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We study the effective field theory (EFT) of large-scale structure for cosmic density and momentum
fields. We show that the finite part of the two-loop calculation and its counterterms introduces an apparent
scale dependence for the leading-order parameter c2s of the EFT starting at k ¼ 0.1 hMpc−1. These terms
limit the range over which one can trust the one-loop EFT calculation at the 1% level to k < 0.1 hMpc−1 at
redshift z ¼ 0. We construct a well-motivated one-parameter ansatz to fix the relative size of the one- and
two-loop counterterms using their high-k sensitivity. Although this one-parameter model is a very
restrictive choice for the counterterms, it explains the apparent scale dependence of c2s seen in simulations.
It is also able to capture the scale dependence of the density power spectrum up to k ≈ 0.3 hMpc−1 at the
1% level at redshift z ¼ 0. Considering a simple scheme for the resummation of large-scale motions, we
find that the two-loop calculation reduces the need for this IR resummation at k < 0.2 hMpc−1. Finally, we
extend our calculation to momentum statistics and show that the same one-parameter model can also
describe density-momentum and momentum-momentum statistics.
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I. INTRODUCTION

The development of an effective theory for large-scale
structure (EFT of LSS) [1,2] has led to a resurgence of
interest in perturbative approaches to study the develop-
ment of structure in our Universe. Although standard
perturbation theory (SPT; see e.g. [3]) has allowed invalu-
able insights in the physics of LSS, it was soon realized that
in order to extend the validity of the theory down to smaller
scales, one needs to go beyond SPT. Various approaches
that can be found in the literature, e.g. [4–7], focus on
the resummation of higher-order contributions in order to
achieve an accurate description of nonlinear data up to large
wave numbers. Perturbation theory will never be able to
capture the small-scale dynamics even after complete
resummation (as an illustration, see [8]). This fact limits
the applicability of resummation results. The EFT of LSS
aims at extending SPT through modeling the effects of
small-scale dynamics on larger scales. Based on the same
principles that the high-energy physics community has
been exploiting for decades, the EFT framework allows us
to describe perturbatively the evolution of long wavelength
modes while systematically taking into account the impact
that short wavelength modes can have. The power of this
approach lies in the fact that it is not necessary to explicitly
solve the nonlinear small-scale dynamics, which, however,
comes at the cost of introducing parameters that are not
determined by the theory itself. Furthermore, the EFT

approach allows us to overcome some conceptual short-
comings of SPT.
Since the original papers [1,2], many aspects of the EFT

of LSS have been explored in the literature. At the one-loop
level Refs. [9–15] have made progress, while in [16,17]
attempts were made to tackle the EFT of LSS at the two-
loop order. These references mainly focused on the
two-point functions, while [18,19] considered the matter
bispectrum and [20] looked at non-Gaussian effects. The
Lagrangian space formulation of the EFT of LSS has been
studied in [21,22], and finally, aspects of bias and baryonic
effects have been considered in [23–30].
Despite the power of the EFT approach, we have to

deal with the presence of free parameters. For the power
spectrum at the one-loop level, one such parameter is
introduced. For the bispectrum, three additional parameters
are necessary, and for the two-loop power spectrum, an
even larger number of free parameters would have to be
considered.1 This, however, means that the theoretical
description stops being predictive and three- and four-point
functions would have to be considered in order to deter-
mine the values of all parameters through a comparison
with simulations or observations.
The role of the free parameters and the corresponding

counterterms is to incorporate the effects of the small scales
into the theory. Our aim is to achieve exactly this in a
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1Consider e.g. chiral perturbation theory where in the strong
sector at the leading order there are two, at the next higher order
12 and at the third order more than 100 free parameters.
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systematic way for the power spectrum at the two-loop
level. The approach that we follow does, however, avoid
an unmanageable number of free parameters by making a
well-motivated ansatz.
In this paper we revisit the two-loop Eulerian power

spectrum calculation and compare the results to our own
set of numerical simulations. We compare results at the
level of the power spectra as was done in [16,17]. In two
companion papers [31,32] we compare perturbation theory
with the results of numerical simulations for the same initial
conditions. This is a more stringent test than what is
presented here. Our goal in this paper is to reproduce
the comparison method used in the literature and try to
relate the result to what we see in the more detailed
comparison. We find that in terms of the maximum k
where the perturbative calculation can be trusted, both
results agree.
This paper is organized as follows. After a brief review

of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Secs. II B
and II C. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. II D, and an even simpler
procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simu-
lations and present our results. Also, we discuss the two-
point correlation functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one tries to perturbatively solve the
following equations:

∂τδþ ∂i½ð1þ δÞvi� ¼ ∂iui;

∂τvi þHvi þ ∂iϕþ vj∂jvi ¼ −
1

aρ
∂jτ

ij;

△ϕ ¼ 3

2
H2Ωmδ: ð1Þ

These equations differ from those of SPT [3] due to the
addition of the new source term ui in the continuity
equation and a stress tensor source τij in the Euler equation.
These sources arise from small scales, where the perturba-
tive solution of SPT is not applicable. In the EFT of LSS
they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus
result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model
these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a
desired accuracy.
For simplicity, in the discussion that follows we con-

centrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only
statistics involving the density and the momentum. In such
cases it suffices to discuss the stresses in the Euler equation,

as the effects from ui in the statistics we consider can be
mimicked by changing τij. In any case, all the conceptual
points we make below are applicable to both τij and ui.
The τij stresses come in two different forms. Some of

these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model
for the statistical properties of those stresses. It is conven-
ient to decompose the velocity field into its gradient and
curl pieces. At the order to which we work in this paper,
only the gradient component will be relevant; thus, the
stresses we need to model only enter through a scalar
quantity:

τθ ≡ −∂i

�
1

aρ
∂jτ

j

�
¼ τdetθ þ τstochθ : ð2Þ

The deterministic part of the stresses τdetθ can be modeled
perturbatively. In the EFT we write schematically

τdetθ ¼ τdetθ ½∂i∂jϕ̄�: ð3Þ

The deterministic part of the stresses is a local function of
the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second
derivatives of the gravitational potential (higher spatial
derivatives and time derivatives can also appear). We have
introduced ϕ̄ ¼ ϕ=ð3=2H2ΩmÞ so that ∂i∂jϕ̄ is dimension-
less and △ϕ̄ ¼ δ. For the stochastic part, all we can do is
model the statistical properties of τstochθ .
In the EFT of LSS, τdetθ is modeled as a power series in

∂i∂jϕ̄ and its spatial and time derivatives. In addition to the
equivalence principle, mass and momentum conservation
restrict the form of both τdetθ and of the statistical properties
of τstochθ . In particular, in Fourier space τdetθ ðkÞ needs to go to
zero at least as k2, faster than the density when k → 0, and
the power spectrum of τstochθ should go to zero at least as k4.
To calculate the one-loop power spectra in ΛCDM, only

the lowest-order piece of τdetθ is relevant. It is given by

τdetθ jLO ¼ −d2△δð1Þ ¼ −d2△△ϕ̄ð1Þ; ð4Þ

where δð1Þ is the linear solution of perturbation theory.
In this formulation, because τdetθ acts as a source in the
equations of motion, the time dependence of d2 will affect
the results. In particular, it will be relevant to determine the
relative sizes of the corrections in the different two-point
functions involving δ and θ.
The case of the one-loop bispectrum has already been

considered in the literature [18,19]. In that case the second-
order counterterms are needed. This introduces three addi-
tional parameters for the spatial structure of τdetθ . One can
write
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τdetθ jNLO ¼ −d2△½δð1Þ þ δð2Þ� − e1△δ2ð1Þ

− e2△ðsijð1Þsijð1ÞÞ − e3∂is
ij
ð1Þ∂jδð1Þ; ð5Þ

with

sij ¼
�
∂i∂j −

1

3
δðKÞij △

�
ϕ̄: ð6Þ

In principle, d, e1, e2 and e3 could be fixed by measuring
both the power spectra and the bispectrum. In practice,
however, with current simulations there are significant
degeneracies among these different parameters. Making
an ansatz for the ratios, scaling all counterterms by the same
amplitude and fitting for this overall amplitude parameter
seems good enough to explain simulation measure-
ments [18].
In this paper we are interested in performing a two-loop

calculation for the power spectrum, and thus, we would
have to model the stresses up to third order in the fields.
Modeling these terms will increase the number of param-
eters even further. At the level of the two-point function,
however, some of these parameters will be degenerate. In
principle, one could disentangle all the new parameters,
comparing the predictions with the four-point function
measured from simulations. In practice, the necessary
signal-to-noise ratio to achieve this is probably not avail-
able in the current generation of simulations, and a simple
ansatz for the ratios of amplitudes of the various terms
could be good enough. In any case, in this paper we only
compare results against measurements of the two-point
function, and thus, we will not have enough information to
distinguish all the parameters. Furthermore, in this type of
exercise one runs the risk of overfitting the power spectra
simply because one is introducing too many additional free
parameters. In order to avoid this, one should compare the
results of perturbative calculations with simulations at the
level of the fields as was done in [31] for the Lagrangian
displacement and in [32] for the density. In this paper we
adopt a simple ansatz for the size of the various counter-
terms and only keep one overall free amplitude as a
parameter. We discuss this in the next sections.

A. Perturbative solution and counterterms

In standard perturbation theory (SPT, for a review see
[3]) the perturbative solution of the equations of motion has
the following structure,

δ ¼ δð1Þ þ δð2Þ þ δð3Þ þ δð4Þ þ δð5Þ þ � � � ð7Þ

where δðnÞ depends on the initial conditions to the nth
power and we have only written terms relevant for the two-
loop calculation of the two-point function. When comput-
ing the power spectrum, one considers the averages of
hδðnÞδðmÞi. At the tree level, the only possible order is

nþm ¼ 2, and therefore n ¼ m ¼ 1. For one loop,
nþm ¼ 4 so the two possible terms are the mixed term
between δð3Þ and δð1Þ or the square of δð2Þ. At two loops we
have nþm ¼ 6 so the options are 1-5, 2-4 or 3-3. In SPT
one writes the perturbative solutions as2

δðnÞðkÞ ¼
Z
q1

…

Z
qn

ð2πÞ3δðDÞðq1 þ…qn − kÞ

× Fnðq1;…; qnÞδ0ðq1Þ…δ0ðqnÞ; ð8Þ

where δ0 stands for the initial density fluctuations. The
different contributions to the power spectrum computation
can be represented using the diagrams in Fig. 1 and
combine to the power spectrum as

Pδδ ¼ P11 þ 2P13 þ P22 þ 2P15 þ 2P24 þ P33-I þ P33-II:

ð9Þ

The explicit expressions for the constituent power spectra
are given in Appendix A. The integrals for the one- and
two-loop contributions to the above expression bear some
UV sensitivity or can be even divergent for certain input
power spectra. The EFT provides a framework in which
these UV sensitivities can be addressed and regularized
with the corresponding counterterms. That is to say, the
EFT counterterms provided by the stress tensor and its time
dependence in Eq. (1) should be able to capture and correct
the UV sensitivity of the SPT expression.
The equations of motion (1) only have quadratic non-

linearities, so vertices in diagrams should only be cubic. In
other words, the Fn kernels in the diagrams we showed
in Fig. 1 are effective time integrated diagrams that can be
constructed by having multiple cubic vertices joined by
propagators (or Green’s functions) [4]. In the EFT, there
are additional diagrams due to the introduction of counter-
terms, or sources in the equations of motion.
The first thing one notices is that some of the two-loop

diagrams contain a subdiagram that looks like a one-loop
diagram. The EFT procedure amounts to adding a counter-
term that corrects the mistakes introduced when a high
momenta is running in a loop. This is schematically shown
in Fig. 2. If at least some of the two-loop diagrams contain
pieces that look like one-loop ones, then the same counter-
terms that have fixed the one-loop subdiagram would fix
the two-loop ones. To accomplish this, one would need to
solve the equations of motion with the one-loop

2Note our shorthand notation for the integral and measure,

Z
q
≡
Z

d3q
ð2πÞ3 :

Furthermore, we express momenta with respect to the external
momentum as q2 ¼ r2k and q1 ¼ r1k.
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counterterm as a source to obtain a solution linear in the
amplitude of the counterterm but up to cubic in the initial
conditions δ0. Because the counterterm will be a source in
the equations of motion acting over time, carrying out this
calculation would require specifying the time dependence
of the one-loop counterterm. This program was carried out
in [17] as well as in the case of the bispectrum [18,19].
But even for the diagrams that naively look like those in

the one-loop calculation, putting the one-loop counterterm
into the equations of motion does not necessarily fix all the
loops correctly. The point is simple: in the one-loop case,
the diagram is computing the effect of a short mode that
evolves in a linear long-wavelength background. Thus, the
time evolution of this background is given by the linear
growth factor. In some of the two-loop diagrams the short
modes in the loop are evolving in a background that is
quadratic or cubic, and thus, the details of their evolution
and the value of the counterterm could not be the same.
This fact was already noted in the one-loop bispectrum
calculation, where it was shown that the counterterms
coming from the time evolution of the linear counterterm

are not able to capture the UV sensitivity of the SPT
loops [18].
Of course, in addition to the terms that derive from the

linear counterterm through the equations of motion, there
are those that arise from the new quadratic and cubic
contributions to the stress tensor. Once all of these counter-
terms are included, one has sufficient freedom to correct all
UV mistakes at this order. The entire set of counterterms
could be fixed by studying the power spectrum, bispectrum
and trispectrum.
In [17], in the first two-loop calculation in the EFT of

LSS, only the counterterms that follow from the leading-
order one were kept. Thus, the one- and two-loop counter-
terms depended on only one free parameter (and its time
dependence). This was done mainly for simplicity, as one
could not fit multiple parameters simultaneously from the
available power spectrum data. Here, we take a similar
strategy, in that we also study a one-parameter family of
counterterms, but we fix them in a different way. Because in
both our calculation and in [17], one is using an ansatz for
the two-loop counterterm, one should recognize that in all

FIG. 2. Diagrams that are regularized in our approach. The dashed loops are the ones where the momenta is large and are fixed by a
counterterm.

FIG. 1. Diagrams for the tree-level, one- and two-loop expressions of the SPT power spectrum.
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generality its amplitude could be somewhat different than
the one being calculated.

B. UV sensitivity at one loop

The counterterms introduced in the EFT are there to
model the effects of the small-scale dynamics on larger
scale modes. Thus, a way to look for an ansatz for the
relative sizes of the EFT counterterms could be to study
the effect of a shell of power at high loop momenta
computed in SPT. We can fix the ratio between the various
counterterms in the EFT to the one given by this ansatz but
leave the amplitude of the small-scale power in the shell as
one overall free parameter. This ansatz makes the final
results insensitive to the small-scale power in the SPT
calculation.
For this purpose, we start by computing the contribution

of a shell in momentum space between Λh ¼ 5 hMpc−1

and Λl ¼ 1 hMpc−1 to the one-loop power spectrum in
SPT. This choice is somewhat arbitrary, but provides us
with a sufficiently significant change to see the effects.
Furthermore, the lower limit is sufficiently far away from
the scales of interest k ≈ 0.1 hMpc−1 to warrant a separa-
tion of scales. We call this contribution to the one-loop
power spectrum Psh

1 loop ¼ 2Psh
13 þ Psh

22, and the results are
shown in Fig. 3. We recover the standard result, that for
ΛCDM at small wave numbers the Psh

13 contribution
dominates and scales as k2P11. The subdominant Psh

22

contribution scales as k4. In this language, what is usually
called the c2s correction in the EFT is nothing other than the
functional form of the k → 0 limit of Psh

13=k
2P11.

The value of Psh
1 loop depends not only on the amplitude

of the power added on the shell but also on the position

of the shell. In our ansatz for the counterterms, we can also
use analytic expressions obtained in the limit that the
momentum of the shell (q1) is much bigger than the
momentum of interest k ≪ q1. We call this limit Pq1→∞

1 loop ,
basically moving the shell to infinity. For the leading and
subleading contributions we obtain

Pq1→∞
13 ¼−k2P

61

630

Z
q

PðqÞ
q2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

l2≡ 61
210

σ2d

þk4P
2

105

Z
q

PðqÞ
q4

þ��� ð10Þ

The leading contribution is proportional to the high-q
contribution to the one-dimensional displacement
dispersion σ2d ¼ 1=6π2

R
dqPðqÞ, and the shell power will

thus be Psh
13 ¼ −61=210k2σ2d;shP11. For the shell under

consideration here, we have σ2d;sh ¼ 0.68 h−2Mpc2. It is
interesting to note that the square of this coefficient has a
factor 100 stronger cutoff dependence than the coefficient
of the subleading k4P contribution, which makes sense
since the integral of the latter is suppressed by two
additional powers of q in the UV. Our strategy will be
to add the effect of this shell of power computed up to two-
loops to the standard SPT results with a free parameter.
This approach is equivalent to the EFT, where the effect

of a high-k shell can be captured by the leading counterterm
c2s [it should be noted that c2s is not equal to the parameter
d2 in Eq. (4) as c2s is the result of a time integral over the
Green’s function and d2]. In terms of the standard notation
in the literature,

Pctr;1 loop ≡ −2k2c2sP11; ð11Þ

h q2,q1 l

h q2 l q1

Sum
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FIG. 3 (color online). Effect of changing the cutoff from Λh ¼ 5 hMpc−1 to Λl ¼ 1 hMpc−1 for the one- and two-loop calculations
normalized by k2P. Left panel: Contributions from the low-high and high-high terms (single- and double-hard terms). The mixed term
clearly dominates the k2P part and also the deviations from this behavior. Right panel: Contributions from the separate diagrams. At the
one-loop level P13 leads to a k2P contribution, whereas the k4 contribution from P22 is suppressed. P15 dominates the k2P part, but for
the deviations from this scaling, there is a cancellation between P15, P33-II and P24. Like P22 in the one-loop case, the k4 term arising
from P33−I is suppressed.
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and at the level of the density field, it corresponds to the
term ~δð1Þ ¼ −c2sk2δð1Þ. It is common practice to fix the
coefficient c2s after the full one-loop calculation has been
subtracted from the data, and we adopt this convention
here. Thus, the true coefficient κ2 of the k2P11 part of the
low-k limit of the data is fixed to be

κ2 ¼ −
61

105
σ2d − 2c2s : ð12Þ

Consequently, the number c2s effectively contains all the
higher-order loop contributions to κ2, their counterterms
and the true small-scale contribution. In particular, no
higher loop contributions to κ2 should be calculated, and
to the extent that such terms are present in higher-order
calculations, they should be removed.
Numerically, we find below in accordance with previous

studies that c2s is a positive number of order 1 h−2Mpc2. This
means thatweare effectively increasing thepower in ahigh-k
shell in perturbation theory, but the effect is an enhanced
large-scale damping of the nonlinear power spectrum.

C. UV sensitivity at two loops

We now evaluate3 the total two-loop power spectrum
as well as its constituent pieces for two different cutoffs
Λl ¼ 1 hMpc−1 and Λh ¼ 5 hMpc−1. As we show in
Fig. 3, adding this shell of power primarily affects the
k2P11 coefficient. This piece should be absorbed by the
counterterm that was already introduced at one loop in
the previous section. The only relevant parts are the
deviations from the k2P11 behavior for k > 0.1 hMpc−1.
These are the deviations that we want to capture. These
nontrivial pieces should be captured by the two-loop
counterterms.
In contrast to the one-loop calculation, we now have two

momenta that are integrated over, and thus, we have to
distinguish two cases: (i) both loop momenta are large
(both loop momenta in the high-k shell, double-hard) or
(ii) only one loop momentum is large with respect to the
other momenta in the problem (one momentum in the high-
k shell, single-hard). The left panel of Fig. 3 shows these
two contributions separately. We immediately see that the
double-hard limit is basically degenerate with the k2P11

behavior for all the k’s of interest and thus is not very
relevant for our calculation. There is a slight upturn for high
wave numbers that we discuss in more detail below. The
single-hard contribution also has a k2P11 part, in which we
are not interested, but beyond this it has the interesting new
scale dependence that should be captured by new

counterterms. This motivates us to consider the single-hard
limits of the two-loop calculation.
The terms leading to the k2P11 contribution in the shell

calculation are also present in the finite part of the two-loop
calculation, actually governing its low-k behavior. If this
contribution was kept in the final calculation, it would
change the value of the parameter of the one-loop counter-
term c2s in Eq. (11) that was introduced to regularize the P13

contribution. As we stated in the previous section, our
strategy is to fix this number after the one-loop calculation.
We thus decide to remove the k2P11 term from the finite
part of the two-loop calculation. This can be done by either
calculating the limit of P15 as we do in Eq. (C8) or by fitting
the very low-k limit of the numerical calculation. We
denote the two-loop calculation from which the degenerate
part has been removed as P̄2 loop. More generally, all terms
that have been corrected for degeneracies with lower-order
counterterms will have an overbar.4

Let us now come back to the limits of the two-loop
calculation. Before we discuss the single-hard limits that
we deemed responsible for the new counterterms at two
loops, we discuss one double-hard limit, namely, the one of
P33−II , which leads to

Pq1;q2→∞
33−II ¼

�
61

210

�
2

k4σ4dP: ð13Þ

The counterterm for this term is automatically included
once the square of the leading-order term at the field level
h~δð1Þ ~δð1Þi ∝ c4sk4P11 is considered. There is also a piece of
P15 that has this same structure.
As before, we can obtain analytical formulas when the

shell is taken to be at infinite momenta. Because we only
care about the piece that does not look like k2P11, we focus
on the case when one of the two momenta running in the
loops is in the shell (q1) while the other one remains finite
(q2), i.e., the single-hard limit. Figure 3 shows that the total
effect from the two-loop terms arises from a cancellation
between upturns in P15 and P33−II and a downturn in P24,
while P33−I is basically flat. The overall effect is a residual
suppression of power on small scales. We would not have
needed to consider an explicit shell but could have
considered all the limits of the two-loop calculation (as
we do in Appendix C) to see which terms will lead to
relevant counterterms. We considered the approach pre-
sented here more pedagogical.
Leaving the double-hard limits and the suppressed

single-hard limits for discussion in Appendix C, let us
give here only the relevant terms. The formulas for these
single-hard limits read

3The numerical integrals for the two-loop expressions are
performed with the CUBA library’s [33] SUAVE routine employing
the IR-safe integrand [7,16].

4In [17] the subtraction of the two-loop contribution
proportional to k2P11 was accomplished by introducing the
parameter c2s;ð2Þ.
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Pq1→∞
15 ¼ 2 × 5 × 3

Z
q2

3

127135008000r52

�
−2r2ð2266005 − 33470730r22 þ 187902172r42 − 9879110r62 þ 1167375r82Þ

þ 15ð−1þ r22Þ3ð−151067 − 451074r22 þ 77825r42Þ log
�
1þ r2
j1 − r2j

��
Pðq2Þσ2dk2PðkÞ; ð14Þ

Pq1→∞
24 ¼ 4 × 3 × 3k2σ2d

Z
q2

ð−32879μ2 þ r32ð6176 − 48096μ22Þ þ 32r22μ2ð1117þ 1503μ22Þ þ r2ð−25933þ 16892μ22ÞÞ
4074840r2ð1þ r22 − 2r2μ2Þ

× F2ðq2; k − q2ÞPðjk − q2jÞPðq2Þ; ð15Þ

Pq1→∞
33−II ¼ −2σ2d

61

210
k2P13ðkÞ; ð16Þ

where we defined ri ¼ qi=k and k · qi ¼ μikqi. Note that
all three single-hard limits are proportional to the high-q
contribution to σ2d, i.e., the small-scale displacement
dispersion. As for Pq1;q2→∞

33−II the counterterm for Pq1→∞
33−II is

automatically included once the leading-order counterterm
at the field level is correlated with the third-order field,
leading to h~δð1Þδð3Þi ∝ −2c2sk2P13. The Pq1→∞

24 term corre-
sponds to the UV sensitivity of the bispectrum term B114

calculated in [18] and is thus fixed by the corresponding
counterterms. The Pq1→∞

15 term corresponds to a contraction
of the UV limit in the trispectrum term T1115 and should
thus be regularized by the corresponding counterterm.
Slightly problematically, the k2 part of the Pq1→∞

15

integral is log sensitive in q2 for q2 ≫ k,

Pq1→∞;q2→∞
15 ¼ −2 × 5 × 3

× 3σ2dk
2PðkÞ

Z
q2

120424

45147375
Pðq2Þ: ð17Þ

This limit is proportional to k2P11 and thus completely
degenerate with the leading-order counterterm c2s . It is this
limit that leads to the offset in the single-hard limit in the
left panel of Fig. 3. It is continuous with the limit in which,
in a first step, q1 and q2 become large [the double-hard limit
of Eq. (C8)], and then one momentum is taken to be smaller
than the other one, q2 ≪ q1. To the extent that we are not
interested in this contribution, we define a new limit from
which this term is removed at the integrand level,

P̄q1→∞
15 ¼ Pq1→∞

15 þ 2 × 5 × 3

× 3σ2dk
2PðkÞ

Z
q2

120424

45147375
Pðq2Þ: ð18Þ

D. Ansatz for the two-loop counterterm

Our ansatz to have a one-parameter counterterm is to use

P̄sh ¼ αðPsh
1 loop þ P̄sh

2 loopÞ; ð19Þ

where α is an overall free parameter that can be set by
looking at the piece of the power spectrum that scales as
k2P11 at very low k and P̄sh

2 loop is the two-loop power
spectrum obtained from the shell calculation with the
degenerate k2P11 piece removed. As we have seen above,
all the relevant limits at one and two loops are proportional
to σ2d, such that we can relate our ansatz to the usual EFT
language by setting α ¼ 210c2s=ð61σ2dÞ.
More explicitly, for the counterterm at the two-loop level

we consider

Pctr ¼ α

�
2Pq1→∞

13 þ 2P̄q1→∞
15 þ 2Pq1→∞

24 þ Pq1→∞
33−II

�

≡ Pctr;1 loop þ Pctr;2 loop: ð20Þ

All the terms in the right-hand side of Eq. (20) are
proportional to σ2d, and in fact, these are the only terms
proportional to σ2d. Hence, our ansatz is nothing other than
choosing the value of σ2d by matching the low-k behavior of
the power spectrum from simulations to the k2P11 template.
Since this is an important point, let us repeat again the
basic idea of our approach. The relation between c2s and σ2d
that is found at the one-loop level in Eq. (12) is used in
order to cure the UV sensitivity of the two-loop integrals.
Effectively, for all occurrences of the problematic σ2d in the
two-loop integrals, we add a c2s counterterm. This is what is
shown in Eq. (20), and we end up with a one-parameter
model for the UV sensitive parts of the one- and two-loop
integrals.
Finally, note that the standard IR cancellation when q2 ≪

k ≪ q1 still happens among the q1 limits computed above:
P15, P24 and P33−II . In this case the 1=q22 motion contri-
butions cancel and only long-wavelength tides survive:

Pq1→∞;q2→0
33−II ¼ PðkÞ

Z
q1

Z
q2

�
−

3538

99225r21
þ 61

1890

1

r21r
2
2

�

× Pðq1ÞPðq2Þ; ð21Þ
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2Pq1→∞;q2→0
24 ¼ PðkÞ

Z
q1

Z
q2

�
−

1361863

5942475r21
−

61

945

1

r21r
2
2

�

× Pðq1ÞPðq2Þ; ð22Þ

2Pq1→∞;q2→0
15 ¼ PðkÞ

Z
q1

Z
q2

�
−

902354

4729725r21
þ 61

1890

1

r21r
2
2

�

× Pðq1ÞPðq2Þ; ð23Þ

2Pq1→∞;q2→0
15 þ Pq1→∞;q2→0

33−II þ 2Pq1→∞;q2→0
24

¼ −PðkÞ
Z
q1

Z
q2

12670991

27810783r21
Pðq1ÞPðq2Þ: ð24Þ

E. An even simpler ansatz

Finally, we could consider what is perhaps the simplest
ansatz of all. Just as in the case of the stresses parametrized
by τθ in Eq. (5), one can parametrize the counterterms in
such a way that one of the terms is just proportional to the
density computed in SPT. That is, the terms relevant for the
two-loop calculation at the level of the fields could be
written as

δ ¼ δð1Þ þ δð2Þ þ δð3Þ þ δð4Þ þ δð5Þ
− l2△ðδð1Þ þ δð2Þ þ δð3ÞÞ þ � � � ; ð25Þ

where the ellipsis accounts for the terms arising from
other quadratic and cubic counterterms. An extremely
simple ansatz is to set those additional terms to zero.
This would lead to the following expression:

Pctr;simple ¼ −k2l2½P11 þ P1 loop�: ð26Þ

As we discussed earlier, neither of these ansatzes is
expected to be perfect, and nothing short of fixing all the
counterterms by studying the three- and four-point func-
tions or projections at the field level would be perfect. The
philosophy of this paper is to write down examples which
are expected to have roughly the right size and use those
to assess how big these terms are expected to be while
keeping in mind the uncertainty in their size. Figure 4
compares the two formulas proposed in this section. They
are in reasonable agreement in terms of both the expected
shape and the size of the correction. One could definitely
argue that Psimple is perhaps too simplified as one is
ignoring effects that we know are there and are furthermore
comparable to those being included. Our Pctr defined in
Eq. (20) has all the relevant terms included, although
perhaps some of their relative amplitudes are not correct in
detail.

F. Relative size of the corrections

Before comparing with simulations, we can take our
model for the power spectrum and calculate the sizes of the
different terms. This comparison will allow us to estimate
how well we expect our formulas to agree with simulations
and estimate the reach of perturbation theory. In particular,
now that we have an estimate of the two-loop terms and
their associated counterterms, we can ask when they make
a difference relative to the one-loop terms and ask over
what range of ks it would be safe to fit for c2s when doing a
one-loop calculation only. Our full two-loop EFT power
spectrum is

P ¼ P11 þ P1 loop þ Pctr;1 loop þ P2 loop þ Pctr;2 loop: ð27Þ

We can now compute two quantities:

P
P11

− 1 ¼ P1loop þ Pctr;1loop þ P̄2loop þ Pctr;2loop

P11

−
P − P11 − P1loop

2k2P11

¼ c2s −
P̄2loop þ Pctr;2loop

2k2P11

: ð28Þ

The first of these two quantities indicates the size of the
various terms as contributions to the power spectrum; the
second indicates the relative correction they would make
to a fit of c2s after subtracting the explicit one-loop SPT
calculation from the data. We show these quantities in
Fig. 5. The left panel shows that both P̄2 loop and P̄ctr;2 loop

make roughly a 5% correction to the power around
k ¼ 0.2 hMpc−1. Given that Pctr;2 loop is uncertain because
we have not used three- and four-point function measure-
ments to obtain its amplitude but only have an ansatz, it is
difficult to imagine that one could be more accurate than
about 1% on these scales. The counterterm is relatively

1.2 P2 loop
ctr k2

P1 loop

0.01 0.02 0.05 0.10 0.20 0.50

400

200

0

200

400

600

800

k h Mpc 1

P
h

3
M

pc
3

FIG. 4 (color online). Comparison between the two-loop
counterterm deduced from the divergencies and the one-loop
power spectrum weighted by the wave number squared. We see
that the explicit calculation of the two-loop counterterms P̄ctr;2 loop

is proportional to the naive estimate k2P1 loop.
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steep, so even though it contributes 5% around k ¼
0.2 hMpc−1 at k ¼ 0.5 hMpc−1, it makes an order unity
contribution. In the same panel, we also show the effect of
the c4sk4P11 correction, which is at the subpercent level for
the wave numbers considered here. Note, however, that the
coefficient of this term should be fitted independently since
it has to capture the subleading UV sensitivities in P13 and
P15 that we have neglected so far. We also estimate the
three-loop counterterm at the basis of our most simple
counterterm ansatz; i.e., we consider it to be given by
−k2P̄2 loop. This term leads to percent-level corrections at
k ¼ 0.3 hMpc−1, so we should be worried about similarly
large corrections from the three-loop calculation for even
larger scales. Finally, we overplot the size of the stochastic
term estimated in [32]. Given that it leads to percent
corrections at k ¼ 0.25 hMpc−1, we should not expect
any perturbative approach to match the full power spectrum
to a better accuracy than this. Actually, the perturbative or
deterministic calculation performed here should describe
the nonlinear power from which the stochastic part has
been removed.
As we show in the right panel of Fig. 5, when fitting for

c2s , the combination P̄2 loop þ Pctr;2 loop changes c2s by about
50% between k ¼ 0.05 hMpc−1 and k ¼ 0.20 hMpc−1.
About half of this change is from the finite part of the
two-loop calculation and half from the counterterms.
These two corrections are of the same amplitude at
k ¼ 0.18 hMpc−1. Due to the presence of these corrections,
a measurement of c2s without consideration of the two-loop
terms is not possible for wave numbers exceeding k ¼
0.07 hMpc−1. Besides the broadband upturn, there are also

considerable wiggles from the Baryon Acoustic
Oscillations (BAO) in the finite part of the two-loop
calculation.
At this point it is perhaps instructive to write an equation

relating the change in the inferred value of c2s (Δc2s) to
changes or errors in the power spectrum (ΔP):

Δc2s ¼
ΔP
P

1

2k2

∼
ΔP=P
2%

�
k

0.1 hMpc−1

�
−2
h−2Mpc2

∼
ΔP=P
0.2%

�
k

0.03 hMpc−1

�
−2
h−2Mpc2: ð29Þ

For values of c2s around 1 h−2Mpc2 and a measurement at
k ∼ 0.1 hMpc−1, an accurate measurement of c2s requires
one to model all other contributions to the power spectrum
at the subpercent level. Besides that, the statistical error
should also be at this level. State-of-the-art simulation
codes and reasonable simulation volumes can deliver this
level of accuracy and precision. However, our estimates
above show that at this scale, one needs to include the
two-loop terms. If one goes to k ∼ 0.03 hMpc−1 higher-
loop contributions are negligible, but as we discuss later
the required 10−3 level numerical precision might be
challenging.

III. COMPARISON WITH SIMULATIONS

As a benchmark for the performance of perturbation
theory, we employ a suite of dark-matter-only simula-
tions of the WMAP7 cosmology [34] (Ωm ¼ 0.272,
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FIG. 5 (color online). Left panel: Estimate of the size of the corrections arising from various contributions to the two-loop calculation.
The finite part of the two-loop calculation leads to percent-level corrections at k ¼ 0.1 hMpc−1. We also show the corrections from the
square of the speed of sound term k4P11, which is suppressed over the range considered here. The size of the three-loop counterterm can
be estimated as Oð1Þ × k2P̄2 loop and leads to percent-level contributions at k ¼ 0.3 hMpc−1. We also show the estimate for the
stochastic part of the total power spectrum from [32] which leads to percent-level corrections at k ¼ 0.25 hMpc−1. Right panel:
Estimator for the leading EFT coefficient c2s . The model is evaluated for c2s ¼ 0.98 h−2Mpc2, and the gray band shows the effect of a
10% change in this value. Note that at k ¼ 0.2 hMpc−1 the one-loop counterterm and the two-loop correction are of the same order. The
two-loop term leads to a considerable scale dependence of ĉ2s for k > 0.07 hMpc−1.
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ΩΛ ¼ 0.728, ns ¼ 0.967, σ8 ¼ 0.81). We have run 16
simulations with a box length of 1500 h−1Mpc (L simu-
lation) and also one realization of a smaller size, higher
resolution box with 500 h−1Mpc box length (M simula-
tion). The simulations are initialized with the second-order
Lagrangian perturbation theory code 2LPT [35] at redshift
zi ¼ 99, and the 10243 particles are subsequently evolved
using GADGET2 [36] to redshift z ¼ 0. For more details on
the simulations and some convergence tests, see [31].
For the speed of sound in the one-loop EFT calculation

we employ the following estimator:

ĉ2s ¼ −
Pnl − P11 − P1 loop

2k2P11

; ð30Þ

where Pnl is the power spectrum from the simulations. In
Fig. 6 we show the measurements at redshifts z ¼ 0, 0.5, 1,
2 from our simulations. The data clearly show a scale
dependence with significant deviations from the low-k limit
at higher wave numbers. There are also distinct BAO
wiggles in the measurement that have been noted in the
literature [37]. We have corrected the data for 2 × 10−4

level deviations in the linear growth factor that are likely
connected to the integration accuracy in GADGET and would
lead to a low-k upturn in this figure. Furthermore, we have

canceled the leading-order cosmic variance, by actually
considering the ratio of the nonlinear power spectrum and
linear (initial) power spectrum measured in the simulations.
The one-loop EFT model (horizontal magenta dashed line)
fails to describe the data for k > 0.07 hMpc−1, but the two-
loop corrections can explain the residual scale dependence.
We find c2s ≈ 0.98 h−2Mpc2 and interpret the difference
from previous measurements c2s ≈ 1.6 h−2Mpc2 [16]
extracted from the k ¼ 0.15–0.25 hMpc−1 range as result-
ing from the two-loop contributions. It is also worth
noting that the two-loop calculation is already doing a
very good job at tracking the BAO oscillations, at least for
k < 0.2 hMpc−1. The calculation based on the UV limits
assumes a time dependence of c2s that matches the one of
the SPT term that it is regularizing, i.e., D2ðaÞ. We are
using this time dependence to scale our z ¼ 0 fit to higher
redshifts and find very good performance both for the
small wave number behavior and the scale dependence at
higher wave numbers. All of the redshifts show slightly low
data points at k ¼ 0.03 hMpc−1 and k ¼ 0.045 hMpc−1

that spoil a nice asymptotic behavior at low wave numbers
that one would expect in the EFT. As we describe in
Appendix B, this systematic effect goes away if the theory
is calculated on the simulation grid, effectively using the
same modes that are present in the simulations.
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FIG. 6 (color online). One-loop c2s estimator at z ¼ 0, 0.5, 1, 2 from top left to bottom right before IR resummation. At all redshifts, we
see clear evidence for a running of c2s that is described by the scale dependence of the two-loop correction and the two-loop counterterm.
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The discussion of the relative difference between sim-
ulation and analytic calculation for the power spectrum
itself will be deferred until we discuss the IR resummation
below in Sec. III B, but the anxious reader might want to
look at Fig. 10. The two-loop calculation agrees with the
data at the subpercent level all the way to k ¼ 0.3 hMpc−1

at z ¼ 0.

A. Time derivative and momentum correlators
at two loops

So far we have concentrated on a single observable,
the density power spectrum. We would now like to extend
the calculation to momentum statistics. This extension is
motivated by the fact that the momentum statistics are
sensitive to the time dependence of the speed of sound
and more sensitive to loop corrections than the density
power spectrum itself. We consider momentum μ ¼ −∇ ·
½ð1þ δÞv� instead of velocity, since the latter is only defined
at the particle locations in the simulation and thus the only
quantity that can be reliably measured. To compute
correlations involving momenta, we then use the continuity
equation

μðk; aÞ ¼ δ0ðk; aÞ: ð31Þ

For the SPT predictions of the momentum-density cross
power and momentum-momentum auto power, we have

Pδμ¼−fH
�
P11þ2ð2P13þP22Þþ3ð2P15þ2P24þP33Þ

�
;

ð32Þ

Pμμ¼f2H2

�
P11þ2ð3P13þ2P22Þþ10P15þ16P24þ9P33

�
:

ð33Þ

Note that while Pδμ is IR safe, i.e., the cancellation of IR
modes between P13 and P22 still happens (and similarly for
the two-loop contribution), this is not the case for Pμμ. The
density-momentum cross correlation is nothing but the time
derivative of the density power spectrum,

hδðkÞ; μðk0Þi ¼ hδðkÞ; δ0ðk0Þi

¼ ð2πÞ3δðDÞðkþ k0Þ 1
2
Pδ;δ

0ðkÞ: ð34Þ

Thus, if we manage to capture the time dependence of the
perturbative corrections to the density power spectrum, we
should also be able to describe the density-momentum
cross power spectrum at intermediate times. We immedi-
ately see that the importance of loop corrections is
enhanced with respect to the density-density power

spectrum and thus expect a steeper running of the speed
of sound corrections.
Let us now consider the counterterm for the momentum

statistics. We parametrize the time dependence of the
counterterm as a power law in linear growth D as c2s ¼
c2s;0D

γ , and with δðk; aÞ ¼ δð1Þðk; aÞ þ c2s;0D
γðaÞδð1Þðk; aÞ

we then have

μðk; aÞ ¼ δ0ðk; aÞ
¼ fH½δð1Þðk; aÞ þ ð1þ γÞc2s;0DγðaÞδð1Þðk; aÞ�:

ð35Þ

In analogy to Eq. (30) we consider the estimator for the
sound speed that first removes the one-loop corrections and
maps the residual on the leading-order counterterm,

−
Pðδδ;δμ;μμÞ − P11 − P1 loop

2k2P11

¼
�
c2s;0; c

2
s;0

1

2
ð2þ γÞ; c2s;0ð1þ γÞ

�
: ð36Þ

The leading UV sensitivity of SPT suggests that c2s scales
as σ2d, i.e., as D2 (γ ¼ 2). We saw above that this time
dependence provided a decent description of the density
power spectra. The constraints from the momentum-density
and momentum-momentum statistics are shown in Figs. 7
and 8, respectively. As above, we again see that γ ¼ 2
performs very well on large scales, but the errors are
considerable and c2s constraints for the momentum statistics
show a strong scale dependence, as they did for the density.
We thus continue to consider the γ ¼ 2 scale dependence

and calculate the two-loop momentum counterterms. The
counterterm for the density-momentum correlator can be
obtained from the time derivative of the density-density
counterterm or equivalently from taking the respective
limits of Eq. (32),

Pδμ;ctr¼α½2Pq1→∞
13 þ3ð2P̄q1→∞

15 þ2Pq1→∞
24 þPq1→∞

33−II Þ�
≡Pδμ;ctr;1loopþPδμ;ctr;2loop¼2Pctr;1loopþ3Pctr;2loop:

ð37Þ

We see in Fig. 7 that this counterterm, in combination with
the finite part of the two-loop calculation, can indeed
describe the scale dependence of the c2s estimator for
k > 0.07 hMpc−1. The SPT inspired time dependence
seems to work for this scale-dependent part up to z ¼ 1,
but at z ¼ 2 there are some deviations at k > 0.2 hMpc−1.
We also overplot the effect of IR resummation on the two-
loop result, which will be described in more detail in the
next section.
To obtain the expression for the momentum-momentum

correlator, one would need to write the expressions for the
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two-loop counterterms at the field level and take the time
derivatives. Here we rather follow the simple approach and
consider the limits of Eq. (33) to obtain

Pμμ;ctr ¼ α½6Pq1→∞
13 þ 10P̄q1→∞

15 þ 16Pq1→∞
24 þ 9Pq1→∞

33−II �
≡ Pμμ;ctr;1 loop þ Pμμ;ctr;2 loop: ð38Þ

The c2s constraints from this statistic are shown in Fig. 8.
While the agreement between the scale dependence of the
two-loop calculation and the data is somewhat worse than
for the density and density-momentum cross correlation,
the model is still able to roughly capture the broadband
scale dependence and the wiggles in the c2s estimator.

B. IR resummation

The EFT corrections discussed so far mainly address the
broadband, i.e., short scale behavior of the power spectra.
Another set of corrections that are not fully captured by
SPT are the long-wavelength motions, which however do
not affect the broadband behavior due to the equivalence
principle. The most prominent effect of the long modes is to
damp the BAO oscillations. Lagrangian perturbation theory
captures the effects of these motions better, since it keeps
them resummed in an exponential and thus captures their

effects to higher orders than the one to which the displace-
ment field has been calculated. SPT only keeps motions
to the order explicitly considered in the calculation. An
effective way to combine the merits of both approaches is
the so-called infrared resummation (IR resummation) [13],
which calculates the broadband in SPT and corrects the
result to account for the IR motions.
In this section we implement the simple IR resummation

described in [38]. This method multiplies the oscillatory
part of the power spectrum (the wiggle part Pw) by an
exponential damping but leaves the broadband part (the no-
wiggle part Pnw) unaffected,

PIR ¼ e−Σ
2
εðkÞk2

�
ð1þ Σ2

εðkÞk2ÞP11;w þ P1loop;w

�

þ P11;nw þ P1loop;nw; ð39Þ

where

Σ2ðkÞ ¼ 1

3

Z
k

0

d3q
ð2πÞ3

PðqÞ
q2

½1 − j1ðqrBAOÞ þ 2j2ðqrBAOÞ�;
ð40Þ

with jn being the nth-order spherical Bessel function. We
only consider the smoothing due to motions arising from
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FIG. 7 (color online). Constraints on the speed of sound and its time dependence from the momentum-density cross power spectrum.
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scales much larger than the scale under consideration; for
definiteness, we choose ΣϵðkÞ ¼ Σðk=2Þ.
The explicit two-loop SPT calculation contains the

resummed motions up to second order, such that the
resummation needs to start from third order, i.e., Σ6.

PIR ¼ e−Σ
2
εðkÞk2

�
ð1þ Σ2

εðkÞk2 þ
1

2
Σ4
εðkÞk4ÞP11;w

þ ð1þ Σ2
εðkÞk2ÞP1loop;w þ P2loop;w

�

þ P11;nw þ P1loop;nw þ P2loop;nw; ð41Þ

The effects of IR resummation are highlighted in Fig. 9.
Performing the IR resummation on the bare one-loop
calculation leads to considerable changes to the power
spectrum. Below k ≈ 0.2 hMpc−1, the not IR-resummed
two-loop calculation performs almost as well as the IR-
resummed one-loop calculation. The IR resummation of
the two-loop calculation only matters at the percent level
for k > 0.2 hMpc−1.

As we have seen above in Fig. 6, the two-loop calcu-
lation is tracking part of the BAO wiggles in the power
spectrum residuals after the one-loop result has been
removed. Let us now study its performance at higher wave
numbers and in the power spectrum itself. In Fig. 10 we
show the performance of the IR-resummed and not IR-
resummed one- and two-loop EFT calculations with respect
to the nonlinear power spectrum extracted from the N-body
simulation. Let us first discuss the broadband performance.
At redshift z ¼ 0 the one-loop calculation extends the range
of validity5 of linear theory from k ≈ 0.05 hMpc−1 to
k ≈ 0.1 hMpc−1. This is significantly less than usually
considered for the range of validity of the EFT at redshift
z ¼ 0 and arises from the fact that we have fixed the
leading-order counterterm in a way that is compatible with
the largest available scales. We then use this parameter to
calculate the two-loop counterterm. This term, together
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FIG. 8 (color online). Constraints on the speed of sound and its time dependence from the momentum-momentum auto power
spectrum.

5For the sake of definiteness we commonly consider 1%
deviations from the theory as the threshold for the range of
validity. Many applications will require tighter error bars on large
scales to fix the amplitude. On smaller scales we suffer from
baryonic effects and significant covariance, such that less
restrictive requirements could be employed.
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with the finite part of the regularized two-loop calculation,
allows us to extend the 1% agreement range to
k ≈ 0.3 hMpc−1. Here we should stop for a minute and
reconsider the goal of this exercise. Usually one tries to fit
the nonlinear power spectrum as well as possible up to the
highest possible wave number. But actually this should
not be the goal of the fit with the deterministic part of the
EFT, which we are computing here. The nonlinear power
spectrum is the sum of this deterministic part and the
stochastic part. As we have pointed out in [31,32], this
stochastic term amounts to a percent of the total power at
k ¼ 0.25 hMpc−1 (and about 3% at k ¼ 0.3 hMpc−1). This
means that the deterministic part of the power spectrum
should deviate from the nonlinear power spectrum by at
least this much for k > 0.25 hMpc−1. The deterministic
EFT calculation (performed here) should asymptote to the
perturbative or deterministic part of the power spectrum
PPT ¼ Pnl − Pstoch and not to the nonlinear power spectrum
itself. Thus, we have slightly underfitted the c2s parameter
and overfitted the power. Once our EFT calculation is
failing, it predicts more power than the nonlinear power
spectrum (downturn in Fig. 10). This failure would have
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FIG. 9 (color online). Effect of the IR resummation on the one-
and two-loop power spectra. We show the ratio of the power
spectra before and after IR resummation with respect to the
corresponding no-wiggle power spectrum in order to remove
broadband effects. Below k ¼ 0.2 hMpc−1 the bare two-loop
calculation agrees with the IR-resummed one-loop calculation at
the percent level. After IR resummation the wiggle part of the
one- and two-loop calculations agree, which tells us that the IR
resummation captured the relevant terms in the explicit two-loop
calculation correctly.
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FIG. 10 (color online). Ratio of the data to the various PT models at redshifts z ¼ 0, 0.5, 1, 2 from top left to bottom right. We show the
linear theory calculation (green dot-dashed line), the one-loop EFT (red solid line) and the two-loop calculation (blue dashed line). For
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happened even earlier and more steeply if the (positive)
stochastic contribution had been subtracted from the non-
linear power spectrum. A slight increase of c2s would bring
our curve closer to the deterministic part of the power
spectrum. Furthermore, looking at Fig. 5, we see that both
the one- and two-loop terms and their counterterms act to
decrease power for a while before crossing zero and adding
power. We might thus expect the higher-loop calculation to
reduce power in the same way at k > 0.25 hMpc−1 such
that the prediction matches the deterministic part of the
power spectrum for these wave numbers.
Having said this, let us now consider the effect of

IR resummation. As we have seen before, the two-loop
results before and after IR resummation agree for
k < 0.2 hMpc−1. For higher wave numbers the IR resum-
mation indeed reduces the amplitude of the residual BAO
wiggles even up to scales where the EFT broadband
significantly deviates from the nonlinear power.

IV. OUTLOOK TO HIGHER ORDERS

While the range over which the perturbative or deter-
ministic part of the EFT can describe the full nonlinear
structures is certainly limited by stochastic terms, there
might be some hope for further leverage in either precision
at low wave numbers or reach at intermediate wave
numbers from going to higher orders for the deterministic
part. As shown in [7], a three-loop calculation is, in
principle, feasible, but not very useful when taken at face
value. As we have seen above, part of the higher loop
calculation is degenerate with lower-order counterterms. At
the three-loop level this amounts to identifying the terms
that have already been taken care of by the terms that lead
to either P1 loop;ctr or P2 loop;ctr.
The three-loop power spectrum is given by

P3 loop ¼ 2P17 þ 2P26 þ 2P35−I þ 2P35−II

þ P44−I þ P44−II; ð42Þ

with constituent diagrams given in Fig. 11.

Let us discuss these terms separately.
(i) P17: This is a propagator term. Its leading-order

contribution for low external wave numbers scales
as k2P11 and is thus degenerate with the leading-order
counterterm. To the extent that c2s has been fixed, we
can safely subtract this term from the three-loop
calculation. We expect such a contribution from the
triple-hard limit. Then therewill be double-hard limits,
where one of the loops remains at the same order as
the external momentum. These terms have been
accounted for in P15;ctr and thus need to be subtracted
from the result. The part that is new is the one where
only one of the loops becomes large, and this limit will
become part of the three-loop counterterm.

(ii) P26: The double-hard limit of this term is degenerate
with P24;ctr and thus needs to be subtracted from the
calculation. The single-hard limit will lead to a new
counterterm of the form k2 × finite.

(iii) P35−I: The nature of this term is very similar to P24,
just extended by one loop of the stochastic kind.
There are no degeneracies with lower-order counter-
terms, but it leads to a new two-loop counterterm of
the form k2 × finite.

(iv) P35−II: This term is a product of P11, P13=P11 and
P15=P11. The k2P11 part of the P15 contribution
needs to be subtracted from the diagram. Finally,
the counterterm is a combination of c2sk2P̄15 and
c2sk2P̄15;ctr.

(v) P44−I: This term is of the same nature as P33−I and
P22; i.e., the limits of high loop momenta lead to
stochastic terms and the amplitudes of the divergen-
cies are suppressed by q4.

(vi) P44−II: The double-hard limit with both “ear” dia-
grams large is of the form k4σ4d × finite and thus
leads to a new counterterm.

In summary, we can conjecture for general l-loop
diagrams that the diagrams in which all the legs of the
Flþ1 kernels are connected to another Flþ1 are stochastic
terms and will not contribute to the leading-order counter-
term. All the other diagrams are dressings of diagrams that

FIG. 11. Diagrams for the three-loop calculation.
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were encountered at lower orders with ears, i.e., diagrams
that are given by the pair of momenta ðq;−qÞ in the kernels.
When one of them is hard, we need a new counterterm at
leading order in derivatives, and when several of them are
hard, this term will be degenerate with a counterterm that
has already been fixed. Thus, their contribution has to be
subtracted from the finite part of the loop calculation.

V. CONCLUSIONS

Our study leads to the following conclusions:
(i) Fitting the one-loop counterterm c2s at k ¼

0.2 hMpc−1 overestimates this coefficient by 50%
for lower wave numbers and thus leads to too much
suppression on large scales. While this regime is
hard to extract from simulations, this might have
important consequences for studies of primordial
non-Gaussianity, where both the maximum wave
number and also precision on large scales matter.

(ii) We find that the finite part of the two-loop calcu-
lation that is not degenerate with the leading-order
counterterm induces a 1% correction in the power
spectrum at k ¼ 0.1 hMpc−1 for our ΛCDM cos-
mology at redshift z ¼ 0. The two-loop counterterm
itself adds another 1% correction in the same
direction at k ¼ 0.16 hMpc−1.

(iii) We have not explicitly calculated the three-loop
correction, but based on a related study in Lagran-
gian space [31] and its extension to density fields
[32], we estimate that the stochastic term will lead
to a 1% (3%) correction at k ≈ 0.25 hMpc−1

(k ≈ 0.3 hMpc−1). Note that the perturbative EFT
should describe the deterministic part of the power
spectrum, which by definition has less power than
the full nonlinear power spectrum. Our EFT model
fails by overpredicting the power compared to
simulations so the failure of the model really
happens at a slightly lower wave number. Also,
there does not appear to be much room for the
explicit three-loop calculation to improve on our
results without explicitly modeling the stochas-
tic term.

(iv) We find that the two-loop EFT model with IR
resummation can capture the scale dependence of
the matter power spectrum up to k ≈ 0.3 hMpc−1 at
the 1% level. Besides that, with the same EFT
parameter and our assumption of a particular (D2)
time dependence of the counterterms, we are also
able to explain the scale dependence of the mo-
mentum power spectrum.

(v) The fact that the EFT model can match the power
spectrum does not necessarily mean that the EFT is
the right model for the density field. The model so
far does not include the stochastic term that is
partially given by the virialized motions within

halos. We do expect the one-halo term to play a
role at the percent level around k ≈ 0.3 hMpc−1

based on our recent study [32]. The one-halo term is
just one contribution to the stochastic term.

(vi) At the subpercent level, many numerical effects can
affect the agreement between theory and simula-
tions. On the one hand, one can use the perturbative
calculations on very large scales to check linear
growth in simulations. On the other hand, precise
comparisons of simulations and theory on large
scales might require the theory to be evaluated for
the same seeds that were used to initialize the
simulations as we discuss in Appendix B.

(vii) In summary, the picture at this point looks fairly
consistent, but it is certainly too early to claim final
success. Measurements of c2s without cosmic vari-
ance on large scales as discussed in Appendix B
would certainly be the cleanest way to get the
leading-order EFT correction as well as its time
dependence. Unfortunately, there seem to be con-
vergence issues in the N-body simulation. Besides
that, there might be several other effects that might
warrant further study. For example, the assumption
of the Einstein–de Sitter correspondence for the
growth factor might impact our results at the percent
level once the one-loop corrections become order
unity corrections [39].
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APPENDIX A: EXPLICIT FORMULAS

In this appendix we write down the explicit formulas for
the one- and two-loop contributions to set the normalization
for the terms used in the main text. The corresponding
diagrams are given in Fig. 1. For the one-loop terms we
have

P13 ¼ 3PðkÞ
Z
q1

F3ðq1;−q1; kÞPðq1Þ;

P22 ¼ 2

Z
q1

jF2ðq1; k − q1Þj2Pðq1ÞPðjk − q1jÞ; ðA1Þ

where the recursion formulas for the SPT kernels can be
found in the literature [3]. The kernels employed here are
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the ones derived for an Einstein–de Sitter universe and are
based on separability of spatial and temporal structure of
the theory. Note that all the kernels are symmetrized over
their arguments. Their time dependence is governed by the
D2 scaling of the linear power spectrum with the growth
factor D. For the two-loop terms we have

P15 ¼ 15PðkÞ
Z
q1

Z
q2

F5ðq1;−q1; q2;−q2; kÞPðq1ÞPðq2Þ;

P24 ¼ 12

Z
q1

Z
q2

F4ðq1;−q1; q2; k − q2Þ

× F2ð−q2;−kþ q2ÞPðq1ÞPðq2ÞPðjk − q2jÞ;

P33−I ¼ 6

Z
q1

Z
q2

jF3ðq1; q2; k − q1 − q2Þj2Pðq1ÞPðq2Þ

× Pðjk − q1 − q2jÞ;

P33−II ¼ PðkÞ
�
3

Z
q1

F3ðq1;−q1; kÞPðq1Þ
�
2

¼ P2
13ðkÞ
PðkÞ : ðA2Þ

Note that we have not symmetrized the Pij terms for
i ≠ j; i.e., their contribution to the total equal time power
spectrum will be 2Pij.

APPENDIX B: COSMIC VARIANCE
AND THE PROPAGATOR

The propagator [4] measures the response of the density
field to the initial conditions

ð2πÞ3δðDÞðk − k0ÞGðkÞ ¼
	∂δnlðkÞ
∂δ0ðk0Þ



: ðB1Þ

It can be estimated from the cross power spectrum of the
nonlinear and the linear field and the auto power spectrum
of the linear field as

GðkÞ ¼ Pnl;1ðkÞ
P11ðkÞ

: ðB2Þ

The propagator is, in principle, the cleanest observable
for the extraction of the speed of sound c2s of the Eulerian
EFT, since the latter is nothing but a modification of
the low-k limit of the propagator. At one-loop level we
have G ¼ 1þ P13=P11 − c2sk2, and at two-loop level
G ¼ 1þ P13=P11 − c2sk2 þ P̄15=P11 þ P̄15;ctr=P11. Here,
we again use the regularized P̄15, from which all the
k2P contributions have been removed. This is consistent
with the previously introduced logic, where c2s absorbs the
difference after the one-loop calculation has been sub-
tracted from the data and effectively contains all the higher-
order and nonperturbative corrections as well as the mistake

in the one-loop calculation. As argued before, this choice
is somewhat arbitrary. This is no problem, as long as this
choice is employed consistently. RPT [4] tries to resum the
propagator in the high-k limit, whereas here our goal will
be to estimate the leading-order corrections in the
low-k limit.
We are interested in the deviations of the propagator

from unity and define an alternative estimator for c2s ,

ĉs ¼ −
Pnl;1 − P11 − P13

k2P11

; ĉs ¼ −
Pnl;1 − P11 − P13 − P̄15

k2P11

.

ðB3Þ

The SPT contributions in these expressions are IR sensitive,
since the cancellation of IR modes in 2P13 þ P22 or its two-
loop equivalent does not occur. When subtracting the one-
loop SPT contribution from the propagator measured in
simulations, we address this issue by evaluating perturba-
tion theory on the initial condition grid employed for the
simulations using a technique similar to [40]. Thus, we are
using the same IR modes that affect the nonlinear dynamics
in the simulation, thus directly addressing the IR sensitivity.
The propagator-based estimator projects out all the terms
from the field that correlate with the linear field and thus
provides an alternative and in some sense cleaner meas-
urement of corrections that have the form of the leading-
order EFT counterterm, which could be masked by other
contributions in the auto power spectrum.
We show the measurements of c2s based on the propa-

gator in Fig. 12 at one- and two-loop levels. The upper
panel shows c2s before the two-loop contribution has been
subtracted. After correcting for 10−4 level offsets in the
linear growth factor,6 which are probably related to the time
stepping in GADGET and that lead to an upturn or downturn
of the data points in the plot, we see that the data asymptote
to a constant on large scales and then decay on smaller
scales. The shape of this decay is, however, captured by the
scale dependence of P̄15. Another remarkable observation
is that the measured value of c2s depends very strongly on
the PMGRID parameter in GADGET, leading to a shift of
Δc2s ≈ 0.8 h−2Mpc2. We have seen a similar sensitivity
already for the Lagrangian EFT coefficient of the displace-
ment field in [31]. Based on this study, we are inclined to
favor the results of the PMGRID ¼ 2Np case. For another
observation of this sensitivity in the power spectrum, see
[41]. Further evidence for the trustworthiness of this
case comes from the fact that it agrees with the results
from the higher resolution box, the M simulation. In a
second step we now remove the scale dependence of P̄15

and see in the lower panel that the estimated c2s is flat up to

6We have independent evidence for such an error at this level
from comparing power spectra for our fiducial parameter settings
with a simulation with smaller time steps.
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k ≈ 0.2 hMpc−1. There is clearly more need for conver-
gence studies of the propagator, and we certainly do not
want to overinterpret a result that is so sensitive on
numerical parameters of simulations. We conclude, how-
ever, that there is evidence for a nonzero speed of sound
correction after one-loop SPT has been subtracted. The
inferred value c2s ¼ 1.15 hMpc−1 roughly agrees with the
value employed for the equal time correlators in the main
text. Had we subtracted the explicit low-k limit of P15 (not
P̄15, i.e. before regularization), the estimated c2s would have
changed by Δc2s ¼ −2.58 hMpc−1 and thus yielded a
nonzero, negative c2s . The explicit corrections from three
loops are even higher [7].
In the rightpanel ofFig. 12wealsocompare thegrid-based

calculationfor thec2s constraint fromtheautopowerspectrum
with the analytical calculation. For the latter, we saw in the
main text in Fig. 6 that the data points for ĉ2s at k <
0.05 hMpc−1 are systematically low. This problem vanishes
once the theory is calculated on the simulation grid. We see
that the c2s estimator now asymptotes to a constant horizontal
lineon largescales, aswewouldexpect it tobasedon thescale
dependence of the two-loop corrections shown in Fig. 5.
Again, thevalueof this asymptotic constantdependsstrongly
on the PMGRID parameter choice, now leading to a Δc2s ¼
0.3 h−2Mpc2 difference between the two cases. Note, how-
ever, that they agree at higher wave numbers. Thus, to the
extent that our ansatz is trustworthy, a model that matches at
these scales would prefer the PMGRID ¼ 2Np case at lower
wave numbers.
There is also a slight disagreement between the propa-

gator and power spectrum estimates for the favored
PMGRID ¼ 2Np case. The power spectrum method for

this case would indicate a c2s ¼ 1.05 h−2Mpc2. In Fig. 13
we show both the propagator and the power spectrum
estimator after the finite two-loop terms have been sub-
tracted out. Except for a Δc2s ≈ 0.1 h−2Mpc2 offset, both
estimators are flat and consistent up to k ≈ 0.15 hMpc−1,
where higher-order terms, for instance, the two-loop
counterterms, start to matter.

APPENDIX C: LIMITS OF THE
TWO-LOOP TERMS

In the main text, our discussion has focused on the terms
that we consider relevant for the leading UV sensitivity and

FIG. 12 (color online). Left panel: Speed of sound extracted from propagator measurements in our simulations. We show
measurements for two different choices of the Gadget PMGRID parameter PMGRID ¼ Np and PMGRID ¼ 2Np for the L simulation
as well as for the M simulation with PMGRID ¼ 2Np. The upper panel shows the k2P coefficient after the subtraction of the linear and
one-loop corrections and the lower panel after subtraction of the regularized two-loop contribution Preg

15 (which are shown as solid and
dashed lines in the upper panel). Right panel: Comparison of the c2s estimator based on an analytical one-loop calculation and the one-
loop calculation performed on the simulation IC grid. Once corrected for 3 × 104 growth factor normalization, the low-k limit of the
estimator in the simulations indeed asymptotes to a constant.

FIG. 13 (color online). Low-k measurements of c2s from the
final field and the propagator after the two-loop terms have been
corrected for. The dashed line shows the effect of a relative error
of the linear growth factor of 2 × 10−4 that both statistics have
been corrected for.
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the corresponding counterterms. Let us, for the sake of
completeness, discuss the remaining hard limits in this
appendix. An overview of all the single- and double-
hard limits of the two-loop calculation is given in

Table I. In this table we also give the power of the
cutoff dependence of the remaining integrals if the initial
power spectrum is of power-law form PðkÞ ∝ kn. We
evaluate the cutoff dependence for n ¼ −3=2 and the
slope of our power spectrum at k ¼ 0.1 hMpc−1. For the
single-hard limits we immediately see that the terms that
we found to dominate the shell behavior have the most
shallow decay in the UV and are thus the most sensitive
to the change of the power spectrum at high wave
numbers. For the double-hard limits, the limit of P15 is
still growing for n ¼ −3=2 but turns around for n ¼ −2
at k ≈ 0.3, so it will still converge based on the high-k
slope of our initial power spectrum. Yet, it is immedi-
ately clear why this integral should be absorbed into the
counterterm. The subleading k4P UV sensitivity of P15

[not mentioned in the table but below in Eq. (C8)] scales
as 2nþ 2, i.e., as Λ−1 for n ¼ −3=2, and should thus be
the next term considered as a counterterm, after the
single-hard limits. It will change the coefficient of the
c4sk4P11 counterterm.
First, we consider the limit of P33−I for q1 → ∞while q2

remains finite,

Pq1→∞
33−I ¼

Z
q1

Z
q2

P2
11ðq1Þ
r41

P11ðq2Þ
�
5565r92 − 11465r72 þ 26409r52 þ 22285r32 − 510r2

14288400r52

−
15ðr22 − 1Þ3ð7r22 þ 2Þð53r22 þ 17Þ

14288400r52
log

�
1þ r2
1 − r2

��
: ðC1Þ

The amplitude is given by
R
P2
11ðqÞ=q4, which is quickly convergent in the UVand thus does not contribute to a significant

UV sensitivity. For the double-hard limit of the same integral we have

Pq1;q2→∞
33−I ¼ k4

Z
q1

Z
q2

K33−Iðq1; q2ÞP11ðq1ÞP11ðq2ÞPðjq1 þ q2jÞ; ðC2Þ

where K33−I can be parametrized in terms of the magnitude of the momenta and their cosine μ12 ¼ q1 · q2=q1q2 as

K33−I ¼
ðμ212 − 1Þ2ðq1q2ð392μ312 þ 634μ12Þ þ ð392μ212 þ 121Þq21 þ ð392μ212 þ 121Þq22Þ

19845ðq21 þ 2μ12q1q2 þ q22Þ3
: ðC3Þ

The term thus scales as k4 in the k → 0 limit, with a quickly convergent amplitude
R R

P3
11=q

4.
For the double-hard limit of P24 we have

Pq1;q2→∞
24 ¼ k4

Z
q1

Z
q2

K24ðq1; q2ÞP11ðq1ÞP11ðq2ÞP11ðjq1 þ q2jÞ; ðC4Þ

where K24 is given by

K24 ¼
4ðμ212 − 1Þ2

33957q22ð2ð1 − 2μ212Þq22q21 þ q41 þ q42Þ2
½ð1380μ212 − 43Þq61 þ ð−2544μ412 þ 208μ212 þ 243Þq22q41

þ ð−1008μ412 þ 568μ212 þ 615Þq42q21 þ 7ð36μ212 þ 47Þq62�: ðC5Þ

The term thus scales as k4 in the k → 0 limit, with a quickly convergent amplitude.

TABLE I. Table of the two-loop limits, references to the
equations where they are discussed, and the power of the cutoff
dependence Λx for a power-law power spectrum PðkÞ ∝ kn with
general power-law slope n and for n ¼ −3=2. For the single-hard
limit the slope gives the power of the hard integral ignoring the
remaining finite integral, while for the double-hard integrals we
consider both momenta in the hard integrals to be of the same
order. The choice n ¼ −3=2 is motivated by the slope of our
ΛCDM power spectrum at k ≈ 0.1 hMpc−1.

Single-hard limit Double-hard limit

Equation xðnÞ xð−3=2Þ Equation xðnÞ xð−3=2Þ
P15 (14) nþ 1 −1=2 (C8) 2nþ 4 1
P24 (15) nþ 1 −1=2 (C4) 3nþ 2 −5=2

(C6) 2n − 1 −4
P33−I (C1) 2n − 1 −4 (C2) 3nþ 2 −5=2
P33−II (16) nþ 1 −1=2 (13) 2ðnþ 1Þ −2
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In the main text we considered only one of the single-hard limits of P24, the one where the closed loop or “ear” diagram
becomes large. The other limit, where the loop containing two power spectra becomes large, is given by

Pq2→∞
24 ¼ k4

Z
q2

P2
11ðq2Þ
q42

Z
q1

K24ðr1ÞP11ðq1Þ; ðC6Þ

with a kernel

K24 ¼
28620r91 − 90858r71 þ 470848r51 − 247326r31 þ 4644r1 − 3ðr21 − 1Þ3ð4770r41 − 2423r21 − 774Þ logðr1þ1

r1−1
Þ

16299360r51
: ðC7Þ

As for Pq1→∞
33−I , the amplitude is given by

R
P2
11ðqÞ=q4.

As we had hinted at in the main text, if both loop momenta in P15 go to infinity, we end up with an analytic function in k,

Pq1;q2→∞
15 ¼ −k2P11ðkÞ

Z
q1

Z
q2

K15;2ðq1; q2ÞP11ðq1ÞP11ðq2Þ þ k4P11ðkÞ
Z
q1

Z
q2

K15;4ðq1; q2ÞP11ðq1ÞP11ðq2Þ: ðC8Þ

We rederive the double-hard limit of P15 and note that the expression agrees with what was found for the k2P11 part
in [42,43],

K15;2ðq1; q2Þ ¼ −
2q1q2ð5760q101 þ 19365q81q

2
2 − 114653q61q

4
2 − 114653q41q

6
2 þ 19365q21q

8
2 þ 5760q102 Þ

13759200q71q
7
2

þ
15ðq21 − q22Þ4ð384q41 þ 2699q21q

2
2 þ 384q42Þ logðq1þq2

q1−q2
Þ

13759200q71q
7
2

: ðC9Þ

Note that the limit of the above expression, where one of the momenta is smaller than the other one q2 ≪ q1, turns out to be
the same as the limit of Eq. (17), in which we first take q1 ≫ k; q2 and only afterwards q2 ≫ k. We also obtain the
expression for the k4P11 part to estimate the size of the subleading UV sensitivity,

K15;4ðq1; q2Þ ¼
1

59329670400q91q
9
2

ð7074480q131 q2 þ 75154450q111 q32 − 41165824q91q
5
2 þ 317583580q71q

7
2

− 41165824q51q
9
2 þ 75154450q31q

11
2 þ 7074480q1q132 Þ − 105ðq21 − q22Þ2

59329670400q91q
9
2

log

�
q1 þ q2
q1 − q2

�

× ð33688q101 þ 414025q81q
2
2 þ 476047q61q

4
2 þ 476047q41q

6
2 þ 414025q21q

8
2 þ 33688q102 Þ: ðC10Þ

[1] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga,
J. Cosmol. Astropart. Phys. 07 (2012) 051.

[2] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore, J. High
Energy Phys. 09 (2012) 082.

[3] F.Bernardeau, S.Colombi,E.Gaztanaga, andR.Scoccimarro,
Phys. Rep. 367, 1 (2002).

[4] M. Crocce and R. Scoccimarro, Phys. Rev. D 73, 063519
(2006).

[5] F. Bernardeau, M. Crocce, and R. Scoccimarro, Phys. Rev.
D 78, 103521 (2008).

[6] A. Taruya, F. Bernardeau, T. Nishimichi, and S. Codis,
Phys. Rev. D 86, 103528 (2012).

[7] D. Blas, M. Garny, and T. Konstandin, J. Cosmol. Astropart.
Phys. 01 (2014) 010.

[8] M. McQuinn and M. White, arXiv:1502.07389.
[9] M. P. Hertzberg, Phys. Rev. D 89, 043521 (2014).

[10] E. Pajer and M. Zaldarriaga, J. Cosmol. Astropart. Phys. 08
(2013) 037.

[11] L. Mercolli and E. Pajer, J. Cosmol. Astropart. Phys. 03
(2014) 006.

[12] S. M. Carroll, S. Leichenauer, and J. Pollack, Phys. Rev. D
90, 023518 (2014).

[13] L. Senatore and M. Zaldarriaga, J. Cosmol. Astropart. Phys.
02 (2015) 013.

[14] L. Senatore and M. Zaldarriaga, arXiv:1409.1225.
[15] S. Foreman and L. Senatore, arXiv:1503.01775.
[16] J. J. M. Carrasco, S. Foreman, D. Green, and L. Senatore,

J. Cosmol. Astropart. Phys. 07 (2014) 056.

TOBIAS BALDAUF, LORENZO MERCOLLI, and MATIAS ZALDARRIAGA PHYSICAL REVIEW D 92, 123007 (2015)

123007-20

http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://dx.doi.org/10.1007/JHEP09(2012)082
http://dx.doi.org/10.1007/JHEP09(2012)082
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.78.103521
http://dx.doi.org/10.1103/PhysRevD.78.103521
http://dx.doi.org/10.1103/PhysRevD.86.103528
http://dx.doi.org/10.1088/1475-7516/2014/01/010
http://dx.doi.org/10.1088/1475-7516/2014/01/010
http://arXiv.org/abs/1502.07389
http://dx.doi.org/10.1103/PhysRevD.89.043521
http://dx.doi.org/10.1088/1475-7516/2013/08/037
http://dx.doi.org/10.1088/1475-7516/2013/08/037
http://dx.doi.org/10.1088/1475-7516/2014/03/006
http://dx.doi.org/10.1088/1475-7516/2014/03/006
http://dx.doi.org/10.1103/PhysRevD.90.023518
http://dx.doi.org/10.1103/PhysRevD.90.023518
http://dx.doi.org/10.1088/1475-7516/2015/02/013
http://dx.doi.org/10.1088/1475-7516/2015/02/013
http://arXiv.org/abs/1409.1225
http://arXiv.org/abs/1503.01775
http://dx.doi.org/10.1088/1475-7516/2014/07/056


[17] J. J. M. Carrasco, S. Foreman, D. Green, and L. Senatore,
J. Cosmol. Astropart. Phys. 07 (2014) 057.

[18] T. Baldauf, L. Mercolli, M. Mirbabayi, and E. Pajer,
J. Cosmol. Astropart. Phys. 05 (2015) 007.

[19] R. E. Angulo, S. Foreman, M. Schmittfull, and L. Senatore,
arXiv:1406.4143.

[20] V. Assassi, D. Baumann, E. Pajer, Y.Welling, and D. van der
Woude, arXiv:1505.06668.

[21] R. A. Porto, L. Senatore, and M. Zaldarriaga, J. Cosmol.
Astropart. Phys. 05 (2014) 022.

[22] Z. Vlah, M. White, and A. Aviles, J. Cosmol. Astropart.
Phys. 09 (2015) 014.

[23] P. McDonald, Phys. Rev. D 74, 103512 (2006).
[24] P. McDonald and A. Roy, J. Cosmol. Astropart. Phys. 08

(2009) 020.
[25] F. Schmidt, D. Jeong, and V. Desjacques, Phys. Rev. D 88,

023515 (2013).
[26] V. Assassi, D. Baumann, D. Green, and M. Zaldarriaga,

J. Cosmol. Astropart. Phys. 08 (2014) 056.
[27] L. Senatore, arXiv:1406.7843.
[28] M. Mirbabayi, F. Schmidt, and M. Zaldarriaga, J. Cosmol.

Astropart. Phys. 07 (2015) 030.
[29] M. Lewandowski, A. Perko, and L. Senatore, J. Cosmol.

Astropart. Phys. 05 (2015) 019.
[30] R. Angulo, M. Fasiello, L. Senatore, and Z. Vlah, J. Cosmol.

Astropart. Phys. 09 (2015) 029.

[31] T. Baldauf, E. Schaan, and M. Zaldarriaga, ar-
Xiv:1507.02255.

[32] T. Baldauf, E. Schaan, and M. Zaldarriaga, ar-
Xiv:1505.07098.

[33] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).
[34] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 192, 18 (2011).
[35] M. Crocce, S. Pueblas, and R. Scoccimarro, Mon. Not. R.

Astron. Soc. 373, 369 (2006).
[36] V. Springel, Mon. Not. R. Astron. Soc. 364, 1105

(2005).
[37] A. Manzotti, M. Peloso, M. Pietroni, M. Viel, and F.

Villaescusa-Navarro, J. Cosmol. Astropart. Phys. 09
(2014) 047.

[38] T. Baldauf, M. Mirbabayi, M. Simonović, and M.
Zaldarriaga, Phys. Rev. D 92, 043514 (2015).

[39] R. Takahashi, Prog. Theor. Phys. 120, 549 (2008).
[40] N. Roth and C. Porciani, Mon. Not. R. Astron. Soc. 415,

829 (2011).
[41] R. E. Smith, D. S. Reed, D. Potter, L. Marian, M.

Crocce, and B. Moore, Mon. Not. R. Astron. Soc. 440,
249 (2014).

[42] F. Bernardeau, A. Taruya, and T. Nishimichi, Phys. Rev. D
89, 023502 (2014).

[43] D. Blas, M. Garny, and T. Konstandin, J. Cosmol. Astropart.
Phys. 09 (2013) 024.

EFFECTIVE FIELD THEORY OF LARGE SCALE … PHYSICAL REVIEW D 92, 123007 (2015)

123007-21

http://dx.doi.org/10.1088/1475-7516/2014/07/057
http://dx.doi.org/10.1088/1475-7516/2015/05/007
http://arXiv.org/abs/1406.4143
http://arXiv.org/abs/1505.06668
http://dx.doi.org/10.1088/1475-7516/2014/05/022
http://dx.doi.org/10.1088/1475-7516/2014/05/022
http://dx.doi.org/10.1088/1475-7516/2015/09/014
http://dx.doi.org/10.1088/1475-7516/2015/09/014
http://dx.doi.org/10.1103/PhysRevD.74.103512
http://dx.doi.org/10.1088/1475-7516/2009/08/020
http://dx.doi.org/10.1088/1475-7516/2009/08/020
http://dx.doi.org/10.1103/PhysRevD.88.023515
http://dx.doi.org/10.1103/PhysRevD.88.023515
http://dx.doi.org/10.1088/1475-7516/2014/08/056
http://arXiv.org/abs/1406.7843
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://dx.doi.org/10.1088/1475-7516/2015/05/019
http://dx.doi.org/10.1088/1475-7516/2015/05/019
http://dx.doi.org/10.1088/1475-7516/2015/9/029
http://dx.doi.org/10.1088/1475-7516/2015/9/029
http://arXiv.org/abs/1507.02255
http://arXiv.org/abs/1507.02255
http://arXiv.org/abs/1505.07098
http://arXiv.org/abs/1505.07098
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1111/j.1365-2966.2006.11040.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11040.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1088/1475-7516/2014/09/047
http://dx.doi.org/10.1088/1475-7516/2014/09/047
http://dx.doi.org/10.1103/PhysRevD.92.043514
http://dx.doi.org/10.1143/PTP.120.549
http://dx.doi.org/10.1111/j.1365-2966.2011.18768.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18768.x
http://dx.doi.org/10.1093/mnras/stu272
http://dx.doi.org/10.1093/mnras/stu272
http://dx.doi.org/10.1103/PhysRevD.89.023502
http://dx.doi.org/10.1103/PhysRevD.89.023502
http://dx.doi.org/10.1088/1475-7516/2013/09/024
http://dx.doi.org/10.1088/1475-7516/2013/09/024

