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The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity
bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc.,
the coupling in the momentum conservation equation for the biased tracers must be modified. Our new
formulation predicts the constancy in time of any statistical halo velocity bias present in the initial
conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved
halo population in N-body simulations. We establish that the initial simulated halo density and velocity
statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias.
We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay
expected in the standard approach.
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I. INTRODUCTION

The three-dimensional late time matter distribution in the
Universe has the potential to place stringent constraints on
cosmological parameters and fundamental physics. The
interpretation of the observed galaxy distribution is, how-
ever, hampered by the fact that galaxies and their host halos
are imperfect tracers of the matter distribution. The local
bias model has been successful in explaining the varying
clustering amplitude observed for different tracers of the
large-scale structure [1]. With data from current and
upcoming surveys, one would like to push the maximum
wave number in the analysis into the weakly nonlinear
regime, requiring consistent bias descriptions that go
beyond the simple local bias model. In this regard, it
was recently demonstrated that the local bias model is not
even consistent with gravitational evolution. Namely,
tracers which are initially locally biased will always
develop nonlocal bias contributions [2,3].
In this paper, we focus on a different extension of the

local bias model known as the peak approach [4], which has
its roots in the initial distribution of the regions that will
eventually form a dark matter halo. The peak model
predicts the existence of a linear, statistical halo velocity
bias which remains constant with time [5,6]. If true, this
would have important consequences for our description of
redshift space statistics such as the power spectrum [7].
However, there is thus far no evidence for such an effect
from N-body simulations. Furthermore, the coupled-fluids
approximation for the coevolution of dark matter and halos,

which is widely used to compute the time evolution of bias
[8–10], predicts that any initial velocity bias rapidly decays
to zero [11]. This stands in conflict with predictions from
the peak approach.
Here, we will show that these two seemingly contra-

dictory results can be reconciled if one recognizes that the
gravitational force acting on biased tracers of the large-
scale structure is itself biased. Consequently, when the
purpose is to compute correlators like power spectra etc.,
one should interpret the two-fluids approximation as
describing effective/mean-field quantities and, therefore,
momentum conservation must be modified accordingly. We
will explain how the Euler equation should be modified,
and demonstrate that the new two-fluids approximation
predicts the (time) constancy of any statistical velocity bias
present in the initial conditions. We will then explore the
scale dependence of Lagrangian halo bias in simulations,
demonstrate the existence of an initial halo velocity bias in
good agreement with peak theory and present numerical
evidence that it persists until virialization.

II. EVOLUTION IN THE PEAK MODEL

Virialized halos of mass M can be traced back to the
initial conditions to define protohalos, i.e., the Lagrangian
patches that will collapse into halos. In the peak approach,
these are associated with peaks of the initial density field
(assumed Gaussian throughout this letter) smoothed on the
halo Lagrangian scale R ∝ ðM=ρ̄Þ1=3. As shown in [5,12],
the large-scale limit r ≫ 1 of the peak two-point correla-
tion and mean pairwise velocity can be thought of as
arising from the effective (or mean-field) relations*baldauf@ias.edu

PHYSICAL REVIEW D 92, 123507 (2015)

1550-7998=2015=92(12)=123507(9) 123507-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.123507
http://dx.doi.org/10.1103/PhysRevD.92.123507
http://dx.doi.org/10.1103/PhysRevD.92.123507
http://dx.doi.org/10.1103/PhysRevD.92.123507


δpkðxÞ ¼ b10δmðxÞ − b01∇2δmðxÞ and vpkðxÞ ¼ vmðxÞ−
R2
v∇δmðxÞ. Here, b10 and b01 are Lagrangian bias factors

whereas Rv is the characteristic scale of the peak velocity
bias. Hence, we expect the Fourier modes δhðkÞ and vhðkÞ
of the protohalo overabundance and velocity, respectively,
to scale as

δhðkÞ=WRðkÞ ¼ c1ðkÞδmðkÞ ¼ ðb10 þ b01k2ÞδmðkÞ; ð1Þ

vhðkÞ=WRðkÞ ¼ bvðkÞvmðkÞ ¼ ð1 − R2
vk2ÞvmðkÞ; ð2Þ

at leading order. The peak selection function WRðkÞ
asymptotes to unity for k → 0 such that on large scales
both halo and matter velocity agree. One usually employs a
Gaussian to guarantee convergence of the peak model
calculation. The time evolution of c1ðkÞ and bvðkÞ can be
worked out exactly within the Zel’dovich approximation.
Assuming that the motion of the protohalo center of mass
coincides with that of the peak position, Ref. [6] found
schematically

cE1;pkðk; aÞ ¼ bvðkÞ þD−1þ ðaÞc1ðkÞ ð3Þ

bEv;pkðk; aÞ ¼ bvðkÞ; ð4Þ

where the superscript E labels evolved quantities and
DþðaÞ is the linear growth rate normalized to unity at
the collapse redshift. The linear Lagrangian bias c1ðkÞ
decays to the linear velocity bias, which remains constant
throughout time.
This prediction stands in sharp contrast with that of the

coupled fluid approximation to halos and dark matter. In
this approach, halos and matter are modeled as pressureless
fluids coevolving in the potential determined by the matter
distribution solely. Upon linearizing the continuity and
momentum conservation equations for the Fourier modes
of the halo and dark matter density fields, δhðkÞ and δmðkÞ,
and velocity divergences, θhðkÞ and θmðkÞ, the time
evolution of any initial c1ðkÞ and bvðkÞ is

cE1;fluidðk; aÞ ¼ 1þD−1þ ðaÞðc1ðkÞ þ 2bvðkÞ − 3Þ
þ 2D−3=2

þ ðaÞð1 − bvðkÞÞ… ð5Þ

bEv;fluidðk; aÞ ¼ 1þD−3=2
þ ðaÞðbvðkÞ − 1Þ: ð6Þ

In the absence of an initial velocity bias, bEv ¼ bv ¼ 1 and
we recover the usual decay of the linear Lagrangian bias,
cE1;fluid ¼ 1þD−1þ ðc1 − 1Þ [8]. In general, the above equa-
tions predict the rapid decay of any nonvanishing initial
velocity bias.
Can we reconcile these two apparently contradictory

results? Firstly, we should bear in mind that this fluid
approximation aims at predicting correlators of halos and
dark matter. This is the reason why we are allowed to relate

δh with δm through some (local or nonlocal) bias expansion.
In other words, δh and θh should in fact be thought of as
being effective or mean-field quantities given a realization
of δm, in analogy with the interpretation of the peak bias
expansion described in [13]. Consequently, the Euler
equation for halos describes the conservation of momentum
of the halo mean-field density field δhðδmÞ. The halo
momentum conservation equation will be the same as that
of the dark matter only if the gravitational force acting on
halos is statistically unbiased relative to the force acting on
dark matter particles. In general, we argue that the Euler
equation for halos should be changed into

∂θhðkÞ
∂η þHθhðkÞ þ

3

2
baðkÞH2ΩmδmðkÞ ¼ m:c: ð7Þ

Here, η is the conformal time, “m.c.” designates second-
order mode-coupling terms and we have omitted the
dependence of θ and δ on η. baðkÞ is the linear gravitational
force or acceleration bias. It is important to note that our
modification to the Euler equation does not contradict the
equivalence principle since it only makes sense statistically:
on an object-by-object basis, the biased tracers still satisfy
the usual momentum conservation.
Since, in the linear regime, the acceleration is parallel to

the initial velocity and since gravity mode coupling cannot
induce any linear contribution (by definition), baðkÞ must
be equal to the linear, initial velocity bias bvðkÞ. Solving the
fluid equations for halos and dark matter with this new halo
momentum conservation equation, we find that cE1 ðk; aÞ
and bEvðk; aÞ evolve in accordance with the peak predictions
Eqs. (3)–(4). To convince ourselves that this must be true,
consider the set of points with zero initial velocities (e.g.
[14]) as the discrete, biased tracers of the mass density field.
We thus expect bvðkÞ≡ 0 and the linear Eulerian bias
cE1 ðk; aÞ to decay to zero. This is indeed what happens
since, in the linear regime, the mass two-point correlation
grows with D2þðaÞ while the two-point correlation of these
biased tracers remains constant. We note that the mode-
coupling terms may also be biased, but we leave this
possibility to future studies.

III. INITIAL VELOCITY BIAS IN SIMULATIONS

So far, there has not been any conclusive evidence for a
statistical velocity bias in the distribution of virialized dark
matter halos, except for a couple of tentative measurements
from [14,15]. These suffered from the fact that simulations
are sampling the cosmic density field with a finite number
of discrete tracer particles. Hence, it is difficult to define a
velocity field throughout the whole simulation volume,
especially for the rare, massive dark matter halos. Here, we
work instead with the number-weighted (for halos) and
density-weighted (for dark matter) velocity fields [16].
These “momentum” fields jh ¼ ð1þ δhÞvh and jm ¼ ð1þ
δmÞvm are well defined everywhere. To extract statistical
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information about them, we will measure the density-
momentum correlators hδmjzm;hi, where jzm;h is the matter
or halo momentum projected along the z-axis. Since it is a
cross-correlation with δm, it does not suffer from shot noise,
like the halo-matter cross power spectrum hδmδhi. We begin
by assessing whether both Lagrangian c1ðkÞ and bvðkÞ
have k2-dependencies in agreement with that predicted by
peak theory. In this regard, we consider a suite of 16
collisionless dark matter simulations. The initial conditions
for the 10243 particles in the V ¼ 15003 h−3 Mpc3 box
were set up at z ¼ 99 using 2 LPT [17] and subsequently
evolved using GADGET2 [18]. Halos are identified at
z ¼ 0 with a Friends-of-Friends (FoF) halo finder of
linking length 0.2 and their constituent particles were
traced back to the initial conditions to define the
Lagrangian halo distribution (or protohalos). We repeat
this procedure for a set of intermediate time steps. This
provides us with the nonlinear time evolution of a strictly
conserved set of tracers of large-scale structure. The
mean masses of the five bins are 7.8 × 1012, 2.3 × 1013,
6.9 × 1013, 2.0 × 1014 and 5.7 × 1014 h−1M⊙.
We then measure the ratio of the initial halo-matter and

matter-matter density-density and density-momentum
power spectra. In the peak model, at the lowest order,
these quantities are given by

hδm;iðkÞδh;ið−kÞi
hδm;iðkÞδm;ið−kÞi

¼ ðb10 þ b01k2ÞWRðkÞ ð8Þ

hδm;iðkÞjzh;ið−kÞi
hδm;iðkÞjzm;ið−kÞi

¼ ð1 − R2
vk2ÞWRðkÞ: ð9Þ

In a first step we fit the linear density bias from the density
correlator on large scales, then we jointly fit for the scale of
the Gaussian peak selection function R and the k2 bias term
b01 in the same statistic. Subsequently we use the filter with
the same scale to fit the scale dependence of the velocity
bias and find strong evidence for a nonzero initial Rv. In
Appendix B we reconsider the case where the scale
dependence of the velocity correlator is entirely due to
the window function and find a poor performance for the
density statistic, thus strengthening the case for the scenario
presented here. Figure 1 shows that this parametrization is
able to reproduce the scale dependence of the protohalo
density and velocity bias reasonably well. The choice of a
Gaussian for the peak selection function is motivated by the
sole requirement that the spectral moments of the Gaussian
field should be convergent. This would not be the case for a
top-hat window, but generalized window functions might
provide a better fit and still yield convergent moments. In
Appendix A we show that the fitted peak density and
velocity bias parameters are in agreement with theoretical
predictions once a model for the mass–collapse threshold
relationship has been employed. We also show that the
coefficients of the k2 corrections are fairly insensitive to the

choice of the collapse threshold and thus robust to choices
that go beyond the peak constraint. For this study we decide
to employ the fitted parameters that describe the initial
conditions and to compare the resulting predictions to the
evolved halo statistics in the simulations.

IV. TIME DEPENDENCE OF VELOCITY BIAS

Next, we turn to the time dependence of the halo velocity
bias. To this purpose, we consider the time evolution of the
linear density-density and density-momentum correlators.
These linear correlators are obtained by cross-correlating
the evolved halo positions and momenta with the linear
Gaussian matter density field δð1Þm ¼ DþðzÞD−1þ ðziÞδm;i.
Considering cross-correlations with the nonlinear matter
field would contaminate the statistics with the poorly
understood late time matter distribution and, thus, under-
mine a clear isolation of the scale dependencies induced by
the peak constraint. We also refrain from using halo-halo

FIG. 1 (color online). Initial peak density bias c1ðkÞ (upper
panel) and velocity bias bvðkÞ (lower panel) at zi ¼ 99. Having fit
b10, b01 and R from the density bias, we find strong evidence for a
nonzero Rv in the velocity bias. To highlight this detection, we
overplot the damping introduced by the peak smoothing R alone
in the lower panel as dash-dotted lines. The horizontal dashed
lines show the scale-independent local bias, while the solid lines
show the peak model fits. Halo mass is in the range 8 × 1012 −
6 × 1014 h−1 M⊙ and increases from bottom to top (top to
bottom) in the upper (lower) panel.
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correlators, since these are likely plagued by nontrivial shot
noise effects [19].
We assume that peaks move according to their initial

velocity as in the Zel’dovich approximation. We cal-
culate the resulting correlators by writing the
evolved peak positions as 1þδhðxÞ¼ n̄−1h

P
hδ

ðDÞðx−xhÞ¼
n̄−1h

R
d3qδðDÞðx−q−ΨðqÞÞPpkδ

ðDÞðq−qpkÞ following the
steps laid out in [6], whereΨðqÞ is the displacement field at
Lagrangian position q. Since the initial matter fluctuations
are Gaussian, we only select the linear terms in the bias
relation. We finally obtain

hδð1Þm ðkÞδhð−kÞi ¼ D2þcE1 ðk; aÞGpkðkÞPðkÞWRðkÞ; ð10Þ

hδð1Þm ðkÞjzhð−kÞi ¼ ðbv;pkðkÞ −D2þσ2d;pkc
E
1;pkðk; aÞk2Þ

×HfþD2þ

�
i
k · ẑ
k2

�
GpkðkÞPðkÞWRðkÞ;

ð11Þ

where cE1;pkðk; aÞ and bv;pkðkÞ are defined in Eqs. (3) and

(4),GpkðkÞ ¼ e−
1
2
σ2d;pkk

2D2
þðaÞ is the peak propagator and σ2d;pk

is the peak displacement dispersion (extrapolated to the
collapse epoch), given by σ2d;pk ¼ σ2−1 − σ40=σ

2
1 with

σ2i ¼ 1=3
R
d3k=ð2πÞ3k2iPðkÞW2

RðkÞ. It is reduced relative
to the linear matter displacement dispersion because (i) σ−1
is smaller for halos than for matter due to the finite
smoothing scale R (which is zero for the matter), and
(ii) the dark matter preferentially flows onto the peaks, so
statistically the peaks are more at rest than the dark matter,
and the term −σ40=σ21 accounts for that. The analogy with
the Eulerian coevolution model in Eqs. (3)–(4) can only be
seen in the low-k limit due to the resummation of the
displacement dispersions. In principle nonlocal third-order
bias corrections [20,21] contribute to the density correlator
at late times. As we will discuss shortly, these loop
corrections are likely suppressed by the explicit smoothing
scale in the peak model.
The evolution of the density and velocity bias in our

simulations for mass bin II is shown in Fig. 2 and in Fig. 3
for the other bins. We divide the cross-correlators of halo
density/momentum with the linear matter density by those
of the linear matter density/momentum with the linear
matter density. On large scales, the density bias in the upper
panels evolves from the Lagrangian to the Eulerian bias; i.e.
it changes by unity. On smaller scales, most of the initial k2

enhancement in the density bias is washed out by the linear
evolution of the peak density bias and the additional
damping due to the peak displacement dispersion in the
propagator. We show the full prediction of Eq. (10) (solid

lines) and the case in which the velocity bias part of cðEÞ1

decays asD−3=2
þ as predicted by coevolution (dashed lines).

At all redshifts, the model with decaying velocity bias
provides a damping that is too small, thus overpredicting
the clustering. The improved agreement in the case of
conserved velocity bias is due to a partial cancellation of
the k2 coefficient b01 − R2

v.
The velocity bias in the lower panels of Figs. 2 and 3 is

unity on large scales as required by mass and momentum
conservation. On smaller scales, with evolving time we see
a sharpening of the dip until redshift z ¼ 5 when it starts
being damped by the exponential propagator arising from
the displacement dispersion. We show the full prediction of
the peak model with conserved velocity bias Eq. (11) as the
solid line. We also overplot the prediction of the simple
linear coevolution model Eq. (6) as dashed lines, where we
have kept the exponential part of Eq. (11) that is not part of
the linear evolution but clearly necessary for unequal time
statistics. The model with decaying velocity bias is clearly
less compatible with the nonlinear evolution measured in
the data than the model with constant velocity bias. This is
particularly evident at intermediate times, where the propa-
gator is not dominant yet. Comparing the various mass

FIG. 2 (color online). Evolution of the linear density and
velocity bias for bin II (M ¼ 2.3 × 1013 h−1 M⊙). Dv is the
velocity growth factor Dv ¼ DþfþH. The lines show our
evolution model to linear order, Eqs. (10)–(11). The dashed
lines assume that the initial velocity bias decays according to the
Eulerian coevolution model, Eq. (6), and are undoubtedly in
tension with the simulation data for both statistics even at redshift
z ¼ 20. At low redshifts the damping is dominated by the
propagator for intermediate wave numbers, such that this tension
becomes less significant for the momentum statistic.
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bins, we see that the magnitude of the initial and final
velocity biases increases with increasing mass.
In Fig. 4 we show the cross correlation between the final

halo density and the linearly evolved initial Gaussian matter
density field. This quantity asymptotes to the Eulerian bias

on large scales. On smaller scales, the data show a distinct
upturn that is very well described by the peak model in the
presence of undamped velocity bias. The inclusion of
nonlocal third-order bias does not deteriorate this agree-
ment. The third-order nonlocal bias would contribute

FIG. 3 (color online). Same as Fig. 2, just for mass bins I, III, IV and V from top left to bottom right.
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through a loop correction, i.e. an integral over the power
spectrum weighted by a kernel K3;nl:

Pb3;nlðkÞ∝PðkÞWRðkÞ
Z

d3q
ð2πÞ3PðqÞK3;nlðq;−q;kÞW2

RðqÞ:

ð12Þ

In contrast to standard implementations [20,21], we explic-
itly account for the smoothing scale in the relation between
halo overdensity and matter, which significantly suppresses
the loop corrections. In practice, we have adopted the third-
order nonlocal bias amplitude as predicted by Eulerian
coevolution b3;nl ∝ b10, and set the smoothing scale to the
Lagrangian scale.

V. CONCLUSIONS

We have focused on modeling correlators with the linear,
Gaussian density field in order to isolate the effects of the
scale-dependent, linear peak bias. These statistics are,
admittedly, not those that will be directly measured in
observations. However, they allow us to understand key
physical properties of the joint evolution of halos and
matter under gravity and, therefore, they will help in
predicting the true observables more accurately and reli-
ably. Our result also demonstrates that, at the level of linear
bias, the Zel’dovich evolved peaks provide a very good
description of the time evolution of the halo-matter

correlators. While the interior structure of a dark matter
halo is highly nonlinear, the effective dynamical evolution
of its center of mass is more amenable to perturbative
treatments than the dark matter itself. Finally, we insist on
the interpretation of δh, θh in the halo-matter fluid approxi-
mation as mean-field/effective quantities (and not counts in
cells), as long as the purpose is to compute ensemble
averages.
Our measurement of a halo velocity bias constant

throughout time may have important consequences for
the modeling of halo clustering in redshift space; see e.g.
[5]. However, further developments are required until peak
theory can provide an accurate template for the halo-halo
correlation function. Since the full, nonperturbative initial
peak-peak correlation function correctly accounts for
exclusion effects [22], it should lead to a comprehensive
description of all the scale-dependent bias effects. On a
final note, the effective field theory descriptions of halo
statistics [23,24] may lead to a functional form similar to
that predicted by the peak model, but the model presented
in this work complements it by a dynamical perspective and
provides physical arguments for the values of the operators.

ACKNOWLEDGMENTS

The authors would like to thank Roman Scoccimarro,
Ravi Sheth and Zvonimir Vlah for useful discussions. T. B.
gratefully acknowledges support from the Institute for
Advanced Study through the W.M. Keck Foundation
Fund. V. D. acknowledges support by the Swiss National
Science Foundation. U.S. is supported in part by the NASA
ATP Grant No. NNX12AG71G.

APPENDIX A: PEAK BIAS PARAMETERS

Predicting the peak bias parameters from the model
requires one to choose a relation between halo mass and
collapse threshold. While the spherical collapse model
suggests a unique collapse threshold of δc ¼ 1.686 regard-
less of the halo mass, measurements in simulations by [25]
indicate that the top hat, linear overdensity around proto-
halos is increasing with decreasing mass. The value of
1.686 is attained only for very high mass objects. The top
hat window cannot be used for calculations in the peak
model since it does not yield convergent higher derivative
moments σi; i > 0. A Gaussian window or a mixture of top
hat and Gaussian filters can be employed to bypass this
problem. A measurement of the initial overdensity
smoothed with a Gaussian window was performed by
[15] for FoF halos. They provided a fitting function, and
also found that the collapse threshold increases with
decreasing mass. In contrast to [15] however, we decided
not to tighten the filter scale to the halo mass scale, but
rather adjust it so that we reproduce the cutoff in the initial
condition density and velocity power spectra. The disagree-
ment between the filter scale and the halo mass likely

FIG. 4 (color online). Correlation between the initial Gaussian
density field and the final halo density field normalized by the
matter propagator. The mass of the halos is increasing from
bottom to top. The horizontal dashed lines show the linear
Eulerian bias. The dash-dotted lines show the final peak bias in
the absence of velocity bias and the solid lines include the
velocity bias. The second set of dashed lines that nearly coincide
with the solid lines adds the third-order nonlinear bias [21], which
leaves the results basically unchanged due to the explicit
Lagrangian smoothing scale in the loop integrals.
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originates from the fact that the Gaussian filter does not
reproduce the protohalo mass density profile very well. One
may want to consider mixed filtering like [26] or a more
general window that interpolates between a Gaussian and a
top hat. This is clearly beyond the scope of this paper. We
use the following collapse threshold as a function of radius

δcðRÞ ¼ 2.17 − 0.32 logðR=1 h−1 MpcÞ: ðA1Þ

Note that, on rescaling our radii to coincide with the ones
predicted by the mass scale, our approximation would be
close to the average collapse threshold measured by [15].
For the mean peak curvature we rely on [4]

ū¼ γνþ3ð1− γ2Þþð1.216−0.9γ4Þe−ðγ=2Þðγν=2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1− γ2Þþ0.45þðγν=2Þ2

p
þ γν=2

: ðA2Þ

With these ingredients the peak bias parameters can be
calculated according to [13]

b10 ¼
1

σ0

ν − ūγ
1 − γ2

; ðA3Þ

b01 ¼
1

σ2

ū − νγ

1 − γ2
; ðA4Þ

R2
v ¼

σ20
σ21

: ðA5Þ

Note that the velocity bias is independent of the collapse
threshold and solely depends on the size of the protohalo
patch. We show the bias parameters in Fig. 5 as a function
of filter scale. The k2 density bias and the velocity bias are
not sensitive to our choice of collapse threshold. We thus
consider their amplitude to be fairly model independent. By
contrast, the k0 density bias strongly depends on the
collapse threshold, which is rather unsurprising since it
encodes the response to long wavelength density
fluctuations.
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FIG. 5 (color online). Bias parameters derived from the peak model. Top left panel: k0 density bias. Top right panel: k2 density bias.
Bottom panel: k2 velocity bias. The points show the measurements in the initial conditions, the colored lines show the predictions for
three fixed collapse thresholds and the thick black line shows the predictions based on our model for the mass dependence of the collapse
threshold Eq. (A1). Note that only the k0 density bias b10 is sensitive to the mass dependence of the collapse threshold.
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To summarize this section, let us emphasize that the
model parameters can be predicted from first principles
with reasonable accuracy so long as one adds a few
ingredients in addition to the peak constraint. We still
consider the evolution predictions based on initial condition
measurements in the simulations to be a decisive test of the
persistence of velocity bias that is independent of these
additional assumptions.

APPENDIX B: NO VELOCITY BIAS

In the main text we have fitted the initial density and
momentum correlators assuming the functional form of the
peak model. In this Appendix, we would like to consider
the case in which the scale dependence of the momentum
correlator is entirely due to the window, i.e., that there is no
velocity bias beyond the averaging over the halo patch. In
this case the momentum correlator defines the “velocity”
window

WvðkÞ≡ hδm;iðkÞjzh;ið−kÞi
hδm;iðkÞjzm;ið−kÞi

: ðB1Þ

In real space, this window has some odd properties; in
particular it is not positive definite and oscillatory for most
of the mass bins (see right panel of Fig. 6). We can now
employ this window to describe the protohalo-matter
correlator as ðb10 þ ~b01k2ÞWvðkÞPðkÞ, where the change
in the window function induces a change in the k2 part of
the bias. The result is shown in the left panel of Fig. 6.
Dividing by the window, the scale dependence can initially
be fitted by a k2 term, but this approach fails once the
velocity window crosses zero at k ≈ 0.2 hMpc−1. This is a
considerably smaller range than the range over which the
Gaussian window together with the scale-dependent den-
sity and velocity bias presented in the main text can
describe the measurements.
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