or
whether, if we take into account the case with three sign
changes of Q?). Nevertheless, our work and conclusions
are fully dependent on the observational data. Q ≠ 0 is a
fact well established by observations, but the challenge
remains in the possibility of confirming sign changes of Q
in future observations. If this is so, we should expect very
interesting consequences for the late cosmology, particu-
larly, if the second law is or is not is verified in our
Universe.
According to Figs. 2–7 we have attempted to give a

message about the validity of the second law in HL
cosmology. To be clear, it is only a message. Perhaps,
we are setting sail into a new ocean.
Finally, we have seen that the sum of the heat capacities

does not maintain the same sign (negative) through the
cosmic evolution. This can be interpreted as a clear signal

FIG. 6 (color online). We compare the Eqs. (9), (12) and (18)
when β ¼ 0. We observe a sign change in Q experienced in the
past (z ¼ z̄ ¼ 0.54) and we can see a possible phase transition for
0≲ z ≤ z̄ namely, the bulk temperature (Tb) increases and the
horizon temperature (Th) decreases while Q > 0. From z ¼ 0 to
the future the bulk temperature and the horizon temperature
continue to grow.

FIG. 5 (color online). According to Eqs. (15), (9) and (12), we
can observe a possible phase transition in the future; the bulk
temperature (Tb) increases even if the bulk energy decreases
(here, Q > 0 always). The blue line corresponds to the horizon
temperature (Th).
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of nonequilibrium between the bulk and the boundary. In
this case the thermal equilibrium may be a transient stage;
we do not know yet. So, in HL cosmology under a
holographic scheme for the energy density and by consid-
ering the bulk-boundary interaction, we do not visualize
thermal equilibrium.
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APPENDIX: SOME RESULTS FOR
THE Q FUNCTION

According to Eq. (16) besides the given q and ω
parametrizations, the bulk temperature is

TbðzÞ
Tbð0Þ

¼ ð1þ zÞ3λ exp
�
2q1
A

ð½I1ðzÞ − I1ð0Þ�

− ð1þ z̄Þ½I2ðzÞ − I2ð0Þ�Þ
�
; ðA1Þ

where

I1ðzÞ ¼
2ffiffiffiffi
Δ

p arctan
�
2ð1þ zÞ − B=Affiffiffiffi

Δ
p

�
; ðA2Þ

and

I2ðzÞ ¼
1

C

��
B
2A

�
I1ðzÞ þ ln

�
1þ zffiffiffiffiffiffiffiffiffi
RðzÞp

��
; ðA3Þ

with 0.6 < λ < 1, A ¼ α=η − 3β=2η, B ¼ ðβ=ηÞq1, C ¼
ð1þ z̄ÞðB=AÞ, Δ ¼ 4C − ðB=AÞ2 and RðzÞ ¼ ð1þ zÞ2 −
ðB=AÞð1þ zÞ þ C. And α=η ¼ 0.6, β=η ¼ 0.1, q1 ¼ 3.36
and z̄ ¼ 0.54. This case corresponds to using Eq. (15)
where there is not a sign change of Q.

(i) Following Eq. (18), if we consider β ¼ 0 we have

Q
3ηH3

¼ −2
�
1 −

α

η

��
q −

1

2

�
; ðA4Þ

(one sign change in Q) and then, according to
Eq. (9), the bulk temperature is

TbðzÞ
Tbð0Þ

¼ exp ½q1ð1− z̄Þ�

× exp

�
−2q1

�
1

1þ z
−
�
1þ z̄
2

�
1

ð1þ zÞ2
��

:

ðA5Þ

(ii) Considering Eq. (18), and α ≠ 0 and β ≠ 0, and
according to Eq. (9) we have (with x ¼ 1þ z)

TbðxÞ
Tbð1Þ

¼ exp

�
2q1
A

��
α

η
−
β

η

�
ðI1ðxÞ − I1ð1ÞÞ −

��
α

η
−

β

2η

�
x̄þ

�
β

η

�
q1

�
ðI2ðxÞ − I2ð1ÞÞg

�

× exp

�
2q21
A

�
β

η

�
f2x̄ðI3ðxÞ − I3ð1ÞÞ − x̄2ðI4ðxÞ − I4ð1ÞÞg

�
; ðA6Þ

FIG. 7 (color online). According to Eqs. (18), (9) and (12), we have plotted the zone around z ¼ 0, where we can see two sign changes
of Q. Here, we do not observe phase transitions, independently of the values of Tbð0Þ and Thð0Þ, at least where Q > 0.
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where

I3ðxÞ ¼ −
�

1

1þ C − B
A

�
1

x
þ ðBA − 2Þ
ð1þ C − B

AÞ2
ln

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ARð1þ xÞp
�
þ 2

�ð1 − C − ðBAÞ þ ðBAÞ2=2
ð1þ C − B

AÞ2
ffiffiffiffi
Δ

p
�
arctan

�
2ð1þ xÞ − B

Affiffiffiffi
Δ

p
�
;

ðA7Þ

and

I4ðxÞ ¼ A

�
2 − B

A

ð1þ C − B
AÞ2

�
1

x
−
A
2

�
1

1þ C − B
A

�
1

x2
þ 3

�
1 − C=3 − B

A þ ðB=AÞ2=3
ð1þ C − B

AÞ3
�
ln

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ARð1þ xÞp
�

þ 3

�ð1 − CÞðBAÞ − ðBAÞ2 þ ðBAÞ3=3þ 2ðC − 1=3Þ
ð1þ C − B

AÞ3
ffiffiffiffi
Δ

p
�
arctan

�
2ð1þ xÞ − B

Affiffiffiffi
Δ

p
�
; ðA8Þ

where we have defined

Rð1þ xÞ ¼ ð1þ xÞ2 −
�
B
A

�
ð1þ xÞ þ C:
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