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The Jordan frame action for general disformal theories is presented and studied for the first
time, motivated by several unresolved mysteries that arise when working in the Einstein frame. We
present the Friedmann equations and, specializing to exponential functions, study the late-time
cosmology using both dynamical systems methods and by finding approximate solutions. Our
analysis reveals that either the disformal effects are irrelevant or the Universe evolves towards a
phantom phase where the equation of state of dark energy is −3. There is a marginal case where the
asymptotic state of the Universe depends on the model parameters and de Sitter solutions can be
obtained. Our findings indicate that the metric singularity found using the Einstein frame construction
corresponds to phantom behavior in the Jordan frame and we argue that this is the case for general
disformal theories.
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I. INTRODUCTION

The elusive nature of dark energy has prompted theo-
retical interest in the cosmological dynamics of scalar fields
(see [1] for a review) as a mechanism for driving the
acceleration of the cosmic expansion. With the exception of
the simplest models such as quintessence [2,3] and k-
essence [4], theories that include an additional scalar are
alternative theories of gravity [5] (see [6] for a recent
compendium of cosmologically relevant theories); they
include additional degrees of freedom that couple to matter,
resulting in additional gravitational strength (or larger)
interactions.
Many (but not all) modified gravity models can be

written in the schematic form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LgðgμνÞþLϕðϕÞ�þSm½~gμνðgμν;ϕÞ�; ð1Þ

where the scalar field ϕ is taken to be dimensionless.
This action describes a theory of gravity in the so-called
Einstein frame. Lg contains tensor self-interactions of gμν
through curvature tensors such as the Ricci scalar and Lϕ

contains scalar self-interactions. No direct couplings
of the scalar to curvature tensors are present and the
modifications of general relativity (GR) are encoded in
the coupling to matter. In particular, test bodies do not
move on geodesics of ~gμν, the Einstein frame metric, but
instead respond to the composite metric ~gμνðgμν;ϕÞ—the
Jordan framemetric. It was shown by Bekenstein [7,8] that
the most general theory of a scalar coupled to matter that
preserves causality is

~gμν ¼ Cðϕ; XÞgμν þDðϕ; XÞ∂μϕ∂νϕ;

X ≡ −
1

2
gμν∂μϕ∂νϕ: ð2Þ

Indeed, it has been shown that theories where matter is
coupled to metrics of this form are free of the Ostrogradski
ghost instability [9–19]. Cðϕ; XÞ is known as the conformal
factor, and its consequences have been well studied, at least
when it depends on ϕ only. Consequently, Dðϕ; XÞ has
become known as the disformal factor and the termDϕμϕν,
the disformal coupling to matter, or simply the disformal
part of the metric. Any theory whereDðϕ; XÞ ≠ 0 falls into
the class of disformal gravity theories.
Disformal couplings are ubiquitous in fundamental

physics. They arise in the low energy effective action of
string theory [20] and are linked to Galileons through probe
branes moving in higher dimensional space-times [21,22].
They also arise in the decoupling limit of massive gravity
[23]. In the context of Horndeski theories [13,24], the most
general scalar-tensor theories with second-order equations
of motion, they are the most general transformation that
preserve the form of the scalar-tensor sector when C and D
depend on ϕ only [14]. These are the motivation behind a
recent phenomenological study of disformal theories in
several different contexts [20,25–42], with most attention
focusing on the case where C and D depend on ϕ only.
The parametrized post-Newtonian (PPN) parameters for

this class of disformal theories were calculated in [33,42],
where it was shown that they are completely determined by
the cosmological scalar ϕ0. For this reason, knowledge of
the cosmology of these theories is vital for determining
their viability. The first steps towards this were made by the
authors of [34], who used dynamical system techniques to
classify the cosmological solution space in the Einstein
frame with the goal of identifying models that passed solar
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system bounds. Several new fixed points were found but all
had one problem in common: the Jordan frame metric
becomes increasingly singular as the fixed point is
approached, corresponding to the lapse in the Jordan frame
approaching zero. This may represent several pathologies
with the theory including the lack of a nonrelativistic limit
and a freezing of the proper time for observers, all of which
we will discuss in more detail in the next section.
Currently, it is unclear whether the singularity is debili-

tating for the theory or if it is merely an artifact of working in
the Einstein frame. The two frames are equivalent for
calculational purposes provided that the solutions are inter-
preted appropriately when relating them to observations.
Furthermore, one cannot interpret observations until the
proper time for an observer is aligned with the coordinate
time and, since matter moves on geodesics of the Jordan
framemetric, this frame is singled out for observations1 [42].
Finally,Wetterich [43] has shown that frame transformations
may introduce spurious solutions that solve the field equa-
tions in one frame but not the other. Given this, a study of the
Jordan frame cosmology with a view to addressing these
outstanding issues is certainly merited.
This is the purpose of this paper. In the next section, we

introduce disformal gravity theories in theEinstein frame and
discuss the nature of the singularity, including the associated
pathologies, in more detail. The applicability of the Einstein
frame dynamical system to fundamental observers is also
discussed. We next move on to study the Jordan frame
cosmology. In Sec. III we present the Jordan frame
Friedmann and Klein-Gordon equations and use them to
develop a dynamical systems approach to classifying the
solutions for exponential scalar potentials and disformal
factors. We find that theories where the disformal factor is
small (in a manner to be made precise below) behave in a
similar manner to quintessence but theories where the
disformal factor is large are not well described by a
dynamical systems analysis in the sense that the fixed points
reveal little about the late-time cosmology. Instead, we focus
on finding exact solutions at late times in Sec. V. Here, we
show that the theory exhibits phantom behavior at late times
with an effective dark energy equation of state w ¼ −3.
Models that exhibit phantom behavior are precisely

those that suffer from singularities in the Einstein frame
and thus we conclude that the singularity is indeed a
physical pathology, the Jordan frame manifestation being
phantom behavior. There is a marginal case that corre-
sponds to a specific tuning in the parameter space of the
theory. In this case, the asymptotic state of the Universe is a
function of the model parameters and we show that it is
possible to achieve asymptotically de Sitter solutions using

a suitable tuning. We discuss our findings and conclude in
Sec. VI. In particular, we argue that the qualitative features
we observer here—quintessence fixed points and phantom
behavior—are features of general disformal models.
For the reader interested purely in the cosmology of

disformal models and not the singular nature of the
disformal transformation, the Jordan frame cosmology is
presented here for the first time and can be found in Sec. III
onwards. The Friedmann equations here can be used
directly for computing quantities such as the luminosity
distance-redshift relation, which requires a transformation
to coordinates appropriate for comoving observers if one
uses the Einstein frame. Furthermore, the nonphantom
regions of the parameter space of exponential models are
presented in the conclusions (Sec. VI) where we also
discuss the application to more general models.

II. THE EINSTEIN FRAME

In this section we present the Einstein frame action we
will consider and use it to describe the singularity in the
Jordan frame as well as the potential pathologies it presents.
The action we will consider is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Mpl

2

�
RðgÞ
2

−
1

2
∇μϕ∇μϕ − VðϕÞ

�

þ Sm½~gμν�: ð3Þ

The Jordan frame metric is

~gμν ¼ gμν þ
B2ðϕÞ
Λ2

∂μϕ∂νϕ: ð4Þ

Specializing to the case of a flat Friedmann-Robertson-
Walker (FRW) space-time,

ds2E ¼ −dt2E þ a2Edx
2
E; ð5Þ

where we use the subscripts E and J to represent Einstein
and Jordan frame quantities respectively, the Jordan
frame singularity can be seen by computing the metric
determinants [44]:

ffiffiffiffiffiffi
−~g

p
ffiffiffiffiffiffi−gp ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − Σ

p
; Σ≡ B2ðϕÞ

Λ2

�
dϕ
dtE

�
2

: ð6Þ

When Σ ¼ 1 the Jordan frame metric is singular. Using (4),
the lapse in the Jordan frame is

N2 ¼ 1 − Σ ð7Þ

so that

dtJ ¼ NdtE: ð8Þ

1Note that we do not claim that one frame is any more physical
than the other, only that the Jordan frame is the frame where the
coordinate time is aligned with the proper time for an observer,
thus making any calculations simple to compare with other
alternate gravity theories.
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One can see that, cosmologically, the metric singularity
corresponds to this becoming zero.
There are several physical issues with the approach to the

singularity. First, the Jordan frame space-time is

d~s2 ¼ −N2dt2E þ aðtÞ2dx2 ð9Þ
and so the proper time τ for physical observers is [42]

dτ
dtJ

¼ N; ð10Þ

and so an observer’s proper time is frozen at the singularity.
Furthermore, since ~gμνuμuν ¼ −1, the Lorentz factor is [42]

γ ¼ 1

N

�
1 −

v2

c2

�
; ð11Þ

where vi ¼ dxi=dtJ. Typically, one derives the Newtonian
behavior of the theory by looking at the limitv=c ≪ 1. In this
case however, this is not sufficient. As demonstrated in [42],
one also requires Σ ≪ 1 in order to have a sensible post-
Newtonian expansion. Since the singularity corresponds
precisely to Σ → 1, this behavior is lost as the singularity
is approached and there is no sensible Newtonian limit. The
lack of such a limit was also noted in [33,34] using Einstein
frame coordinates. In this case, Newtonian quantities such as
the total force diverge as Σ → 1. Since N is also the ratio of
the speed of light to that of tensors, the Einstein frame
interpretation of this is that there are no particles that move
with nonrelativistic velocities in this limit.
One obvious question is then, why not use FRW coor-

dinates with unit lapse from the outset in the Jordan fame? In
this case there is no apparent singularity at the level of the
metric and any potential pathology must appear through the
solution of the Friedmann equations. Indeed, our choice of
coordinates such that gμν is FRWis not a choice of space-time
since no particles follow geodesics of gμν. Applying the
change of time coordinate (8) to (9) one has

d~s2 ¼ −dt2J þ aðtJÞ2dx2; ð12Þ

where aðtJÞ ¼ aðtJðtEÞÞ. This is a FRW space-time and so
one can see that the singularity found taking gμν to be FRWis
simply a coordinate singularity.2 The one remaining question

is that of aðtJÞ. Currently, it is not known whether or not the
transformation (8) introduces any singularities into the
spatial part of the metric. Said another way, is there some
finite time t̄J such thataðt̄JÞ ¼ 0?This is a difficult question if
one begins in the Einstein frame. Equation (8) is highly
nonlinear, and one requires an exact solution to provide an
answer. Conversely, the Jordan frame is a perfect tool
because one can classify the entire cosmological solution
space using dynamical systems or other techniques. One then
has the cosmological information that can be compared to
data, as well as knowledge of any pathologies. One can
identify the Jordan frame coordinates corresponding to the
singularity found using the coordinates (5) because applying
the transformation (8) one finds

N2 ¼
�
1þ B2

Λ2

�
dϕ
dtJ

�
2
�−1

ð13Þ

and so in these coordinates the singularity corresponds to
Bdϕ=dtJ=Λ → ∞. Another advantage of working in the
Jordan frame exclusively is the following.Wetterich [43] has
pointed out that spurious solutions can exist whereby a
specific solution may be a solution of the Einstein frame
equations of motion but not the Jordan frame equations. This
potential problem is mitigated by working in the Jordan
frame from the outset.
All of the potential problems discussed above clearly

motivate our study of the Jordan frame cosmology of
disformal theories. Ultimately, we will see that when
dϕ=dtJ → ∞ i.e. in the limit where the singularity is
present in Einstein frame time, the Universe undergoes
strong phantom behavior (w ¼ −3 for exponential models)
and therefore the pathologies associated with the singu-
larity are physical, the Jordan frame manifestation being
precisely said phantom behavior. In terms of the Einstein
frame coordinates (5) one can see that as the singularity is
approached, the Jordan frame lapse tends increasingly
towards zero and therefore, for comoving observers, a
large number of e-folds can pass in a small amount of
proper time. When viewed in this manner, the phantom
behavior is hardly surprising.
Before moving on to study the Jordan frame, we end this

section by discussing the use of dynamical systems in both
frames. The Einstein frame dynamical system for expo-
nential models was studied in [27,34]. In order to achieve
an autonomous system of equations, one uses the variable
NE ¼ ln aE as a time variable and chooses appropriate
variables xi that span the phase space of the system. Fixed
points correspond to points in the phase space where

dxi
dNE

¼ 0 ∀ i: ð14Þ

It is assumed that tE is a monotonic function of NE and that
NE → ∞ ⇒ tE → ∞, both of which are necessary for

2The reader should note that this is strictly true in the context of
an isotropic and homogeneous cosmology. Whether or not there
are other physical scenarios where a nonremovable Jordan frame
singularity is present is unknown, although we note that, to date,
none has been observed. All of the pathologies that arise due to
the singularity discussed in this section are the result of the
cosmological singularity and the aim of this work is to understand
the physical implications of this. For this reason, we focus
entirely on the cosmological singularity and will not attempt to
address the more general question of potential singularities
elsewhere.
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global attractors of the dynamical system to correspond to
the asymptotic state of the system (see [45,46] for the more
technical aspects of dynamical systems theory). Note
however that tE → ∞ does not necessarily imply that
tJ → ∞. This depends on being able to integrate (8) exactly
and so fixed points in the Einstein frame do not necessarily
correspond to the asymptotic future in the Jordan frame.
One case where this can be achieved trivially is the case
where N ¼ 1 at the fixed point. In this case, disformal
effects are absent and the theory behaves in an identical
manner to quintessence. Away from this limit, there are
some important and physically relevant quantities that
cannot be calculated using the Einstein frame. One perti-
nent example of this is the Hubble constant

HJ ¼
HE

N
: ð15Þ

In the Einstein frame, HE → 0 at the fixed points and there
are also fixed points where N → 0 in the same limit. These
are fixed points corresponding to the singularity. This
means that the behavior of HJ is undetermined. If the
phase space were one dimensional, one could simply use
l’Hôpital’s rule to find the asymptotic value but there is no
higher dimensional analogue of this theorem. For this
reason, the asymptotic value depends on the phase space
trajectory of the specific solution as it approaches the fixed
point. In this case, the Einstein frame dynamical system
fails to achieve its goal of predicting the universal late-time
behavior since knowledge of the fixed points alone is not
sufficient to know the asymptotic state of the Universe.
This is an artifact of working in a coordinate system where
the asymptotic state of the dynamical system does not
correspond to the limit of infinite proper time as seen by
comoving observers.3 Conversely, the Jordan frame
dynamical system is perfectly able to predict all of the
physically relevant quantities precisely because the coor-
dinates are FRW with unit lapse from the outset.

III. THE JORDAN FRAME

From here on we work exclusively in the Jordan frame.
For this reason, we will drop all unnecessary subscripts and
tildes; it is to be understood that all quantities are Jordan
frame quantities. The Jordan frame action is complicated
compared with the simplicity of its Einstein frame counter-
part, as is the derivation of the field equations. For this
reason, we give the calculation of the Jordan frame action
and the field equations in Appendix A and present the final
results here.

We begin by defining the disformal coupling,

β ¼ d lnBðϕÞ
dϕ

: ð16Þ

In general, β can be an arbitrary function of ϕ but, in what
follows, we set β to be constant so that

BðϕÞ ¼ eβϕ: ð17Þ

Second, the scalar potential is

VðϕÞ ¼ m2
0e

−λϕ; ð18Þ

where λ is a constant and m0 is an a priori arbitrary, mass
scale. These choices are made so that the equations exhibit
a scaling symmetry that allows for the existence of scaling
solutions and hence the dimension of the phase space is
minimal [34]. With these newly defined constants, one can
start building the disformal model. First, we need the
Friedmann equations:

3H2 ¼
_ϕ2

2
þ Vuþ 8πGρmu3=2 ð19Þ

_H ¼ −
_ϕ2

2
− 4πGρmu3=2 þ

B2H
uΛ2

ðβ _ϕ3 þ _ϕ ϕ̈Þ; ð20Þ

which are derived in Appendix A 2. The variable u is
defined for notational convenience and is given by

u ¼ 1þ B2 _ϕ2

Λ2
: ð21Þ

One can already see the advantage of working in the Jordan
frame; the Friedmann constraint contains the disformal
scale Λ and so it is possible to compactify the phase space
without using unphysical variables. This is in stark contrast
to the Einstein frame, where the Friedmann constraint is
identical to that of the equivalent quintessence theory and it
is necessary to use advanced techniques relating to fixed
points at infinity to determine the late-time dynamics [34].
Next, we need the scalar equation of motion, which can be
expressed as

ϕ̈þ
�
8πGρmB2

Λ2
ðϕ̈þ β _ϕ2Þ

�
u3=2 þ Vϕu2 þ 3H _ϕu

¼ βB2 _ϕ4

Λ2
: ð22Þ

Because we are working in the Jordan frame, the scalar is
minimally coupled to matter and one has the usual
continuity equation:

_ρm þ 3Hρm ¼ 0: ð23Þ

3One may wonder whether it is possible to choose Einstein
frame coordinates to avoid this problem. Such a choice of
coordinates would require working in a coordinate system where
ϕðtÞ is part of the Einstein frame metric and would ultimately
require one to mix frame variables in the equations of motion.
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Equations (19)–(23) contain all the necessary information
about the dynamics of the system. The complexity of these
equations makes it impossible to find exact analytic
solutions and one method to analyze their late-time
behavior is to use a dynamical systems analysis. These
methods are not new in cosmology. Indeed, they were
applied previously to study quintessence [47] and disformal
theories in the Einstein frame [34]. Moreover, a dynamical
systems analysis is a powerful tool to calculate the late-time
cosmological observables. The unfamiliar reader can find
an introduction to dynamical systems and their use in
cosmology in [1,34,45,46,48–50].
Before proceeding to formulate the equations as a

dynamical system, we pause to discuss the physical observ-
ables we wish to calculate using our subsequent analysis.
Typically one is interested in the dark energy density
parameterΩDE and the equation of statew. These are difficult
to define and several inequivalent effectivevariables are often
found in the literature.4 Instead of defining effective quan-
tities, we will look for quantities whose definition and
interpretation are insensitive to the theory of gravity.5 One
suitable quantity is the deceleration parameter

q ¼ −
äa
_a2

; ð24Þ

which implies that

_H
H2

¼ −ð1þ qÞ ð25Þ

independent of the theory of gravity. In the case of wCDM,
one has

q ¼ 1

2
ð1þ 3weffÞ; ð26Þ

whereweff
6 depends on bothwm andwDE. This motivates the

definition

weff ¼ −1 −
2

3

_H
H2

: ð27Þ

q < 0, or equivalently, weff < 1=3 indicates that the cosmic
expansion is accelerating and sowewill use these to classify
the nature of the solutions. Formally, one may define

ΩDE ≡ 1 −Ωm; ð28Þ

and we will often refer to this quantity but the reader should
be aware that this is not the samequantity that is inferred from
cosmic microwave background or luminosity distance mea-
surements7; it is merely an indication of what is driving the
evolution of the Universe.

IV. FORMULATION AS A DYNAMICAL SYSTEM

In this section, we formulate the Friedmann–Klein-
Gordon equations as a dynamical system and classify
the fixed points.

A. Construction of the phase space

In order to make contact with the quintessence literature,
we begin by introducing the new variables

x≡ ϕ0ffiffiffi
6

p ; and y≡
ffiffiffiffi
V

p
ffiffiffi
3

p
H
; ð29Þ

where instead of differentiating with respect to coordinate
time t, we differentiate with respect to N ≡ ln aðtÞ. We
denote derivatives with respect to N using a prime. This
coordinate choice allows us to reduce the dimension of the
phase space by 1. Using these variables, we can rewrite the
Friedmann constraint as

1 ¼ x2 þ y2uþ Ωmu3=2: ð30Þ

As noted in [34], the disformal phase space is three-
dimensional and so we require one more variable to close
the system. The authors of [34] chose the variable z ¼
BH=Λ but this results in a phase space that is noncompact.
In particular, note that u ¼ 1þ 6x2z2 in this system so that
neither the x- nor the z-directions are compact owing to the
fact that Ωm can be arbitrarily small. Instead, one can work
in a compact phase space by introducing the following
variables:

X ≡ xu−
3
4; Y ≡ yu−

1
4 Z≡ u−

3
4: ð31Þ

When written in terms of these new variables, the
Friedmann constraint becomes

Z2 ¼ X2 þ Y2 þΩm: ð32Þ

This implies that −1 ≤ X ≤ 1, 0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1;
therefore the phase space is compact. When written in
terms of these variables, the phase space is a half-cone with
the vertex located at (0,0,0). This is shown in Fig. 1. Its base
is the semicircle x2 þ y2 þΩm ¼ 1 located in the plane
Z ¼ 1. This is precisely the phase space of quintessence

4See [37,51–55] for discussions relating to effective quantities
in scalar-tensor theories.

5By which we mean they describe properties of the FRW
metric and are not found by comparing the Friedmann equations
to those resulting from the Einstein-Hilbert action.

6We use the notation eff to denote a single composite quantity
that describes the evolution of the Universe and not an effective
equation of state for dark energy.

7By this, we mean that the values of w and ΩDE are found by
fitting the data to functional forms where w is constant, which is
not necessarily the case for disformal models.
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and hence corresponds to the subset of the theory where
disformal effects are absent. Any fixed points that lie on the
base of the cone therefore have late-time cosmologies that are
identical to those found for pure quintessence theories with
an exponential potential [48]. Note, however, that their
stability may be altered since the three-dimensional phase
space implies the existence of a third eigenvalue, and that the
other two eigenvalues may assume different values from
those found in a purely two-dimensional phase space. Setting
Ωm ¼ 0, one can see that the sides of the cone correspond to
dark energy dominated solutions whereas setting
X ¼ Y ¼ 0, one has Ωm ¼ Z ¼ 1, and so the point (0,0,1)
corresponds to a matter dominated solution. We therefore
expect all physical trajectories to originate from its vicinity.

Special attention must be paid to the tip of the cone
X ¼ Y ¼ Z ¼ 0, which corresponds to what would be the
metric singularity had we worked in the Einstein frame.
This is a peculiar point because a fixed point here tells us
absolutely nothing about the late-time cosmology.
Typically, fixed points such as these indicate that the
effective dimension of the phase space is reduced and
one typically requires center manifold methods to find the
reduced phase space. Indeed, these methods are necessary
for analyzing the cosmology in the Einstein frame [34]. The
reduced phase space is often unphysical,8 and an alternate
approach is to look for approximate late-time solutions
given that one has some idea of which terms in the
equations can be ignored at late times. This is the approach
that we will adopt in Sec. V.
The case β ¼ λ=2 was identified in [34] as a special

parameter tuning in the Einstein frame where the dimension
of the phase space is reduced to 2. This remains the case in
the Jordan frame, where one has

VðϕÞB2ðϕÞ ¼ m2
0; ð33Þ

which implies a relation between X, Y, and Z:

Y2 ¼ 2
m2

0

Λ2

X2

1 − Z
4
3

: ð34Þ

This relation is an additional constraint that must be
satisfied and hence only two of the variables are indepen-
dent. In terms of the three-dimensional phase space,
the dynamics of the system are restricted to the two-
dimensional surface where (34) is satisfied and hence the
phase space is two dimensional. For this reason the
dynamics of this case must be treated separately.
Using Eq. (32) to eliminate Ωm, Eqs. (19)–(22) can be

expressed as a system of three autonomous first-order
differential equations:

dX
dN

¼ X½X4ð3 − 9Z
4
3Þ þ 6X2Z

4
3ðY2 − 3Z

2
3 þ 4Z2Þ þ 3ðZ4

3 − 1ÞðY2 − Z2Þ2
2Z2ðX2ð3Z4

3 − 1Þ þ ðZ4
3 − 1ÞðZ2 − Y2ÞÞ

þ
ffiffiffi
6

p
XZðλY2ð3 − 5Z

4
3Þ þ 2βðZ4

3 − 1ÞðY − ZÞðY þ ZÞÞ − 4
ffiffiffi
6

p
βX3ZðZ4

3 − 1Þ�
2Z2ðX2ð3Z4

3 − 1Þ þ ðZ4
3 − 1ÞðZ2 − Y2ÞÞ ð35Þ

dY
dN

¼ Y½X4ð3 − 9Z
4
3Þ þ 6X2Z

4
3ðY2 − 3Z

2
3 þ 2Z2Þ þ 3ðZ4

3 − 1ÞðY2 − Z2Þ2Þ
2Z2ðX2ð3Z4

3 − 1Þ þ ðZ4
3 − 1ÞðZ2 − Y2ÞÞ

−
ffiffiffi
6

p
X3Zðλþ 6βðZ4

3 − 1Þ − 3λZ
4
3Þ − ffiffiffi

6
p

λXðZ4
3 − 1ÞZð2Y2 þ Z2Þ�

2Z2ðX2ð3Z4
3 − 1Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ ð36Þ

FIG. 1 (color online). The phase space of the system. The point
(0,0,1) corresponds to matter dominated solutions and the edges
of the cone correspond to dark energy dominated solutions. The
phase space of quintessence coincides with the base of the cone
located in the Z ¼ 1 plane.

8In the sense that the variables are far removed from the underlying dynamical quantities such as H and _ϕ. The phase space still
contains all of the late-time trajectories.
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dZ
dN

¼ −
3XðZ4

3 − 1Þð ffiffiffi
6

p ð2βX2 þ λY2Þ − 6XZÞ
2Z4ðX2ð1 − 3Z

4
3Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ : ð37Þ
Using Eq. (20), one finds

H0

H
¼ X4ð9Z4

3 − 3Þ þ 4
ffiffiffi
6

p
βX3ðZ4

3 − 1ÞZ − 6X2Z
4
3ðY2 − 2Z

2
3 þ Z2Þ þ 2

ffiffiffi
6

p
λXY2ðZ4

3 − 1ÞZ − 3ðZ4
3 − 1ÞðY2 − Z2Þ2

2Z2ðX2ð1 − 3Z
4
3Þ þ ðZ4

3 − 1ÞðZ2 − Y2ÞÞ ; ð38Þ

which can be used to calculate weff and q. One also has ΩDE ¼ 1 − Z2 þ X2 þ Y2 in these variables.

B. Fixed points when β ≠ λ=2

There are a total of five fixed points of Eqs. (35)–(37)
that we list in Table I. Table II lists the interesting
cosmological quantities at each point. The corresponding
eigenvalues are listed below; only points (4) and (5) can be
late-time attractors:
(1) e1 ¼ 3

2
, e2 ¼ 3

2
, e3 ¼ 0

(2) e1 ¼ 3, e2 ¼ −2
ffiffiffi
6

p
β − 6, e3 ¼ 3þ

ffiffi
3
2

q
λ

(3) e1 ¼ 3, e2 ¼ 2
ffiffiffi
6

p
β − 6, e3 ¼ 3 −

ffiffi
3
2

q
λ

(4) e1 ¼ λð2β − λÞ, e2 ¼ 1
2
ðλ2 − 6Þ, e3 ¼ λ2 − 3

(5) e1¼6β
λ −3, e2¼−3

4
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
λ Þ, e3¼−3

4
ð1−

ffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
λ Þ.

Interestingly, not all solutions are fixed points. Point (1)
is actually a fixed line, hence the zero eigenvalue. As
discussed above, we will deal with this point using
late-time solutions rather than dynamical systems. We note
that X ¼ Y ¼ Z ¼ 0 is an independent fixed point
not shown in the table. It corresponds to a matter

dominated solution9 and so cosmologically viable trajec-
tories should begin near this point. One can see that
it is a saddle point and so trajectories will eventually
leave its vicinity, signaling the onset of dark energy
domination.
Points (2) and (3) are unstable nodes or saddle points that

correspond to nonaccelerating phases and so we will pay no
further attention to them. Points (4) and (5) are both located
in the plane Z ¼ 1, which, as discussed above, corresponds
to a quintessence subset. These fixed points are hence
identical to the points found if one considers quintessence
with an exponential potential in GR. In particular, point (4)
is the dark energy dominated point that exists when λ<

ffiffiffi
6

p
.

Point (5) exists when λ >
ffiffiffi
6

p
and exhibits a matterlike

behavior with weff ¼ 0. Unlike the case of GR, these points
are not always stable when they exist. Indeed, one can see
that both are unstable when 2β > λ. When this is the case,
the only stable fixed point is at the tip of the cone and the
dynamical systems analysis does not reveal anything
interesting about the late-time dynamics. Examples of this
are shown below in Figs. 2 and 3. If the theory was GR and
quintessence, the models with λ ¼ 1 and λ ¼ 4 should
approach fixed points (4) and (5) independently of the other
parameters. These models are plotted in Fig. 2 with m0 ¼
Λ ¼ H0 and β < λ=2 (the model parameters are indicated
in the captions). One can see that these points are eventually
reached after a brief excursion into the domain Z < 1. In
Fig. 3 we plot the same models but instead choose β > λ=2.
Once can see that, in this case, both models now evolve
towards the tip of the cone.
One can then conclude that models with β < λ=2 have

late-time cosmologies that are identical to quintessence
whereas those with β > λ=2 exhibit drastically different
behavior. We will calculate this below in Sec. V but we
note here for completeness that points (2)–(5) are identical to
those found in [34].10 The reason for this is that, as discussed
in Sec. II, these points all have Z ¼ 1, which corresponds to
B _ϕ=Λ ¼ 0 i.e. no disformal coupling. In this limit, the

TABLE II. The cosmological variables at the fixed points of the
system (35)–(37) when β ≠ λ=2.

Name H0=H q weff ΩDE

(1) − 3
2

1
2

0 1
(2) −3 2 1 1
(3) −3 2 1 1
(4) − λ2

2
1
2
ðλ2 − 2Þ 1

3
ðλ2 − 3Þ 1

(5) − 3
2

1
2

0 3=λ2

TABLE I. The fixed points of the system (35)–(37) when
β ≠ λ=2.

Name X Y Z Existence

(1) 0 0 0 < Z ≤ 1 All
(2) −1 0 1 All
(3) 1 0 1 All
(4) λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
1 λ <

ffiffiffi
6

p

(5)
ffiffi
3
2

p
λ

ffiffi
3
2

p
λ

1 Any

9This is point (1) Table I in [34] and the first bullet
point Appendix C in [27], when the conformal parameter α ¼ 0
(in both cases).

10These are points (2)–(5) in that reference, Table I.
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Einstein and Jordan frames are equivalent, and so are the
coordinates used to parametrize the phase spaces.

C. Fixed points when β ¼ λ=2

As remarked above, the phase space is two dimensional
when β ¼ λ=2. To see this, we can use Eq. (33) in the
Friedmann constraint (19) to find

1 ¼ ð1þ 2μ2Þx2 þ y2 þ Ωm

�
1þ 2μ2

x2

y2

�3
2

; ð39Þ

with μ ¼ m0=Λ. In this case, the phase space is elliptical.
There are two routes by which one can proceed to analyze
the fixed points of the system. The first is to reformulate the
equations in terms of x and y and use the Friedmann
equation to eliminate Ωm. One can then find the fixed
points of the two-dimensional system and proceed in the
usual manner. The second is to continue to work in the
three-dimensional framework and apply the constraint,
which in our variables is [see Eq. (34)]

Y2 ¼ 2μ2X2

1 − Z
4
3

: ð40Þ

Here, we adopt the second approach in order to make
contact with the previous analysis. Substituting the con-
straint (40) into Eqs. (35)–(37) in order to eliminate Y, one
finds the equations in the reduced phase space, which are
given in Appendix B due to their length.
The resulting fixed points are given in Table III with the

corresponding cosmological parameters given in Table IV.
The eigenvalues are

FIG. 2 (color online). The phase space trajectories for models
with λ ¼ 1 (red) and λ ¼ 4 (blue). In each case β ¼ 0.3, m0 ¼
Λ ¼ H0 and the initial conditions are ϕðNiÞ ¼ 1, ϕ0ðNiÞ ¼ 0.
The initial values of Ni ¼ ln ai and HðNiÞ were chosen such that
the Universe begins in a matter dominated phase at redshift 10
with Ωm ¼ 0.99999.

FIG. 3 (color online). The phase space trajectories for
models with λ ¼ 1 (red) and λ ¼ 4 (blue). In each case β ¼ 3,
m0 ¼ Λ ¼ H0 and the initial conditions are those indicated
in Fig. 2.

TABLE III. The fixed points and lines when β ¼ λ=2.

Name X Y Z Existence

(1) 0 0 0 < Z ≤ 1 All
(2) 0 0 0 All
(3) 0 0 1 All
(4)

ffiffiffiffiffi
3
2λ2

q
ð1−2μ2Þ3=4

ffiffiffiffiffi
3
2λ2

q
ð1−2μ2Þ3=4 ð1−2μ2Þ3=4 μ< 1ffiffi

2
p ,

λ≥
ffiffiffi
3

p
(5) λffiffi

6
p ð2λ2μ2

λ2−6þ1Þ3=4
ffiffiffiffiffiffiffiffiffi
1−λ2

6

q
ð2λ2μ2
λ2−6þ1Þ

3=4 ð2λ2μ2
λ2−6þ1Þ

3=4 λ2< 6
1þ2μ2

TABLE IV. The cosmological variables at the fixed points
when β ¼ λ=2.

Name H0=H q weff ΩDE

(1) − 3
2

1
2

0 1 − Z2

(2) − 3
2

1
2

0 1
(3) − 3

2
1
2

0 0
(4) − 3

2
1
2

λ2

3
− 1 ð 3

λ2
− 1Þð1 − 2μ2Þ3=2 þ 1

(5) − λ2

2
λ2

2
− 1 0 1
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ð1Þ e1 ¼
3

2
; e2 ¼ 0; ð41Þ

ð2Þ e1 ¼
3

2
; e2 ¼ 0; ð42Þ

ð3Þ e1 ¼
3

2
; e2 ¼ 0; ð43Þ

ð4Þ e�¼−
3

4
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ðλ4þ18λ2−72Þμ2þ72−21λ2Þ

p
4λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ðλ2−6Þμ2þ3Þ

p ; ð44Þ

ð5Þ e1 ¼ λ2 − 3; e2 ¼ −3þ λ2

2
: ð45Þ

One can see that the first three points are unstable and so we
will ignore them from here on. The fourth point is a
deformation of the stable spiral found when β < λ=2 and
when λ >

ffiffiffi
6

p
. Its form is rather cumbersome but, by taking

the limit λ → ∞, one can see that the largest eigenvalue
tends to zero from below and is therefore stable.11 The fifth
point is a deformation of the stable attractor found when
β < λ=2 and when λ <

ffiffiffi
3

p
. One can see that when μ >

ffiffiffi
2

p
and λ >

ffiffiffi
3

p
the only stable point is the tip of the cone. Just

like the analysis of the case β ≠ λ=2, this implies that the
trajectories approach a center manifold at late times. Again,
we will analyze this case by looking for an approximate
late-time solution. The three possible types of solution are
shown in Fig. 4.

V. LATE-TIME SOLUTIONS

In this section we address models that evolve towards the
tip of the cone by looking for approximate late-time
solutions. These were the cases β > λ=2 and β ¼ λ=2.

A. Solution when β > λ=2

At late times, one expects that the field has rolled down
the potential sufficiently such that ϕ ≫ 1 and Ωm ≪ 1.
Writing the Friedmann constraint (19) as

3H2 ¼
_ϕ2

2

�
1þm2

0e
ð2β−λÞϕ

Λ2

�
þm2

0e
−λϕ þ 8πGρu

3
2; ð46Þ

one can see that the final two terms are negligible compared
with the term 3H2 and so we have

3H2 ≈
m2

0
_ϕ2eð2β−λÞϕ

Λ2
: ð47Þ

Changing from coordinate time to N ¼ ln a we have

m2
0ϕ

02eð2β−λÞϕ

Λ2
¼ 3; ð48Þ

which is solved by

ϕðNÞ ¼ 2

2β − λ
ln

� ffiffiffi
3

p ð2β − λÞ
2

Λ
m0

N

�
: ð49Þ

This approximate solution is shown in Fig. 5 and one can
see that it matches very closely with the numerical solution.
Next, we can make the same approximations to Eq. (20) to
find

_H
H2

¼ −
3

2
Ωm

_ϕ3

Λ3
e3βϕ þ 1

H

�
β _ϕþ ϕ̈

_ϕ

�
; ð50Þ

which, when written using N as the time coordinate and
applying the solution (49), becomes

3

2
Ωmϕ

03H
3

λ3
e3βϕ ¼ 5β − 2

2N
: ð51Þ

Taking the logarithm of both sides, differentiating with
respect to N and using the relation

FIG. 4 (color online). The phase space trajectories for possible
solutions when β ¼ λ=2. The blue line tends to fixed point (4) and
corresponds to a model with μ ¼ 1, λ ¼ 1. The red line tends to
fixed point (5) and corresponds to a model with λ ¼ 1, μ ¼ 0.5.
The black line corresponds to a model with μ ¼ 1, λ ¼ 10 and
tends towards the tip of the cone. In each case Λ ¼ H0 and m0

was fixed using the value of μ. The initial conditions are those
indicated in Fig. 2.

11Whether or not it is an attractor or a stable spiral depends on
the values of μ and λ.
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Ωm
0

Ωm
¼ −3 − 2

H0

H
ð52Þ

we find

H0

H
¼ 3 −

2ðβ þ λÞ
ð2β − λÞN : ð53Þ

This is plotted in Fig. 6 and one can again see that the
approximation works very well at late times.
We can see that when β > λ=2 the Universe will

ultimately enter a phantom phase where H0=H tends to
3, although many e-folds must elapse before the asymptotic
value is reached. That being said, it is not necessarily the
case that a large change in N implies a large amount of

coordinate time has elapsed. Indeed, recalling that
H ¼ dN=dt, the coordinate time is

tðNÞ ¼
Z

N

Ni

dN0

HðN0Þ : ð54Þ

Since the lapse is unity, this is the proper time for comoving
observers. For nonphantom solutions such as the quintes-
sencelike trajectories found in Sec. IV B, H is a decreasing
function of N and so tðNÞ is an exponentially increasing
function. The phantom solutions, on the other hand, have
HðNÞ increasing exponentially and so tðNÞ is a slowly
evolving function at large N. Physically, this means that
one expects a large number of e-folds in a short amount of
proper time, and so the asymptotic phantom state is reached
very quickly. This behaviour is plotted in Fig. 7 and can be
understood by considering the Einstein frame. As the
Universe expands, the field begins to roll and disformal
effects become increasingly important. If the field does not
begin to slow, the Jordan frame lapse approaches zero and
little coordinate time evolves, despite the fact that the scale
factor and field are evolving rapidly. When viewed in this
manner, phantom behavior is a natural consequence of the
disformal coupling.
We end this section by noting that the solution (53)

implies that q ≈ −4, or, equivalently, weff ≈ −3. An equa-
tion of state this negative is in strong tension with
observational data [56–60] but it is not necessarily the
case that this value is reached at the present time. Indeed,
examination of Fig. 6 reveals that, for the model studied
there, the asymptotic value is not reached until far into the
future. Whether a model predicts that the Universe is in the
phantom phase at the present time or that it will undergo
one at some point in the future depends on the initial
conditions and model parameters such as m0 and Λ, which
do not determine the asymptotic state of the Universe but
do control how quickly it is reached. For example, if one
were to tunem0 ≫ H0 the field will begin to roll early on in
the Universe’s history and one would expect phantom
behavior today. Conversely, tuning m0 ≪ H0 will result in
the field being overdamped due to Hubble friction and the
phantom behavior will only ensue far into the future. When
fitting cosmological probes of the background expansion to
data, Bayesian analysis will likely favor regions of param-
eter space where the phantom phase has not yet begun and
so it is likely that cosmologically viable models can be
found. Such an investigation would make an interesting
topic for future work.

B. β ¼ λ=2

When β ¼ λ=2 we can write the Friedmann equation as

3H2 ¼ ð1þ 2μ2Þ
_ϕ2

2
þm2

0e
−λϕ þ 8πGρu

3
2: ð55Þ

FIG. 6 (color online). The evolution of H0=H found both
numerically (red solid curve) and using the approximation
(49) (blue dashed curve). The asymptotic value of 3 is shown
using the black dotted line. The parameters used were β ¼ 1.4,
λ ¼ 2 and m0 ¼ Λ ¼ H0. The initial conditions are those
indicated in Fig. 2.

FIG. 5 (color online). The evolution of ϕðNÞ found both
numerically (red solid curve) and using the approximation
(49) (blue dashed curve). The parameters used were β ¼ 1.4,
λ ¼ 2 and m0 ¼ Λ ¼ H0. The initial conditions are those
indicated in Fig. 2.
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Again, one expects that ϕ ≫ 1 at late times but, unlike the
previous case, there are no factors of e2βϕ that become large
in this limit. Instead, the second term is negligible and one
has

1 ≈ ð1þ 2μ2Þϕ
02

6
þΩmu

3
2; and ð56Þ

0 ≈ −
ϕ02

2
−
3

2
Ωmu

3
2 þ λ

2
ϕ0; ð57Þ

where the second equation comes from taking the limit
ϕ ≫ 1 in Eq. (20). Unlike the previous case, it is not
possible to find an exact analytic solution but one can find
late-time scaling solutions by looking for solutions of the
form ϕ0 ¼ δ1, Ωmu

3
2 ¼ δ2. Under these assumptions, one is

led to two equations for δi:

3 ¼ 1

2
ð2μ2 þ 1Þδ21 þ 3δ2 ð58Þ

0 ¼ λδ2
2

−
δ21
2
−
3δ2
2

; ð59Þ

which have the solutions

ð1Þ δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ12μ2−6

p
þλ

1−2μ2

δ2 ¼
2

1−2μ2
−
λð2μ2þ1Þðλ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ12μ2−6

p
Þ

3ð1−2μ2Þ2 ð60Þ

ð2Þ δ1 ¼
6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2þ12μ2−6
p

þλ

δ2 ¼
2

1−2μ2
−
λð2μ2þ1Þðλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ12μ2−6

p
Þ

3ð1−2μ2Þ2 : ð61Þ

Note that one requires 2μ2 > 1 in order for this type of
solution to exist. If the converse is true the solution tends to
fixed point (4) found in Sec. IV C. Given this constraint,
one can see that solution (1) is incompatible with our
assumption that ϕ ≫ 1 because ϕ0 ¼ δ1 < 0 and so only
solution (2) is viable. A scaling relation such as this implies
a definite prediction for the asymptotic state of the
Universe. Indeed, since Ωmu

3
2 is constant one has, using

Eq. (52),

H0

H
¼ 3 −

3λ

2
δ1; ð62Þ

which implies

q ¼ 9λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 12μ2 − 6

p
þ λ

− 4; and ð63Þ

weff ¼
6λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ 12μ2 − 6
p

þ λ
− 3: ð64Þ

One can see that in this case the asymptotic state of the
Universe is a function of λ and μ. Note that since δ1 > 0, the
Universe cannot accelerate with H0=H > 3. A natural
question is whether it is possible for the Universe to
achieve an asymptotic de Sitter state? Setting the left-hand
side of (62) equal to zero and using (61) one finds this is
achieved when

λ ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2 − 1

q
: ð65Þ

As an example, we plot the evolution ofH0=H as a function
of N for the case μ ¼ 1 (λ ¼ ffiffiffi

2
p

) in Fig. 8. One can see that
the Universe does indeed tend to a de Sitter phase at
late times.

FIG. 7 (color online). The coordinate time as a function ofN for
both quintessencelike solutions (blue) and phantom solutions
(red). The parameters used were β ¼ 1.4, λ ¼ 2 (red) and
β ¼ 0.3, λ ¼ 2 (blue). In both cases m0 ¼ Λ ¼ H0. The initial
conditions are those indicated in Fig. 2.

FIG. 8 (color online). H0=H as a function of N for a model with
μ ¼ 1, m0 ¼ H0, λ ¼

ffiffiffi
2

p
and Λ ¼ H0. The initial conditions are

those indicated in Fig. 2.
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VI. DISCUSSION AND CONCLUSIONS

This paper has presented and studied the Jordan frame
formulation of disformal gravity theories for the first time.
The Einstein frame has been studied extensively and moti-
vates this study for several reasons. First, there is an apparent
metric singularity that previous studies have found, both
numerically and analytically, to be approached on cosmo-
logical scales when calculating using the Einstein frame
formulation. This result has some pathological implications
but, as discussed inSec. II, it is currently unknownwhether or
not is it a physical pathology ormerely an artifact of working
in the Einstein frame. This paper has taken the first steps
towards answering this by studying the Jordan frame
cosmology and looking for equivalent pathologies.
Second, disformal transformations from the Einstein to
Jordan frame do not preserve the lapse. This has the result
that the proper time for observers in the Jordan frame is not
aligned with the coordinate time, which makes the inter-
pretation of Einstein frame calculations difficult from a
technical point of view. The Jordan frame does not have
this problem since the lapse is unity from the outset.
The first part of the paper was dedicated to analyzing the

phase space of solutions using a dynamical systems analysis.
We were successful in compactifying the three-dimensional
phase space so that all solutions lie inside of the half-cone
shown in Fig. 1. Interestingly, the phase space of the
equivalent quintessence model (found by turning off the
disformal couplings) coincides with the base of the cone,
which allowed for transparent comparisons with quintes-
sence. In particular, any trajectory that terminates on the base
of the cone has a late-time cosmology that is indistinguish-
able from quintessence, at least at the background level. The
fixed points on the base of the cone correspond to those found
in the Einstein frame by previous studies precisely because
disformal effects are absent and the time variables used to
describe the dynamics in both frames are identical.
Trajectories at the tip of the cone yield no information about
the late-time cosmology and it was necessary to find
approximate late-time solutions in order to discern the
asymptotic state of the Universe. In this case, one can only
relate the Einstein and Jordan frame time variables by
integrating a nonlinear relation, and it is here that the power
of the Jordan frame formalism becomes apparent.
The cosmological behavior can be summarized concisely

in the β − λ plane shown in Fig. 9. When β < λ=2, all of the
fixed points lie in the quintessence plane and so the late-
time fixed points are identical to those found in [48],
although their stability is different due to the phase space
being three instead of two dimensional. When β > λ=2, the
only stable fixed point lies at the tip of the cone and so it
was necessary to look for approximate late-time solutions.
These were found in Sec. V where we showed that the
Universe asymptotes to a phantom state where weff ¼ −3
( _H=H2 ¼ 3) independent of the model parameters. One can
see from the various figures that the pathological behavior

is typically reached in the future for universes that start
from matter domination and so it may be possible to
reconcile the models with current observations. In particu-
lar, there are several model parameters, such as m0 and Λ,
that do not alter the position of the fixed points or the
stability. One would therefore expect a wide region in
parameter space where the Universe is close to ΛCDM
today but may undergo a phantom phase sometime in the
future. Such a model is not at odds with current observa-
tions. When fitting the model to cosmological probes of the
background cosmology, it is likely that this region will be
preferred by Bayesian fitting methods, although such
analyses lie beyond the scope of this work.
There is amarginal case given byβ ¼ λ=2where the phase

space is reduced to 2. In this case we found two late-time
attracting fixed points that lie inside the cone and one that lies
at the tip. By looking for late-time scaling solutions we
derived the asymptotic value of _H=H2 for solutions that
approach the tip and, in particular, were able to show that by
tuning the parameters, a late-time de Sitter phase can be
reached.
This solution deserves further comment in light of the

cosmological constant problem. In order to achieve the
solution required for an asymptotic de Sitter phase it was
necessary to tune β ¼ λ=2 but this is not enough. One must
further tune λ and μ to values where the fixed point at the tip
is the only stable one and the asymptotic value of weff is
exactly −1. The theory does not contain any sort of
protective symmetry and thus the tunings required are
unlikely to be technically natural. Furthermore, the model
has nothing to say about the old cosmological constant
problem because we have set all contributions to the

FIG. 9 (color online). The cosmological solutions found in this
work.
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cosmological constant from both the scalar and matter
sectors to zero from the outset. Given this, the asymptoti-
cally de Sitter cosmological solution found here has little to
say about the cosmological constant problem, and the fine-
tuned model is hardly a compelling alternative to ΛCDM.
One of the goals of this paper is to discuss the metric

singularity found by previous works using the Einstein
frame formulation of the theory. The pathologies associated
with this singularity were discussed at length in Sec. II.
There, we noted that it is a coordinate singularity since one
can find a gauge where the metric is perfectly regular and
that it is apparently absent in the Jordan frame since one can
work in this gauge from the outset. We showed that the
singularity is located at the tip of the cone in this gauge and,
furthermore, that trajectories approaching the tip are those
that exhibit late-time phantom behavior. The physical
manifestation of the singularity is then clear: the
Universe undergoes phantom behavior à la [61].
Retrospectively, this is somewhat to be expected from
the Einstein frame behavior: the approach to the singularity
corresponds to the Jordan frame lapse approaching zero so
that the clock for comoving observers slows down. A large
number of e-folds can then pass in a short amount of time,
which is precisely the behavior of a phantom Universe.
We end by discussing the generality of our findings. In

particular, the choice among a theory that is identical to
quintessence, a phantom Universe or a finely tuned de
Sitter phase seems unappealing compared with simpler
models. Here, we have only considered models where the
scalar potential and disformal factor are exponential. This
choice was made in order to yield the minimal phase space
and preserve some of the scaling symmetry present in
quintessence models. More general models will have a
larger phase space that will require different variables to
explore and one hence expects a new set of fixed points.
Despite this, one would expect the qualitative features we
have found here to apply. In particular, the fixed points
were found to correspond to either phantom behavior or the
equivalent quintessence model except for a finely tuned set
of parameters. When written in terms of the cosmological
variables and using N ¼ ln a as a proxy for time in the
Einstein frame, the disformal coupling leaves the spatial
component unchanged but the Jordan frame lapse is given
by N2 ¼ 1 − BðϕÞ2H2ϕ02=Λ2. All nonphantom Universes
have H → 0 at late times and so one expects a set of fixed
points corresponding to the equivalent quintessence models
precisely because the disformal coupling is set to zero
dynamically and the Jordan and Einstein frames are
equivalent. One can then discern the requirements for
the existence of new fixed points corresponding to nonzero
disformal couplings: either the Einstein frame Universe
must be phantom so that H or ϕ0 increases without bound,
or BðϕÞ must be chosen such that it is a strongly increasing
function of ϕ. This was the case with exponential models.
Indeed, here we found that the disformal factor was only
nonzero for values of β that were large enough to

compensate for the decreasing of H. One can then see
that phantom behavior is expected for any model where
BðϕÞ can increase rapidly enough at late times, what is not
universal is the prediction that weff ¼ −3, which is likely to
be a theory-dependent prediction. Said another way, one
can design models that do not exhibit phantom behavior by
construction. One simple example of this is simply B ¼ 1,
which shows only quintessence fixed points. A more
general example is the case of monomial potentials
VðϕÞ ∼ ϕn, BðϕÞ ∼ ϕm (with n and m positive even
integers). In this case, one would expect ϕ to roll to the
minimum of the potential located at ϕ ¼ 0 at late times so
that BðϕÞ tends to zero and the system behaves like
quintessence. In light of the discussion above, we conclude
that the general features found here—quintessencelike
fixed points and phantom behavior—are properties of more
general disformal dark energy models.
In order to find fixed points that were neither quintes-

sence models nor phantom Universes it was necessary to
fine-tune several model parameters to specific values. This
corresponded to reducing the dimension of the phase space
so that BH=Λwas fixed by the kinetic and potential energy.
In this case it could neither grow without bound nor
become zero. Such a fine-tuning is a very special property
of the model considered here and it is unlikely to be a
feature of more general models. More technically, the
symmetries of the equations of motion [ _ϕ2 ∼H2, VðϕÞ ∼
H2 and Vϕ ∼ VðϕÞ] were crucial in allowing one to have
the minimal possible phase space dimension and to identify
the requisite parameter tunings. Constructing other theories
that exhibit these features would require looking at the
symmetries present when the disformal coupling is absent
and choosing the functional form of BðϕÞ appropriately
such that the dimension of the phase space can be preserved
with suitable parameter tunings. It is then clear that the
novel fixed points found in the marginal case are not
general and require finely tuned simple models to exist.
We have not included a conformal factor in our analysis

and it is unlikely that this will have any mitigating effects
for the pathologies. Indeed, a conformal factor was
included in the Einstein frame analysis of [34] with the
only effect being to move the location of the fixed points.
Such factors are strongly constrained by solar system tests
and so the change is expected to be minimal. Indeed, if a
conformal factor A2ðϕÞ is present then the Cassini con-
straint on the PPN parameter γ [62] constrains d lnA=dϕ <
10−3 [42,63], which is the factor that appears in the
equations governing the cosmological dynamics.
Finally, one can relax the universal coupling and couple

to dark matter only, at the cost of introducing violations of
the equivalence principle, which are poorly constrained in
the dark sector. In this case, the relevant fixed points for
observers are those found in [34], although the metric
governing the motion of dark matter is that of a phantom
universe and so one expects a drastic suppression of late-
time structure compared with GR.
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APPENDIX A: TRANSFORMATION
TO THE JORDAN FRAME

In this appendix we transform the Einstein frame
action to the Jordan frame and derive the Friedmann
and Klein-Gordon equations.

1. The Jordan frame action

Our starting point is the Einstein frame action (3), which
we write as

S ¼
Z

d4xMpl
2½Lg þ Lϕ� þ Sm½~g� with

Lg ¼
ffiffiffiffiffiffi−gp

RðgÞ
2

and

Lϕ ¼ ffiffiffiffiffiffi
−g

p �
−
1

2
~∇μϕ ~∇μϕ − VðϕÞ

�
: ðA1Þ

Bettoni and Liberati [14] have shown that the Horndeski
action [24]—the most general scalar-tensor theory with
manifestly second-order field equations—is invariant under
disformal transformations and furthermore that the Einstein
frame exists only when terms quintic in the scalar are
absent. For this reason, we expect that the Jordan frame
action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p
ðG2ðϕ; XÞ þG3ðϕ; XÞ□ϕþG4ðϕ; XÞRð~gÞ

þG4;X½ð□ϕÞ2 − ~∇μ
~∇νϕ ~∇μ ~∇νϕ�Þ þ Sm½~gμν�; ðA2Þ

where Gi are arbitrary functions, X ¼ −~gμν∂μϕ∂νϕ=2, and
□ ¼ ~gμν∇μ∇ν. Our strategy is then to transform each term
in (A1) into the Jordan frame by inverting (4) and then
performing manipulations to get it into the form (A2). To
accomplish this, we follow the methods of [15,27]. We
begin by inverting (4) to find

gμν ¼ ~gμν −
B2ðϕÞ
Λ2

∂μϕ∂νϕ and ðA3Þ

gμν ¼ ~gμν þ B2ðϕÞ
Λ2

~∇μϕ ~∇νϕ

1þ 2B2ðϕÞX
Λ2

; ðA4Þ

where all contractions are performed using ~gμν. Next, we
introduce the tensor

Kα
μν ¼ Γα

μν − ~Γα
μν ðA5Þ

¼B2ðϕÞ ~∇αϕ ~∇μ
~∇νϕþBðϕÞBϕðϕÞ ~∇αϕ∂μϕ∂νϕ

Λ2ð1þ2B2ðϕÞX
Λ2 Þ

: ðA6Þ

Using the identity 2 ~∇½μ ~∇ν�vβ ¼ Rα
βμνv

β one finds [15]

Rα
βμν ¼ ~Rα

βμν þ 2 ~∇½μKα
ν�β þ 2Kα

σ½μKα
ν�β; ðA7Þ

which, after making the appropriate contractions and using
Eqs. (6) and (A3), can be used to transform Lg:

Lgffiffiffiffiffiffi
−~g

p ¼
ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−~g

p ½gμνð ~Rα
μαν − 2Kα

σ½αKσ
μ�νÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
~R
2
þ B2ðϕÞ
Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ~Rμν
~∇μϕ ~∇νϕ

−
B2ðϕÞ

2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ ~∇μ ~∇νϕ� þ BðϕÞBϕðϕÞ

Λ2ð1þ 2B2ðϕÞX
Λ2 Þ32

½ ~∇μϕ ~∇μ
~∇νϕ ~∇νϕþ 2X□ϕ�

þ B4ðϕÞ
Λ2ð1þ 2B2ðϕÞX

Λ2 Þ32
½□ϕ ~∇μϕ ~∇μ

~∇νϕ ~∇νϕþ ~∇μϕ ~∇νϕ ~∇α
~∇νϕ ~∇α ~∇μϕ�: ðA8Þ

This is not yet in Horndeski form; there are two quartic
terms and one cubic term that need to be removed.
Furthermore, there is a term proportional to ~Rμν

~∇μϕ ~∇νϕ.
We can remove this term and the quartic one by adding a
total derivative of the form ~∇μξ

μ with

ξμ ¼ B2ðϕÞ
2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ½ ~∇μϕ□ϕ − ~∇μ ~∇νϕ∂νϕ�: ðA9Þ

This simplifies the action to
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Lgffiffiffiffiffiffi
−~g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
~R
2
þ B2ðϕÞ
2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ ~∇μ ~∇νϕ� − BðϕÞBϕðϕÞ

Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ½2X□ϕþ ~∇μϕ ~∇μ
~∇νϕ ~∇νϕ�:

ðA10Þ

One can see that the quartic terms are in Horndeski form but there is still one cubic term that does not fit. This too can be
removed by subtracting a second total derivative ~∇μζ

μ with

ζμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
BϕðϕÞ
BðϕÞ

~∇μϕ: ðA11Þ

The action then becomes

Lgffiffiffiffiffiffi
−~g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
~R
2
þ B2ðϕÞ
2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q ½ð□ϕÞ2 − ~∇μ
~∇νϕ ~∇μ ~∇νϕ� − BϕðϕÞ

BðϕÞΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q
�
1þ 4B2ðϕÞX

Λ2

�
□ϕ

þ 2X

�
Bϕϕ

B2ðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
−

B2
ϕðϕÞ

B2ðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q
�
; ðA12Þ

which is now in the Horndeski form.
Next, we need to transformLϕ. This is a lot simpler since

one only needs to transform the metric determinant and the
metric appearing in the kinetic term using (A4) to find

Lϕffiffiffiffiffiffi
−~g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r �
X −

2B2ðϕÞX2

Λ4ð1þ 2B2ðϕÞX
Λ2 Þ

− VðϕÞ
�
:

ðA13Þ

The action is then in Horndeski form with

G4ðϕ; XÞ ¼
Mpl

2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r
ðA14Þ

G3ðϕ; XÞ ¼ −Mpl
2

BϕðϕÞ
BðϕÞΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

q
�
1þ 4B2ðϕÞX

Λ2

�

ðA15Þ

G2ðϕ; XÞ ¼ Mpl
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2ðϕÞX

Λ2

r �
2XBϕϕ

B2ðϕÞ

−
2XB2

ϕðϕÞ
B2ðϕÞð1þ 2B2ðϕÞX

Λ2 Þ
þ X

−
2B2ðϕÞX2

Λ4ð1þ 2B2ðϕÞX
Λ2 Þ

− VðϕÞ
�
: ðA16Þ

Note that a similar action was obtained in [64].

2. The field equations

Given Eqs. (A14)–(A16), it is clear that the resulting
field equations will be cumbersome and complicated. Since
we are only interested in the homogeneous and isotropic
Friedmann equations it is simplest to first reduce the action
to minisuperspace using the coordinates

d~s2 ¼ −N2ðtÞdt2 þ aðtÞ2d~x2; ϕ ¼ ϕðtÞ: ðA17Þ

The Friedmann and Klein-Gordon equations can then be
found using the Euler-Lagrange equations for NðtÞ, aðtÞ
and ϕðtÞ and setting NðtÞ ¼ 1. Setting BðϕÞ ¼ eβϕ12 one
finds

S½NðtÞ;aðtÞ;ϕðtÞ� ¼
Z

dt
aðtÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2βϕ

N2Λ2

q
�
3γ

_a2

a2N2
−3γ

_a _N
aN2

þ3γβ
_a _ϕ

aN
−βγ

_N _ϕ

N2
þ

_ϕ2

2

−VðϕÞN2

�
1þ e2βϕ

N2Λ2

�
þβ2

e2βϕ _ϕ4

Λ2N3

þ3
ä
aN

�
1þ e2βϕ

N2Λ2

�

þβγ
ϕ̈

N
þ3

e2βϕ _a _ϕϕ̈

Λ2aN3

�
; ðA18Þ

12We do this for simplicity; it is not necessary to specialize at
this stage but leaving the function general results in a far longer
expression.
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where

γ ¼ 1þ 2
e2βϕ

N2Λ2
: ðA19Þ

The Euler-Lagrange equation for NðtÞ yields the Friedmann equation (19) (after setting N ¼ 1), which can be used in the
Euler-Lagrange equations for aðtÞ and ϕðtÞ to find Eqs. (20) and (22).

APPENDIX B: DYNAMICAL SYSTEM WHEN β ¼ λ=2

In this appendix we present the dynamical system after substituting the constraint (40) into (35)–(37) to eliminate Y. They
are

U1

dX
dN

¼ −Xð3X4ð4ðμ2 − 1ÞZ4
3 þ 3Z8=3 þ 1 − 4μ4Þ þ 2

ffiffiffi
6

p
λX3Zð2μ2 − 2ð2μ2 þ 1ÞZ4

3 þ Z8=3 þ 1Þ
− 6X2Z2ðZ4

3 − 1Þð2μ2 þ 4Z
4
3 − 3Þ þ

ffiffiffi
6

p
λXZ3ðZ4

3 − 1Þ2 − 3Z4ðZ4
3 − 1Þ2Þ; ðB1Þ

U2

dY
dN

¼ μXð3X4ð2μ2 þ Z
4
3 − 1Þð2μ2 − 3Z

4
3 þ 1Þ þ 2

ffiffiffi
6

p
λð2μ2 þ 1ÞX3ZðZ4

3 − 1Þ
þ 6X2Z2ðZ4

3 − 1Þð2μ2 þ 2Z
4
3 − 3Þ −

ffiffiffi
6

p
λXZ3ðZ4

3 − 1Þ2 þ 3Z4ðZ4
3 − 1Þ2Þ; ðB2Þ

dZ
dN

¼ 3X2ð ffiffiffi
6

p
λXZ

4
3 − 6Z7=3 þ 6Z −

ffiffiffi
6

p
λð2μ2 þ 1ÞXÞ

2ðX2ð−2μ2 þ 3Z
4
3 − 1Þ − Z10=3 þ Z2Þ

ðB3Þ

where

U1 ¼ 2Z2ðZ4
3 − 1ÞðX2ð2μ2 − 3Z

4
3 þ 1Þ þ Z2ðZ4

3 − 1ÞÞ
ðB4Þ

U2 ¼ Z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2Z

4
3

p
ðZ4

3 − 1ÞðX2ð2μ2 − 3Z
4
3 þ 1Þ þ Z2ðZ4

3 − 1ÞÞ
ðB5Þ

Note that only two of these are independent since differentiating the constraint one has

2
X0

X
¼ 2

Y 0

Y
þ 4Z

1
3

3ð1 − Z
4
3Þ
Z0

Z
: ðB6Þ

It is straightforward to verify that the dynamical system above indeed satisfies this relation.
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