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We present a two-stage hybrid inflationary scenario in nonminimal supergravity which can predict
values of the tensor-to-scalar ratio of the order of a few × 10−2. For the parameters considered, the
underlying supersymmetric particle physics model possesses two inflationary paths, the trivial and the
semishifted one. The trivial path is stabilized by supergravity corrections and supports a first stage of
inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable while the
value of the scalar spectral index remains acceptable as a result of the competition between the relatively
mild supergravity corrections and the strong radiative corrections to the inflationary potential. The
additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated
by a second stage of inflation taking place along the semishifted path. This is possible only because the
semishifted path is almost perpendicular to the trivial one, and thus not affected by the strong radiative
corrections along the trivial path, and also because the supergravity effects remain mild. The requirement
that the running of the scalar spectral index remain acceptable limits the possible values of the tensor-to-
scalar ratio not to exceed about 5 × 10−2. Our model predicts the formation of an unstable string-monopole
network, which may lead to detectable gravity wave signatures in future space-based laser interferometer
observations.

DOI: 10.1103/PhysRevD.92.123502 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflation (for a review, see e.g. Ref. [1]) is by now
considered to be an integral part of standard cosmology
thanks to a plethora of precise observations on the
cosmic microwave background radiation (CMBR) and
the large-scale structure in the Universe. Therefore, it is
very important to construct realistic inflationary models
based on particle theory and consistent with all the
available cosmological and phenomenological require-
ments. Undoubtedly, hybrid inflation [2] is one of the
most promising inflationary scenarios. It is [3,4] naturally
realized in the context of supersymmetric (SUSY) grand
unified theory (GUT) models based on gauge groups with
rank greater than or equal to 5.
In standard SUSY hybrid inflation, however, the GUT

gauge symmetry is spontaneously broken only at the end of
inflation, and thus, if magnetic monopoles are predicted by
this symmetry breaking, they are copiously produced [5],
leading to a cosmological catastrophe. This disaster is
avoided in the smooth [5] or shifted [6] variants of SUSY
hybrid inflation, where the GUT gauge symmetry is broken
already during inflation. These variants were based on
nonrenormalizable superpotential terms. It was, though,
subsequently shown that a new smooth [7] and a new

shifted [8] hybrid inflation scenario can be constructed
with only renormalizable superpotential terms within an
extended Pati-Salam (PS) SUSY GUT model, which was
initially introduced [9] for solving a very different problem.
Namely, the simplest SUSY PS model predicts (see
Ref. [10]) exact Yukawa unification [11] and, if it is
supplemented with universal boundary conditions, yields
unacceptable b-quark mass values. This problem is solved
in the extended model, where Yukawa unification is
naturally and moderately violated.
After the first accurate measurement [12] of the scalar

spectral index ns, however, it has been realized that there is
a tension between all these well-motivated and natural
inflationary scenarios and the measured value of this index.
Indeed, within the standard power-law cosmological model
with cold dark matter and a cosmological constant, the data
imply that ns is clearly lower than unity—for the latest
results on ns see Ref. [13]. Inflationary scenarios, on the
other hand, such as the ones mentioned above, within
supergravity (SUGRA) with minimal Kähler potential,
yield [14] ns’s which are very close to unity or even
exceed it.
One idea [15] for reducing the predicted spectral index is

based on the observation that ns generally decreases with
the number of e-foldings suffered by our present horizon
scale during inflation. So, by reducing this number of
e-foldings, we can achieve values of ns compatible with the
recent data without having to abandon the use of a minimal
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Kähler potential. The additional number of e-foldings
required for solving the horizon and flatness problems of
standard hot big bang cosmology can be provided by a
subsequent second stage of inflation.
It is interesting to note that the extended SUSY PS model

of Ref. [9], which can lead to new smooth [7] or new shifted
[8] hybrid inflation, can also provide us with a double
inflation scenario called standard-smooth hybrid inflation
[16], which solves the above mentioned spectral index
problem along the lines just discussed. The cosmological
scales exit the horizon during the main stage of inflation,
which is of the standard hybrid type and occurs as the
system slowly rolls down a trivial classically flat direction
on which the PS gauge group is unbroken. This direction is
subsequently destabilized, giving its place to a classically
nonflat valley of minima along which new smooth hybrid
inflation takes place with the PS GUT gauge group being
broken. Consequently, magnetic monopoles are produced
only at the end of the first stage of inflation, but they are
adequately diluted by the second stage, which also provides
the extra e-foldings needed for solving the puzzles of hot
big bang cosmology.
After the recent results of BICEP2 [17] on the B mode in

the polarization of the CMBR at degree angular scales, it
seems possible that the inflationary scenarios will have to
face a new challenge. Namely, they should be able to
accommodate appreciable values of the tensor-to-scalar
ratio r, since a B mode of primordial origin could be due to
the production of gravitational waves during inflation. We
should, however, consider this possibility with reservation,
since some serious criticism [18] to the original BICEP2
analysis has already appeared, claiming that the foreground
from Galactic polarized dust emission has been under-
estimated. On the other hand, after the recently released
Planck HFI 353 GHz dust polarization data [19], the first
attempts to make a joint analysis of the Planck and BICEP2
data have been presented [20,21]. They showed that,
although r is smaller than initially claimed, significant
values of r—of order 0.01—cannot be excluded. The most
recent joint analysis [21] yields an upper limit on r of about
0.12 at a 95% confidence level. Unfortunately, all the above
mentioned variants of SUSY hybrid inflation predict
negligible values of r. So, it is certainly worth investigating
whether realistic SUSY hybrid inflation models accom-
modating appreciable values of r can be constructed.
In Ref. [22], a double inflation scenario has been

proposed which is compatible with the BICEP2 data
[17]. The first stage of inflation is of the SUSY hybrid
type, while the second stage is left unspecified, which
makes the scenario incomplete. The inflationary potential is
supplemented with a mass-squared term for the inflaton
attributed to SUGRA corrections and with a logarithmic
term representing very strong radiative corrections due to
the SUSY breaking during inflation. It is the competition
between these two contributions which allows appreciable

values of r while ns remains acceptable. The assumption,
however, that an inflaton mass-squared term is the only
relevant SUGRA correction during inflation in a scenario
with Planck-scale inflaton field values seems totally unjus-
tified. In addition, this paper follows the usual practice of
only taking into account the radiative corrections in the
derivatives of the inflationary potential when calculating
the slow-roll parameters and neglecting them when calcu-
lating the potential itself. In the case of extremely strong
radiative corrections, however, this may lead to erroneous
results. Also, Ref. [23] attempts to accommodate the
BICEP2 results in a double hybrid inflation model where
the inflaton potential changes dynamically with the evo-
lution of the inflaton fields. The particular implementation
of this interesting idea, though, appears to have some
problems of naturalness in the design of the superpotential.
In addition, the treatment of SUGRA seems to be incom-
plete. Finally, Ref. [24] shows that, in SUSY hybrid
inflation models, it is possible to obtain values of r close
to 0.03 by employing an expansion of a nonminimal Kähler
potential with appropriate coefficients. The validity of this
approach may, however, be questionable, since the inflaton
takes values close to the Planck scale.
In this paper, we will show that a reduced version of the

extended SUSY PS model of Ref. [9] can yield a two-stage
inflationary scenario which can predict values of r up to
about 0.05. Larger values of the tensor-to-scalar ratio would
lead to unacceptably large running of the scalar spectral
index. In the range of the model parameters considered
here, the model in the global SUSY limit possesses
practically two classically flat directions, namely the trivial
and the semishifted [25] one. After including SUGRA
corrections, the trivial path, on which the full GUT gauge
group is unbroken, is stabilized, and a first stage of inflation
can occur as the system slowly rolls down this path. All the
cosmological scales exit the horizon during this stage,
and our present horizon undergoes a limited number of
e-foldings. The obtained tensor-to-scalar ratio can be
appreciable, while the scalar spectral index assumes
acceptable values thanks to the competing effect of the
sufficiently mild SUGRA corrections resulting from the
construction of Ref. [26] and the strong radiative correc-
tions to the inflationary potential.
Subsequently, a second inflationary stage occurs along

the semishifted path, where Uð1ÞB−L remains unbroken,
and provides the additional number of e-foldings required
for solving the standard problems of hot big bang cosmol-
ogy. This is possible since, for our choice of parameters, the
semishifted path is almost perpendicular to the trivial path,
and thus is not affected by the strong radiative corrections
on the trivial path. It is also important that the SUGRA
corrections on the semishifted path are kept sufficiently
mild again by the mechanism of Ref. [26].
We first present, in Sec. II, the salient features of the

model in global SUSY. In Sec. III, we then calculate the
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SUGRA and one-loop radiative corrections to the potential
and discuss our double inflationary scenario. Finally, in
Sec. IV, we summarize our conclusions. Throughout, we
will use units where the reduced Planck mass mP ¼
2.4354 × 1018 GeV is equal to unity.

II. THE MODEL IN GLOBAL SUSY

We consider a reduced version of the extended SUSY PS
model of Ref. [9]. This version is based on the left-
right-symmetric gauge group GLR ¼ SUð3Þc × SUð2ÞL×
SUð2ÞR × Uð1ÞB−L, which is a subgroup of the PS group.
The superfields of the model which are relevant for
inflation are the following: a gauge singlet S, a pair of
superfields Φ, Φ̄ belonging to the ð1; 1; 3Þ0 representation
of GLR, and a conjugate pair of Higgs superfields H and H̄
belonging to the ð1; 1; 2Þ1 and ð1; 1; 2Þ−1 representations of
GLR, respectively. The field Φ acquires a vacuum expect-
ation value (VEV) which breaks GLR to GSM ×Uð1ÞB−L,
with GSM being the standard model (SM) gauge group,
while the VEVs of H and H̄ cause the breaking of GLR to
GSM. The full superfield content and superpotential, the
global symmetries, and the charge assignments can be
easily derived from the extended SUSY PS model of
Ref. [9] by simply reducing its GUT gauge group to
GLR. The only global symmetry of the model which is
relevant here is its Uð1Þ R symmetry under which S and Φ̄
have charge 1, with all the other superfields mentioned
above being neutral.
The superpotential terms relevant for inflation are

W ¼ κSðM2 − Φ2Þ − γSHH̄ þmΦΦ̄ − λΦ̄HH̄; ð1Þ

where M, m are superheavy masses and κ, γ, λ are
dimensionless coupling constants. These parameters are
normalized so that they correspond to the couplings
between the SM singlet components of the superfields.
The mass parameters M, m and any two of the three
dimensionless parameters κ, γ, λ can always be made real
and positive by appropriately redefining the phases of the
superfields. The third dimensionless parameter, however,
remains generally complex. For definiteness, we will
choose this parameter to be real and positive too.
The F-term scalar potential obtained from the super-

potential in Eq. (1) is given by

V0
F ¼ jκðM2 − Φ2Þ − γHH̄j2

þ jmΦ̄ − 2κSΦj2 þ jmΦ − λHH̄j2
þ jγSþ λΦ̄j2ðjHj2 þ jH̄j2Þ; ð2Þ

where the complex scalar fields which belong to the SM
singlet components of the superfields are denoted by the
same symbol. From this potential and the vanishing of the
D terms (which implies that H̄� ¼ eiθH), one finds [25]
two distinct continua of SUSY vacua:

Φ ¼ Φþ; H̄� ¼ H; jHj ¼
ffiffiffiffiffiffiffiffiffiffi
mΦþ
λ

r
; S ¼ Φ̄ ¼ 0; ð3Þ

Φ ¼ Φ−; H̄� ¼ −H; jHj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−mΦ−

λ

r
; S ¼ Φ̄ ¼ 0; ð4Þ

where

Φ� ≡�M

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
γm

2κλM

�
2

s
∓ γm
2κλM

1
CA: ð5Þ

The potential in Eq. (2), generally, possesses [25]
three flat directions. The first one is the usual trivial flat
direction at

Φ ¼ Φ̄ ¼ H ¼ H̄ ¼ 0; ð6Þ

with

V0
F ¼ Vtr ≡ κ2M4: ð7Þ

On this direction, GLR is unbroken. The second one, which
appears at

Φ ¼ −
γm
2κλ

; Φ̄ ¼ −
γ

λ
S;

HH̄ ¼ κγðM2 − Φ2Þ þ λmΦ
γ2 þ λ2

;

V0
F ¼ Vnsh ≡ κ2M4

�
λ2

γ2 þ λ2

��
1þ γ2m2

4κ2λ2M2

�
2

; ð8Þ

is the trajectory for the new shifted hybrid inflation [8].
On this direction, GLR is broken to GSM. The third flat
direction, which exists only if M2 > m2=2κ2, lies at

Φ ¼ �M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

2κ2M2

s
; Φ̄ ¼ 2κΦ

m
S; H ¼ H̄ ¼ 0:

ð9Þ

It is the path along which semishifted hybrid inflation [25]
takes place with

V0
F ¼ Vssh ≡m2M2

�
1 −

m2

4κ2M2

�
: ð10Þ

Along this direction, GLR is broken to GSM ×Uð1ÞB−L.
We choose to consider the case where M2 > m2=2κ2,

and thus, the semishifted flat direction exists. One can show
—see Ref. [25]—that, in this case, we always have Vssh <
Vnsh and Vssh < V tr. Therefore, the semishifted flat direc-
tion, if it exists, always lies lower than both the trivial and
the new shifted one. On the other hand, the new shifted flat
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direction may lie either lower or higher than the trivial one
depending on the values of the parameters. Here we will
take κ ∼ 1, γ ≪ λ ≪ κ, m ≪ M, and jSj < 1. In this case,
the new shifted flat direction practically coincides with the
trivial one, and thus plays no independent role in our
scheme.

III. THE DOUBLE INFLATIONARY SCENARIO

In this section, we will show that, after including
SUGRA corrections, the trivial path becomes stable for
large absolute values of the real canonically normalized
inflaton. Thus, it can support a first stage of inflation during
which the Universe undergoes a number of e-foldings
which, although limited, is adequately large for all the
cosmological scales to exit the horizon. Strong radiative
corrections to the inflationary potential, which are con-
trolled by the parameter κ, in conjunction with mild
SURGA corrections then guarantee that an appreciable
value of the tensor-to-scalar ratio can be achieved together
with an acceptable value of the scalar spectral index. Our
scenario can predict values of the tensor-to-scalar ratio only
up to about 0.05, because larger values require unaccept-
ably large running of the scalar spectral index.
A subsequent second stage of inflation along the semi-

shifted path can provide the additional number of e-
foldings required for solving the horizon and flatness
problems of the standard hot big bang cosmology. This
is possible since, for the parameters chosen, this direction is
almost orthogonal to the trivial path, and thus, it is not
affected by the strong radiative corrections present during
the first stage of inflation. In this connection, it is also
important that the SUGRA corrections on the semishifted
path remain mild.
After the termination of the first stage of inflation, the

system moves towards the semishifted path, and the group
SUð2ÞR breaks spontaneously to a Uð1Þ subgroup, leading
to the formation of magnetic monopoles. On the other
hand, the spontaneous breaking of a linear combination of
this Uð1Þ and Uð1ÞB−L, which takes place at the end of the
second inflationary stage, leads to the production of open
cosmic strings which connect these monopoles to anti-
monopoles. Subsequently, the monopoles come into the
postinflationary horizon and the whole system of strings
and monopoles decays well before recombination without
leaving any trace in the CMBR. The gravitational waves
which are generated by the decaying strings may, though,
be measurable in the future.

A. The first inflationary stage

We adopt here the following Kähler potential:

K ¼ − ln ð1 − jSj2Þ − ln ð1 − jΦ̄j2Þ þ jΦj2 þ jHj2
þ jH̄j2 − 2 ln ð− ln jZ1j2Þ þ jZ2j2 ð11Þ

(jSj; jΦ̄j < 1; 0 < jZ1j < 1), where we include two extra
GLR singlet superfields Z1 and Z2, which do not enter the
superpotential at all because they transform nontrivially
under additional anomalous Uð1Þ gauge symmetries. The
resulting F-term potential in SUGRA is given by

VF ¼
�X

i

jWXi
þ KXi

Wj2K−1
XiXi

� − 3jWj2
�
eK; ð12Þ

where a subscript Xi denotes derivation with respect to the
field Xi, and the sum extends over all the seven fields S, Φ̄,
Φ,H, H̄, Z1, Z2. The values of Z1 and Z2 are assumed to be
fixed [26] by anomalous D terms. Note that the superfields
S, Φ̄, Z1 possess Kähler potentials of the no-scale type,
which for Z2 ¼ 0, in view of the relation

jKZ1
j2K−1

Z1Z1
� ¼ 2; ð13Þ

guarantee the exact flatness of the potential along the trivial
path [26] and its approximate flatness on the semishifted
one—see below. These paths are, respectively, parame-
trized by the complex inflatons S and Φ̄ (approximately).
However, as we shall see—cf. Ref. [26]—the relation

jKZ2
j2K−1

Z2Z2
� ¼ jZ2j2 ≡ β ð14Þ

implies that these inflatons acquire squared masses propor-
tional to β as soon as the value of Z2 becomes nonzero.
Using the R and Uð1ÞB−L symmetries of the model, we

can rotate S and H on the real axis—cf. e.g. Ref. [25]. The
fields Φ, Φ̄, H̄ remain in general complex. However, for
simplicity, we will also restrict them on the real axis. This is
not expected to influence our results in any essential way,
since these fields are anyway real in the vacuum and on all
the flat directions of the model, given that the parameters of
the model are chosen to be real—see Sec. II. Also, we can
show that, everywhere on the trivial and the semishifted
inflationary paths, the mass-squared matrices of the imagi-
nary parts of the fields do not mix with the mass-squared
matrices of their real parts and, during both inflations, have
positive eigenvalues in the directions perpendicular to these
paths. So there is no instability in the direction of the
imaginary parts of the fields which are orthogonal to these
inflationary trajectories. Moreover, as we can demonstrate,
both the trivial and the semishifted inflationary paths are
destabilized with the fields developing real values.
We define the canonically normalized real scalar fields σ,

ϕ̄, ϕ, h, h̄ corresponding to the Kähler potential in Eq. (11)
as follows—cf. Ref. [26]:

S ¼ tanh
σffiffiffi
2

p ; Φ̄ ¼ tanh
ϕ̄ffiffiffi
2

p ; ð15Þ
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Φ ¼ ϕffiffiffi
2

p ; H ¼ hffiffiffi
2

p ; H̄ ¼ h̄ffiffiffi
2

p : ð16Þ

We can now evaluate the potential VF in Eq. (12) with
the overall factor exp ½−2 ln ð− ln jZ1j2Þ þ jZ2j2� absorbed
into redefined parameters κ, γ, m, and λ and find

VF ¼
�
A2
1cosh

2
ϕ̄ffiffiffi
2

p − A2
2sinh

2
ϕ̄ffiffiffi
2

p þ βA2
3 þ A2

4 þ A2
5

þ 1

2
ðh2 þ h̄2ÞA2

6 þ
1

2
ðϕ2 þ h2 þ h̄2ÞA2

3

þ ð
ffiffiffi
2

p
ϕA5 − 2hh̄A6ÞA3

�
e
1
2
ðϕ2þh2þh̄2Þ: ð17Þ

Here

A1 ¼ κ

�
M2 −

ϕ2

2

�
−
γ

2
hh̄; ð18Þ

A2 ¼ m
ϕffiffiffi
2

p −
λ

2
hh̄; ð19Þ

A3 ¼ A1 sinh
σffiffiffi
2

p cosh
ϕ̄ffiffiffi
2

p þ A2 cosh
σffiffiffi
2

p sinh
ϕ̄ffiffiffi
2

p ; ð20Þ

A4 ¼ A1 sinh
σffiffiffi
2

p sinh
ϕ̄ffiffiffi
2

p þ A2 cosh
σffiffiffi
2

p cosh
ϕ̄ffiffiffi
2

p ; ð21Þ

A5 ¼ m cosh
σffiffiffi
2

p sinh
ϕ̄ffiffiffi
2

p −
ffiffiffi
2

p
κϕ sinh

σffiffiffi
2

p cosh
ϕ̄ffiffiffi
2

p ; ð22Þ

and

A6 ¼ γ sinh
σffiffiffi
2

p cosh
ϕ̄ffiffiffi
2

p þ λ cosh
σffiffiffi
2

p sinh
ϕ̄ffiffiffi
2

p : ð23Þ

On the trivial trajectory where ϕ̄, ϕ, h, h̄ ¼ 0, the F-term
potential takes the form

VF ¼ κ2M4

�
1þ βsinh2

σffiffiffi
2

p
�
: ð24Þ

The mass-squared eigenvalues in the directions
perpendicular to this trajectory for sinh2ðσ= ffiffiffi

2
p Þ ≫ M2=2

can also be found from Eq. (17) to be

m2
ϕ ≃ 4κ2sinh2

σffiffiffi
2

p ; ð25Þ

m2
ϕ̄
≃ κ2M4

�
1þ ð1þ βÞsinh2 σffiffiffi

2
p

�
; ð26Þ

m2
χ1 ≃ ðκM2 − γÞ

�
κM2 þ ðð1þ βÞκM2 − γÞsinh2 σffiffiffi

2
p

�
;

ð27Þ
and

m2
χ2 ≃ ðκM2 þ γÞ

�
κM2 þ ðð1þ βÞκM2 þ γÞsinh2 σffiffiffi

2
p

�
;

ð28Þ

where χ1 ¼ ðhþ h̄Þ= ffiffiffi
2

p
and χ2 ¼ ðh − h̄Þ= ffiffiffi

2
p

. Thus,
assuming that γ < κM2, we see that the trivial path, which
is flat in the limit β → 0, is stable for large absolute values
of the inflaton σ.
Note that Eqs. (27) and (28) hold for any value of

sinh2 ðσ= ffiffiffi
2

p Þ. On the contrary, one can show that as
sinh2 ðσ= ffiffiffi

2
p Þ decreases, the eigenvalues and eigenstates

of the mass-squared matrix of the ϕ − ϕ̄ system change. In
particular, when sinh2ðσ= ffiffiffi

2
p Þ≃M2=2þm2=ð2κ2M2Þ, the

mass-squared matrix of the ϕ − ϕ̄ system acquires a zero
eigenvalue with ϕ̄ dominating the corresponding eigen-
state. Subsequently, as sinh2 ðσ= ffiffiffi

2
p Þ approaches the value

M2=2, the eigenvalues of the ϕ − ϕ̄ mass-squared matrix
become almost opposite to each other, with ϕ and ϕ̄
contributing almost equally to both the eigenstates. A
further decrease of sinh2 ðσ= ffiffiffi

2
p Þ leads to the domination

of the unstable eigenstate by ϕ. Since the field ϕ is required
to develop a nonzero VEV in order to cancel the false
vacuum energy density κ2M4 on the trivial trajectory—see
Eq. (2) or Eqs. (17) and (18)—we will take as critical value
σc of σ at which the trivial path is destabilized the one
determined by the relation

sinh2
σcffiffiffi
2

p ¼ M2

2
: ð29Þ

To the F-term scalar potential VF in Eq. (17) has to be
added during the first stage of inflation (i.e. for jσj ≥ jσcj)
the term

Vϕ
r ¼ κ2M4

�
Nϕκ

2

8π2

�
ln
2tanh2 σffiffi

2
p

M2
; ð30Þ

corresponding to the dominant one-loop radiative
corrections to the inflationary potential due to the Nϕ-
dimensional supermultiplet Φ (Nϕ ¼ 3). Notice that
the renormalization scale in these radiative correc-
tions is chosen such that Vϕ

r vanishes at jσj ¼
jσcj (tanh2 ðσc=

ffiffiffi
2

p Þ≃ sinh2 ðσc=
ffiffiffi
2

p Þ ¼ M2=2).
Setting

δϕ ¼ Nϕκ
2

2π2
; ð31Þ
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we can rewrite the full inflationary potential and its
derivatives (denoted by primes) with respect to the canoni-
cally normalized real inflaton field σ as follows:

V
κ2M4

¼ 1þ βsinh2
σffiffiffi
2

p þ δϕ
4
ln
2tanh2 σffiffi

2
p

M2
≡ CðσÞ; ð32Þ

V 0

κ2M4
¼ 1ffiffiffi

2
p sinhð

ffiffiffi
2

p
σÞ
�
β þ δϕ

sinh2ð ffiffiffi
2

p
σÞ

�
; ð33Þ

V 00

κ2M4
¼ coshð

ffiffiffi
2

p
σÞ
�
β −

δϕ

sinh2ð ffiffiffi
2

p
σÞ

�
; ð34Þ

and

V 000

κ2M4
¼

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
σÞ
�
β −

δϕ

sinh2ð ffiffiffi
2

p
σÞ

�

þ 2
ffiffiffi
2

p
δϕ

tanh2ð ffiffiffi
2

p
σÞ sinhð ffiffiffi

2
p

σÞ : ð35Þ

The usual slow-roll parameters for inflation are then
written as

ϵ ¼ 1

2

�
V 0

κ2M4

�
2 1

C2ðσÞ ; ð36Þ

η ¼
�

V 00

κ2M4

�
1

CðσÞ ; ð37Þ

and

ξ ¼
�

V 0

κ2M4

��
V 000

κ2M4

�
1

C2ðσÞ ¼ 2j tanhð
ffiffiffi
2

p
σÞjη ffiffiffi

ϵ
p

þ 4δϕ
ffiffiffi
ϵ

p

CðσÞtanh2ð ffiffiffi
2

p
σÞj sinhð ffiffiffi

2
p

σÞj : ð38Þ

Using these expressions, we can evaluate the scalar spectral
index ns, its running αs, and the tensor-to-scalar ratio r from
the formulas

ns ¼ 1þ 2η − 6ϵ; ð39Þ

αs ¼ 16ηϵ − 24ϵ2 − 2ξ; ð40Þ

r ¼ 16ϵ: ð41Þ

Finally, the scalar potential on the trivial inflationary path
can be written in terms of the scalar power spectrum
amplitude As and r as follows:

V ¼ 3π2

2
Asr: ð42Þ

As a numerical example, we take the value of the real
inflaton field σ at the horizon exit of the pivot scale
k� ¼ 0.05 Mpc−1 to be σ� ¼ 1.45. Also, we take
κ ¼ 1.7, β ¼ 0.022, and the scalar power spectrum ampli-
tude As ¼ 2.215 × 10−9 at the same pivot scale [13]. With
these input numbers, we then find M ¼ 3.493 × 10−3,
Cðσ�Þ¼ 2.2941, ϵ¼ 0.00188, η ¼ −0.01389, ns ¼ 0.9609,
αs ¼ −0.01674, and r ¼ 0.0301.
As one can see, not only can our predictions be perfectly

consistent with the latest data released by the Planck
satellite experiment [13], but they can also accommodate
large values of the tensor-to-scalar ratio r of the order of a
few × 10−2. As is obvious from Eq. (41), such values of r
require relatively large values of ϵ, which in turn reduce the
scalar spectral index ns in Eq. (39) below unity, but not
quite adequately to make it compatible with the data. So we
need an appreciable negative value of η, which requires that
the parenthesis on the right-hand side of Eq. (34) be
dominated by the second term. A similar parenthesis
appears on the right-hand side of Eq. (33) too, but with
the two terms added rather than subtracted. As it turns out,
both these terms have to be appreciable, with the second
one being larger, in order to be able to bring ns near its best-
fit value from the Planck data. This is certainly possible
only for large values of the parameter κ controlling the
radiative corrections on the trivial path. Note that the first
stage of inflation ends before the system reaches the critical
point in Eq. (29) by violating the slow-roll conditions, and
the obtained number of e-foldings is limited due to the large
values of ϵ involved and the fact that σ� ∼ 1.

B. The second inflationary stage

For the rest of the parameters of the model, we choose
the values m ¼ 1.827 × 10−5, λ ¼ 0.1, and γ ¼ 10−6. We
solve numerically the differential equations of the system
with potential energy density given by the exact VF in
Eq. (17) supplemented with the relevant radiative correc-
tions and the D terms involving the fields H, H̄. The
numerical investigation then reveals that there exist appro-
priate small initial absolute values of the scalar fields ϕ̄, ϕ,
h, h̄ for which, after the first stage of inflation and the
elapse of a sufficient amount of cosmic time t for the energy
density to approach m2M2, we have ϕ2 ≃ 2M2, h; h̄≃ 0,
and the scalar fields σ and ϕ̄ take values such that A5 ≃ 0
with jσj ≪ 1. So it is obvious that the system reaches the
semishifted inflationary path in Eq. (9)—note that the
second relation in this equation is equivalent to A5 ¼ 0. It is
remarkable that jϕ̄j, which at the end of the first inflationary
stage is extremely small, manages to attain values of the
order of a few × 10−1 at the onset of the second stage.
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It is worth noticing, however, that the initial values of the
fields which lead to a double inflation scenario, although
quite frequent, do not seem to form well-defined connected
regions. In other words, the solutions of the coupled system
of differential equations exhibit a rather “chaotic” behavior
in the sense that a slight change of the initial conditions
may lead from a double to a single inflation scenario. Note
that a similar situation is encountered [27] even in the
simplest SUSY hybrid inflation scenario, where a slight
change of initial conditions may ruin inflation, leading the
system directly to the vacuum. Such a behavior, given the
multidimensionality of the field space in our case, makes it
very difficult to provide further details concerning the
structure of the space of initial values leading to the
desirable scenario.
For a negligible value of γ, ϕ2 ≃ 2M2, A5 ≃ 0, and

jσj ≪ 1, we find that A1 ≃ 0, A3 ≃ A2 sinh ðϕ̄=
ffiffiffi
2

p Þ,
A4 ≃ A2 cosh ðϕ̄=

ffiffiffi
2

p Þ, A6 ≃ λ sinh ðϕ̄= ffiffiffi
2

p Þ, and the F-term
scalar potential becomes

VF ≃
�
A2
2 þ ðβ þM2ÞA2

2sinh
2
ϕ̄ffiffiffi
2

p

þ 1

2
ðh2 þ h̄2Þðλ2 þ A2

2Þsinh2
ϕ̄ffiffiffi
2

p

− 2hh̄λA2sinh2
ϕ̄ffiffiffi
2

p
�
eM

2þ1
2
ðh2þh̄2Þ ð43Þ

≃h;h̄≃0

M2≪β
m2M2

�
1þ βsinh2

ϕ̄ffiffiffi
2

p
�
: ð44Þ

The expression in Eq. (44) gives approximately the F–term
potential on the semishifted path. Notice the striking
similarity of this expression to the one in Eq. (24) involving
the same parameter β.
From A5 ≃ 0 and the fact that A5 ∝ m tanh ðϕ̄= ffiffiffi

2
p Þ−ffiffiffi

2
p

κϕ tanh ðσ= ffiffiffi
2

p Þ, it follows that the combination of S and
Φ̄, which could remain large when the energy density
approaches m2M2 and plays the role of the complex
inflaton in the second stage of inflation, is

mSþ 2κhΦiΦ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4κ2M2

p ≃ Φ̄; ð45Þ

since the contribution of Φ̄ in this combination is about
2κM=m≃ 650 times bigger than that of S.
From Eq. (43), we can construct the mass-squared matrix

for the h − h̄ system during the second stage of inflation.
We find that the mass eigenstates are given by the
combinations χ1 ¼ ðhþ h̄Þ= ffiffiffi

2
p

and χ2 ¼ ðh − h̄Þ= ffiffiffi
2

p
with masses squared

m2
χ1 ≃ ðλ−mMÞ

�
ðλ− ð1þβÞmMÞsinh2 ϕ̄ffiffiffi

2
p −mM

�
; ð46Þ

m2
χ2 ≃ ðλþmMÞ

�
ðλþð1þβÞmMÞsinh2 ϕ̄ffiffiffi

2
p þmM

�
: ð47Þ

We see that χ1 develops an instability which terminates the
valley along which the second stage of inflation takes place
with the critical value ϕ̄c of the real canonically normalized
inflaton ϕ̄ being approximately determined from the
relation

sinh2
ϕ̄cffiffiffi
2

p ¼ mM
λ

: ð48Þ

To the F-term scalar potential VF during the second stage
of inflation (i.e. for jϕ̄j ≥ jϕ̄cj and jσj < jσcj) has to be
added the following term:

Vh
r ¼ m2M2

�
Nhλ

2

16π2

�

× ln
ðtanh σffiffi

2
p þ ffiffiffi

2
p

κ hϕi
m tanh ϕ̄ffiffi

2
p Þ2

ð1þ 4κ2 M2

m2ÞðmM
λ Þ ; ð49Þ

which may be approximated as

Vh
r ≃m2M2

�
Nhλ

2

16π2

�
ln
λtanh2 ϕ̄ffiffi

2
p

mM
ð50Þ

and corresponds to the dominant one-loop radiative cor-
rections due to the Nh-dimensional supermultiplets H, H̄
(Nh ¼ 2). Notice that the renormalization scale is chosen
such that Vh

r vanishes at jϕ̄j ¼ jϕ̄cj (tanh2ðϕ̄c=
ffiffiffi
2

p Þ≃
sinh2ðϕ̄c=

ffiffiffi
2

p Þ ¼ mM=λ).
The one-loop radiative corrections involving the Φ

supermultiplet are neglected since they are relatively very
small. This is because Φ couples to the combination which
plays the role of the complex inflaton during the second
stage of inflation only through S, and the contribution
of S to this combination is severely suppressed. Indeed,
the slope of the potential along the semishifted path
generated by the radiative corrections involving the Φ
supermultiplet is suppressed relative to the one involving
the H, H̄ supermultiplets by, approximately, a factor
ðNϕ=8NhÞðm=λMÞ2 ∼ 5 × 10−4. This is a very important
property of our model resulting from the fact that, for the
parameters chosen, the semishifted path is almost
perpendicular to the trivial one. So the very strong radiative
corrections on the trivial trajectory, which are controlled by
the strong coupling constant κ and are needed, as we have
seen, for accommodating appreciable values of r, do not
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affect the second stage of inflation. This is very crucial,
since otherwise the semishifted path would become too
steep and there would be no way of generating the extra
e-foldings required for solving the puzzles of hot big bang
cosmology.
The number of e-foldings during the second stage of

inflation between an initial value ϕ̄in and a final value ϕ̄f of
the inflaton ϕ̄ is given, in the slow-roll approximation, by
Nðϕ̄fÞ − Nðϕ̄inÞ, where

Nðϕ̄Þ≃ 1

2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðδh=βÞ

p ln
coshð ffiffiffi

2
p

ϕ̄Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðδh=βÞ

p
coshð ffiffiffi

2
p

ϕ̄Þ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðδh=βÞ

p ;

ð51Þ

with

δh ¼
Nhλ

2

4π2
: ð52Þ

The termination of slow-roll inflation is due to the radiative
corrections in Eq. (50) and takes place at a value ϕ̄f

(jϕ̄f j ≫ jϕ̄cj) of ϕ̄ given by

coshð
ffiffiffi
2

p
ϕ̄fÞ≃ δh

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2h

4

r
: ð53Þ

It turns out numerically that, with the chosen values of
the parameters, the pivot scale k� ¼ 0.05 Mpc−1 suffers
about 13 e-foldings during the first stage of inflation. As a
consequence, approximately another 38–39 e-foldings (for
reheat temperature Tr ¼ 109 GeV) must be provided by the
second inflationary stage, which requires a value of jϕ̄inj≃
0.23 at the onset of this stage. This requirement can indeed
be fulfilled in our numerical example, as we have shown by
extensive numerical studies. It is worth noticing that, due to
the presence of mild but appreciable SUGRA corrections
and not-too-weak radiative corrections, the second stage of
inflation is able to generate a relatively limited number of
e-foldings. Consequently, this number is not too sensitive to
the value of ϕ̄in.
In order to support the statements made above concern-

ing the numerical part of our work, we depict, in Fig. 1, the
evolution of the fields σ and ϕ̄ as functions of the number of
e-foldings N starting from the point where the pivot scale
k� exits the horizon for a particular choice of initial
conditions at this point. Namely, we start with σ ¼ 1.45,
ϕ̄ ¼ 10−3, ϕ ¼ 10−8, h ¼ 10−4, and h̄ ¼ 1.01 × 10−4,
corresponding to an almost D-flat direction. All the fields
are given zero initial velocity except for σ, the velocity of
which is taken to be −1.1074 × 10−6. This is, indeed, the
actual value of the velocity of σ on the trivial path, which
was determined numerically.
We observe that σ assumes values above its critical value

for about 13 e-foldings. Towards the end of the first

inflationary stage, σ oscillates with appreciable amplitude
around zero 4 times. We may consider that, during these
oscillations, the first stage of inflation has not come to an
end. When the amplitude of the oscillations falls below the
critical value of σ, ϕ moves to its value on the semishifted
path and ϕ̄ starts performing slow oscillations with variable
amplitudes typically of order M. The size of ϕ̄ remains
small for about 1.7 e-foldings before starting its growth and
acquires its largest value ≃0.225 at N ≃ 17.7, when the
second inflationary stage may be considered as having
already started. For N ≳ 20, the evolution of ϕ̄ follows
Eq. (51) closely.
If we allow for a stronger running of the scalar

spectral index, we may obtain larger values of r. For
example, taking σ� ¼ 1.35, κ ¼ 1.75, and β ¼ 0.037, we
find M ¼ 3.891 × 10−3, Cðσ�Þ ¼ 2.3479, ϵ ¼ 0.00314,
η ¼ −0.00844, ns ¼ 0.9643, αs ¼ −0.03007, and
r ¼ 0.0502. In addition, we choose m ¼ 3.891 × 10−5,
λ ¼ 0.1, and γ ¼ 10−6. With these choices, the pivot scale
suffers about 10 e-foldings during the first stage of inflation
and, consequently, approximately another 41–42 e-foldings
must be provided by the second stage. This implies that
jϕ̄inj lies in the range 0.38–0.40. We verified numerically
that the fulfillment of this requirement is indeed feasible. In
Fig. 2, we depict the evolution of the fields σ and ϕ̄ as
functions of the number of e-foldings N, again starting
from the point where the pivot scale k� exits the horizon for
a particular choice of initial conditions at this point.
Needless to say, by changing the values of the input

parameters of the model, we can easily achieve successful
solutions with smaller values of the tensor-to-scalar ratio,

FIG. 1 (color online). The evolution of the fields σ and ϕ̄ for
the case with r ¼ 0.0301 versus the number N of e-foldings
after the horizon exit of the pivot scale k�, where we take
σ ¼ 1.45, ϕ̄ ¼ 10−3, ϕ ¼ 10−8, h ¼ 10−4, h̄ ¼ 1.01 × 10−4, and
dσ=dt ¼ −1.1074 × 10−6.
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and there is no particular fine-tuning of the parameters
required in our model.

C. The formation of monopoles and cosmic strings

After the termination of the first stage of inflation, the
system moves towards the semishifted path and the group
SUð2ÞR breaks spontaneously to a Uð1Þ subgroup by the
nonzero value which the field Φ develops. This leads to the
formation of superheavy magnetic monopoles. We can
obtain a rough order-of-magnitude estimate of the mean
distance between the monopoles and the antimonopoles,
which is adequate for our purposes here. We assume that, at
production, this distance is pð2κMÞ−1 as determined by the
relevant Higgs boson mass with p ∼ 1 being a geometric
factor. In the matter-dominated period between the two
inflationary stages, this distance increases by a factor
∼ðκ2M4=m2M2Þ1=3, where κ2M4 and m2M2 are the
classical potential energy densities on the trivial and the
semishifted paths, respectively. The subsequent second
inflationary stage stretches this distance by a factor
expN2, where N2 is the number of e-foldings during this
stage which is large but not huge—cf. Ref. [28]. In the
period of damped oscillations of the inflaton field, the
monopole-antimonopole distance increases by another
factor ∼ðm2M2=cðTrÞT4

r Þ1=3, where Tr is the reheat
temperature, which we take to be 109 GeV, and
cðTÞ ¼ π2gðTÞ=30, with gðTÞ being the effective number
of massless degrees of freedom at cosmic temperature T. In
the radiation-dominated period which follows reheating,
the monopole-antimonopole distance is multiplied by
another factor ∼Tr=T ∼ ð4cðTÞ=3Þ1=4Tr

ffiffi
t

p
, where t is the

cosmic time. So this distance, in the radiation-dominated
period, becomes

∼
�
4

3

�1
4

cðTrÞ−1
3cðTÞ14pð2κMÞ−1eN2

�
κ2M4

T4
r

�1
3

Trt
1
2: ð54Þ

Equating this distance with the postinflationary particle
horizon ∼2t, we find the time tH (in tP ≡m−1

P ≃ 2.7027 ×
10−43 sec units) at which the monopoles enter this horizon:

tH ∼
p2

8
ffiffiffi
3

p cðTrÞ−2
3cðTHÞ12e2N2

�
M
κTr

�2
3

. ð55Þ

Here TH is the cosmic temperature at cosmic time tH.
The formation of monopoles is not the whole story,

though, since our scenario leads to the generation of cosmic
strings too. Indeed, after the end of the second inflationary
stage, the system settles in one of the two distinct continua
of SUSY vacua in Eqs. (3) and (4) with Φ� ≃�M in our
case, and a linear combination of the Uð1ÞB−L gauge
symmetry and the unbroken Uð1Þ subgroup of SUð2ÞR
breaks spontaneously, leading to the production of local
cosmic strings. These strings, if they survived after recom-
bination, could have a small contribution to the CMBR
power spectrum parametrized [29] by the dimensionless
string tension Gμs, where G is Newton’s gravitational
constant and μs is the string tension, i.e. the energy per
unit length of the string. Applying to our case the results of
Ref. [29], which considered local strings within the Abelian
Higgs model in the Bogomol’nyi limit, we write, for the
string tension,

μs ¼ 4πjhHij2; ð56Þ

where hHi is the VEV of H. Although the strings in our
model are more complicated than in the Bogomol’nyi limit
of the Abelian Higgs model, we think that the above
estimate for the string tension is good enough for our
purposes here.
In our case, the strings decay well before recombination,

and thus do not affect the CMBR. The reason is that they
are mostly open strings connecting monopoles to antimo-
nopoles. This is easily understood if we realize that the
breaking of SUð2ÞR ×Uð1ÞB−L toUð1ÞY by hHi and hH̄i is
similar to the breaking of the electroweak gauge group and
thus cannot lead to any topologically stable monopoles or
strings—see Ref. [30] for a more detailed argument. It can
only lead to the existence of topologically unstable dumb-
bell configurations [31] consisting of an open string with a
monopole and an antimonopole at the two ends.
The strings, at any given time after their formation, can

be thought of as random walks with a step of the order of
the particle horizon [32]—to describe the evolution of this
string network, we will follow closely this reference.
They typically connect monopoles to antimonopoles, but

FIG. 2 (color online). The evolution of the fields σ and ϕ̄ for
the case with r ¼ 0.0502 versus the number N of e-foldings
after the horizon exit of the pivot scale k�, where we take
σ ¼ 1.35, ϕ̄ ¼ 10−3, ϕ ¼ 10−8, h ¼ 9 × 10−4, h̄ ¼ 9.01 × 10−4,
and dσ=dt ¼ −1.8523 × 10−6.
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unstable closed strings of limited size may also exist. As
shown in Ref. [32], at all times before the entrance of the
monopoles into the horizon, there is of the order of 1 string
segment per horizon, and thus, the ratio of the energy
density ρsðtÞ of the string network to the total energy
density ρtotðtÞ of the Universe remains practically constant.
At cosmic time tH, we have approximately one monopole-
antimonopole pair per horizon volume ∼ð4π=3Þð2tHÞ3
connected by an almost straight string segment of the size
of the horizon and energy ∼μs2tH. The energy density
ρsðtHÞ of the strings at cosmic time tH is then ∼3Gμs=2t2H.
After this time, more and more string segments enter the
horizon, but the length of each segment remains constant.
Consequently, the system of string segments behaves like
pressureless matter, and thus ρsðtÞ ∼ 3Gμs=2ðtHt3Þ1=2,
which implies that the “relative string energy density”

ρsðtÞ
ργðtÞ

∼ 2Gμs

�
t
tH

�1
2 ð57Þ

[ργðtÞ is the photon energy density] increases with time—
remember that we are in the radiation-dominated era of the
Universe, and thus ρtotðtÞ ¼ ργðtÞ ¼ cðTÞT4 ¼ 3=4t2. The
strings, finally, decay at cosmic time [33]

td ∼ ðΓGμsÞ−12tH; ð58Þ

where Γ ∼ 50, by emitting gravitational waves with energy
density ρgwðtdÞ at production given by

ρgwðtdÞ
ργðtdÞ

∼ 2

�
2

Γ

�1
2ðGμsÞ12; ð59Þ

as one can infer from Eq. (57). Note that this formula also
gives the maximal relative string energy density.
From Eq. (55), where we substitute the lowest value of

the number of e-foldings N2 and take p ¼ 2, we find that,
for the two numerical examples presented, tH ∼ 4.76 ×
10−7 sec and 1.04 × 10−4 sec, respectively. In deriving
these values, we take gðTrÞ ¼ 228.75, which corresponds
to the spectrum of the minimal SUSY SM, and gðTHÞ ¼
40.75 and 10.75 in our two numerical examples, respec-
tively. The above values of gðTHÞ are consistent with the
effective number of massless degrees of freedom at the
cosmic temperatures TH corresponding to the values of
the cosmic time tH obtained. We see that the strings enter
the horizon well before the time of big bang nucleosyn-
thesis. Their decay time is td ∼ 5.97 × 10−2 sec and
5.49 sec in the two cases, as one can find from the
corresponding dimensionless string tensions

Gμs ¼
jhHij2

2
≃mM

2λ
≃ 3.19 × 10−7 and 7.57 × 10−7:

ð60Þ

This means that the cosmic strings decay around the time
of nucleosynthesis, and thus, well before recombination,
which takes place at a cosmic time ∼1013 sec. As a
consequence, they do not affect the CMBR. Their maximal
relative energy density in the Universe is ∼2.26 × 10−4 and
3.48 × 10−4 for our two numerical examples. So the cosmic
strings remain always subdominant. In particular, they do
not disturb nucleosynthesis at all.
Had the strings been around until the present time, an

upper bound would have to be imposed on the dimension-
less string tension in order to keep their contribution to the
CMBR power spectrum at an acceptable level. For the
Abelian-Higgs field theory model, this bound is found to
be [34]

Gμs ≲ 3.2 × 10−7: ð61Þ

In our first numerical example, the dimensionless string
tension Gμs given in Eq. (60) almost saturates the upper
bound in Eq. (61), but it violates the recent more stringent
upper bound [35]

Gμs ≲ 3.3 × 10−8 ð62Þ

from pulsar timing arrays, which also holds for strings
surviving until the present time. Our second numerical
example violates both the bounds in Eqs. (61) and (62).
Thus, both our examples are only possible because the
strings decay sufficiently early.
The value of the ratio of the energy density of the

gravitational waves produced by the strings to that of the
photons at the present cosmic time t0 is found from Eq. (59)
to be—cf. Ref. [36]—

ρgwðt0Þ
ργðt0Þ

∼ 2

�
2

Γ

�1
2ðGμsÞ12

�
3.9
10.75

�4
3

: ð63Þ

The present abundance of these gravitational waves is then
given by

Ωgwh2ðt0Þ ∼
�
ρgwðt0Þ
ργðt0Þ

��
ργðt0Þ
ρcðt0Þ

�
h20; ð64Þ

where ρcðt0Þ is the present critical energy density of the
Universe and h0 ≃ 0.7 the present value of the Hubble
parameter in units of km sec−1 Mpc−1. We find that, for our
two numerical examples, Ωgwh2ðt0Þ ∼ 2.18 × 10−9 and
3.35 × 10−9, respectively. The frequency fðtdÞ of these
gravitational waves at production must be ∼t−1H , since the
length of the decaying strings is ∼2tH—see Ref. [33]. The
present value of this frequency is then

fðt0Þ ∼ t−1H

�
td
teq

�1
2

�
teq
t0

�2
3

; ð65Þ
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where teq is the equidensity time at which matter starts
dominating the Universe. For the two numerical examples,
this frequency turns out to be ∼1.06 × 10−4 Hz and
4.68 × 10−6 Hz, respectively. Note that the estimate of the
frequencies and abundances of the gravity waves presented
here cannot bemademuchmore accurate, but it can certainly
be considered good enough for our purposes.
We see that the predicted frequencies of the gravitational

waves are too high to yield any restrictions from CMBR
considerations [36]. They are also well above the range of
frequencies probed by the pulsar timing array observations
[37]. So, the most recent stringent bound [35] from these
observations does not apply to our case. However, the
frequency of the gravitational waves in our first numerical
example lies marginally within the range to be probed by
the future space-based laser interferometer gravitational-
wave observatories such as the evolved laser interferometer
space antenna/new gravitational-wave observatory (eLISA/
NGO) [38], which is expected to be able to detect values of
Ωgwh2ðt0Þ as low as 4 × 10−10. Our overall conclusion is
that the monopole-string system disappears without caus-
ing any trouble, but the gravitational waves that it generates
may be probed by future space-based laser interferometer
observations.

IV. CONCLUSIONS

In view of the recent results [20,21] indicating that
appreciable values of the tensor-to-scalar ratio in the
CMBR cannot be excluded, we addressed the question
whether such values can be obtained in SUSY hybrid
inflation models resulting from particle physics. To this
end, we have considered a reduced version of the extended
SUSY PS model of Ref. [9], which was initially constructed
for solving the b-quark mass problem of the simplest SUSY
PSmodelwith universal boundary conditions. The reason for
focusing on this model is that it is known to support
successful versions of hybrid inflation like the standard-
smooth one [16]. This scenario is compatible with all the
recent data evenwith aminimalKähler potential, but predicts
negligible values of the tensor-to-scalar ratio.

In the context of this particular particle physics model,
we demonstrated that a two-stage hybrid inflationary
scenario which can predict values of the tensor-to-scalar
ratio of the order of a few × 10−2 can be constructed. For
the values of the parameters considered in this paper, the
model in the global SUSY limit possesses practically two
classically flat directions, the trivial and the semishifted
[25] one. The SUGRA corrections to the potential stabilize
the trivial flat direction so that it becomes able to support a
first stage of inflation. All the cosmological scales exit the
horizon during this inflationary stage, and our present
horizon undergoes a limited number of e-foldings. The
tensor-to-scalar ratio can acquire appreciable values as a
result of sufficiently mild (i.e. noncatastrophic), but still
appreciable, SUGRA corrections combined with strong
radiative corrections to the inflationary potential, while the
value of the scalar spectral index remains acceptable. We
can obtain values of the tensor-to-scalar ratio up to about
0.05. Larger values would require unacceptably large
running of the scalar spectral index.
The additional number of e-foldings required for

solving the standard problems of hot big bang cosmology
are generated by a second inflationary stage taking place
along the semishifted path, where Uð1ÞB−L is unbroken.
This is possible since the semishifted direction, being
almost orthogonal to the trivial path, is not affected by the
strong radiative corrections on the trivial path, and also
because the SUGRA corrections on the semishifted path
remain mild.
At the end of the first inflationary stage, the group

SUð2ÞR breaks spontaneously to aUð1Þ subgroup, and thus
magnetic monopoles are formed. The subsequent sponta-
neous breaking of a linear combination of this Uð1Þ and
Uð1ÞB−L at the end of the second inflationary stage leads to
the production of cosmic strings connecting these monop-
oles to antimonopoles. At later times, the monopoles enter
the horizon and the string-monopole system decays into
gravity waves well before recombination without leaving
any trace in the CMBR. The resulting gravity waves,
however, may be measurable in the future.
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