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We improve previous calculations of the cosmic microwave background spectral distortions due to the
decay of primordial magnetic fields. We focus our studies on causally generated magnetic fields at the
electroweak and QCD phase transitions. We also consider the decay of helical magnetic fields. We show
that the decay of nonhelical magnetic fields generated at either the electroweak or QCD scale produce
μ- and y-type distortions below 10−8 which are probably not detectable by a future PIXIE-like experiment.
We show that magnetic fields generated at the electroweak scale must have a helicity fraction f� > 10−4 in
order to produce detectable μ-type distortions. Hence, a positive detection coming from the decay of
magnetic fields would rule out nonhelical primordial magnetic fields and provide a lower bound on the
magnetic helicity.
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I. INTRODUCTION

Magnetic fields are observed throughout the cosmos;
from galaxies at high and low redshifts [1–3], in galaxy
(super)clusters [4,5], and in the voids of the large scale
structure [6]. Although still under debate, the difficulties of
astrophysical mechanisms in explaining such observations
promote the idea of a primordial origin for magnetic fields,
i.e. fields generated in the early Universe before structure
formation. There are a number of theoretical mechanisms
proposed to generate primordial magnetic fields; such
mechanisms for example involve inflation [7], first-order
phase transitions [8], or vorticity generation [9,10].
If primordial magnetic fields were indeed generated, they

would suffer decay on small scales due to magnetohydro-
dynamics (MHD) effects [11–13]. The dissipation of
magnetic fields injects energy into the plasma, and if this
occurs in the early Universe when the cosmic microwave
background (CMB) is being formed [14], distortions to its
blackbody spectrum can be generated [15–24]. Distortions
to the CMB blackbody spectrum come in different types
depending on the epoch of energy injection. At relatively
early times a μ-type distortion can be generated, where the
photon Bose-Einstein distribution develops a nonvanishing
chemical potential. Whereas at later times a Compton
y-parameter can be generated giving a y-type distortion.
Mixed distortions are also possible [25]. Any mechanism
which injects energy into the plasma in the early Universe
has the potential to generate such distortions. Other
mechanisms in the early Universe include the dissipation
of primordial acoustic waves [18,26], decaying or

annihilating relic particles [27–29], and the evaporation
of primordial black holes or cosmic strings [30,31].
In this paper we consider magnetic fields generated by

some causal process in the early Universe. In particular we
consider the possibility of magnetic fields generated by
first-order phase transitions at either the electroweak (EW)
or the QCD scale [8]. The spectrum on large scales for
magnetic fields generated in such a process is highly
constrained due to causality reasons [32]. The slope of
the large scale spectrum also determines the subsequent
MHD evolution of magnetic energy and coherence scale
[12,13,33]. As the small scales dissipate into heat in a
turbulent plasma, the peak of the spectrum moves
down along the large scale spectrum [12,13,34,35]. The
amplitude of magnetic helicity also determines the evolu-
tion of magnetic fields. Helicity conservation in the early
Universe slows down the decay rate of fully helical fields
compared to nonhelical fields and leads to an inverse
cascade of energy from small scales to large scales
[11,12]. Hence, causally generated magnetic fields and
their initial helicity fraction can be constrained by CMB
spectral distortions.
In Sec. II we use the results of Refs. [12,13,33] to

determine the decay rates of magnetic fields as functions of
their initial strength, coherence length, and initial helicity
fraction. From these decay rates, in Sec. III, we calculate
the CMB spectral distortions generated and analyze the
parameter space. We conclude in the final section.

II. DECAY OF MAGNETIC FIELDS IN THE
EARLY UNIVERSE

In order to calculate the CMB spectral distortions, we
need to know the energy injected into the primordial*jwagstaff@hs.uni‑hamburg.de
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plasma. For decaying magnetic fields, the energy injection
rate is given by [20,21]

dQ
dt

≡ −a−4
d~ρB
dt

; ð1Þ

where ~ρB is the comoving energy density, i.e. ~ρB ≡ a4ρB.
The averaged magnetic energy density is obtained by
integrating over the local energy density uB ¼ ~B2=8π;
here ~B≡ a2B is the comoving magnetic field,

~ρB ¼ 1

V

Z
uBdr ¼

1

8π

Z
j ~BðkÞj2dk≡ ~ρ

Z
Mkdk; ð2Þ

where ~ρ is the total comoving energy density andMk is the
magnetic spectral energy. Here, we emphasize that the
spectrum on large scales, parametrized by Mk ∝ knþ2, for
causally generated magnetic fields is constrained by n ≥ 2
[32]. The most shallow, and expected, scaling n ¼ 2 is
also confirmed by numerical simulations giving Mk ∝ k4

[34,36]. Assuming that the magnetic energy is concentrated
at the integral scale (index I), which defines the peak
of the spectrum in Fourier space, we can write ~ρB ¼
~ρ
R
kMkd ln k≃ ~ρkIMI , adopting the conventions of

Ref. [34] where the wave vector k is also comoving.
Since the photon energy density scales as ργ ∝ a−4, we
can write

ρ−1γ
dQ
dz

¼ −ρ−1γ;0
d~ρB
dz

≃ −ρ−1γ;0
dð~ρkIMIÞ

dz
; ð3Þ

where a0 ≡ aðT0Þ ¼ 1 today.
The magnetic field strength BI and coherence length LI

(identified as 2π=kI) evolve during the radiation dominated
era due to turbulent MHD effects [12,37–39]. In the
following, we quote the results from the detailed analytical
and numerical analysis in Refs. [12,13,33]. The evolution
of the field strength and coherence length depends on the
state of the plasma and on the properties of the magnetic
field, in particular its helicity. The average helicity density
is given by

hB ¼ 1

V

Z
ðA ·BÞdr ¼ ρ

Z
Hkdk; ð4Þ

where B ¼ ∇ ×A. For a magnetic field with helicity, on
any given scale k, there is a realizability condition given by
jHkj ≤ 8πMk=k, where the helical spectrum Hk is defined
following the conventions of Ref. [35]. From the above, we
can define f ≡ kHk=8πMk as the helicity fraction, where
f ¼ 0 for the nonhelical case and f ¼ 1 for the maximally
helical case. The helicity density is a useful quantity since it
is conserved in the early Universe hB ≃ const when the
conductivity σ ¼ 1=4πη → ∞ [40], and the conservation of
magnetic helicity determines the evolution of the magnetic
field strength and coherence length.

In the turbulent regime, where kinetic Reynolds numbers
are large Re ≫ 1, the general decay law for the magnetic
energy isMI ∝ a−2ðnþ2Þ=ðnþ5Þ and for the comoving integral
scale LI ∝ a2=ðnþ5Þ [12,34,35]; hence, ~BI ∝ a−5=7,
kI ∝ a−2=7, and ~ρB ∝ a−10=7, where n ¼ 2 is used due to
causality constraints for the large scale spectrum
[12,32,34,35]. These decay laws for nonhelical magnetic
fields, where the helicity fraction f ≪ 1 if not zero,
are obtained through analytical considerations in
Refs. [12,13,33] and confirmed numerically in Ref. [12].
If the magnetic field has nonzero helicity, the helicity
density in this case would grow as HI ∝ a2=7, and even-
tually the magnetic field would become fully helical f ¼ 1.
The conservation of magnetic helicity ensures the relation
~ρB ∝ ~B2

I ∝ kI . The decay of magnetic fields slows down in
the fully helical case, and the decay rate becomes inde-
pendent of the shape of the large scale spectrum n. For the
maximally helical case, we find ~BI ∝ a−1=3, kI ∝ a−2=3,
and ~ρB ∝ a−2=3. We can summarize the above turbulent
damping (TD) decay laws by

ðTDÞ∶ ~ρB ∝ a−2
pþ5
pþ7; LI ∝ a

2
pþ7; ð5Þ

where p ¼ 0 for nonhelical fields and p ¼ −4 for max-
imally helical fields.
Here, we note that an apparent inverse transfer of

magnetic energy has been numerically observed for the
nonhelical case. This effect leads to a weaker evolution
for nonhelical magnetic fields in the turbulent regime
~BI ∝ a−1=2, kI ∝ a−1=2, and ~ρB ∝ a−1, i.e. p ¼ −3 above,
giving BI ∝ L−1

I [41] (see also Ref. [42]). This is poten-
tially a very interesting and exciting new development in
turbulent MHD. However, this is a numerically observed
effect under the conditions of high resolutions and mag-
netically dominant turbulence [36]. The condition of
magnetically dominant turbulence is perhaps not satisfied
in the early Universe. Magnetogenesis at first-order phase
transitions typically produce a lot of turbulent kinetic
energy. The generated magnetic field, through dynamo
action, comes into equipartition with the kinetic energy but
is unlikely to dominate over the kinetic energy; see for
example Ref. [8]. Furthermore, in the study by Ref. [36], it
seems that the inverse transfer is less efficient for large
Prandtl numbers, but the Prandtl numbers in the early
Universe are huge. In any case, we will also investigate the
CMB spectral distortions considering these scalings to
complete the study.
In the viscous regime, where Re < 1, during particle

diffusion, the rapidly growing particle mean free path
means that the dissipative time scale is increasing faster
than the Hubble timeH−1. This prevents further dissipation
of magnetic energy, and so the magnetic energy freezes
out and remains constant [12],
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ðVFÞ∶ ~ρB ≃ const; LI ≃ const. ð6Þ

The above evolution in the viscous freezing (VF) stage
occurs regardless of magnetic helicity. However, as the
mean free path increases further, particles begin to free
stream out of overdensities. In this case, the interaction
between the fluid and the background is described by a drag
force, which is a decreasing function of time. This leads to a
situation where the magnetic dissipative time scale can
become smaller than the Hubble time once again, and
magnetic energy decay can start again [12,13]. The drag
force due to the free streaming of neutrinos becomes
ineffective at approximately the freeze-out of neutrinos,
i.e. when their mean free path becomes larger than the
Hubble scale. The dissipation due to photon drag is
efficient until photon freeze-out at T ≃ 0.26 eV when
recombination commences. The decay of magnetic fields
due to viscous photon free streaming is given by kI ∝
a−3=ðnþ5Þ and ~ρB ∝ a−3ðnþ3Þ=ðnþ5Þ [12]. With n ¼ 2, we find
~BI ∝ a−15=14, kI ∝ a−3=7, and ~ρB ∝ a−15=7, which is a faster
decay than in the turbulent case and faster than in the case
of a maximally helical field. For maximally helical fields,
the relation ~ρB ∝ kI again holds, and the decay due to free-
streaming photons is ~BI ∝ a−1=2, kI ∝ a−1, and ~ρB ∝ a−1.
We can summarize the above viscous damping (VD) decay
laws by

ðVDÞ∶ ~ρB ∝ a−3
pþ5
pþ7; LI ∝ a

3
pþ7; ð7Þ

where p ¼ 0 for nonhelical fields and p ¼ −4 for max-
imally helical fields.
In order to calculate the CMB spectral distortions due to

decaying magnetic fields, we have to know to which of the
above phases of evolution the μ and y eras correspond. For
this, we must understand when these phases begin and end,
which is what we do in the next section.

A. End of the turbulent damping stage

When the magnetic fields are first generated, for example
by a first-order phase transition, the magnetic energy is
expected to come into equipartition with the kinetic energy
(see Ref. [39] for a detailed analysis of this mechanism). At
the time of the EW or QCD scale, it can be shown that the
kinetic Reynolds numbers are very large in this case and the
plasma is highly turbulent. Hence, magnetogenesis ends
with the plasma in a turbulent state. We now calculate TEoT,
the temperature corresponding to the end of turbulence.
Turbulence ends when the kinetic Reynolds number
decreases to Re ∼ 1, and hence the end-of-turbulence
temperature is obtained through

ReðTEoTÞ ∼ 1: ð8Þ

At the time of the EWor QCD scale, the plasma viscosity
is generated by neutrinos, since at this time they are the

particles which are the most efficient at transporting
momentum and heat [12]. But as the Universe expands
and cools, the neutrino mean free path increases which
increases the plasma viscosity. Therefore, due to neutrinos,
the plasma goes from a turbulent state to a viscous state up
until the neutrinos decouple at Tνdec ≃ 2.6 MeV. The
evolution of magnetic energy and its coherence length in
the turbulent stage due to neutrinos followed by the viscous
stage before neutrino decoupling can be well approximated
by only considering a turbulent damping stage throughout
that epoch [12]. In our calculations, we use this simplifying
approximation.
After neutrino decoupling, we are in the photon era,

when photons generate the plasma shear viscosity ηs. In this
case, the Reynolds number is given by [12]

ReðlÞ ¼
vrms
l l
ηs

¼ 5g�ðTÞ
gγ

vrms
l lc

lγmfp;cðTÞ
; ð9Þ

for velocity fluctuations vrms
l correlated on some physical

scale l. Here, g� and gγ are the total and component
numbers of effective relativistic degrees of freedom. We
apply the above from the time of neutrino decoupling at
Tνdec ≃ 2.6 MeV to the time of matter-radiation equality
at Teq ≃ 1 eV. In this epoch, the comoving photon mean
free path is given by [43]

lγmfp;c ≃ a−1

σT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2pair þ n2e

q ; ð10Þ

where σT ¼ 8πα2=3m2
e is the Thomson cross section,

α ≈ 1=137 is the fine structure constant, and me is the
electron mass. The number densities npair and ne of e� pairs
and free electrons respectively are given by [43]

npair ≈
�
2meT
π

�3
2

exp

�
−
me

T

��
1þ 15

8

T
me

�
; ð11Þ

ne ¼ Xe
Ωbρ0
mpr

�
T
T0

�
3

; ð12Þ

where mpr is the proton mass, the baryon fraction and
present day density product is Ωbρ0 ≃ 1.81 × 10−12 eV4

[44], T0 ≃ 2.725 K is the present day photon temperature,
and the ionization fraction is Xe ¼ 1 in the radiation
dominated era. Following the usual assumption that in
the turbulent regime ReðLIÞ ≫ 1 there is equipartition
between magnetic and kinetic energy on all scales up to
the integral scale, i.e.

ðvrms
k Þ2 ¼ Γ

ð ~Brms
k Þ2
4π ~ρ

for k ≥ kI: ð13Þ
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Numerical simulations show that there is almost exact
equipartition, i.e. Γ ≈ 1 for nonhelical fields, which is
slightly reduced to Γ ≈ 10−1 for maximally helical fields
[12]. Therefore, we find on the integral scale

ReðLI; TÞ≃
ffiffiffi
Γ

p 5g�
gγ

LI

lγmfp;c

�
2~ρB
~ρ

�1
2

; ð14Þ

which is to be evaluated from the time of neutrino
decoupling. To connect the magnetic energy density with
the coherence length, we use the approximation discussed
below Eq. (8). Hence, we can use Eq. (5) to find
LI

ffiffiffiffiffi
~ρB

p ¼ LI;�
ffiffiffiffiffiffiffiffi
~ρB;�

p ðT=T�Þðpþ3Þ=ðpþ7Þ, where the index �
denotes the epoch of magnetogenesis. With the above, the
Reynolds number is

ReðLI; TÞ≃
ffiffiffiffiffiffiffiffi
2Γε

p
β
5g�
gν;γ

λmax
B;�

lγmfp;c

�
T
T�

�pþ3
pþ7

; ð15Þ

where we have defined ε≡ ~ρB;�=ργ;0 ≃ ~ρB;�=~ρ. Here, the
maximal magnetic energy ε ¼ 1 corresponds to uB ¼ ~ρ=2,
i.e. a maximum magnetic field strength of

~Bmax
λ;� ≡ ffiffiffiffiffiffiffiffi

4π ~ρ
p ≃ 3 × 10−6 G; ð16Þ

where the radiation here is taken to be the CMB photons
[12]. In the above, we have also defined β≡ λB;�=λmax

B;� , and
we have identified the integral scale LI;� with the magnetic
field coherence length λB;�. For magnetic fields generated at
a time during the radiation dominated era (in contrast to
inflationary magnetogenesis), the basic constraint on the
coherence length is the horizon size at the time of
magnetogenesis

λB;� ≤ λmax
B;� ≡ 1

aH

����
�
: ð17Þ

The horizon size is 2 × 10−10 Mpc and 3 × 10−7 Mpc at
the electroweak and QCD phase transitions respectively. To
estimate the integral scale at the time of magnetogenesis
LI;�, we can assume that turbulence is effective such that
the Alfvén eddy-turnover time tA;� is equal to the Hubble
time [12], i.e.

tA;� ≡ L
vrms
A;L

����
�
¼ 1

aH

����
�
; ð18Þ

where vrms
A;L ≡ ~Brms

L =
ffiffiffiffiffiffiffiffi
4π ~ρ

p
. With the above, we find that

λB;� ¼ LI;� ¼
ffiffiffi
ε

p
=aHj�, and hence we can set β ¼ ffiffiffi

ε
p

in
Eq. (15) above.
The end-of-turbulence temperature, obtained through

ReðTEoTÞ ∼ 1, can only be determined numerically; we
cannot analytically invert the function in Eq. (15) due to the
exponential in the photon mean free path. We find that

TEoT ≃ 2 × 104 eV and 2 × 103 eV for nonhelical mag-
netic fields generated at the EWand QCD phase transitions,
T� ≃ 100 GeV and 200 MeV respectively, with β ¼ 1 and
ε ¼ 1. Hence, the μ-era is within the viscous regime, since
the μ-era commences at around Tμ;i ≃ 470 eV. However,
for maximally helical fields, it is possible that the plasma is
still in a turbulent stage within the μ-era. The point here is
that the magnetic field decay could be in the turbulent,
viscous freezing or viscous damping regime depending
on the initial conditions. This can be seen in the evolution
plots in Fig. 1.

FIG. 1 (color online). In plots (a) and (b), we show the
evolution of magnetic energy from the time of magnetogenesis
(at the EW and QCD scales respectively) to recombination.
In plots (a) and (b), the (solid, blue) lines from top to bottom
correspond to initial helicity fractions f� ¼ f10−3; 10−4;
10−6; < 10−14g and f� ¼ f10−1; 10−4; 10−6; < 10−14g respec-
tively. The maximally helical case f� ¼ 1 (solid, red) is also
shown. We also show (dashed, gray lines) the evolution of
nonhelical magnetic fields with an inverse transfer of energy [see
the discussion below Eq. (5)]. In all the above cases we consider
ε≡ ~ρB;�=ργ;0 ≈ 1, which corresponds to an initial field strength

of ~Bλ;� ≃ 3 × 10−6 G, with ε < 1 the evolution history also
changes.
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B. Start of the viscous damping stage

The magnetic energy and coherence length stop
evolving in the viscous regime when particles are diffusing
lmfp;c ≪ L [see above Eq. (6)]. The viscous damping stage
occurs when photons begin to free stream lmfp;c ≫ L.
The start of the viscous damping stage (index “vd”) is
determined by the condition [12]

τvisc:freeðTvdÞ ¼ H−1ðTvdÞ; ð19Þ
where the viscous free-streaming time scale is given by
τvisc:free ¼ αγL2=v2A. Here, the drag term on the fluid due to
the occasional scattering of photons with the fluid particles
is given by [12]

αγ ≃ 4

3

1

lmfp

ργ
ρb

; ð20Þ

where ρb is the baryon density. The Alfvén velocity is given
by v2A ≃ 2ρB=ρb, since at this time the photons are
decoupled from the fluid. Magnetic dissipation due to
photon drag is shown to be efficient until photon decou-
pling [12].
Hence, we can solve Eq. (19) for Tvd, the temperature at

the start of the viscous damping due to free-streaming
photons. We find

T3
vd ≃ 9

16π2α2

ffiffiffiffiffiffiffiffiffi
90

g�;vd

s
mPmprm2

eT0

Xe;vdΩbρ0

�
TEoT

λmax
B;� T�

�
2

; ð21Þ

which is valid for T ≲ 104 eV when the photon mean free
path can be well approximated by lγmfp ≃ 1=σTne.
The evolution of magnetic energy due to MHD turbu-

lence occurs approximately until the time of recombination
(index “rec”’), when the field configuration falls on the line
given by [12,37]

Bλ;rec ≃ 8 × 10−8
λB;rec
Mpc

G: ð22Þ

This line corresponds to the largest eddies being processed
at recombination 1=ðaHÞjrec ≃ λ=vA with vA the Alfvén
speed [12,45]. Beyond this epoch, the evolution of the field
strength and coherence length essentially ceases, with only
a logarithmic scaling [12], and the magnetic fields become
frozen into the plasma. Hence, magnetic fields generated
during the radiation era evolve until recombination where
their final field strength and coherence length configuration
is given by Eq. (22). This field strength and coherence
length configuration at recombination also gives the values
observed today Bλ;rec ≈ B0 and λB;rec ≈ λB, since the field
strength and coherence length do not evolve significantly in
the matter dominated Universe.
We now have all the necessary ingredients to character-

ize the full evolution of magnetic fields in the radiation
dominated epoch. Exemplary evolution histories of

magnetic energy for varying initial conditions can be seen
in the plots of Fig. 1, where different initial conditions ~Bλ;�,
λB;�, and f� lead to different histories and hence different
decay rates during the μ- and y-eras.

III. SPECTRAL DISTORTIONS FROM
DECAYING MAGNETIC FIELDS

At high temperatures, corresponding to z≳ 2 × 106, the
blackbody spectrum of the CMB [14] is formed from
bremsstrahlung and double-Compton scattering (see for
example Ref. [20] and references therein). As the redshift
drops below 2 × 106, these interactions become inefficient
at restoring the blackbody spectrum if additional energy is
injected into the plasma and distortions could be imprinted
from then on. In the early stage 2 × 106 ≳ z≳ 5 × 104, the
elastic-Compton scattering is efficient enough, and the
spectral distortion comes in the form of a nonvanishing
chemical potential μ. This μ-type CMB spectral distortion
is generated if thermal energy is injected into the plasma
during the μ-era defined above. The rate of change of the
chemical potential μ is determined by [16–19]

dμ
dt

¼ −
μ

tDCðzÞ
þ 1.4

3
ρ−1γ

dQ
dt

; ð23Þ

where dQ=dt is the energy injection rate. Here, the time
scale for double-Compton scattering is

tDCðzÞ
s

¼ 2.06 × 1033

Ωbh2

�
1 −

1

2
YP

�
−1
z−

9
2; ð24Þ

and YP ¼ 0.24 is the primordial helium mass abundance
[46]. The solution to Eq. (23) is given by [20]

μ ¼ 1.4
3

Z
zend

zi

dz
ργ

dQ
dz

exp

�
−
�

z
zDC

�5
2

�
; ð25Þ

where

zDC ≡ 1.97 × 106

ð1 − 1
2

YP
0.24Þ

5
2

�
Ωbh2

0.0224

�−2
5 ð26Þ

and where zi ¼ 2 × 106 and zend ¼ 5 × 104 define the start
and end of the μ-era.

A. CMB μ-type distortions from decaying
magnetic fields

From the full evolution history of magnetic fields shown
in Fig. 1, we can see that, in most cases, the plasma is in the
viscous regime during the μ-era. This is true in most cases
except for fields generated at the QCD scale if the initial
helicity fraction is large enough. For analytical purposes,
let us first consider the viscous damping law, from which
we can write
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~ρBðzÞ ¼ ~ρB;vd

�
1þ z
1þ zvd

�
3
pþ5
pþ7

; ð27Þ

where ~ρB;vd indicates the magnetic energy at the start of the
viscous damping stage. Here, we also use a ∝ 1=T for the
photon temperature and T ¼ T0ð1þ zÞ. Since the magnetic
energy is frozen out from the time of the end of turbulence
(EoT) to the start of the viscous damping stage, we can set
~ρB;vd ≃ ~ρB;EoT, and hence we find

ρ−1γ
dQ
dz

¼ −ρ−1γ;0
d~ρB
dz

≃ −3
pþ 5

pþ 7

~ρB;EoT
ργ;0

ð1þ zvdÞ−3
pþ5
pþ7ð1þ zÞ2pþ4

pþ7: ð28Þ

To calculate ~ρB;EoT, we consider the era when turbulence is
generated by photons after neutrino decoupling. As already
argued in Sec. II A, we can trace the evolution of the
magnetic energy all the way back to the time of magneto-
genesis using the turbulent decay law given in Eq. (5). This
is possible since the turbulent stage due to neutrinos
followed by the viscous stage before neutrino decoupling
can be well approximated by only considering a turbulent
damping stage throughout the epoch [12]. Hence, using the
turbulent damping decay law, we can write

~ρB;EoT ¼ ~ρB;�

�
TEoT

T�

�
2
pþ5
pþ7

: ð29Þ

In the cases where the viscous regime starts before the
μ-era, i.e. TEoT ≥ Tμ;i, we can use Eqs. (28) and (29) to
estimate the μ-type distortion from Eq. (25), and we find

μ ¼ −
7

5

pþ 5

pþ 7

�
~ρB;�
ργ;0

��
TEoT

T�

�
2
pþ5
pþ7ð1þ zvdÞ−3

pþ5
pþ7

×
Z

zend

zi

dzð1þ zÞ2pþ4
pþ7 exp

�
−
�

z
zDC

�5
2

�
; ð30Þ

where we integrate from zi ¼ zvd to zend. In the cases where
the turbulent regime has not ended by the start of the μ-era,
e.g. applicable for fully helical magnetic fields generated at
the QCD scale with ε≃ 1–10−2 as can be seen in Fig. 1, we
find

μ ¼ −
14

15

pþ 5

pþ 7

�
~ρB;�
ργ;0

��
T0

T�

�
2
pþ5
pþ7

×
Z

zend

zi

dzð1þ zÞpþ3
pþ7 exp

�
−
�

z
zDC

�5
2

�
; ð31Þ

where we integrate from zi to zend ¼ zEoT.
Equations (30) and (31) above are valid for either

nonhelical fields (p ¼ 0) or maximally helical fields
(p ¼ −4). Since we are interested in different initial

conditions, in particular varying initial helicity fractions
f�, we must consider the full evolution history to calculate
the spectral distortions. This is done numerically, and the
results are shown in Figs. 2 and 3 for magnetic fields
generated at the EW and QCD scales respectively. The
μ-type spectral distortion varies with μ ¼ μðε; T�; f�Þ. In
order to maximize this distortion, we can set the maximal
value ε≡ ~ρB;�=ργ;0 ≈ 1 at the time of magnetogenesis,
which corresponds to an initial field strength of
~Bλ;� ≃ 3 × 10−6 G. From Eq. (30), we see that if ε < 1
then TEoT will be larger, thereby increasing the chemical
potential. However, TEoT does not depend so strongly on ε,
and therefore ε should be maximized in order to maximize

FIG. 2 (color online). EW scale: In plot (a), we show the μ-type
distortion generated due to the decay of magnetic energy initially
generated at the EW scale. Here, we plot the spectral distortion μ
vs ε, where ε≡ ~ρB;�=ργ;0 ≈ 1 corresponds to an initial field
strength ~Bλ;� ≃ 3 × 10−6 G. The (solid, blue) lines from top to
bottom, in both plots, correspond to initial helicity fractions
f� ¼ f10−3; 10−4; 10−6; < 10−14g. The maximally helical case
f� ¼ 1 (solid, red) is also shown. In plot (b), we show the final
field strength B0 and coherence length λB that would be observed
today, i.e. after MHD turbulent decay; see Eq. (22). We also show
the approximate constraint on magnetic fields from CMB
observations, B0 ≲ 10−9 G; see Ref. [48] and references therein.
The results for nonhelical magnetic fields with an inverse transfer
of energy [see the discussion below Eq. (5)] are also shown
(dashed, gray lines).
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μ. Hence, with ε ¼ 1, integrating Eq. (30), we obtain
upper limits from Figs. 2 and 3. For fields generated at
the EW phase transition T� ≃ 100 GeV, see Fig. 2, with
f� ≲ 10−14, we find

jμj≲ 1 × 10−10: ð32Þ

The above satisfies the current COBE/FIRAS limit jμj <
9 × 10−5 [14] but will also not be detectable by a new
PIXIE-like experiment which would place a new upper
limit of jμj < 5 × 10−8 [47]. From this, we conclude that
causally generated nonhelical magnetic fields at the electro-
weak phase transition will not produce any detectable CMB
μ-type spectral distortions. This is true even if we consider
the nonhelical inverse transfer effect seen in Refs. [36,41]
and discussed below Eq. (5); see the gray dashed line in
Fig. 2. For nonhelical fields generated at the QCD phase
transition T� ≃ 200 MeV, see Fig. 3, we obtain the upper
limit jμj ≲ 3 × 10−8, which satisfies the current COBE/
FIRAS limit [14] and is very much on the limit of
detectability by a new PIXIE-like experiment [47]. The
results do not change much if we consider the nonhelical
inverse transfer effect discussed below Eq. (5); see the gray
dashed line in Fig. 3.
The situation is quite different if magnetic helicity is

introduced. As can be seen from Figs. 2 and 3, if the initial
helicity fraction f� ≳ ð10−3–10−4Þ, then PIXIE-observable
μ-type distortions can be generated. We also note that for
maximally helical fields f� ¼ 1 the current COBE/FIRAS
limit is not broken [14], so that we cannot constrain
primordial helicity from current data. If a future PIXIE-
like experiment positively detects a μ-type spectral dis-
tortion, then primordial magnetic helicity can be
constrained.
Here, we note that in Refs. [20,21] authors considered

the evolution of the photon diffusion scale, i.e. the Silk
damping scale, as the evolution of the damping scale kd.
Where we can write kI ≈ kd with an equivalent evolution.
However, in these works, the authors only considered a
scale-invariant Alfvén velocity, corresponding to scale-
invariant spectrum n ¼ −3, and this gives the much faster
evolution of the integral scale kI ∝ a−3=2 (for nonhelical
fields with p ¼ 0) as seen in their paper [20]. However, the
magnetic energy is still considered to evolve along the large
scale spectrum, i.e. ~BI ∝ k5=2I , and hence the authors find a
much faster magnetic field decay rate ~ρB ∝ a−15=2. With
this decay rate, the chemical potential scales as μ ∝R
dzð1þ zÞ13=2e−ðz=zDCÞ5=2 as seen in their paper [20].

This fast magnetic field decay rate leads to a huge
overestimation of the generated chemical potential for
the causally generated magnetic fields. In our study, as
can be seen in Figs. 2 and 3, the maximum possible
magnetic energy ε ¼ 1, which corresponds to ~Bλ;�≃
3 × 10−6 G at magnetogenesis, does not overgenerate
spectral distortions. However, in the work of Ref. [20],
an upper limit of ∼10−11 nG on the field strength of
nonhelical magnetic fields is obtained due to current
spectral distortions constraints.

FIG. 3 (color online). QCD scale: In plot (a), we show the
μ-type distortion generated due to the decay of magnetic energy
initially generated at the QCD scale. Here, we plot the spectral
distortion μ vs ε, where ε≡ ~ρB;�=ργ;0 ≈ 1 corresponds to an initial

field strength ~Bλ;� ≃ 3 × 10−6 G. The (solid, blue) lines from top
to bottom, in both plots, correspond to initial helicity fractions
f� ¼ f10−1; 10−4; 10−6; < 10−14g. The maximally helical case
f� ¼ 1 (solid, red) is also shown. In plot (b), we show the final
field strength B0 and coherence length λB that would be observed
today, i.e. after MHD turbulent decay; see Eq. (22). We also
show the approximate constraint on magnetic fields from CMB
observations, B0 ≲ 10−9 G; see Ref. [48] and references therein.
The results for nonhelical magnetic fields with an inverse transfer
of energy [see the discussion below Eq. (5)] are also shown
(dashed, gray lines). Here, we comment on the seemingly strange
behavior of the plot for f� ¼ 10−1 in the QCD case (also
applicable to the nonhelical inverse transfer case, gray dashed
line). As ε decreases, the onset of the viscous freezing regime
begins earlier. For a certain value of ε, the start of the viscous
freezing regime coincides with the start of the μ-era, and hence
there is practically no magnetic energy decay in this time, and
hence μ becomes very small. As ε decrease further, the start of the
viscous damping stage occurs within the μ-era, and a large μ can
once again be generated.
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B. CMB y-type distortions from decaying
magnetic fields

After the end of the μ-era, for z≲ 5 × 104, the elastic
Compton scattering becomes ineffective. From then on, the
spectral distortion becomes a y type, i.e. defined by the
Compton y-parameter [18]. It is possible that intermediate
distortions between μ and y type are generated, where the
exact shape of the spectral distortions can be used to
identify heating mechanisms [25,28]. However, for the
purpose of this paper, it is sufficient to only calculate the μ
and y distortions in order to estimate the effects of magnetic
helicity.
First, we consider the contribution to the y-distortion

before decoupling, when the baryonic fluid is still tightly
coupled to the photons. The Compton parameter in this
case is calculated by

y ¼ 1

12

Z
zdec

zend

dz
ργ

dQ
dz

; ð33Þ

where zend ≃ 5 × 104 is the end of the μ-era and hence the
start of the y-era and zdec ≃ 1088 for the time of decou-
pling. We can see from the plots in Fig. 1 that in all cases,
for magnetic fields generated at the EW or QCD scale and
for any initial helicity fraction, the plasma is in a viscous
state (viscous freezing or viscous damping) in the y-era
before decoupling. Hence, as a first approximation for the
maximum y-type distortion generated in this time, we can
assume the viscous damping law given in Eq. (7) and a
radiation dominated universe throughout this era. From
Eq. (33) and the above considerations, we find

y ¼ −
1

4

pþ 5

pþ 7

�
~ρB;�
ργ;0

��
TEoT

T�

�
2
pþ5
pþ7

× ð1þ zvdÞ−3
pþ5
pþ7

Z
zdec

zend

dzð1þ zÞ2pþ4
pþ7: ð34Þ

Again, the above expression is valid for nonhelical fields
(p ¼ 0) or maximally helical fields (p ¼ −4). For varying
initial helicity fractions f�, a full calculation is done taking
into account the full evolution history. The results are
shown in the plots of Fig. 4.
For nonhelical fields, we can see from Fig. 4 that the

maximum possible y-type distortion generated before
decoupling, corresponding to fields generated at the
QCD scale, is y≲ 8 × 10−10. This result satisfies the
current COBE/FIRAS limit y≲ 1.5 × 10−5 [14] and is
probably not detectable by a new PIXIE-like experiment,
which would place a new lower bound at y≲ 10−8 if not
detected [47]. For nonhelical fields generated at the EW
phase transition, there is little hope for detection with the
maximum distortion at y≃ 3 × 10−14. We note that, if we
consider the nonhelical inverse transfer effect discussed
below Eq. (5) [see the gray dashed line in Fig. 4], the y-type

distortion is still undetectable for fields generated at
the EW scale; however, it seems now possible to detect
a y-type distortion if the fields are generated at the
QCD scale.
For decaying helical magnetic fields, there is a possibil-

ity to generate a detectable y-type distortion before decou-
pling; see Fig. 4. However, since the y-era is later in the
evolution history, magnetic fields have already substan-
tially decayed and thus generate a smaller signal than that
for the μ-type distortion. As discussed below, contributions
to the y-type distortion can be generated after the

FIG. 4 (color online). In plots (a) and (b), we show the y-type
distortion produced before decoupling due to the decay of
magnetic energy initially generated at the EW and QCD scales
respectively. Here, we plot the spectral distortion y vs ε, where
ε≡ ~ρB;�=ργ;0 ≈ 1 corresponds to an initial field strength of
~Bλ;� ≃ 3 × 10−6 G. In plots (a) and (b), the (solid, blue) lines
from top to bottom correspond to initial helicity fractions f� ¼
f10−3; 10−4; 10−6; < 10−14g and f�¼f10−1;10−4;10−6;<10−14g
respectively. The maximally helical case f� ¼ 1 (solid, red) is
also shown. The final field strength B0 and coherence length λB
that would be observed today, i.e. after MHD turbulent decay, see
Eq. (22), are the same as in plots (b) of Figs. 2 and 3. We also
show (dashed, gray lines) the results from nonhelical magnetic
fields with an inverse transfer of energy [see the discussion
below Eq. (5)].
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decoupling of photons but will only provide similar
constraints as the predecoupling contribution.
After decoupling, the CMB photons travel essentially

freely until the present time. However, if the gas density
and/or temperature is high enough, it is possible to generate
spectral distortions after decoupling [24,28,49]. At low
redshifts, heated-up gas in clumps and filaments at T ∼
107 K can produce a distortion y ∼ 10−6 over l ∼H−1

0 via
the Sunyaev-Zel’dovich effect [50]. There is also a con-
tribution of y ∼ 10−7 from the reionization of the Universe
[20]. At higher redshifts, with the presence of magnetic
fields of order B0 ∼ nG, the gas can be heated up to
T ∼ 104 K via turbulent magnetic decay and ambipolar
diffusion [51–53]. The turbulent decay of magnetic fields
in the postdecoupling era, when the Universe is matter
dominated, occurs with a logarithmic scaling as opposed to
the power-law scaling in the predecoupling era [51]. This
means that the turbulent decay is a lot less sensitive to the
primordial spectrum and helicity of the magnetic fields
[20]. For this reason, as we include magnetic helicity, we do
not expect very different results from those quoted below
from previous studies.
In Ref. [20] (see also Ref. [53] for an improved

calculation), the authors show that for a PIXIE detectable
y-distortion generated after decoupling, i.e. y≳ 10−8, a
field strength of B0 > 0.6 nG is required for a spectral
index of causally generated magnetic fields n ¼ 2. As we
see in this paper, for magnetic fields generated at the EW
scale, a field strength B0 ∼ nG is marginally possible if the
field is initially fully helical f� ≃ 1 and the magnetic
energy is in equipartition with the photon energy ε≃ 1 at
the time of magnetogenesis [see Fig. 2(b)]. This seems to be
a rather unlikely scenario, and hence the contribution to the
y-type distortion after decoupling generated from EW scale
magnetic fields is probably not detectable. To obtain a field
strength of order B0 ∼ nG from fields generated at the
QCD scale, a large initial helicity fraction is still required
f� ≳ 10−6 [see Fig. 3(b)]. Such fields could marginally
generate observable y-distortions after decoupling. In this
case, the contribution to the y-distortion after decoupling
is approximately comparable to the contribution before.
In any case, the conclusion remains the same: without
significant initial helicity fraction, the magnetic field
strengths are too weak in the postdecoupling era to generate
PIXIE observable spectral distortions.
Although it is beyond the scope of this current paper, and

the main conclusions are not expected to change signifi-
cantly, it would be interesting to run simulations like those
of Refs. [20,53] to investigate the postdecoupling regime
while including helical magnetic fields.

IV. CONCLUSIONS

Magnetic fields generated in the very early Universe
decay in the radiation dominated epoch due to turbulent
MHD effects. The decaying magnetic fields inject energy

into the primordial plasma which can lead to μ-type and
y-type distortions to the CMB blackbody spectrum. The
current COBE/FIRAS limits on these spectral distortions
are very tight jμj < 9 × 10−5 and y≲ 1.5 × 10−5 [14].
However, there is the exciting possibility of a new
PIXIE-like experiment which could place much stronger
upper limits of jμj < 5 × 10−8 and y≲ 10−8 if no detection
is made [47]. Any prediction for spectral distortions above
the PIXIE limits is what we call detectable.
In this paper, we consider the evolution of helical and

nonhelical magnetic fields generated by some causal
process in the early Universe. We calculate the spectral
distortions using the decays laws of Refs. [12,13,33]. We
find that causally generated nonhelical magnetic fields,
with an initial helicity fraction less than ∼10−14, generated
at the EW phase transition will not produce any detectable
CMB μ-type or y-type spectral distortions. This remains
true even if the inverse transfer effect for nonhelical fields
seen in Refs. [36,41] is considered. Hence, to produce
observable spectral distortions from the decay of magnetic
fields generated at the EW phase transition, a non-negli-
gible helical component is required.
Here, we note that, if the inverse transfer effect for

nonhelical fields is applicable [36,41], it looks possible to
generate small amounts of detectable distortions from
magnetic fields generated at the QCD phase transition. We
also note that magnetogenesis at the QCD phase transition is
disfavored compared to magnetogenesis at the EW phase
transition. Under early Universe conditions with very small
chemical potentials, the QCD phase transition is a smooth
transition [54], whereas the EW phase transition could be
first-order in certain Standard Model extensions [55].
The conservation of magnetic helicity in the early

Universe leads to an inverse cascade of energy and the
slowing down of magnetic decay for fully helical fields.
This means that, at the time when CMB spectral distortions
can be generated, the magnetic field amplitude is relatively
large compared to the nonhelical case. This can lead to the
generation of larger spectral distortions. If CMB spectral
distortions are observed by some new PIXIE-like experi-
ment, then it is likely that magnetic helicity plays an
important role. However, there is a degeneracy in the
parameter space, since different parameter sets can give
the same spectral distortions signal. For example, fields
generated at the QCD phase transition with smaller ε≡
~ρB;�=ργ;0 and/or helicity can produce the same μ-type
distortions as fields generated at the EW phase transition
but with larger ε and/or helicity. We note that mixed-type
distortions can break the degeneracies and identify heating
mechanisms [25,28]. More generally, if a μ-type distortion
is detected by a PIXIE-like experiment, it would rule out
nonhelical magnetic fields produced at either the EW or
QCD phase transition. A positive detection would give us a
lower bound on the primordial magnetic helicity. The lower
bound would be somewhere of the order f� ≳ ð10−4–10−3Þ.
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This is much greater than the primordial magnetic helicity
generated in the simplest models of EW baryogenesis [56]
where f� ∼ 10−24 assuming Bλ;� ¼ Bmax

λ;� and λB;� ¼ λEW
[57]. However, there are new mechanisms that have been
proposed recently which can excite magnetic helicity in the
early Universe due to the Chiral anomaly [58,59]. It will be
interesting to investigate such mechanisms in the future.
It is also interesting to mention the recent tentative

observations of large scale helical magnetic fields from
γ-ray observations [60]. Such studies have seen some
evidence, albeit rather weak, of fully helical fields of
strength 10−14 G on scales of 10 Mpc. If such fields
originated from a time before the μ-era, then it is possible
that such observations would be accompanied by a detect-
able signal for a PIXIE-like experiment. The combination

of these two observations would be compelling evidence
for large scale helical magnetic fields. We also note that the
CMB distortions anisotropies (see e.g. Refs. [22,61]), albeit
potentially very hard to detect, could give interesting
signals due to the large helicity of the magnetic fields.
Unique signatures in the spatial correlations are expected
due to the helical nature of the magnetic fields. This will be
investigated in future publications.
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