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We express the in-in functional determinant giving the one-loop effective potential for a scalar field
propagating in a cosmological spacetime in terms of the mode functions specifying the vacuum of the
theory and then apply adiabatic regularization to make this bare potential finite. In this setup, the adiabatic
regularization offers a particular renormalization prescription that isolates the effects of the cosmic
expansion. We apply our findings to determine the radiative corrections to the classical inflaton potentials
in scalar field inflationary models and also we derive an effective potential for the superhorizon curvature
perturbation ζ encoding its scatterings with the subhorizon modes. Although the resulting modifications to
the cosmological observables like non-Gaussianity turn out to be small, they distinctively appear after
horizon crossing.
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I. INTRODUCTION

Functional determinants arise in various instances in
quantum field theory like in the calculations of the effective
actions, gauge fixing Faddeev-Popov terms, semiclassical
tunneling amplitudes and Jacobian factors (for a review see
e.g. Ref. [1]). In general, they appear as results of Gaussian
path integrals and there are different methods for evaluating
them such as the heat-kernel expansion, zeta function
regularization and the Gel’fand-Yaglom theorem.
The functional determinants also appear in quantum

cosmology since Gaussian in-in/Schwinger-Keldysh path
integrals are often encountered. For example, in certain
models of preheating one assumes the existence of a
reheating scalar that interacts with the inflaton, yet the
action may still be quadratic in the reheating scalar yielding
a Gaussian path integral in quantum theory (see
Refs. [2,3]). Similarly, in single scalar field models one
may consider integrating out the quadratic inflaton fluctu-
ations about the inflating background to determine the
quantum backreaction effects (see e.g. Refs. [4–9]).
Obviously, the functional determinants in a cosmological
setting are time dependent and they can naturally be
interpreted as effective actions.
Most of the time the physically relevant quantity is not

the sole functional determinant of an operator but the ratio
of the determinants of two closely related operators. In
Ref. [10] a simple formula that gives the value of a
normalized Gaussian path integral with a time-dependent
frequency was derived and we adapt that formula to the
cosmological in-in functional determinants in the Appendix
(a formally similar trick has been frequently used in
cosmological applications but the derivation of Ref. [10]

is rigorous). It turns out that in a cosmological setting the
result can be expressed in terms of the mode functions
identifying the vacuum of the theory. This simple obser-
vation allows one to work out the Gaussian path integrals in
several cosmological backgrounds with different vacua and
utilize various approximation methods. We show that the
bare Coleman-Weinberg effective potential [11] can be
obtained by using the standard mode functions of the
flat space.
The effective potential obtained after a Gaussian integral

involves a single loop momentum integral and it can be
identified as a one-loop approximate result that is otherwise
exact. Typically, this formal expression has the standard
ultraviolet (UV) divergence which must be cured by a
viable method. On the other hand, in (quasi–)de Sitter space
one also encounters peculiar infrared (IR) divergences in
loop calculations (see e.g. Refs. [12,13]). As discussed in
Ref. [14], different regularizations agree in de Sitter space
when the UV and IR cutoffs are chosen to be constants in
physical and comoving spaces, respectively.
The dimensional regularization has been used exten-

sively to calculate the one-loop effective potentials in de
Sitter space; see e.g. Refs. [4–9] (see also Refs. [15–18] for
different approaches). Therefore, in this paper we prefer
to utilize adiabatic regularization [19,20] in curing the
loop infinities of cosmological functional determinants.
Recently, the adiabatic regularization has been used to
renormalize the inflationary power spectrum revising some
of the well-known results [21–23]. We believe that in the
absence of any direct observational data, it is useful to
compare different regularization methods to have a clearer
picture of the physics.
As we will discuss below, the adiabatic regularization

captures the contribution of the cosmic expansion to the
quantum effective potential. Namely, it encodes “particle
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creation effects” rather than measuring “vacuum polariza-
tion.” We show that the terms subtracted by the adiabatic
regularization can be interpreted as counterterms appearing
in the bare action. Moreover, the calculation is IR safe, i.e.
no IR divergences appear that require a careful treatment.
In this paper, we also consider the coupling of the

superhorizon curvature perturbation ζsh to the subhorizon
modes of a scalar field in a quasi–de Sitter spacetime with
constant deceleration. Since ζ is a special metric function,
the coupling we are dealing with is fairly universal. By
integrating out the Gaussian subhorizon modes in the path
integral, it is possible to obtain an effective potential for ζsh
encoding its scatterings with subhorizon modes. We deter-
mine how this quantum effective potential affects the power
spectrum and non-Gaussianity. As expected, the correc-
tions turn out be suppressed by the factor H2=M2

p but they
also appear after horizon crossing, which is a distinguishing
feature.

II. A SAMPLE PROBLEM

Consider two real scalar fields ϕ and χ that are minimally
coupled to gravity with the standard action

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½∇μϕ∇μϕþ∇μχ∇μχ þ 2Vðϕ; χÞ�;

ð1Þ
where the potential is assumed to have the following form:

Vðϕ; χÞ ¼ vðϕÞ þ 1

2
~m2χ2 þ 1

2
g2ϕ2χ2: ð2Þ

The scalars are taken to be propagating in a cosmological
background with the metric

ds2 ¼ −dt2 þ aðtÞ2dxidxi: ð3Þ
Suppose that one is interested in calculating the correlation
functions of ϕ in a suitable vacuum of the theory using the
in-in formalism. Since the action is quadratic in the χ field,
one may attempt to integrate it out completely in the in-in
path integral. Schematically written, the relevant part in the
path integral involving the χ field takes the form (see e.g.
Ref. [24])
Z

Dχ�DχþDχ−DPþ
χ DP−

χ exp

�
i

�Z
t�

t0

ðPþ
χ _χ

þ −HþÞ

− ðþ ↔ −Þ
��

Ψ½χþðt0Þ�Ψ̄½χ−ðt0Þ�; ð4Þ

where H is the Hamiltonian and Ψ denotes the vacuum
wave functional1 of the χ field defined at an initial

time t0. Since it is very difficult to determine the vacuum
of the interacting theory, one usually takes t0 → −∞
(when it is possible to do so), and in that case the sole
effect of the vacuum wave functionals in Eq. (4) is to
produce the necessary iϵ terms for the propagators in the
perturbation theory [24,25]. The standard in-in path
integral measure amounts to summing over all doubled
phase-space fields χ� and P�

χ , where the fields χ� are
constrained to satisfy χþðt�Þ ¼ χ−ðt�Þ ¼ χðt�Þ and Dχ�
denotes the integration over these χðt�Þ configurations
defined at the fixed time t�.
One can carry out the quadratic integrals over momenta

P�
χ in a straightforward way. Defining a new field as

μ ¼ a3=2χ; ð5Þ

one can see that the scale factor aðtÞ-dependent factor
coming to the measure from the GaussianP�

χ integrations is
exactly canceled out by the Jacobian of the transformation
(5). As a result, the integral (4) becomes

Z
Dμ�DμþDμ− exp½iðSþ − S−Þ�; ð6Þ

where

S ¼ 1

2

Z
d4x

�
_μ2 −

1

a2
ð∂μÞ2

þ μ2
�
9

4
H2 þ 3

2
_H − ~m2 − g2ϕ2

��
: ð7Þ

In Eq. (6), the vacuum wave functionals are suppressed
since their only role is to prescribe the propagators of the
theory. Note that, here ϕ plays the role of an external field,
which will be integrated eventually to give the ϕ correlation
functions.
Defining

μ ¼
�
μþ

μ−

�
ð8Þ

and

Ls ¼
�
L 0

0 −L

�
þ s

�
g2ðϕþÞ2 0

0 −g2ðϕ−Þ2
�
; ð9Þ

where

L ¼ ∂2

∂t2 −
1

a2
∂2
i −

9

4
H2 −

3

2
_H þ ~m2; ð10Þ

Eq. (6) can be rewritten as

1In an interacting theory, the vacuum wave functional may not
be written as the product of ϕ and χ pieces. However, this will be
the case for us since we eventually examine the t0 → −∞ limit.
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Z
Dμ�DμþDμ− exp

�
−
i
2

Z
d4xμTL1μ

�
: ð11Þ

As discussed in Ref. [26], the in-in path integral is
actually over the fields satisfying μþðt�Þ ¼ μ−ðt�Þ and
_μþðt�Þ ¼ _μ−ðt�Þ. These boundary conditions ensure the
absence of surface terms that otherwise arise after integrat-
ing Eq. (7) by parts to yield Eq. (11). Moreover, they
also make the operator Ls essentially self-adjoint [26].
Since μ is a real field, the Gaussian integral (11) gives
C½detL1�−1=2. The normalization C can be fixed from the
requirement that the path integral yields unity when ϕ ¼ 0,
which evaluates Eq. (11) as

�
detL1

detL0

�
−1=2

: ð12Þ

One can now use Eq. (A20) to express this ratio of
determinants to reach

exp

�
−
1

2

Z
1

0

ds
Z

d4x½Gþþ
s ½ϕþ;ϕ−�ðx; xÞg2ϕþðxÞ2

−G−−
s ½ϕþ;ϕ−�ðx; xÞg2ϕ−ðxÞ2�

�
; ð13Þ

where Gþþ
s and G−−

s are the matrix entries of the Green
function Gs of the operator (9) as defined in the Appendix.
Note that these Green functions depend on ϕ� in a very
nontrivial way. As a result, integrating out the χ field gives
the following bare in-in effective action:

Seff ½ϕþ;ϕ−� ¼ i
2

Z
d4x

Z
1

0

dsg2½Gþþ
s ½ϕþ;ϕ−�ðx; xÞϕþðxÞ2

−G−−
s ½ϕþ;ϕ−�ðx; xÞϕ−ðxÞ2�; ð14Þ

which corrects the classical ϕ action given in Eq. (1).
For given ϕ� fields, one can in principle solve for the

Green function Gs, which is assumed to be fixed uniquely
once the vacuum of the theory is specified. However, it is
difficult, if not impossible, to carry out this computation for
arbitrary fields. Therefore, we consider constant ϕ� con-
figurations to read the quantum effective potential. In that
case, μ becomes a free massive scalar field propagating in
Eq. (3) and it is easy to calculate the corresponding Green
functions. Indeed, quantizing the field by introducing the
standard ladder operators and the mode functions as

μs ¼
1

ð2πÞ3=2
Z

d3k½ei~k:~xμk½t; s;ϕ�a~k þ e−i~k:~xμk½t; s;ϕ��a†~k�

ð15Þ

where ½a~k; a†~k0 � ¼ δ3ð~k − ~k0Þ and

μ̈k þ
k2

a2
μk þ

�
~m2 þ sg2ϕ2 −

9

4
H2 −

3

2
_H

�
μk ¼ 0;

μk _μ
�
k − μ�k _μk ¼ i; ð16Þ

the Green functions are determined by the following
vacuum expectation values of the operators:

Gþþ
s ¼ ihTðμþs μþs Þi; G−−

s ¼ ihT̄ðμ−s μ−s Þi; ð17Þ

where T and T̄ refer to the time- and anti-time-ordering
operations, and the vacuum is defined as usual by
a~kj0i¼0. Using these in Eq. (14), one finds for constant
ϕ� that

Seff ½ϕþ;ϕ−� ¼
Z

d4xa3½VeffðϕþÞ − Veffðϕ−Þ�; ð18Þ

where the bare effective potential is given by2

VB
effðϕÞ ¼

1

2aðtÞ3 g
2ϕ2

Z
d3k
ð2πÞ3

Z
1

0

dsjμk½t; s;ϕ�j2: ð19Þ

Recall that the mode functions μ½t; s;ϕ� obey Eq. (16)
and they are uniquely fixed when the vacuum is
specified. Using Eq. (5), one can also express VB

effðϕÞ
using the χ mode functions by μk ¼ a3=2χk so that the
initial scale-dependent factor in Eq. (19) drops out. As
discussed in Refs. [27,28], the classical configurations
arise as stationary phases of the in-in path integrals.
Consequently, after a suitable renormalization VB

effðϕÞ
must be thought to modify the tree-level potential vðϕÞ
given in Eq. (2) governing the classical evolution of the
ϕ field.
The effective potential VB

effðϕÞ explicitly depends on
time t and this dependence is not surprising for a
physical quantity calculated in a time evolving back-
ground. The time in Eq. (19) is naturally specified by the
correlation function of interest that is aimed to be
determined in the beginning. Indeed, the time integrals
in Eq. (14) or Eq. (18) are also limited by this initially
assigned time parameter. Unlike the in-out computations
in flat space that extend across the whole timeline, in
the in-in framework one may imagine integrating out the
“modes” from some initially prescribed time t0 to the
time of interest t.
In carrying out the χ path integral above no approxi-

mation is utilized. Consequently, given the initial

2The computation of the effective potential can also be done by
first introducing the Fourier modes in the path integral, which
factorizes Eq. (6) for each momentum mode ~k. This yields the
determinant of an ordinary differential operator for each ~k, which
can be calculated using Eq. (A17). The final result involves a sum
over the momentum modes that appears as the momentum
integral in Eq. (19).
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interaction potential (2), the result (19) is exact. On the
other hand, one may attempt an alternative but perturba-
tive path integral calculation that can be organized in
powers of the external ϕ field, where the corresponding
series can be pictured as in Fig. 1. The effective potential
(19) equals the sum of this infinite series and conversely
the infinite series can be recovered from Eq. (19) by
expanding it in powers of ϕ.
For gϕ ≪ H, theϕ dependence in the mode equation (16)

becomes negligible. In this limit, one finds VB
eff ≃

1
2
g2ϕ2hχ2i, which is identical to the one-loop Hartree

approximation applied to the original potential (2).
It is instructive to use the formula (19) in flat spacetime.

Using the mode function

μk ¼
1ffiffiffiffiffiffiffiffi
2ωk

p e−iωkt; ð20Þ

where ω2
k ¼ k2 þ ~m2 þ sg2ϕ2, in Eq. (19) and carrying out

the s integral, one finds

VB
effðϕÞ ¼

1

4π2
g2ϕ2

Z
∞

0

dkk2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ g2ϕ2

q
− k

i
: ð21Þ

In Ref. [11], the bare Coleman-Weinberg potential for the
interaction λϕ4=4! is given by

VCW
eff ¼ 1

2

Z
d4kE
ð2πÞ2 ln

�
1þ λϕ2

B

2k2E

�
: ð22Þ

In obtaining Eq. (22), one defines a fluctuation field
as ϕ ¼ ϕB þ δϕ, which gives a quadratic potential
1
4
λϕ2

Bδϕ
2, and integrates over δϕ. By comparing this

quadratic potential with the potential we are dealing
with, i.e. 1

2
g2ϕ2χ2, one sees that Eq. (22) must be

identical to Eq. (21) after the replacements ϕB → ϕ
and λ → 2g2 (the fields that are integrated out are δϕ

and χ, respectively). Indeed, defining kE ¼ ð~k; k4Þ (so

that k2E ¼ ~k:~kþ k24 ¼ k2 þ k24) and carrying out the k4
integral in Eq. (22) exactly yields Eq. (21).

The form of the bare effective potential (19) is suitable
for adiabatic regularization. The adiabatic mode function is
defined as

μadk ¼ 1ffiffiffiffiffiffiffiffi
2Ωk

p exp

�
−i

Z
t
Ωkðt0Þdt0

�
ð23Þ

and the mode equation (16) implies

Ω2
k ¼ ω2

k þ
3

4

_Ω2
k

Ω2
k

−
1

2

Ω̈k

Ωk
; ð24Þ

where

ω2
k ¼

k2

a2
þ ~m2 þ sg2ϕ2: ð25Þ

Note that Eq. (23) obeys the Wronskian condition identi-
cally. One may now solve Eq. (24) iteratively in the number
of time derivatives starting from the zeroth-order solution

Ω½0�
k ¼ ωk. Truncating the iterative solution at any desired

order3 defines an approximate adiabatic vacuum of that
order.
Since Eq. (19) is expected to be quadratically divergent

(this is the case for the Bunch-Davies vacuum), it is enough
to subtract the second-order adiabatic terms from Eq. (19).
A straightforward calculation gives the renormalized effec-
tive action as

VeffðϕÞ ¼
1

2aðtÞ3 g
2ϕ2

Z
d3k
ð2πÞ3

×
Z

1

0

ds½jμk½t; s;ϕ�j2 − jμadð2Þk j2�; ð26Þ

where

jμadð2Þk j2 ¼ 1

2ωk

�
1þ 9

8

H2

ω2
k

þ 3

4

_H
ω2
k

−
5

8

H2k4

a4ω6
k

−
1

4

_Hk2

a2ω4
k

þ 1

2

H2k2

a2ω4
k

�
: ð27Þ

Note that ωk, which is defined in Eq. (25), depends on
the parameter s. Equation (26) is the main result of this
section.
The subtracted terms in Eq. (26) can be thought to arise

from a counterterm potential δVðϕÞ appearing in the bare
action. It can be found as

δVðϕÞ ¼ −a1g4ϕ4 − 2a1g2 ~m2ϕ2 − g2ϕ2½a2H2 þ a3 _H�;
ð28Þ

FIG. 1. The perturbative one-loop graphs arising in the calcu-
lation of the effective potential (19).

3In some cases, there can be an inherent ambiguity in defining
the order in this iterative solution; see Ref. [29].
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where

a1 ¼
1

16π2

Z
∞

0

k2dk

ðk2 þ 1Þ1=2 ;

a2 ¼
9

64π2

Z
∞

0

k2dk

ðk2 þ 1Þ3=2 þ
1

16π2

Z
∞

0

k4dk

ðk2 þ 1Þ5=2 −
5

64π2

Z
∞

0

k6dk

ðk2 þ 1Þ7=2 ; ð29Þ

a3 ¼
3

32π2

Z
∞

0

k2dk

ðk2 þ 1Þ3=2 −
1

32π2

Z
∞

0

k4dk

ðk2 þ 1Þ5=2 : ð30Þ

This interpretation justifies the adiabatic subtraction terms
in Eq. (26) since the regularization procedure can be recast
as a standard renormalization method (see Ref. [30] for a
similar renormalization treatment involving adiabatic sub-
tractions).
One may see that in the flat space limit Eq. (26) gives

VeffðϕÞ ¼ 0. This can be viewed as a prescription yielding
an unambiguous renormalized result. Namely, the inher-
ently present finite renormalizations are fixed in such a way
that as the expansion of the universe is switched off the
quantum effective potential vanishes. Thus, the adiabatic
regularization physically captures the quantum effects
directly related to the cosmic expansion or “particle
creation.”

III. APPLICATIONS TO INFLATION

It is straightforward to apply the above formalism to any
given cosmological background and in this section we
consider the standard single field slow-roll inflationary
scenario. Let ϕ be the inflaton field and χ be another scalar
field coupled to ϕ in the form (2). Such couplings are
necessary for the decay of the inflaton during reheating and
the potential (2) is a plausible alternative; see e.g.

Refs. [2,3]. Although, at the classical level the χ field
does not affect the background dynamics, one may wonder
how the quantum χ fluctuations modify the classical
inflaton potential vðϕÞ through the coupling (2). For large
field models like chaotic inflation, where the value of the
inflaton field background exceeds the Planck scale, the
quantum corrections might be important.
In this computation, the slow-rolling of the inflaton field

gives subleading corrections and therefore we set
a ¼ expðHtÞ. The Bunch-Davies mode function of the χ
field in de Sitter space obeying Eq. (16) is given by

μk½t; s;ϕ� ¼ eiπν=2
ffiffiffiffiffiffiffi
π

4H

r
Hð1Þ

ν ðke−Ht=HÞ; ð31Þ

whereHð1Þ
ν is the standard Hankel function of first kind and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
sg2ϕ2 þ ~m2

H2

r
: ð32Þ

Using the mode function in Eq. (26) and determining the
adiabatic subtraction terms for de Sitter space from
Eq. (27), we obtain

VeffðϕÞ ¼
H4

4π2

�
g2ϕ2

H2

�Z
∞

0

u2du
Z

1

0

ds

×

�
e−πImðνÞ π

4
jHð1Þ

ν ðuÞj2 − 1

2ωðuÞ
�
1þ 9

8ωðuÞ2 þ
u2

2ωðuÞ4 −
5u4

8ωðuÞ6
��

; ð33Þ

where

ωðuÞ2 ¼ u2 þ sg2ϕ2 þ ~m2

H2
: ð34Þ

Equation (33) gives the fully renormalized exact quantum
effective potential for the inflaton field that arises from its
interaction with the χ field with the potential (2). In de
Sitter space, VeffðϕÞ turns out to be time independent due to
the underlying symmetries of the background.
If ~m ≠ 0, the u integral is convergent near u ¼ 0 for any

value of ϕ. When ~m ¼ 0, i.e. when χ is massless, one may

see that as ϕ → 0 the integrand in Eq. (33) vanishes and
thus VeffðϕÞ → 0. On the other hand, for nonzero ϕ the u
integral is again convergent as u → 0 since ReðνÞ < 3=2.
Moreover, the adiabatic regularization guarantees UV
finiteness and thus the convergence as u → ∞.
Therefore, Eq. (33) is completely safe in both the IR
and UV, corresponding to the u → 0 and u → ∞ limits,
respectively.
As mentioned above, Eq. (33) is the quantum correction

to the classical inflaton potential due to its coupling to the χ
field and it can be used in Einstein’s equations to modify
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the classical evolution (although the corrections turn out
to be small as we will show below). This effect is
somehow complementary to the one obtained by the so-
called tadpole method, where one defines a classical
background and a fluctuation field, and the evolution of
the background is fixed by the vanishing of the tadpole of
the fluctuation field; see e.g. Refs. [31–33]. Indeed, one
may see that at one loop the tadpole method applied to
the interaction potential in Eq. (2) is equivalent to the
Hartree approximation, where g2hχ2i appears as an
effective mass term for the inflaton. At higher loops,
the tadpole method necessarily includes the inflaton loops
which are completely absent in Eq. (33).
In a single field model, it is natural to assume that

~m ≪ H, since otherwise the χ field is expected to alter
the inflationary background evolution unless the initial
conditions are finely tuned. Neglecting ~m in Eq. (33), one
sees that the effective potential becomes H4 times a
dimensionless function fðg2ϕ2=H2Þ. For gϕ ∼H, the
function f takes values of order unity and its dependence
on its argument is somehow weak. In Table I, we
numerically evaluate Veff for various values of gϕ=H.
Since Veff ∝ H4 and the background energy density is of
the order of H2M2

p, the corrections induced by Veff on
the cosmological observables are suppressed by the
factor H2=M2

p.
Let us now discuss a similar problem involving the

cosmological perturbations. We focus on the curvature
perturbation ζ, which can be introduced in the metric as

ds2 ¼ −dt2 þ aðtÞ2e2ζðt;~xÞdxidxi: ð35Þ

As before, we treat ζ as an external field and integrate out the
χ field in the path integral to obtain an effective action. In the
presence of the curvature perturbation (in the δϕ ¼ 0 gauge)
the metric (35) must include the nontrivial lapse N and the
shift Ni functions that depend on ζ [34]. Nevertheless, we
take ζ to be an (off-shell) superhorizon perturbation and
apply a derivative expansion to the effective ζ action to
determine an effective potential. In that case ζ-dependent
factors in both N and Ni become negligible at the leading
order since they always contain derivatives. We take χ to be a
minimally coupled massless field propagating in the metric
(35) where the action becomes

S ¼ 1

2

Z
d4xa3e3ζ

�
_χ2 −

1

a2
e−2ζð∂χÞ2

�
: ð36Þ

Note that there is a shift symmetry in the action that is
given by

ζ → ζ þ λ;

xi → e−λxi; ð37Þ

and we demand this symmetry to be preserved in our
computation below.
The path integral over the momentum variable Pχ is

nontrivial since it involves the external ζ field. After
applying the canonical transformation

μ ¼ a3=2 exp ½3ζ=2�χ;
Pμ ¼ a−3=2 exp ½−3ζ=2�Pχ ; ð38Þ

which preserves the measure

DχDPχ ¼ DμDPμ; ð39Þ

the path integral over Pμ becomes independent of ζ and
decouples. As a result, one is left with an integral over μ
with the action

S ¼ 1

2

Z
d4x

�
_μ2 þ

�
3

2
_H þ 9

4
H2

�
μ2 −

e−2ζ

a2
ð∂μÞ2

�
; ð40Þ

where the derivatives of ζ are again neglected for con-
sistency with the original action (36). This final path
integral yields the functional determinant of the operator
in Eq. (40). It can be seen that the in-in calculation is again
separated into two identical þ and − branches, as in the
previous section.
Even for a slowly changing external field ζ, it is very

difficult to calculate this functional determinant exactly. On
the other hand, the constant ζ configurations are pure gauge
due to the shift symmetry and the exactly calculable
determinant does not give any information about the
effective action. Therefore, we focus on the curvature
perturbations obeying

_ζ ≪ H;

∂iζ ≪ k�ζ ð41Þ

for some k� so that the path integral can partially be carried
out as follows. One may see that the time derivatives of ζ
always appear withH in the combination ð_ζ þHÞ, and thus
the first condition in Eq. (41) allows one to neglect _ζ in the
action. Decomposing the path integral measure in the
momentum space as

Dμ ¼
Y
k

dμk ¼
�Y

k<k�

dμk

��Y
k>k�

dμk:

�
ð42Þ

TABLE I. The numerical values of Eq. (33) for various field
values in units of the Hubble parameter H.

g2ϕ2 0.01 0.1 1 2 4 20 100 200

Veff 0.005 0.03 0.06 0.07 0.07 0.08 0.07 0.06
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and integrating out the modes with k > k�, the spatial
derivatives of ζ can also be neglected in the action. As a
result, ζ can effectively be treated as a constant in such a
partial path integral of “high energy modes.” For an actual
superhorizon curvature perturbation ζsh, both conditions in
Eq. (41) are satisfied once k� is taken to be the comoving
horizon scale determined by the metric (35). Therefore, by
setting

k� ¼ eζshaðtÞH ð43Þ

it is possible to obtain an effective potential for ζsh by
integrating out the subhorizon χ modes.
In normalizing this path integral, one must preserve the

original shift symmetry (37) [this is necessary due to the
way ζ is introduced in the metric (35)]. For that it is
convenient to calculate the derivative of the functional
determinant from Eq. (A12) (with the s derivative
replaced by a ζsh derivative), which yields the derivative
of the effective potential. The undetermined additive
constant of integration can uniquely be fixed by demand-
ing the symmetry (37). A straightforward calculation
using the formulas derived in the previous section gives
an effective bare potential for ζsh as

VB
effðζshÞ0 ¼ −

1

a5
e−2ζsh

Z
k>k�

d3k
ð2πÞ3 k

2jμkj2; ð44Þ

where the prime denotes a derivative with respect to the
argument and the mode functions obey

μ̈k þ e−2ζsh
k2

a2
μk −

�
9

4
H2 þ 3

2
_H

�
μk ¼ 0;

μk _μ
�
k − μ�k _μk ¼ i: ð45Þ

We note that Eq. (44) is exact to the leading order in the
derivative expansion.
In the Bunch-Davies vacuum, the bare potential (44) has

a quartic UV divergence that can be cured by adiabatic
regularization by subtracting the terms up to fourth order.
This gives

VeffðζshÞ0 ¼ −
1

a5
e−2ζsh

Z
k>k�

d3k
ð2πÞ3 k

2½jμkj2 − jμð4Þad j2�;

ð46Þ

where

jμð4Þad j2 ¼ eζsh
a
2k

�
1þ e2ζsh

2k2
ð _a2 þ a _aÞ

þ e4ζsh

8k4
ð3_a4 þ 3a _a ä−5a2 _aað3Þ − a3að4ÞÞ

�
:

ð47Þ

One may see that in the exact de Sitter space Eq. (46)
vanishes,4 which is a standard result in adiabatic regulari-
zation (see e.g. Ref. [22]). Therefore, the slow rolling of the
inflaton must be taken into account and here we take the
background to be the space with constant deceleration
obeying

_H ¼ −ϵH2; ð48Þ

where ϵ is a constant that is not necessarily small.
Introducing the conformal time adη ¼ dt, the scale factor
can be expressed as

a ¼ ð−H0ηÞ−1=ð1−ϵÞ ð49Þ

where the constant H0 can be identified with the infla-
tionary Hubble scale when ϵ ≪ 1. The Bunch-Davies mode
function obeying Eq. (45) is given by

μk ¼
ffiffiffiffiffiffiffiffiffi
π

4H0

r
aϵ=2Hð1Þ

ν ð−e−ζshkηÞ; ν ¼ 3 − ϵ

2ð1 − ϵÞ ð50Þ

and Eq. (46) becomes

VeffðζshÞ ¼ CH4
0e

3ζsh ð51Þ

where

C ¼ −
1

6π2

Z
∞

1

duu4
�
π

4
aϵjHð1Þ

ν ðuaϵÞj2

−
1

2u

�
1þ 2 − ϵ

2ð1 − ϵÞ2u2a2ϵ þ
3ϵð2 − ϵÞð3 − 2ϵÞ
8ð1 − ϵÞ4u4a4ϵ

��
:

ð52Þ

In fixing the integration constant in Eq. (51) we demand the
action to have the symmetry (37). Note that the coefficient
C is time dependent, but this dependence is mild in the
slow-roll regime.
One may see that C → 0 as ϵ → 0. Thus, C≃ϵ for ϵ ≪ 1

(see Table II) and in the slow-roll approximation Eq. (46)
becomes

VeffðζshÞ≃ ϵH4
0e

3ζsh : ð53Þ

It is important to emphasize that Eq. (53) can only be used
for superhorizon modes and the corrections induced by

4In applying the adiabatic regularization to massless fields, one
must actually start with a massive field and then take a limit. In
this procedure, one discovers some terms that survive the “mass
going to zero” limit when the momentum integral is uncon-
strained and this is how the standard trace anomaly is recovered in
the adiabatic regularization [35]. In our case, since the momen-
tum integral in Eq. (46) already has an IR cutoff, this procedure
gives no extra term in the massless limit.
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Eq. (53) occur after horizon crossing. Physically, one may
imagine them arising from the scatterings of the super-
horizon ζsh with the subhorizon (virtual) χ fluctuations.
The theorems proved in Refs. [36,37] regarding the
conservation of the superhorizon ζ in quantum theory
are not applicable here due to the presence of the extra
scalar field χ.
One may calculate the tree-level corrections to the power

spectrum and non-Gaussianity that follow from Eq. (53).
The quadratic piece coming from the expansion of the
exponential yields a mass term that modifies the power
spectrum and the cubic term yields a nonzero fNL. The
relative magnitude of the correction to the power spectrum
and fNL are given by

N
H2

M2
p

ð54Þ

where N is the number of e-folds from the horizon crossing
(of the mode of interest) until the end of inflation (with the
start of reheating loop corrections may still be important as
discussed in Refs. [38–40] but the whole calculation takes a
different form). This slight enhancement is similar to lnðaÞ
factors appearing in loop corrections; see e.g. Ref. [12].
Finally, it is also possible to work out an effective

potential for the inflaton that arises from integrating out
its own quantum fluctuations. To see that, one may
introduce the standard generating functional5

eiW½J� ¼
Z

DϕeiScl½ϕ�þi
R

Jϕ; ð55Þ

and the quantum effective action

Γ½ϕcl� ¼ W½J� −
Z

Jϕcl: ð56Þ

Using δΓ=δϕcl ¼ −J, Eq. (55) can be written as

eiΓ½ϕcl� ¼
Z

DϕeiScl½ϕ�−i
R

δΓ
δϕcl

ðϕ−ϕclÞ; ð57Þ

which is an exact expression for Γ. Expanding the quantum
effective action as

Γ ¼ Scl þ Sð1Þ; ð58Þ

where Sð1Þ denotes a first-order (one-loop) correction,
defining a new integration variable χ ¼ ϕ − ϕcl and keep-
ing only the leading-order terms one finds

eiS
ð1Þ½ϕcl� ≃

Z
Dχ exp

�
i
2

Z
χ

δ2Scl
δϕclδϕcl

χ

�
: ð59Þ

This gives the one-loop effective action Sð1Þ in terms of the
functional determinant of the (second-order) fluctuation
operator. Starting with a classical inflaton potential vðϕÞ,
the adiabatically regularized one loop quantum potential is
given by Eq. (26) with the replacement

g2 → v00ðϕÞ ð60Þ

where the prime denotes a derivative with respect to the
argument. A similar analysis can be done for the curvature
perturbation ζ.

IV. CONCLUSIONS

In this paper, we used mode functions to express the
functional determinants that give one-loop effective poten-
tials of scalar fields propagating in cosmological back-
grounds and applied adiabatic regularization to cure the
resulting infinities. It turns out that in this problem the
adiabatic regularization can be cast into a well-defined
renormalization procedure corresponding to the specific
counterterms added to the action. The finite renormaliza-
tions are automatically fixed in such a way that the effective
potential vanishes when the expansion of the universe is
turned off, and thus it captures the quantum effects related
to the expansion.
The same method can also be applied to derive an

effective potential for the superhorizon curvature perturba-
tion ζsh encoding its interactions with virtual subhorizon
modes circulating in the loops. For a given mode, the
effective potential can be used starting from the horizon
crossing time until the beginning of reheating. In that case,
it is difficult to interpret the adiabatic regularization by
counterterms added to the action since the momentum
integral is cut off at the horizon crossing time [see e.g.
slow-roll-parameter-dependent terms in Eq. (52)]. In
any case, the loop effects involving cosmological pertur-
bations already contain nonrenormalizable gravitational

TABLE II. The numerical values of the coefficient C given in Eq. (52) for different values of ϵ evaluated at
different times labeled by the scale factor a. Note that for this set C ∼ 10−2ϵ and the prefactor is related to the overall
number 1=ð6π2Þ appearing in Eq. (52).

ϵ 10−1 10−1 10−1 10−2 10−2 10−2 10−3 10−3 10−3

a 1 10 100 1 10 100 1 10 100
C 10−3 4 × 10−4 10−4 1.1 × 10−4 1.0 × 10−4 0.9 × 10−4 1.10 × 10−5 1.08 × 10−5 1.07 × 10−5

5It is straightforward to repeat the analysis below for the in-in
case.
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interactions and consequently the whole problem should be
viewed in an effective field theory approach.
The corrections induced by the effective inflaton poten-

tial on the background evolution and effective ζsh potential
on the cosmological observables like the power spectrum
and non-Gaussianity turn out to be small even in the large
field models like chaotic inflation. These findings support
the general view that inflation can fully be understood in a
semiclassical approach and quantum backreaction effects
can safely be neglected.
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APPENDIX: THE FUNCTIONAL DETERMINANT
OF A TIME-DEPENDENT IN-IN OPERATOR

We consider the Hilbert space of doublets of time-
dependent functions

ΦðtÞ ¼
�
ϕþðtÞ
ϕ−ðtÞ

�
; ðA1Þ

which are defined in the interval ðta; tbÞ with the inner
product

hΦ1jΦ2i ¼
Z

tb

ta

dtΦT
1 ðtÞΦ2ðtÞ

¼
Z

tb

ta

dt½ϕþ
1 ðtÞϕþ

2 ðtÞ þ ϕ−
1 ðtÞϕ−

2 ðtÞ�: ðA2Þ

We assume that these functions obey suitable boundary
conditions so that the one-parameter family of operators
Ls, which have the form

Ls ¼
�
L 0

0 −L

�
þ s

�ΩþðtÞ 0

0 −Ω−ðtÞ

�
; ðA3Þ

are self-adjoint with a discrete spectrum. Here, L denotes a
generic second-order (ordinary) differential operator, s is a
real parameter and Ω� are smooth functions. Our aim is to
calculate the ratios of the two determinants in this family,
i.e. detL1= detL0.
For a given parameter s, let

ynðsÞ ¼
�
yþn ðt; sÞ
y−n ðt; sÞ

�
ðA4Þ

denote the eigenfunctions of the self-adjoint operator (A3),
i.e.

LsynðsÞ ¼ λnðsÞynðsÞ: ðA5Þ

The eigenfunctions can be taken to be orthonormal

hynðsÞjymðsÞi ¼ δnm ðA6Þ

and they also form a complete set of basis functions in the
Hilbert space satisfying the following completeness
relation:

X
n

ynðs; tÞyTnðs; t0Þ ¼
�
δðt − t0Þ 0

0 δðt − t0Þ

�
: ðA7Þ

The Green function with the prescribed boundary con-
ditions is defined by

LsGs ¼
�
δðt − t0Þ 0

0 δðt − t0Þ

�
: ðA8Þ

We assume that Ls has no zero modes and the Green
function is uniquely defined. The matrix entries, which can
be introduced as

Gsðt; t0Þ ¼
�
Gþþ

s ðt; t0Þ Gþ−
s ðt; t0Þ

G−þ
s ðt; t0Þ G−−

s ðt; t0Þ

�
; ðA9Þ

are fixed by the eigenfunctions ynðsÞ as

Gsðt; t0Þ ¼
X
n

ynðs; tÞyTnðs; t0Þ
λnðsÞ

: ðA10Þ

As discussed in Ref. [26], one may use this identity in
constructing standard in-in propagators in flat space.
Formally, the determinant can be written as

detLs ¼ exp ½Tr lnLs�; ðA11Þ

where the trace is defined in the Hilbert space (A2).
Differentiating the above expression with respect to s
and noting that L−1

s ¼ Gs one finds

d
ds

ln detLs ¼ Tr

�
Gs

dLs

ds

�
; ðA12Þ

which can be used to express the determinant of an operator
in terms of its Green function (see e.g. Refs. [4–9]).
To get a more rigorous derivation of Eq. (A12), one may

follow a simple method presented in Ref. [10]. The
determinant of the operator, which is defined as

detLs ¼
Y
n

λnðsÞ; ðA13Þ

generically diverges. However, the ratio of the two deter-
minants like detL1= detL0 is usually well defined and
finite. Differentiating the eigenvalue equation
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λnðsÞ ¼ hynðsÞjLsjynðsÞi ðA14Þ

with respect to s (an s derivative is denoted by a prime), one
may find

λnðsÞ0 ¼ hynðsÞj
�
Ωþ 0

0 −Ω−

�
jynðsÞi: ðA15Þ

Then,

X
n

ln ½λnðsÞ�0 ¼
X
n

Z
tb

ta

dt

�
yþn ðt; sÞyþn ðt; sÞ

λnðsÞ
ΩþðtÞ

−
y−n ðt; sÞy−n ðt; sÞ

λnðsÞ
Ω−ðtÞ

�
; ðA16Þ

where the components of the eigenfunctions are intro-
duced in Eq. (A4). Integrating this last equation with
respect to s and using Eqs. (A9) and (A10), one finally
obtains

ln

�
detL1

detL0

�

¼
Z

1

0

ds
Z

tb

ta

dt½Gþþ
s ðt; tÞΩþðtÞ −G−−

s ðt; tÞΩ−ðtÞ�;

ðA17Þ

which expresses the ratios of the determinants in terms of
the Green function.
One nice feature of the construction of Ref. [10] is that

it can be readily generalized to partial differential
operators, unlike the case with the Gel’fand-Yaglom
theorem (see e.g. Refs. [41,42]). Consider the doublets
of functions

ΦðxÞ ¼
�
ϕþðxμÞ
ϕ−ðxμÞ

�
; ðA18Þ

which are defined in an n-dimensional space parame-
trized with the coordinates xμ and endowed with the
following inner product:

hΦ1jΦ2i ¼
Z

dnxΦT
1 ðxÞΦ2ðxÞ: ðA19Þ

Consider a self-adjoint operator of the form (A3) where L
now denotes a partial differential operator and Ω�ðtÞ →
Ω�ðxμÞ. It is easy to repeat the above steps to show that

ln

�
detL1

detL0

�

¼
Z

1

0

ds
Z

dnx½Gþþ
s ðx; xÞΩþðxÞ − G−−

s ðx; xÞΩ−ðxÞ�;

ðA20Þ

where the Green function is defined as

LsGsðx; x0Þ ¼
�
δnðx − x0Þ 0

0 δnðx − x0Þ

�
: ðA21Þ

In the cosmological setting of our interest, one has xμ ¼
ðt; xiÞ and L is fixed by the covariant Laplacian as in
Eq. (10). In that case, the spectrum of the operator Ls is
usually continuous. However, one can initially take the
spatial coordinates xi to be periodic with period a giving
a discrete set of momenta 2πni=a with integers ni. One
may then take the a → ∞ limit that would replace the
discrete Fourier modes with the continuous Fourier
transform, which would justify the use of Eq. (A20).
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