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We derive for the first time the growth index of matter perturbations of the Friedmann-Lemaître-
Robertson-Walker (FLRW) flat cosmological models in which the vacuum energy depends on redshift. A
particularly well-motivated model of this type is the so-called quantum field vacuum, in which, apart from a
leading constant term Λ0, there is also an H2 dependence in the functional form of the vacuum, namely,
ΛðHÞ ¼ Λ0 þ 3νðH2 −H2

0Þ. Since jνj ≪ 1, this form endows the vacuum energy of a mild dynamics
which affects the evolution of the main cosmological observables at the background and perturbation
levels. Specifically, at the perturbation level, we find that the growth index of the running vacuum
cosmological model is γΛH

≈ 6þ3ν
11−12ν, and thus it nicely extends analytically the result of the ΛCDM model,

γΛ ≈ 6=11.
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I. INTRODUCTION

Over the last two decades, studies in cosmology strongly
indicate that we are living in a spatially flat Universe that
contains ∼4% baryonic matter, ∼26% dark matter, and
∼70% of some sort of dark energy (DE) endowed with large
negative pressure. TheDEcomponent plays avital role in the
cosmic history because it provides the necessary theoretical
platform toward describing the accelerated expansion of the
Universe (see Refs. [1,2] and references therein).
Although there is a general agreement concerning the

main ingredients of the Universe, there are different pro-
posals regarding the underlying physics which triggers the
late cosmic acceleration. In fact, the unknown nature of DE,
which challenges the foundations of theoretical physics, has
given rise to aplethoraof cosmologicalmodels.Themajority
of such scenarios is based either on the existence of new
fields in nature or in some modification of the theory of
gravity (for review, seeRef. [3])with the present accelerating
epoch appearing as a sort of geometric effect.
An alternative avenue that one can follow in order to

explain the cosmic acceleration as well as to overcome, or
at least to alleviate, the various cosmological puzzles is to
consider a running vacuum ΛðHÞ. The idea was proposed
some time ago [4–8], and it might be the seed of future
important developments of cosmology at a more funda-
mental level—see, e.g., Refs. [9,10] for a review. This
point of view is quite general and can be applied to the
entire history of the Universe, including inflation and the
“graceful exit” problem in the early Universe [11]. In this

context, we do not need to introduce new fields in the
analysis nor modify the theory of standard gravity [General
Relativity (GR)]. In this cosmic ideology, the DE equation
of state parameterw≡ PDE=ρDE is by definition identical to−1, but the vacuum energy density is a function of time.
Notice that there is an extensive body of old literature on
purely phenomenological models in which the cosmologi-
cal term is a function of time [12–17] and a more recent
series of works in which there is an attempt to connect the
time evolution with fundamental aspects of quantum field
theory (QFT) in curved spacetime, which include the
aforementioned references on running vacuum and others
such as Refs. [18–26]. In this extensive body of literature,
the time-evolving vacuum has been phenomenologically
explored as a function of time in various possible ways,
and in the more formal QFT approach, it has been mainly
investigated as a possible function of the Hubble parameter.
The latter is the basis for what we will refer to as the
quantum field vacuum model, in which Λ ¼ ΛðHÞ and on
which we shall mainly concentrate here.
To test the above cosmological possibilities, it has been

proposed that the so-called growth index, γ, of matter
perturbations [27] can be used as an observational tool to
discriminate between modified gravity models and scalar
field DE models which obey general relativity. Nowadays,
the accurate estimation of γ is considered one of the most
basic tasks in cosmological studies. Not surprisingly, it has
become traditional to study, for each proposed cosmologi-
cal model, its background expansion as well as the growth
index of matter perturbations, as in this way one may get an
impression of the main cosmological and astrophysical
consequences of the model. For example, it has been found
that for those DE models based on GR and characterized by
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a constant equation of state parameter, the asymptotic value

of the growth index is γ ≃ 3ðw−1Þ
6w−5 [28–31]. Obviously, for

the concordance ΛCDM model (w ¼ −1), we recover the
nominal value, namely, γ ≈ 6=11. As far as the modified
gravity models are concerned, the situation is as follows. In
the case of the braneworld gravity of Ref. [32], we have
γ ≈ 11=16 (see Refs. [30,33–35]); for some fðRÞ gravity
models, it has been found that γ ≃ 0.415 − 0.21z for
various parameter values (see Refs. [36,37]); and finally
for the Finsler-Randers cosmological model, Basilakos and
Stavrinos [38] have shown that γ ≈ 9=14.
In this work, we wish to investigate the growth index of

the running vacuum model ΛðHÞ ¼ Λ0 þ 3νðH2 −H2
0Þ.

The denomination of running is related to the fact that it can
be motivated within the context of QFT in curved spacetime
and specifically from the point of view of the renormaliza-
tion group approach [4–8]; see Refs. [10] and [9] for recent
reviews and references therein. This running vacuummodel
generalizes the traditional ΛCDMmodel at the background
level and can be put to the test. Currently, the value of the
dimensionless free parameter ν is observationally allowed
to be in the ballpark of jνj ∼Oð10−3Þ [18–21,23–26]. From
its theoretical interpretation [namely, as being the coeffi-
cient of the β function of the running ΛðHÞ], it is a natural
value, which in addition fits in with the existing theoretical
estimates [7,9].
To the best of our knowledge, we are unaware of any

previous analysis of this kind applied to dynamical vacuum
models, and for this reason we consider that it can be of
theoretical interest, and maybe we can also extract some
practical consequences.
The structure of the article is as follows. Initially in

Sec. II, we briefly present the background cosmological
equations. The basic theoretical elements of the linear
growth are discussed in Sec. III, while in Sec. IV, we
provide the growth index analysis in the case of the running
vacuum. In Sec. IV, we compare different γðzÞ paramet-
rizations, and, finally, in Sec. V, we provide some dis-
cussion and finish with our main conclusions.

II. BACKGROUND EVOLUTION

The physics of the dynamical vacuum model under
consideration is based on the renormalization group (RG)
in QFT according to the aforementioned references. Within
this framework, the evolution of the vacuum in the current
epoch is given by

ΛðHÞ ¼ Λ0 þ 3νðH2 −H2
0Þ; ð2:1Þ

where Λ0 ≡ ΛðH0Þ ¼ 3ΩΛ0H2
0 and ν is provided in the RG

context as a β-function which determines the running of the
cosmological ‘constant’ within QFT in curved spacetime
[9]. The value of ν is estimated through the upper bound
jνj ≲ 1=ð12πÞ≃ 2.6 × 10−2, which is approximate and is

valid as an order of magnitude. It ensues from assuming
that the effective masses of the heaviest particles involved
in the loops for calculating the β function is of the order of
the Planck mass [4,18,19], but in general it is not
completely fixed. If there is a large multiplicity of heavy
particles at a grand unified scale below the Planck mass, it
could as well stay of the order 10−2. Notice that the
observational bound on ν depends on the particular
implementation of the model (2.1), namely, on whether,
e.g., the vacuum exchanges energy with matter or not. In
the simplest cases, the natural theoretical estimate yields
ν ¼ 10−5 − 10−3 (see Solà’s Ref. [7] for details), and in
these cases, ν is generally significantly smaller than the
original upper bound. At the same time, using cosmological
data, it has been found that jνj ¼ Oð10−3Þ [20,21,23–26],
which is in agreement with the aforementioned theoretical
expectations. Let us, however, point out that in models in
which matter and DE are self-conserved, the observational
limits are weaker, and they tolerate the order of magnitude
ν ∼ 10−2 from the original estimate, as shown in the recent
work [39].
Dynamically speaking, since jνj ≪ 1 in all theoretical

implementations, it is easy to check that prior to the present
epoch the low-energy behavior of the model tends to the
usual ΛCDM model, but it is by no means identical (for a
recent review, see Refs. [10,25] and references therein).
Considering Eq. (2.1), let us now focus on the derivation

of the Friedmann equations. Such a proceduce is perfectly
allowed by the cosmological principle embedded in the
FLRW metric. Namely, the Λ term may perfectly evolve
with the cosmic expansion, meaning that ultimately evolves
with the cosmic time, t, but in general it depends on an
intermediate variable, which in our case is the Hubble
function, H ¼ _a=a, where aðtÞ is the scale factor and the
overdot denotes a derivative with respect to t. The corre-
sponding generalization of the Friedmann equations reads

8πGρtot ≡ 8πGρm þ ΛðHÞ ¼ 3H2; ð2:2Þ

8πGPtot ≡ 8πGPm − ΛðHÞ ¼ −2 _H − 3H2; ð2:3Þ

where the total energy density is ρtot ¼ ρm þ ρΛ (with ρΛ ¼
Λ=8πG the vacuum component of it) and Ptot ¼ Pm þ PΛ
is the total pressure. For the matter-dominated epoch, and
of course also in our days, ðPm; PΛÞ ¼ ð0;−ρΛÞ, where the
dynamical character of the vacuum does not alter the usual
equation of state that it satisfies. This is an important point
to remark. In fact, this observation explains why the
dynamics of the vacuum entails a corresponding modifi-
cation of the local energy conservation for matter at fixed
G. The outcome is that matter must exchange energy with
the vacuum in order to fulfill the Bianchi identity, and this
translates into the following generalized conservation law
involving both matter and vacuum energy densities:
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_ρm þ 3Hρm ¼ − _ρΛ: ð2:4Þ

This equation is actually not independent of (2.2) and (2.5),
and therefore, using any two of them, it is easy to derive the
equation of motion for the Hubble rate:

_H þ 3

2
H2 ¼ 4πGρΛ ¼ ΛðHÞ

2
: ð2:5Þ

From (2.5) and the vacuum model equation (2.1), we are
able to determine the explicit form of H as a function of
time,

HðtÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ0 − ν

1 − ν

r
coth

�
3

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩΛ0 − νÞð1 − νÞ

p
t

�
;

ð2:6Þ

where ΩΛ0 ¼ 1 −Ωm0 and H0 is the Hubble constant.
Utilizing H ¼ _a=a, the cosmic time, tðaÞ, follows:

tðaÞ ¼ 2

3H0

sinh−1
� ffiffiffiffiffiffiffiffiffiffi

ΩΛ0−ν
Ωm0

q
a3ð1−νÞ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩΛ0 − νÞð1 − νÞp : ð2:7Þ

Inverting Eq. (2.7), we easily determine the scale factor
a ¼ aðtÞ. Therefore, inserting Eq. (2.7) into Eq. (2.6), we
arrive at

E2ðaÞ≡H2ðaÞ
H2

0

¼ ~ΩΛ0 þ ~Ωm0a−3ð1−νÞ; ð2:8Þ

where we have rescaled

~Ωm0 ≡ Ωm0

1 − ν
; ~ΩΛ0 ≡ ΩΛ0 − ν

1 − ν
: ð2:9Þ

Notice that for ν ¼ 0 all the above formulas correctly
reduce to the standard ones for the ΛCDM, and the rescaled
parameters become the ordinary ones, ~Ωi0 → Ωi0.
Moreover, whether in rescaled form or not, the cosmo-
logical parameters obey the standard cosmic sum rule,
namely, ~Ωm0 þ ~ΩΛ0 ¼ 1 ¼ Ωm0 þΩΛ0.
Regarding the matter evolution, from Eqs. (2.2) and

(2.3), we find _H ¼ −4πGρm, and combining the latter with
Eqs. (2.1) and (2.4), we obtain a differential equation for
the matter density: _ρm þ 3Hρm ¼ 3νHρm. Integrating it
(using _ρm ¼ aHdρm=da), we find

ρmðaÞ ¼ ρm0a−3ð1−νÞ: ð2:10Þ

Notice that ρm0 is the matter density at the present time
(a ¼ 1), and therefore Ωm0 ¼ ρm0=ρc0, where ρc0 ¼
3H2

0=8πG is the current critical density. As expected, we
recover the standard matter conservation law ρm ∼ a−3 only

for ν ¼ 0. However, thanks to ν ≠ 0, we can have a mild
dynamical vacuum evolution; see Eq. (2.1).
Defining ΩmðaÞ≡ ρmðaÞ=ρcðaÞ, it is easy to obtain,

with the aid of Eqs. (2.10) and (2.8),

ΩmðaÞ ¼
Ωm0a−3ð1−νÞ

E2ðaÞ : ð2:11Þ

For convenience, we also define

~ΩmðaÞ ¼
~Ωm0a−3ð1−νÞ

E2ðaÞ ¼ ΩmðaÞ
1 − ν

: ð2:12Þ

Differentiating Eq. (2.12) and utilizing (2.8), we find that

d ~Ωm

d ln a
¼ −3ð1 − νÞ ~ΩmðaÞ½1 − ~ΩmðaÞ�: ð2:13Þ

Subsequently, upon substituting Eq. (2.10) into Eq. (2.4)
and integrating once more in the scale factor variable, we
are led to the evolution of the vacuum energy density:

ρΛðaÞ ¼ ρΛ0 þ
νρm0

1 − ν
½a−3ð1−νÞ − 1�: ð2:14Þ

Once more for ν ¼ 0, the cosmological solutions of the
running vacuum model under study boil down to the
concordance ΛCDM cosmology, and in this case, ρΛ ¼
ρΛ0 at all times.
Finally, the observational viability of the current vacuum

model has been tested previously, and in the most recent
analysis provided in Gómez-Valent et al. [23], it is found
that ðΩm; νÞ ¼ ð0.282� 0.012; 0.0048� 0.0032Þ (see also
Table 1 in Ref. [25]). For the rest of the paper, we shall
take this result as the basis for our estimates. Notice that,
due to the rescaling [see the first equality of (2.9)], we have
~Ωm0 ¼ 0.283� 0.012. Recall that for the concordance Λ

model, (ν ¼ 0) ΩðΛÞ
m0 ¼ 0.291� 0.011, which is in agree-

ment with the recent Planck 2015 results [2].

III. LINEAR GROWTH

In this section, we concentrate on the basic linear
equation that governs the evolution of the matter perturba-
tions. Following Refs. [16,20,23], we write the following
equation for the matter density contrast D≡ δρm=ρm:

D̈þ ð2H þQÞ _D − ð4πGρm − 2HQ − _QÞD ¼ 0; ð3:1Þ
whereQðtÞ ¼ −_ρΛ=ρm. For a formal proof of this equation in
relativistic cosmology, see Refs. [22,23]. It assumes that the
DE perturbations are very small and that the divergence of
the perturbed matter velocity is also negligible. Obviously,
the running vacuum energy still affects the growth factor
through the function QðtÞ, and therefore it affects the back-
ground evolution of the matter perturbations.
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In this context, we can rewrite the homogeneous form
of Eq. (3.1) in terms of the scale factor (using d=dt ¼
aHðaÞd=da) as follows:

a2
d2D
da2

þ
�
3aþ a

d lnH
d ln a

þ aQ
H

�
dD
da

¼
�
3

2
Ωm −

2Q
H

−
a
H
dQ
da

�
D

¼
�
3

2
ð1 − νÞ ~Ωm −

2Q
H

−
a
H
dQ
da

�
D; ð3:2Þ

where

d lnH
d ln a

¼ d lnE
d ln a

¼ −
3

2
ð1 − νÞ ~ΩmðaÞ; ð3:3Þ

QðaÞ
HðaÞ ¼ −

_ρΛðaÞ
HðaÞρmðaÞ

¼ 3ν ð3:4Þ

and

a
HðaÞ

dQ
da

¼ −
9

2
νð1 − νÞ ~ΩmðaÞ: ð3:5Þ

Notice, that, in order to derive the above expressions, we
have utilized Eqs. (2.8)–(2.14). The growing mode solution
of Eq. (3.2) is written as (for more details, see Ref. [20])

DðaÞ ¼ C1a
9ξ−4
2 EðaÞF

�
1

3ξ
þ 1

2
;
3

2
;
1

3ξ
þ 3

2
;−

~ΩΛ0

~Ωm0

a3ξ
�
;

ð3:6Þ

where ξ ¼ 1 − ν, C1 is an integration constant to be
constrained by an initial condition and F is the hyper-
geometric function [40].
Of course for the concordance ΛCDM model [ν ¼ 0 or

QðtÞ ¼ 0], Eq. (3.2) reduces to the standard perturbation
equation, a solution of which is (see Refs. [27,41])

DΛðaÞ ¼
5Ωm0EðaÞ

2

Z
a

0

dx
x3E3ðxÞ : ð3:7Þ

IV. GROWTH INDEX

For any type of dark energy, a useful parametrization of
the matter perturbations is based on the growth rate of
clustering [27]. In our framework, the natural parametriza-
tion is1

fðaÞ ¼ d lnD
d ln a

≃ ~Ωγ
mðaÞ; ð4:1Þ

with ~ΩmðaÞ defined in Eq. (2.12). The exponent γ is the so-
called growth index (see Refs. [28–31,41,42]), and it plays
an important role in cosmological studies as we discussed
in the Introduction. Inserting the first equality of (4.1) into
Eq. (3.2), we derive after some calculations

df
d ln a

þ
�
2þ Q

H
þ d lnH

d ln a

�
f þ f2

¼ 3ð1 − νÞ ~Ωm

2
−
2Q
H

−
a
H
dQ
da

ð4:2Þ

or

df
d ln a

þ
�
1

2
þ 3

2
ð1 − νÞ ~ΩΛ þ 9ν

2

�
f þ f2

¼ 3ð1 − νÞ ~Ωm

2
− 6νþ 9νð1 − νÞ

2
~Ωm; ð4:3Þ

where ~ΩΛðaÞ≡ 1 − ~ΩmðaÞ. At this point, it is interesting to
mention that there have been many theoretical speculations
concerning the functional form of the growth index, and
indeed various candidates have been proposed in the
literature. In this work, we phenomenologically parame-
trize γðaÞ by the following general relation [43]:

γðaÞ ¼ γ0 þ γ1yðaÞ: ð4:4Þ

In other words, Eq. (4.4) can be seen as a first-order Taylor
expansion around some cosmological function yðaÞ. The
following options have been considered in the literature:
ωðaÞ ¼ ln ~ΩmðaÞ (hereafter Γ0 parametrization: Ref. [44]),
aðzÞ (hereafter Γ1 parametrization: Ref. [45]), and z
(hereafter Γ2 parametrization: Ref. [46]). Below, we briefly
present various forms of γðaÞ for the running vacuum
model in these various parametrizations.

A. Γ0 parametrization

In this parametrization, we use yðaÞ ¼ ω ¼ ln ~ΩmðaÞ.
Obviously, for z ≫ 1, namely, ~ΩmðaÞ → 1 (or ω → 0), the
asymptotic value of the growth index becomes γ∞ ≈ γ0.
Steigerwald et al. [44] proposed a general mathematical
treatment [see their Eqs. (5)–(12)]2 which provides

1In the running vacuum model (2.1), one may check from
(2.11) that, at large redshifts z ≫ 1, ΩmðzÞ ∼ 1 − ν. Therefore, if
the growth rate of clustering is modeled as a power law, then it is
more appropriate to use fðaÞ≃ ~ΩmðzÞγ , because for z ≫ 1 we
achieve the correct normalization ~ΩmðzÞ ∼ 1.

2The methodology of Steigerwald et al. [44] can be applied to
the framework of γðaÞ ¼ P

N
n¼0 γn

ωnðaÞ
n! . However, for the purpose

of our study, we restrict our analysis to N ¼ 1. We would like to
point that Eqs. (3) and (5) of Steigerwald et al. [44] have a typo.
Indeed, one has to replace there the quantity 1þ νH with 2νH .
Notice, however, that this typo does not alter our results because
in our case the coefficient νH is a constant [see Eq. (4.12)] which
implies that Nn ¼ 0; see Eq. (4.11).
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compact analytic formulas for the coefficients γ0 and γ1.
These authors start from the fact that for a large family of
dark energy models (including those of modified gravity)
the linear differential equation of the matter perturbations
takes on the form

D̈þ 2νHH _D − 4πGμρmD ¼ 0: ð4:5Þ

Naturally, any modification to the Friedmann equation and
to the theory of gravity is included in the quantities νH and
μ. For the nominal scalar field dark energy which adheres to
general relativity, we have νH ¼ μ ¼ 1, while for modified
gravity models, we get νH ¼ 1 and μ ≠ 1. Notice that for
the latter cases we have ~ΩmðaÞ≡ΩmðaÞ by definition. In
the following, we will determine the precise relation
between the generic coefficients ðνH; μÞ and our vacuum
parameter ν.
To start with, we expect that if we allow interactions

in the dark sector, then, in general, the cosmological
quantities ðνH; μÞ are different from unity. Furthermore,
if the matter component evolves differently from the usual
power law a−3, one may expect that the quantity ΩmðaÞ ¼
ρmðaÞ=ρcðaÞ is slightly different from ~ΩmðaÞ as defined in
Eq. (2.12). For example, in our case, due to Eqs. (2.12) and
the first equality of (4.1), one can write Eq. (4.5) as follows:

df
d ln a

þ
�
2νH þ d lnH

d ln a

�
f þ f2 ¼ 3~μ ~Ωm

2
; ð4:6Þ

where ~μ≡ μð1 − νÞ. Similar to Ref. [44], let us transform
Eq. (4.6) as

dω
d ln a

�
γ þ ω

dγ
dω

�
þ eωγ þ 2νH þ d lnH

d ln a
−
3

2
~μeωð1−γÞ ¼ 0;

ð4:7Þ

where we have set ω ¼ ln ~ΩmðaÞ. Within the mathematical
framework of Ref. [44], one finds

γ0 ¼
3ðM0 þM1Þ − 2ðH1 þ N1Þ

2þ 2X1 þ 3M0

ð4:8Þ

and

γ1 ¼ 3
M2 þ 2M1B1ð1 − y1Þ þM0B2ð1 − y1;−y2Þ

2ð2þ 4X1 þ 3M0Þ

− 2
B2ðy1; y2Þ þ X2γ0 þH2 þ N2

2ð2þ 4X1 þ 3M0Þ
: ð4:9Þ

The following quantities have been defined:

Xn ¼
dnðdω=d ln aÞ

dωn

				
ω¼0

; Mn ¼
dn ~μ
dωn

				
ω¼0

ð4:10Þ

and

Nn ¼
dnνH
dωn

				
ω¼0

; Hn ¼
dnðd lnH=d ln aÞ

dωn

				
ω¼0

;

ð4:11Þ

with d0

dω0 ≡ 1. Also, B1;2 are the Bell polynomials of first
and second kinds, namely, B1ðy1Þ ¼ y1 and B2ðy1; y2Þ ¼
y21 þ y2. According to Steigerwald et al. [44] [see
their Eq. (10)], the pair ðy1; y2Þ is equal to ðγ0; 0Þ,
implying B1ð1 − y1Þ ¼ 1 − γ0, B2ðy1; y2Þ ¼ γ20, and
B2ð1 − y1;−y2Þ ¼ ðγ0 − 1Þ2.
For the current running vacuum model, the quantities νH

and ~μ can be easily identified on comparing Eq. (4.2) with
Eq. (4.6), and we find

νH ¼ 1þ Q
2H

¼ 1þ 3

2
ν ð4:12Þ

and

~μ ¼ 1 − ν −
4Q

3 ~ΩmH
−

2a

3 ~ΩmH

dQ
da

¼ 1 − ν −
4ν
~Ωm

þ 3νð1 − νÞ; ð4:13Þ

where in the derivation of the second equalities we have
used Eqs. (3.4) and (3.5). Then, based on Eqs. (2.13), (3.3),
(4.12), and (4.13), we obtain

fM0;M1;M2; N1; N2g ¼ f1 − 2ν − 3ν2; 4ν;−4ν; 0; 0g

fX1;H1g ¼ fX2;H2g ¼


3ð1 − νÞ;− 3ð1 − νÞ

2

�
;

and thus

γ0 ¼
6þ 3νð1 − 3νÞ
11 − 3νð4þ 3νÞ ð4:14Þ

γ1 ¼ 3
−4νþ 8νð1 − γ0Þ þ ð1 − 2ν − 3ν2Þðγ0 − 1Þ2

2½2þ 12ð1 − νÞ þ 3ð1 − 2ν − 3ν2Þ�

−
2γ20 þ 6ð1 − νÞγ0 − 3ð1 − νÞ

2½2þ 12ð1 − νÞ þ 3ð1 − 2ν − 3ν2Þ� : ð4:15Þ

If we take the aforementioned fitting value ν ¼ 0.0048
from Ref. [23], we find ðγ0; γ1Þ ¼ ð0.5496;−0.009Þ.
Inserting ν ¼ 0 into Eqs. (4.14) and (4.15) we recover
the ΛCDM pair ðγ0; γ1Þ ¼ ð 6

11
;−0.00729Þ as it should [44].

Lastly, since ν is of the order of Oð10−3Þ [20,21,23], it is
safe to neglect high-order terms of ν from Eq. (4.14). In that
case, the asymptotic value of the growth index becomes
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γ∞ ≈ γ0 ¼
6þ 3ν

11 − 12ν
≃ 6

11

�
1þ 35

22
ν

�
; ð4:16Þ

where γ∞ ≈ ½γðaÞ� ~Ωm¼1.
In the upper panel of Fig. 1, we show the asymptotic

value of the growth index as a function of ν (solid curve),
where the ν parameter lies in the theoretical interval
½− 1

12π ;
1

12π�, which implies that γΛH
∈ ½0.5235; 0.5678�. In

the lower panel of Fig. 1, we present the relative deviation
½1 − γΛH

=γΛ�% of the growth index with respect to
γΛ ≈ 6=11. We observe that for negative values of ν the
asymptotic value of the growth index becomes less than
6=11 (the opposite holds for positive values). This deviation
can reach ∼� 5% when we attain the aforementioned
theoretical upper bound of ν ¼ �1=12π ≃�0.026. These
features can be easily understood from the approximate
formula on the rhs of Eq. (4.16). As advanced in Sec. 2,
there are DE models based also on Eq. (2.1) and general-
izations there (cf. Ref. [39]) in which the observational
limits lie at the border of the upper theoretical bound, so in
general we can say that ∼5% corrections to γ are conceiv-
able and could perhaps be within reach in the future. For the
cases in which Eq. (2.1) represents a dynamical vacuum
model in interaction with matter, however, the corrections
are smaller. Using the latest observed value of ν ¼
0.0048� 0.0032 provided by Gómez-Valent et al. [23]
(see also Table 1 in Ref. [25]), we find γΛH

¼ 0.5496�
0.0028, to be compared with γΛ ≃ 0.5454 for the concord-
ance model, hence a ≲1% correction.

B. Γ1;2 parametrizations

Here, we generalize the original Polarski and Gannouji
[46] work. In particular, changing the variables in Eq. (4.3)
from aðzÞ to redshift [dfda ¼ −ð1þ zÞ−2 df

dz] and utilizing

fðzÞ ¼ ~ΩmðzÞγðzÞ, we find

− ~Ωγ
m½ð1þ zÞγ0 lnð ~ΩmÞ þ 3γð1 − νÞ ~ΩΛ�

þ
�
1

2
þ 3

2
ð1 − νÞ ~ΩΛ þ 9ν

2

�
~Ωγ
m þ ~Ω2γ

m

¼ 3ð1 − νÞ ~Ωm

2
− 6νþ 9νð1 − νÞ

2
~Ωm; ð4:17Þ

where prime denotes a derivative with respect to the
redshift. For those yðzÞ functions which satisfy the restric-
tion yðz ¼ 0Þ ¼ 0 [or γðz ¼ 0Þ ¼ γ0],

3 we obtain the
parameter γ1 in terms of γ0, Ωm0, and ν. Specifically, if
we substitute z ¼ 0 and γ0ð0Þ ¼ γ1y0ð0Þ in Eq. (4.17), then
we have

γ1¼
~Ωγ0
m0−3ð1−νÞðγ0− 1

2
Þ ~ΩΛ0þ 1

2
− 3

2
ð1−νÞ ~Ω1−γ0

m0 þΨ0

y0ð0Þln ~Ωm0

;

ð4:18Þ

where

Ψ0 ¼
9ν

2
−
9νð1 − νÞ ~Ω1−γ0

m0

2
þ 6ν ~Ω1−γ0

m0 :

Clearly, in the case of the usual Λ cosmology (ν ¼ 0,
Ψ0 ¼ 0), the above formula boils down to that of Polarski
and Gannouji [46] for yðzÞ ¼ z (Γ2 parametrization).
Furthermore, based on the ΛCDM cosmological model
and for yðzÞ ¼ 1 − aðzÞ ¼ z

1þz (Γ1 parametrization), we
also confirm the literature results (see Refs. [47–49]). Now,
due to the fact that the function yðzÞ ¼ z goes to infinity at
large redshifts, for the rest of the paper, we focus on the Γ1

parametrization, which implies y0ð0Þ ¼ 1. In this case one
can easily see that γ∞ ≃ γ0 þ γ1 as long as z ≫ 1.
Therefore, plugging γ0 ¼ γ∞ − γ1 into Eq. (4.18) and
using at the same time γ∞ ≈ 6þ3ν

11−12ν, we can derive the
constants γ0;1 in terms of Ωm0 and ν. For example, in the
case of ðΩm0; νÞ ¼ ð0.283; 0.0048Þ, we find ðγ0; γ1Þ ¼
ð0.5636;−0.140Þ, while for the concordance Λ cosmologi-
cal model, we get ðγ0; γ1Þ ¼ ð0.5565;−0.110Þ for
ðΩm0; νÞ ¼ ð0.291; 0Þ.

FIG. 1. In the upper panel, we present the asymptotic value of
the growth index as a function of ν (solid line). Notice that the
dashed curve corresponds to γΛ ≈ 6=11. In the lower panel, we
show the relative deviation ½1 − γΛH

=γΛ�%.

3For Γ1;2 parametrizations γ0 ¼ γðz ¼ 0Þ is different with that
of Steigerwald et al. [44], namely γ0 ¼ ½γðaÞ� ~Ωm¼1 ≈ γ∞ (see
section 3A).
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V. DISCUSSION AND CONCLUSIONS

In the upper panel of Fig. 2, we present the evolution of
the growth index for the running vacuum model ΛðHÞ in
the Γ0 parametrization (solid line) and in the Γ1 para-
metrization (dotted line). In the same figure, the dashed and
the dot-dashed curves correspond to the ΛCDM in the Γ0

and Γ1 parametrizations, respectively. The comparison
indicates that the growth index of the ΛðHÞ and ΛCDM
cosmological models is well approximated by the Γ0 and Γ1

parametrizations. Specifically, we find that the correspond-

ing relative deviations are ½1 − γðΓ1Þ
ΛH

=γðΓ0Þ
ΛH

� ∼ 0.7% and

½1 − γðΓ1Þ
Λ =γðΓ0Þ

Λ � ∼ 0.6%, which means that essentially both
parametrizations are equivalent; namely, they provide the
same growth index results. Based on the previous analysis,
it is interesting to mention that the differences that we
find with respect to the ΛCDM growth index are near the
edge of the present experimental limits. Indeed, in a recent
analysis of the clustering properties of luminous red
galaxies and the growth rate data provided by the various
galaxy surveys, it has been found that γ ¼ 0.56� 0.05 and

Ωm0 ¼ 0.29� 0.01 [51]. Obviously, the prediction of γ for
all our possible cases lies within 1σ of that range.
In the lower panel of Fig. 2, we show the growth data

(solid points; see Ref. [50]) together with the predicted
fðzÞσ8ðzÞ≃ σ8DðzÞΩmðzÞγðzÞ for the running vacuum
ΛðHÞ in the Γ0 (solid line) and Γ1 (dotted line) para-
metrizations and for the ΛCDM (dashed line, Γ0, and dot-
dashed line, Γ1). We observe that the running vacuum
model reproduces the growth data well, in a way that is
compatible with the ΛCDM model. Notice that, in order
to obtain the above results for the concordance Λ cosmol-
ogy, we utilize σ8 ¼ 0.829, while for the running vacuum
model, we use σ8 ¼ 0.750 (see Refs. [23,25]). Also, DðzÞ
is the growth factor normalized to unity at the present time.
As we have already said in the Introduction, the

determination of the growth index is important in cosmo-
logical studies because it can be used as a tool toward
testing the validity of general relativity on extragalactic
scales. For those dark energy models that adhere to GR and
are characterized by a constant equation of state parameter,
it has been found that γ ≈ 3ðw−1Þ

6w−5 [28–31], while for the
ΛðHÞþGR case, we obtained γΛH

≈ 6þ3ν
11−12ν. Obviously, the

growth index reduces to 6/11 for the usual ΛCDM model
(w ¼ −1 or ν ¼ 0).
In the case of extended theories of gravity the situation

is as follows. Recently, for the holographic dark energy
models, it has been found that the asymptotic value of the
growth index is γ ≈ 4=7 [52]. For the braneworld gravity of
Ref. [32], we have γ ≈ 11=16 (see also Refs. [30,33–35]);
for some fðRÞ gravity models, it has been found that γ ≃
0.415 − 0.21z (see Refs. [36,37]); and lastly for the Finsler-
Randers cosmological model, Basilakos and Stavrinos [38]
have shown that γ ≈ 9=14. Based on the aforementioned
results, if the derived value of γ (based on the next
generation of surveys, cf. Euclid) shows scale or time
dependence or it is inconsistent with 6/11, then this will be
a hint that the nature of DE reflects on the physics of
gravity.
To conclude, in this work, we have analytically studied

the growth index of matter perturbations for the FLRW
flat cosmological models in which the vacuum energy
density is a function of the Hubble parameter, namely,
ΛðHÞ ¼ Λ0 þ 3νðH2 −H2

0Þ. In previous comprehensive
studies [20,21,23], we have utilized such a dynamical
vacuum model in order to investigate the background
expansion and have carefully compared the differences
with respect to the concordance ΛCDM cosmological
model. We believe that the combination of the works of
Refs. [20,21,23] together with the current article provide a
rather complete investigation of the observational status of
the RG running vacuum model both at the background and
perturbation levels.
Within this framework, we have calculated for the first

time (to the best of our knowledge) the asymptotic value of
the growth index, which is given by γΛH

≈ 6þ3ν
11−12ν.

FIG. 2. Upper Panel: The evolution of the growth index of
matter perturbations. The curves are as follows. The results for
ΛðHÞ in the Γ0;1 parametrizations are given by the solid and
dotted lines. Moreover, the dashed and the dot-dashed curves
correspond to the ΛCDM in the Γ0;1 parametrizations respec-
tively. Lower Panel: Comparison of the observed and theoretical
evolution of the growth rate fðzÞσ8ðzÞ. The growth data can be
found in Ref. [50] (see their Table 1). For the ΛCDM, we use
σ8 ¼ 0.829, while for the running vacuum model, we have σ8 ¼
0.758 (see Refs. [23,25]).
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Obviously, the obtained formula analytically extends in a
very clear way that of the ΛCDM model, γΛ ≈ 6=11. In our
study, we have applied the two most popular parametriza-
tions for the evolution of the growth index, γðzÞ ¼
γ0 þ γ1yðzÞ, with yðzÞ ¼ ln ~ΩmðzÞ and yðzÞ ¼ z=ð1þ zÞ;
we have solved the problem analytically; and we have thus
provided for the first time the coefficients γ0 and γ1 in terms
of Ωm0 and ν. The comparison shows that the above γðzÞ
parametrizations are practically equivalent and the corre-
sponding evolution of the growth rate of clustering matches
quite well the recent growth data. Finally, we have
estimated the numerical corrections that the running
ΛðHÞ model could produce on the growth index as

compared to the concordance model and pointed out that
they could reach, in some cases, the level of a few percent,
hopefully accessible in the future.
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