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Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae
(CCSNe), we present a coherent network analysis for the detection, reconstruction, and source localization
of the gravitational-wave (GW) signals. We use the RIDGE pipeline for the analysis, in which the network
of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW
spectrogram analysis, we show that several important hydrodynamics features in the original waveforms
persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms
originates not only from the rotating core collapse, bounce, and subsequent ringdown of the proto-neutron
star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and
nonaxisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near the
rotating core bounce, the horizon distance extends up to ∼18 kpc for the most rapidly rotating 3D model
in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the
nonaxisymmetric instabilities. The horizon distances extend maximally up to ∼40 kpc seen from the spin
axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that
in addition to the best-studied GW signals due to rotating core collapse and bounce, the time is ripe to
consider how we can do science from GWs of CCSNe much more seriously than before. In particular, the
quasiperiodic signals due to the nonaxisymmetric instabilities and the detectability deserves further
investigation to elucidate the inner workings of the rapidly rotating CCSNe.
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I. INTRODUCTION

Significant progress has been made in the develop-
ment of an international network of gravitational-
wave (GW) detectors. Although the first detection
has not been accomplished yet, the nondetection has
already yielded scientific results setting upper bounds
on a rich variety of astrophysical GW sources (e.g.,
Refs. [1–6]). The second-generation detectors—such as
Advanced LIGO [7], Advanced VIRGO [8], and KAGRA
[9,10]—will be online in the coming years. The possibility
to construct the third-generation detectors has also
recently been proposed [11,12]. At such a high level of
precision, these advanced detectors are sensitive enough to
many compact objects, including binary neutron star
(black hole) systems (e.g., Refs. [13–15]), neutron star
normalmode oscillations (e.g., Ref. [16]), rotating neutron
star mountains (e.g., Ref. [17]), and core-collapse
supernova (CCSN) explosions (see, e.g., Refs. [18–20]
for recent reviews), the last of which is the focus of
this work.

According to the Einstein’s theory of general relativity
(e.g., Ref. [21]), no GWs can be emitted if gravitational
collapse of the stellar core proceeds with perfect spherical
symmetry. To produce GWs, the gravitational collapse
should proceed aspherically and dynamically. Gathered
over the last decades, observational evidence from electro-
magnetic-wave observations—e.g., of ejecta morphologies,
spatial distributions of nucleosynthetic yields (as recently
discovered by the NuSTAR observations of Cas A [22]),
and the natal kick of pulsars—has pointed towards CCSNe
indeed being generally aspherical [i.e., multidimensional
(multi-D); see, e.g., Refs. [23–26] and references therein].
Unfortunately, however, these electromagnetic signatures
are too indirect to probe the inner workings because they
can only provide an image of optically thin regions far
away from the central core.
Much more direct information is carried away by

neutrinos and GWs. The detection of neutrinos from
SN1987A paved the way for neutrino astronomy
[27,28]. Even though there were just two dozen neutrino
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events from SN1987A (which are not enough to say
something solid about the multi-D feature), these events
have been studied extensively (yielding ∼500 papers) and
have allowed us to have a confidence that our basic picture
of supernova physics is correct (e.g., Ref. [29]; see
Ref. [30] for a recent review). In propagating the stellar
envelope, SN neutrinos produced deep inside the core
are influenced (at least) by the well-known Mikheyev-
Smirnov-Wolfenstein effect (e.g., Refs. [31,32]). Therefore,
GWs are primary observables, which give us a direct
episode of the supernova engine.
From a theoretical point of view, clarifying what makes

the dynamics of the central engine deviate from spherical
symmetry is essential also in understanding the yet uncer-
tain CCSN mechanism. As a result of continuing efforts
for decades, theory and neutrino radiation-hydrodynamics
simulations are now converging to a point that multi-D
hydrodynamic matter motions play a crucial role in
facilitating the neutrino mechanism, which is the most
favored scenario to trigger explosions (see, e.g.,
Refs. [18,33–35] for recent reviews). The neutrino mecha-
nism [36,37] requires convection and the standing-
accretion-shock instability (SASI) to increase the neutrino
heating efficiency in the gain region where net energy
absorption is positive. For canonical massive stars heavier
than ∼10M⊙, the neutrino mechanism fails in spherical
symmetry (1D) [38–41]. A number of two-dimensional
(2D) simulations with spectral neutrino transport now
report successful neutrino-driven models that are trending
towards explosion [42–45], whereas the first such three-
dimensional (3D) simulations [46–48] have reported explo-
sions only for a light progenitor model.
Another candidate mechanism is the magnetohydrody-

namic (MHD) mechanism [49–54]. Rapid rotation of
precollapse iron cores is preconditioned for this mecha-
nism, because it relies on the extraction of rotational free
energy of the core by means of the field wrapping and
magnetorotational instability (see, e.g., Refs. [55–57] and
references therein). Such rapid rotation is likely to obtain
∼1% of a massive star population (e.g., Ref. [58]). Minor as
they may be, the MHD explosions are receiving great
attention as they are possible relevant for magnetars and
collapsars (e.g., Refs. [59–62]), which are hypothetically
linked to the formation of long-duration gamma-ray bursts
(see, e.g., Ref. [63] for a review).
Keeping step with these advances in the CCSN theory

and modeling, considerable progress in understanding the
GW emission processes has been made simultaneously
(see, e.g., Refs. [19,20,64] for recent reviews). In the MHD
mechanism, rapid rotation of the precollapse core leads
to significant rotational flattening of the collapsing and
bouncing core, leading to the (theoretically best-studied)
so-called type I waveform of the bounce signals. The
waveform is characterized by sharp spikes at bounce
followed by a subsequent ringdown phase [65–67]. After

bounce, a large variety of emission processes have been
proposed, including convective motions in the. proto-
neutron star (PNS) and in the region behind the stalled
shock [68–71], the SASI (e.g., Refs. [72–76]), nonaxisym-
metric rotational instabilities [77–80], anisotropy in neu-
trino emission [71,74,81,82], and pulsations of the
PNS [83].
If we were able to associate the above GW signatures

with the proposed explosion mechanisms (basically either
the neutrino or MHD mechanism), then the GW signals,
if successfully detected, should help confirm the mecha-
nisms. To this end, one must extract a real GW signal
buried in detector noises and determine the waveform
characters by (somehow) matching to signal predictions
obtained from the multi-D CCSN simulations men-
tioned above.
The most established method is matched filtering (see

Ref. [13] for review) as is done when looking for compact
binary coalescence signals (e.g., Ref. [84]). However, such
a template-based search is not suitable for the GW signals
from CCSNe. This is because the waveforms (except for the
bounce signals in rapidly rotating cores) are all affected by
turbulence in the post-bounce phase, which is governed by
the nonlinear hydrodynamics (e.g., Refs. [19,64]). Hence,
the waveforms are of a stochastic nature [74] and impos-
sible to predict a priori. To detect such signals from the
next nearby event and extract the information of the
explosion physics, one needs to construct a suitable
analysis method for signal extraction, reconstruction, and
model selection that is able to deal with the stochastic GW
nature.
Considering GW signals from CCSN simulations in

signal detection/reconstruction and parameter estimation
(of the supernova physics) was pioneered by Brady and
Ray-Majumder [85]. The authors introduced a Gram-
Schmidt method to parametrize the bounce GW signals
[86] using a small set of orthonormal basis vectors that
represent characteristic features common to all the wave-
forms. A more efficient method to derive the basis vectors
was introduced in Ref. [87] with principal component
analysis (PCA). Röver et al. [88] combined the PCA with
the Bayesian inference to recover the bounce GW signals
from Ref. [89] and obtained excellent waveform recon-
structions. Going a step further, Logue et al. [90] developed
a Bayesian model selection framework to tell the proposed
explosion mechanisms (MHD, neutrino, or acoustic mecha-
nism) apart in the presence of detector noises. They pointed
out that the Bayesian approach could identify any of the
candidate mechanisms with high confidence for CCSN
events at distances of up to ∼2 kpc.
The abovework has demonstrated that the PCA is indeed

a powerful tool to extract robust waveform features of the
bounce signals in rapidly rotating core collapse. However,
as already mentioned in Refs. [87,88,90,91], one of the
disadvantages is it is not easy to directly extract the
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physical parameters of the central core (such as the rota-
tional parameters in this case) from only the PCs. To get
around the difficulty, Engels et al. [91] recently presented a
multivariate regression model, by which several important
parameters to determine the bounce signals (i.e., in the
context of the MHD mechanism) were shown to be nicely
extractable. Yet, as the authors mentioned, their current
regression model cannot deal with the stochastic wave-
forms, which are inherent to the neutrino mechanism,
which is probably the most canonical way to blow up
massive stars.
There have been other approaches to detection and

reconstruction of the GW signals from stellar core collapse.
The discipline stems from the work by Gürsel and Tinto
[92], in which a maximum likelihood approach was
introduced to reconstruct the time evolution of the burst
GW signals. More efficient methods for inferring the
incident GW signals have been proposed so far including
the Tikhonov regularization scheme in Refs. [93,94] and a
maximum entropy approach [95]. Summerscales et al. [95]
successfully reconstructed the injected waveforms of
Ref. [96] using data from two detectors without any a priori
knowledge of the signal shape. Extending the Tikhonov
regularization of Ref. [93], Hayama et al. [94] added new
time-domain data conditioning to the analysis pipeline,
creating a complete stand-alone coherent network analysis
pipeline called RIDGE. Using the pipeline, they explored
the possibility of whether one could infer the degree of
differential rotation from a small set of waveforms in
Ref. [97], which was more recently reexamined in
Ref. [98] with a more complete set of waveforms.
Joining in these efforts, we present a coherent network

analysis for the detection and waveform reconstruction of
the GW predictions obtained from our 3D CCSN simu-
lations. The network we consider in this work consists of
the 4 km LIGOHanford (H), LIGO Livingston (L), VIRGO
(V), and KAGRA (K) interferometers [8,10,99]. One of the
advantages of using such worldwide detector networks is
that both of the GW polarizations (hþ and h×) can be
reconstructed, which allows the source position on the sky
map to be determined. In most of the work mentioned
above, the employed CCSN models are limited to 2D,
which can produce only linearly polarized signals, and a
single detector has been often considered for simplicity
[88,90]. By performing Monte Carlo simulations using the
RIDGE pipeline [94], we discuss the detectability of the
gravitational waveforms from our 3Dmodels and discuss to
what extent information about the CCSN engine could be
extracted from successful GW detection of a future nearby
CCSN event.
This paper is structured as follows. In Sec. II, after we

briefly review the candidate CCSN mechanisms, we
summarize the individual gravitational waveforms that
we employ in this work. Then we discuss the detectability
of the GW signals in a most prevalent way, that is, by

comparing the root-sum-square (rss) waveform amplitudes
with the sensitivity curves of various GW interferometer
detectors. The main results of this work are given and
discussed in Sec. III. We summarize our results and discuss
their implications in Sec. V.

II. GRAVITATIONAL-WAVE SIGNATURES AND
THEIR OPTIMISTIC DETECTABILITY

In this study, we consider the neutrino mechanism and
the MHD mechanism for CCSN explosions and describe
their characteristic GW signatures in the following sections.
Regarding the neutrino mechanism, we take the model
waveforms from 3D simulations by Kotake et al. [74,100],
which we refer to as the KK+09 and KK+11 waveforms
(e.g., top panel in Fig. 1), respectively. For the waveforms
in the context of the MHD mechanism, we use the wave-
forms from 3D models by Kuroda et al. [80] (e.g., middle
panels in Fig. 1) and 2D models by Takiwaki and Kotake
[54] (e.g., bottom panels in Fig. 1) (KTK14 and TK11 for
short below, respectively). In Appendix A, the waveform
properties of the KK+09, KK+11, KTK14, and TK11
catalogues are summarized with the numerical methods
and initial conditions, respectively. Validities and variations
of the model waveforms are discussed elsewhere in the
following.

A. Model predictions versus sensitivity curves

1. Characteristic frequency and root-sum-square
of GW signals

Figure 2 shows the (frequency-integrated) rss strain
amplitude (hrss) from the KK+, KTK14, and TK11 cata-
logues against the characteristic frequency (fc) relative to
the sensitivity curves of KAGRA, Advanced LIGO (labeled
as aLIGO), and Advanced VIGRO (labeled as advVirgo).
The sources are assumed to be located at 10 kpc from
the Earth and optimally oriented to the design sensitivity
of the detectors. Following Ref. [101], we calculate the
spectral density hrss [Hz−1=2] from the Fourier transform
of the wave signals [hþ;×ðfÞ ¼

R
∞
−∞ e2πifthþ;×ðtÞdt] as

hrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

A¼þ;× j ~hAðfÞj2
q

, and the (detector-dependent)

characteristic frequency as

fc ¼
�Z

∞

0

P
A
~hAðfÞ ~h�AðfÞ
SnðfÞ

fdf

��

�Z
∞

0

P
A
~hAðfÞ ~h�AðfÞ
SnðfÞ

df

�
; ð1Þ

where SnðfÞ is the detector noise power spectral density
in units of Hz−1=2. Having the same unit as the strain
equivalent spectrum density, hrss is often used in burst GW
searches to compare the signal strength with the detector
sensitivity.
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In the hrss − fc plane (Fig. 2), the KK+ catalogues (red
symbols) that can be associated with the neutrino mecha-
nism are rather localized to a small region (e.g., fc ∼
100 Hz and hrss ∼ 1–2 × 10−22 ½Hz−1=2�) for the 3D models
without or with rotation (labeled as KK+09 or KK+11)
either seen from the equator or the pole (with the model

name ending with e or p, such as KK+09Ae or KK+09Ap).
This is because the initial rotation rate assumed in the KK
+11 models is not rapid enough (as is consistent with
outcomes of recent stellar evolutionary calculations [102])
to affect the quadrupole matter motions in the post-shock
region.
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FIG. 1 (color online). GW signal predictions (left panels) for a Galactic event (at a distance of 10 kpc) and the blast morphologies
(right panels) for the neutrino mechanism (top panels from KK+11) and the 3D general-relativistic models that exhibit nonaxisymmetric
rotational instability (middle panels from KTK14) and jet-like explosion (bottom panels from TK11) possibly associated with the MHD
mechanism. All the waveforms (left panels) come from quadrupole matter motions, whereas the inset of the top right panel shows the
waveform only from anisotropic neutrino emission (see Appendix A for more details). To keep the plots from being messy, waveforms
seen only from the polar direction (with respect to the computational domain) are shown for the 3D models (top left and middle left
panels) and waveforms seen only from the equatorial plane are shown for the 2D model (bottom left panel). The time (tsim) is measured
from the epoch when simulations are started. The polarization of the GWs is indicated by “þ” and “×” (see Appendix A for more
details).
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Regarding the waveforms that can be associated with
the MHD mechanism, the KTK14 models (blue symbols)
and the TK11 models (green symbols) are in the ranges
of fc ¼ 100–300 Hz, hrss ∼ 2–100 × 10−23 ½Hz−1=2� and
100–300 Hz, hrss ∼ 1–6 × 10−21 ½Hz−1=2�, respectively.
For the KTK14 models, it can be seen that the rss

amplitudes become higher for models with larger initial
angular momentum [model R3 (blue triangle), followed in
order by R2, R1 (not shown in the plot), and R0 (non-
rotating)]. Note that for model “R3p ext” we manually
extrapolate the quasiperiodic gravitational waveform
(middle panel in Fig. 1) up to 1 s after bounce, assuming
that the nonaxisymmetric instability observed in the limited
simulation time (until ∼60 ms after bounce) persists after-
wards (with the mean oscillation period during the simu-
lation time) up to 1 s after bounce. This ad hoc model has
the maximum amplitude among the KTK14 catalogue (the
highest amplitude among the blue triangles) [103].
The wave amplitudes for TK11 are generally higher than

those for KTK14 simply because the assumed initial
rotation rates are generally higher for the TK11 catalogue.
As is well known from previous studies (e.g., Ref. [19]), the
characteristic frequency (fc) becomes generally lower for
models with larger initial angular momentum (e.g., com-
pare R3 with R2 and B12X1β10 with B12X20β01). This is

because the central density (ρc) in the vicinity of a PNS
becomes generally lower for models with larger initial
angular momentum due to the stronger centrifugal forces.
This makes the dynamical time scale tdyn ∼ ðGρcÞ−1=2 (with
G being the gravitational constant) longer and the typical
frequency (fc ∝ 1=tdyn) lower.
As can be seen from Fig. 2, the signal predictions

taken in this work are above the sensitivity curves of the
advanced detectors for a Galactic event. And it is also worth
mentioning that the characteristic frequency for all the
models is in the range of 100–400 Hz, which is close to the
highest sensitivity domain of the advanced detectors. In
the next section, we proceed to discuss the detectability
more quantitatively by calculating the signal-to-noise
ratio (SNR).

2. Optimal horizon distances for KAGRA

Before presenting a multiple detector analysis in the next
sections, we briefly compute the matched-filtering SNR in
this section. By taking KAGRA as an example detector and
assuming perfect orientation, we compute the SNR as
SNR ¼ hcffiffiffiffiffiffiffiffiffiffiffiffiffi

fcSnðfcÞ
p , where fc is the characteristic frequency

[Eq. (1)] and hc is the characteristic strain amplitude [104],
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FIG. 2 (color online). Location of GW signal predictions for all the waveform catalogues of KK+ (red circles and diamonds), KTK14
(blue circles, triangles, cross, and squares), and TK11 (green triangles, squares, and crosses) in the hrss-fc plane relative to the sensitivity
curves of KAGRA, Advanced LIGO (labeled as aLIGO), and Advanced VIGRO (labeled as advVirgo). The source is located at a
distance of 10 kpc.
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hc ≡
�
3

Z
∞

0

SnðfcÞ
SnðfÞ

X
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~hAðfÞ ~h�AðfÞfdf

�
1=2

: ð2Þ

For computing the SNR, we employ the theoretical noise
spectral densities Sn of KAGRA from Ref. [105].
Table I summarizes the optimal SNR at a distance of

10 kpc and the distance at which the SNR is at 8 for the
representative models, respectively. To claim detection, an
SNR significantly greater than unity and probably in the
range of 8–13 would be needed [13,101]. We optimistically
take the threshold as 8, by which the so-called horizon
distance is conventionally defined, which is the maximum
distance at which the GW signals from an optimally
oriented and optimally located source could be detected.
It should also be mentioned that the detection distances
with realistic noise (rather than idealised Gaussian noise
considered here) can be significantly worse, which remains
to be investigated in more detail.
The horizon distance of the KTK14 waveforms is in the

range of 9–450 kpc, and it becomes longer for models with
larger initial angular momentum and longest (∼450 kpc)
for the extrapolated waveform (model “R3p ext”). For
the nonrotating (R0) model, the detection distance is much
the same when seen from either the pole (model R0p) or the
equator (model R0e) (with respect to the source coordinate
system), both of which closely reach ≲10 kpc for the
SNR ¼ 8 threshold. As one would easily guess, the pole-
to-equator asymmetry in the horizon distance becomes
remarkable for models with larger initial angular momen-
tum (compare model R3p with model R3e). Seen from the

polar direction (e.g., parallel to the rotational axis), the SNR
becomes generally higher because the more efficient GW
emission is associated with the violent growth of the
nonaxisymmetric instabilities in the KTK14 models.
For 2D models that produce explosions by the MHD

mechanism. the detection distance extends from ∼100 to
∼480 kpc, depending on the initial rotation rates (bigger for
more rapidly rotating models). These TK11models provide
the most distant horizons in this work. Due to the absence
of such rapid rotation, the detection distance becomes much
smaller (12–17 kpc) for the KK+ models. As one would
expect, the pole-to-equator asymmetry in the horizon
distance is only weak in the KK+ waveforms.
Having discussed the SNR and the optimistic detect-

ability with a very idealized situation (i.e., a single detector
for an optimally oriented and optimally located source), we
shall turn to a more realistic situation, in which multiple
detectors are used for an arbitrarily oriented source.

III. RESULTS

In Sec. II, we discussed an ideal detection limit with the
design sensitivity of KAGRA. In reality the performance
of the detection strongly depends on the antenna pattern
functions of a network of multiple detectors. In this section
we study the performance using the RIDGE pipeline which
takes full advantage of the global network of currently
working and future interferometers [LIGO Hanford (H),
LIGO Livingston (L), VIRGO (V), and KAGRA (K)],
resulting in enhanced detection efficiency (see Appendix B
and Refs. [94,106] for more details).

A. Detection efficiency

We first focus on the receiver operating characteristic
(ROC) curves, which are useful to see how the detection
efficiency (y axis) changes with the false alarm probability
(x axis) for sources at different distances.
Figure 3 is for the nonrotating 3Dmodels from the KK+09

(top panels) andKTK14 catalogues (bottom panels).Without
rotation, the detection efficiency is much the samewhen seen
fromeither thepole (leftpanels)or theequator (rightpanels). If
we set the false alarm probability of 0.01 and the detection
probability of 0.5 as a threshold of the detection, the detection
distance of the nonrotating model is 2.5–3 kpc from the
KK+09 catalogue and∼3–4 kpc from the KTK14 catalogue,
respectively. It is noted that the detection horizon becomes
smaller bya factorof∼5 compared to that for themost optimal
situation (shown in Table I).
Figure 4 is for 3D models with rapid rotation (i.e., the

KTK14 catalogue). As mentioned in Appendix A, the
growth of nonaxisymmetric instabilities was clearly
observed in model R3 (the most rapidly rotating models
in KTK14; top panels in Fig. 4) in the vicinity of the
equatorial plane. Due to this, the horizon distance of model
R3 (top panels) is bigger when seen from the pole

TABLE I. Optimal SNR as a function of distance to the source for
several representative models for GWemission in the context of the
MHDmechanism (KTK14 and TK11) and the neutrinomechanism
(KK+). The theoretical noise power spectral density for KAGRA is
used. As a threshold to claim detection, we take the SNR as 8.

Model SNR at 10 kpc
Distance at

SNR ¼ 8 ½kpc�
KTK14 R0e 7.35 9.1875
KTK14 R0p 7.55 9.4375
KTK14 R2e 21.62 27.0250
KTK14 R2p 22.88 28.6
KTK14 R3e 58.65 73.3125
KTK14 R3p 73.93 92.4125
KTK14 R3p ext 360.97 451.2125
TK11 B12X1β10 386.54 483.175
TK11 B12X20β01 78.38 97.975
TK11 B12X20β10 191.75 239.6875
TK11 B12X5β01 248.63 310.7875
TK11 B12X5β10 306.2 382.75
TK11 B12X1β01 327.64 409.55
KKþ 9 Ae 13.88 17.35
KKþ 9 Ap 13.28 16.6
KKþ 11 Ae 9.43 11.7875
KKþ 11 Ap 10.38 12.975
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(∼60 kpc; left panel) compared to that seen from the
equator (∼25 kpc; right panel). Similar to the nonrotating
models (Fig. 3), the horizon distances for the rapidly
rotating models become up to a factor of ∼3 smaller
compared to the most optimal case (e.g., Table 3;
∼92 kpc for the pole and ∼73 kpc for the equator for
model R3). Figure 5 shows the horizon distance of our 2D
MHD model (B12X1β10, TK11) which has the biggest
optimistic SNR in our catalogues. The horizon distance
changes from the optimal estimation of ∼483 kpc (Table 3)
to ∼150 kpc in the more realistic situation. These 2D
models as well as the 3D rapidly rotating models have
pronounced GW peaks associated either with core bounce
or with the nonaxisymmetric instabilities. As a result, the
reduction in the horizon distance relative to the most
idealized situation becomes smaller than for the nonrotating
models.

B. Position reconstruction

Based on the Monte Carlo simulations using the RIDGE
pipeline (see, e.g., Appendix B), we discuss the signal
reconstruction of the sky location in this section.

Following the method in Refs. [107,108], we inject all
our model waveforms onto the simulated detector data
streams (with the Gaussian noise) in a wide range of SNRs
with the coordinates uniformly distributed on the sky.
These signals are injected 20 times every 3 s, 0.2 s, and
1 s for the KK+, KTK14, and TK11 waveforms, respec-
tively. The duration of each injection is different, reflecting
the different simulation time scales. For each injected
event, the sky map [Sðθ;ϕÞ; see Appendix B] is calculated
with the angular resolution of dΩ ¼ 4 × 4 square degrees.
To quantify the accuracy of the sky map localization for a
single injection, we calculate an error region: the total area
of all pixels in the sky which satisfy the condition
Sðθ;ϕÞ ≥ Sðθi;ϕiÞ, where Sðθi;ϕiÞ is the injection sky
location. In the following, we choose a threshold of 50%
(which contains 50% of injections) to estimate the error
regions (namely, we take the 50% C.L. error regions).
Figures 6, 7, and 8 show the distributions of the error

regions as a function of latitude (θ) and longitude (ϕ) for
the KK+09, KTK14, and TK11 waveforms, respectively.
Note in these figures that the distance to the source (d) is set
differently as d ¼ 2, 10, and 50 kpc for Figs. 6, 7, and 8,
respectively, by which the optimal SNR exceeds 8
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FIG. 3 (color online). ROC curves of nonrotating 3D models from the KK+09 (top panels) and KTK14 catalogues (bottom panels) for
polar (left panels) and equatorial (right panels) observers at different source distances.
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(e.g., Table I) bearing in mind that signal detection should
be preconditioned for the localization of the source.
In the sky maps, the color scale corresponds to the area

of the error regions, so that the smaller values (bluish

regions) or high values (reddish regions) correspond to
good or bad accuracy regarding the sky map reconstruction.
Comparing Fig. 6 with Figs. 7 and 8, one can see from the
area of bluish regions that the accuracy is biggest for the
KK+09 waveform (Fig. 6) at d ¼ 2 kpc, which is followed
roughly in order by the TK11 at d ¼ 50 kpc (Fig. 8) and
the KTK14 waveform at d ¼ 10 kpc (Fig. 7). The accuracy
of the sky map reconstruction depends on many ingre-
dients, such as the signal strength and duration, waveform
morphology, etc. For our three sets of signals, the source
localization (positioned at the optimal distance) turns out to
be most accurately determined for the KK+09 waveform,
which may be rather counterintuitive due to the absence of
the distinct peaks in the waveform. However, this is mainly
due to the longer simulation time compared to the other two
waveforms. This kind of ambiguity is typical for the least
constrained unmodeled search and networks with only four
spatially separated detectors (e.g., Ref. [108]).
For the KK+ waveforms, the distribution and the area of

the error regions are almost similar between the 3D model
without or with rotation or seen from either the equator or
the pole. As mentioned, this is due to the assumed initial
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FIG. 4 (color online). Same as Fig. 3 but for 3D models with rotation from the KTK14 waveforms [models R3 (top panels) and R2
(bottom panels].
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FIG. 5 (color online). Same as Fig. 3 but for the 2D MHD
model (B12X1β10) of the TK11 waveform that possesses the
biggest SNR (e.g., Table 1) in our catalogue.
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small rotation rate. The regions, which we call hot spots
[the source localization there is not good (red or yellow in
the sky map)], are confined in small clusters in this case. On
the other hand, the hot spots are distributed over a large area
and split into more smaller clusters in the KTK14 wave-
forms (Fig. 7).
The TK11 signals (Fig. 8) from 2D MHD models were

assumed to be positioned at d ¼ 50 kpc and seen from
the equator of the source. Comparing the left (model
B12X5β01) and right panels (model B12X5β10), the area
of the error regions is shown to be smaller for the model
with the larger initial rotation rates (right panel). This
feature is clearly seen in the rest of the 2D models with
rapid rotation.

In this study, the number of the examined multi-D
models is rather limited (17) and it is truly far from
comprehensive. At this stage, we are only able to discuss
how well we can localize the GW signals for the limited set
of the CCSN models. To seek for some systematic trend,
we summarize in Table II the range of the solid angle within
which the (given) position reconstruction can be done. It is
shown in the table that the accuracy of the sky position
reconstruction is generally higher for models with rapid
rotation (e.g., model R3 of KTK14 and models from TK11)
than for the nonrotating models (e.g., model R0 of KTK14
and models from KK+9). Finally we point out that the
configuration of the H-L-V-K network is fine because the
sky position of the Galactic center (horizontal yellow line in

FIG. 6 (color online). Plots of the sky map from the network analysis of H-L-V-K for the 3D nonrotating model (top panels) from the
KK+09 waveform for the equatorial (left) or polar (right) observer, respectively. The horizontal yellow line corresponds to the daily
motion of the Galactic center in the sky map. Note that for the advanced detectors such as Advanced LIGO, Advanced Virgo, and
KAGRA, the Galactic center is a sky direction with high probability of the detection of GWs from CCSNe. The x and y axes are the
longitude and latitude, respectively. Note in this panel that the distance to the source is set as 2 kpc (see text for more details).

FIG. 7 (color online). Same as Fig. 6 but for 3D models with rapid rotation from the KTK14 waveforms (model R3) either seen from
the equator (left) or from the pole (right). Note in this panel that the distance to the source is set as 10 kpc.
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the sky map) does not always coincide with the hot spots as
shown in Figs. 6–8.

C. Waveform reconstruction

Figures 9 and 10 show a comparison between the
reconstructed (red lines) and the original waveforms of
the two representative models with rapid rotation [black
lines, for the þ mode (upper) and for the × mode (lower),
respectively]. Seen from the pole of model R3 (i.e., model
R3p) in the KTK14 catalogue (top two pairs of panels of
Fig. 9), the matched-filtering SNR of the reconstructed
hþ; h× reach ∼30 and 60 (d ¼ 10 kpc), respectively. Seen
from the equator (bottom two pairs of panels of Fig. 9), the
SNR of the (conventional) bounce GW signal from rapidly
rotating collapse and bounce (hþ, upper part of the bottom
two panels) reaches ∼35–38. Remembering that any
coherent network analysis has bias and one cannot com-
pletely correct the bias in general, this result is not as bad
compared with the ideal SNRs of ∼60 for an optimally
oriented and optimally located source (Table I).

From Fig. 10, one can also see that the bounce signal is
well reconstructed by the RIDGE pipeline [with the
matched-filtering SNR reaching 40 (bottom panel) for
the 2D MHD model from the TK11 catalogue]. It is also
shown that the quasimonotonically increasing component
in the original waveform (black line after ∼20 ms post-
bounce) disappears in the reconstructed waveform (red line,
top panel). This again reflects that such a low-frequency
component is hard to detect due to seismic noises.
Regarding a 3D (nonrotating) model (not shown) from
the KK+ catalogue, the detection efficiency of the high-
frequency component (with the variation time scale of ms)
is not high compared to those for Figs. 9 and 10 because of
the absence of the distinct waveform morphology. On the
other hand, the shape of the waveform with the variation
time scale of 50–100 ms (which closely corresponds to the
SASI modulation) is captured to some extent, by which
the matched-filtering SNR is in the range from ∼5 to 10 for
the nearby source (d ¼ 2 kpc in this case).

IV. INFERRING THE POST-BOUNCE
HYDRODYNAMIC EPISODES

By performing the GW spectrogram analysis (e.g.,
Refs. [71,76,81]), we move on to discuss what information
we can extract about the hydrodynamic episode in the post-
bounce core.
For the sake of simplicity, we first focus on the waveform

of a 2DMHDmodel from the TK11 catalogue. The top left
panel of Fig. 11 is the spectrogram of the original wave-
form. There are three distinct excesses (shown in red) at the
simulation times tsim ∼ 20, 60, and 90 ms, respectively. The
first excess peaking around 1 kHz (tsim ∼ 20 ms) comes
from the bounce signal, which is followed by the excess at
tsim ∼ 60 ms (we call this the second excess) due to a
relatively large ringdown. The third excess (tsim ∼ 90 ms)
which extends to a lower frequency regime (≲100 Hz)

FIG. 8 (color online). Same as Fig. 6 but for 2DMHDmodels of the TK11 waveforms [models B12X5β01 (left panel) and B12X5β10
(right panel)]. Note in this panel that the distance to the source is set as 50 kpc.

TABLE II. Fraction of the solid angle relative to the whole sky
(4π), within which the position reconstruction can be done for
each of the angular resolutions (dΩ ¼ 5 × 5, 10 × 10 square
degrees, and so on).

Model 5 deg 10 deg 20 deg 25 deg 30 deg

KKþ 9 Ae 0.2304 0.3926 0.5832 0.6472 0.6899
KKþ 9 Ap 0.3414 0.5249 0.7084 0.7468 0.7952
KTK14 R0e 0.6558 0.8250 0.9289 0.9488 0.9545
KTK14 R0p 0.5533 0.7411 0.8734 0.9004 0.9232
KTK14 R2e 0.1422 0.3272 0.5306 0.5832 0.6430
KTK14 R2p 0.4893 0.7212 0.8535 0.8962 0.9260
KTK14 R3e 0.6714 0.8492 0.9644 0.9844 0.9957
KTK14 R3p 0.6330 0.8805 0.9758 0.9872 0.9986
TK11 B12X1β01 0.5007 0.7112 0.8321 0.8606 0.8834
TK11 B12X1β10 0.4979 0.7084 0.8450 0.8691 0.8890
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comes from the second core bounce (e.g., Fig. 10) and
the subsequent formation of the secondary MHD jet (see
Ref. [54] for more details).
Here it should be noted that these hydrodynamic features

imprinted in the spectrogram can be seen also in the
spectrogram for the reconstructed signals (top right panel
of Fig. 11). Comparing the top left with the top right panel,
the high-frequency domain (shown in red in the top left
panel from ∼800 Hz to 1 kHz in each of the above three
excesses) disappear in the top right panel. This is because
this frequency domain is out of the highest detectors’
sensitivity that is limited by quantum noises (e.g., Fig. 2).
In the top right panel, the color scale represents the ratio of
the GW amplitude with both the model prediction and the
detector’s noise to that with the noise only (without the

model prediction). We call this quantity the time-frequency
SNR (SNRTF) because it is defined in each pixel of the time-
frequency (dt − df) domain representing the strength of
the signal relative to the noise. The pixel resolution taken
here is 20 ms. In this analysis, each time-frequency tile is
overlapped except for one pixel, and the group SNR of each
time-frequency tile is averaged over the overlapped tiles.
By selecting the pixels with the same time-frequency

SNR (exceeding 5), we can divide the patchy excesses in
the spectrogram into several disconnected groups (bottom
left panel of Fig. 11). The color scale of the bottom left
panel represents the identification (ID) number of each of
the groups (which we call the grouping ID). By summing
up the time-frequency SNR in the disconnected area (S)
(having the same SNRTF), we define the grouping SNR
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FIG. 9 (color online). Left panels show the reconstructed hþ (upper) and h× (lower) waveforms (red lines) of model R3p (top two panels)
and R3e (bottom two panels) (d ¼ 10 kpc). The black line corresponds to the injected (original) waveform. Right panels show the
corresponding output of matched filtering for the reconstructed signals (compare with the left panels), in which the output is the SNR.
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FIG. 10 (color online). Same as Fig. 9 but for model B12X1β10 from the TK11 catalogue.

FIG. 11 (color online). The top left panel is the GW spectrogram of the injected signal (theoretical prediction) showing the amplitude
at d ¼ 10 kpc as a function of simulation time (horizontal axis) and frequency (vertical axis) for model TK11B12X1β01 from the TK11
catalogue. Similarly, the top right panel is the spectrogram of the reconstructed waveform, in which the color scale represents the time-
frequency SNR (SNRTF; see text for the definition). The bottom left panel shows the groups of excesses with the same SNRTF with the
color scale representing the grouping identification number. The bottom right panel shows the grouping SNR (see text) as a function of
the group identification number.
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(i.e., SNRgroup ≡
R
S dtdfSNRTF). The bottom right panel

of Fig. 11 shows the SNRgroup as a function of the grouping
ID. It should be noted that the identification of distinct
clusters in the GW spectrograms presented in this work is

nothing but a very rough and optimistic estimate because
we consider only the idealized Gaussian noise. Effects of
realistic noise need to be considered, which is one of the
most important tasks to be studied as a sequel of this work.

FIG. 12 (color online). Similar to Fig. 11 but for model R3 seen from the equator from the KTK14 catalogue. The left and right panels
correspond to the waveform with the þ and × mode, respectively. The first and second columns correspond to the spectrograms of the
injected and reconstructed signals, respectively. The third and fourth columns show the spectrogram of SNRTF and the SNRgroup with the
ID number, respectively.
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The first excess near the bounce (shown as a blue prolate
region at tsim ∼ 20 ms, bottom left panel) has the group
ID ¼ 1 (blue on the color scale), which is shown to have
the grouping SNR 7.5 (e.g., bottom right panel). The
second and third excesses (tsim ∼ 60; 90 ms) have the group
ID ¼ 4 and 14, the SNRgroup of which is 9.6 and 15,

respectively. When we set the detection threshold as 8, the
bounce signature is expected to be detectable to 9.4 kpc
for the H-L-V-K observation, while the (strong) ringdown
of the PNS (the second excess) and the subsequent bounce
and the formation of the recurrent MHD jets (the third
excess) can be detected to 12 and 19 kpc, respectively.

FIG. 13 (color online). Same as Fig. 12 but for model R3 seen from the pole.
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As one would imagine, the spectrogram of the KK+
waveforms (contrary to the TK11/KTK14waveforms) does
not possess clear excess. Since it turns out to be difficult to
perform the grouping analysis as in Fig. 11, we limit
ourselves to focus on the KTK14 waveforms in the
following.
Figures 12 and 13 show the similar analysis for the

waveforms of model R3, the most rapidly rotating model in
the KTK14 catalogue, seen from either the equator (R3e) or
the pole (R3p), respectively.
For the equatorial observer (Fig. 12), a clear excess in the

spectrogram is seen in the þ mode (top left panel) at tsim ∼
35 ms (red prolate region), which corresponds to the epoch
of rotating core bounce. The quasioscillatory period of the
waveform near the bounce is 1 ∼ 5 ms (e.g., middle panel
of Fig. 1), which accounts for the excess in the frequency
range of 200–1000 Hz in the spectrogram (top left panel).
This (best-studied) rotating bounce signal is hardly seen

in the × mode for both the equatorial observer (top right
panel) and for the polar observer (top panels of Fig. 13)
with both polarizations [þ (left) or × (right) mode,
respectively]. Clearly seen for the polar observer is an
another excess that appears in the spectrograms between
tsim ¼ 40 ∼ 80 ms peaking around the frequency of 200 Hz
(top panels in Fig. 13). As elaborately discussed in
Ref. [80], this characteristic frequency (∼200 Hz) comes
from the growth of one-armed spiral instabilities in the
vicinity of the rapidly rotating PNS (see also the periodic
waveform patterns in the middle panel of Fig. 1).
In the reconstructed waveforms (second columns of

Figs. 12 and 13), it can be seen that the GW signatures
seen in the injected signals due to rotating bounce (top left
panel in Fig. 12) and the spiral instabilities (top panels
in Fig. 13) are still present, although the excess in the
spectrograms becomes especially weak for the bounce
signal at the high-frequency regime (compare the left
panels in the first and second columns of Fig. 12).
Regarding theþmode seen from the equator (left panels

of Fig. 12), the SNRTF of the rotating bounce signal is 14.3
[second panel (left)], which is assigned to have the ID
number 1 [red prolate region in the third column (left)].
By setting the detection threshold to 8 with respect to
SNRgroup, the detection horizon extends to 17.9 kpc.
Regarding the GW signature from the spiral instabilities,
the corresponding excess (SNRTF ¼ 13.8) is assigned to
have the ID number 2 and 3 [yellow/orange region in the
third column (left)]. The horizon distance is ∼17.3 kpc. As
for the × mode (right panels of Fig. 12), the SNRgroup is 9.0
(the ID number is 1) and 10.3 [the ID number is 2, which
has the biggest SNR among the candidate IDs of 2, 3, and
4; third column (right)], the detection horizon of which is
11.3 kpc and 12.9 kpc, respectively.
Seen from the pole (Fig. 13), the excess in the spectro-

gram of the model R3 waveform (top panels) is categorized
into three [SNRTF ¼ 29.3, 31.7, and 26.7, third column

(left, þ mode)] or two groups [SNRTF ¼ 16.1 and 15.2,
third column (right, × mode)]. Choosing the biggest
SNRTF among the groups, the detection horizons of the
þ and × modes turn out to extend up to ∼40 and 20 kpc,
respectively.
Finally, Table III summarizes the horizon distances of all

the rotating models in the KTK14 catalogue. Regarding the
rotating bounce signals (labeled as “Rotating core-bounce”
in the table), the horizon distance becomes longest
(∼18 kpc) when seen from the equator for the most rapidly
rotating model (R3) by the H-L-V-K network considered in
this work. In order that the SNR exceeds 8 (to claim
detection), the initial rotation rate should be higher than
Ωini ¼ π=2 ðrad=sÞ (model R2) among the 3D GR models.
Regarding the GW signals from nonaxisymmetric insta-
bilities, the horizon distances become generally longer
when seen from the pole than seen from the equator.
This is because the low-mode instabilities characterized by
the spiral arms develop most preferentially in the equatorial
plane. The maximum horizon distance extends up to
∼40 kpc for the most rapidly rotating model (R3). The
horizon distance does not decrease monotonically with the
initial rotation rate. In fact, comparing the initial rotation
rate of model R3 [Ωini ¼ π ðrad=sÞ] and that of model R2,
the maximum horizon distance of model R2 (∼36 kpc) is
relatively close to that of model R3 (∼40 kpc).
From Table III, we speculate that the chance of detecting

GWs from rapidly rotating CCSNe could become quite
higher for the quasiperiodic signals inherent to the non-
axisymmetric instabilities than for the short-duration sig-
nals emitted at rotating collapse and bounce. As repeatedly
mentioned before, it should be cautioned again that the
numbers in Table III are based on a very optimistic estimate
using the idealized Gaussian detector noise, and they

TABLE III. Model summary of optimistic horizon distances
based on the spectrogram analysis. In the first column, GW
emission for models from the KTK14 catalogue is categorized
either due to rotating core bounce (emitted within 10 ms post-
bounce) and due to the subsequent growth of the nonaxisym-
metric instabilities in the vicinity of the PNS. By setting the
detection threshold as SNRgroup ¼ 8, the horizon distance is given
for each of the 3D GR models for the equatorial or polar observer
(labeled by, e.g., R3e and R3p) with þ or × polarization. The
blank “—” represents that the SNRgroup does not exceed the
threshold.

Model Rotating core bounce Nonaxisymmetric instabilities

R3e 17.9 kpc (þ),
11.3 kpc (×)

17.3 kpc (þ), 12.9 kpc (×)

R3p — 39.4 kpc (þ), 20.1 kpc (×)
R2e 14.0 kpc (þ) 16.5 kpc (þ)
R2p — 35.9 kpc (þ), 14.0 kpc (×)
R1e — 16.8 kpc (þ), 7.6 kpc (×)
R1p — 5.9 kpc (þ), 11.1 kpc (×)
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should be interpreted as an upper bound of the horizon
distance. For a more quantitative investigation, one also
needs a more accurate waveform prediction based on long-
term 3D GR models with sophisticated neutrino transport,
toward which we have attempted to make the very first step
in this study.

V. SUMMARY AND DISCUSSIONS

Using predictions from 3D hydrodynamics simulations
of CCSNe, we presented a coherent network analysis for
the detection, reconstruction, and source localization of the
GW signals. The network considered in this work consisted
of the LIGO Hanford, LIGO Livingston, VIRGO, and
KAGRA interferometers. We first computed the SNR and
the optimistic detectability of the GW signals with a very
idealized situation (i.e., only a single detector for an
optimally oriented and optimally located source). Then
we considered a more realistic situation using the RIDGE
coherent network analysis pipeline, in which the multiple
detectors were used for an arbitrarily oriented source. By
combining this with the GW spectrogram analysis, it was
shown that several important hydrodynamics features
imprinted in the original waveforms persist in the wave-
forms of the reconstructed signals. The characteristic
excess in the GW spectrograms originates not only from
rotating core collapse and bounce, and the subsequent
ringdown of the PNS as previously identified, but also from
the formation of MHD jets and nonaxisymmetric insta-
bilities in the vicinity of the PNS. Regarding the GW
signals emitted near the rotating core bounce, the horizon
distance—which we optimistically set by an SNR exceed-
ing 8—extends up to ∼18 kpc for the most rapidly rotating
3D model among the employed waveform libraries. The
SNRs of the rotating bounce signals exceed the fiducial
detection threshold only for models with a precollapse
angular velocity higher than Ω0 ¼ π=2 ðrad=sÞ. Following
the rotating core bounce, the dominant source of the GW
emission shifts to the nonaxisymmetric instabilities that
develop in the region between the stalled shock and the
PNS. It was pointed out that the horizon distances from the
nonaxisymmetric instabilities are generally longer when
seen from the direction parallel to the rotational axis of the
source than when seen from the equator. This is because the
spiral arms that are inherent to the low-mode instabilities
develop more preferentially in the equatorial plane. Among
the 3D general-relativistic models in which the nonax-
isymmetric instabilities set in, the horizon distances extend
maximally up to∼40 kpc when seen from the pole and they
are rather insensitive to the imposed initial rotation rates. In
addition to the best-studied GW signals due to rotating core
collapse and bounce, it was suggested that the quasiperi-
odic signals due to the nonaxisymmetric instabilities and
the detectability deserves further investigation to elucidate
the inner workings of the rapidly rotating CCSNe.

While we have shown that the spectrogram analysis is
effective for the GW signals from rapidly rotating collapse,
which is most likely to be associated with the MHD-driven
mechanism, the ability on the stochastic waveforms from
the neutrino mechanism remains to be tested. Recently it
was demonstrated by 2D-GR models with an elaborate
transport scheme [43] that a violent mass accretion to the
PNS leads to an efficient GW emission in the late post-
bounce phase, which can be nicely explained by the
buoyant frequency near the PNS surface [76]. Such a
high-frequency feature (∼100 Hz to ∼1 kHz) is generic in
2D explosion models, which is expected to also be the
case in 3D [81]. With growing supercomputing power
and the rapid development of CCSN modeling (e.g.,
Refs. [109–113]), we speculate that the construction of
dense waveform catalogues based on self-consistent 3D GR
models will become a reality in the decade to come [34,35].
We hope that in combination with the refined waveform
predictions the GW analysis schemes will also be updated
such as by taking a coincidence with neutrino signals
([114,115]; see, e.g., Refs. [116,117] for a review), which
should be indispensable to decipher the CCSN mechanism
from the multimessenger observables in the next nearby
event.
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APPENDIX A: WAVEFORM CATALOGUES

1. The KKþ waveforms

The top panels of Fig. 1 show an example waveform (left
panel) and a snapshot (right panel) of a 3D model that is
trending towards an explosion by the neutrino mechanism
[74,75,100]. In the 3D model, the neutrino luminosity (Lν)
from the PNS was treated as a parameter to trigger
explosions, the initial conditions were derived from a
steady-state approximation of the post-shock structure,
and the Newtonian hydrodynamics outside an inner

KAZUHIRO HAYAMA et al. PHYSICAL REVIEW D 92, 122001 (2015)

122001-16



boundary at 50 km was solved. The core neutrino lumi-
nosity is taken as Lν ¼ 6.8 × 1052 and 6.4 × 1052 erg=s for
the KK+09 (corresponding to model A in Ref. [74]) and the
KK+11 waveform (model C2 in Ref. [100]; top panels in
Fig. 1), respectively. In model KK+11, stellar rotation was
taken into account by adding a uniform rotation to the flow
at the outer boundary of the computational domain (e.g.,
Ref. [118]), the angular momentum of which is assumed to
agree with recent stellar evolution models [102].
The top right panel is a snapshot (at tsim ¼ 513 ms) seen

from the rotational axis for model C2. Note that the time
(tsim) is measured from the epoch when simulations are
started. The first and third quadrants of the panel show the
profiles of the high-entropy bubbles (shown in red) inside
the surface of the standing shock wave (the second and
fourth quadrants). The side length of the panel is 1000 km.
The high-entropy bubbles are seen to develop like a spiral
arm, which is a signature of the spiral SASI modes. Under
the influence of the spiral and sloshing SASI modes and
neutrino-driven convection, the 3D model starts to be
explosive at tsim ∼ 200 ms after the stalled shock comes
to a steady state. In the top left panel, only the waveforms at
tsim ≳ 200 ms are shown because the amplitudes are zero
(or very small) before the nonspherical hydrodynamical
instabilities enter the nonlinear phase (see also the inset of
the top right panel). As shown, the wave amplitudes change
stochastically with time, because the nonsphericities in the
post-shock region are essentially governed by turbulent
flows. Note that the wave amplitudes of our simplistic 3D
models are qualitatively in agreement with those obtained
in more realistic 3D models [81].
The inset of the top right panel shows the waveform

contributed only from anisotropic neutrino emission
[the pink line (seen from the pole, þ mode), green line
(seen from the pole, × mode), light blue line (seen from
the equator, þ mode), and red line (seen from the
equator, × mode)]. As already discussed in
Refs. [19,74,75,100,119,120], the time variability of the
neutrino(-originated) GWs is much longer [≳Oð10Þ ms]
than that of the matter GWs [≲Oð10Þ ms (top left panel)]
due to the memory effect [121]. As a result, the peak
frequencies of the neutrino GWs are typically below
∼100 Hz. These low-frequency GWs are very difficult to
detect by ground-based detectors whose sensitivity is
limited mainly by seismic noises. In the case of
KAGRA, the sensitivity at 20 Hz is 5 × 10−23, which is
about 20 times worse than the most sensitive frequency
domain around 80–200 Hz. In the following, we thus focus
on the matter GW signals that are more important in
discussing the detectability.

2. The KTK14 waveforms

The middle panels of Fig. 1 show the waveform (left
panels) and the 3D entropy plot (49 ms post-bounce) of a
rapidly rotating model (R3) in Kuroda et al. [80]. For this

model, an angular velocity of Ω0 ¼ π rad=s is added to the
nonrotating 15M⊙ progenitor of Ref. [122] with a quadratic
cutoff parameter at the radius of X0 ¼ 1000 km. Shortly
after bounce (∼15 ms post-bounce), one-armed spiral
modes were observed to develop in the post-shock region
for this rapidly rotating model. As a result, the waveforms
show narrow-band and highly quasiperiodic signals
(regardless of the GW polarizations; see the left middle
panels), which persist until the end of simulations
(tsim ∼ 60 ms). Since the typical frequency of the quasi-
periodic waveform can be well explained by the propa-
gating acoustic waves between the stalled shock and the
rotating PNS surface, the waveforms are most likely to be
associated with the appearance of the spiral SASI (see
Ref. [80] for more details). Regarding the þ mode of the
signal seen from the equator (not shown in Fig. 1), typical
GW features of the so-called type I waveforms (e.g.,
Ref. [123]) were clearly seen [80], i.e., a first positive
peak just before bounce precedes the deep negative signal
at bounce, which is followed by the subsequent ring-
down phase.
In addition to the rapidly rotating model (R3), we use

three waveforms of more slowly rotating models from
Ref. [80], which correspond to models R0 [Ω0¼ 0 rad=s
(nonrotating)], R1 (Ω0 ¼ π=6 rad=s), and R2 (Ω0 ¼
π=2 rad=s), respectively. All of the 3D models are based
on full GR hydrodynamic simulations, in which an
approximate three-flavor neutrino transport was solved
with the use of an analytical closure scheme (e.g.,
Ref. [124]). The wave amplitudes for the nonrotating
(model R0) and slow-rotating models (model R1) stay
much smaller (≲3 × 10−22) during the simulation time
(≲50 ms post-bounce). These GWamplitudes and frequen-
cies are consistent with 3D (post-)Newtonian [79] or GR
models [66,125] with a more idealized transport scheme
and 2D GR models with more detailed neutrino trans-
port [82].

3. The TK11 waveforms

To discuss GWs from models that produce MHD
explosions, we use four waveforms from Ref. [54]. The
authors performed 2D special-relativistic MHD simulations
with the use of an approximate GR potential [126], in
which a neutrino leakage schemewas employed to take into
account neutrino cooling [127]. The computed models
were named with the first part (B12) representing the
strength of the initial magnetic field parallel to the spin axis
(1012 G), the second part (X1, X5, or X20) indicating the
degree of differential rotation (X0 ¼ 100, 500, 2000 km,
respectively), and the third part (β ¼ 0.1 or 1) showing the
rotation parameter (the ratio of the rotational energy to the
absolute value of the gravitational energy prior to core
collapse).
The bottom left panel of Fig. 1 shows that the waveform

from MHD explosions tends to have a quasimonotonically
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increasing component, which is followed by the typical
type I GW signature near the bounce (0.02≲ tsim ≲ 0.03 s).
Such a feature was only observed for models with strong
precollapse magnetic fields and with rapid rotation initially
imposed (e.g., model B12X1β0.1). The increasing trend
comes from bipolar flows (bottom right panel of Fig. 1) as
shown by Refs. [128,129]. Again the low-frequency wave-
forms (≲100 Hz) are hard to detect, but it may be worth
mentioning here that future space interferometers like the
Fabry-Perot-type DECIGO are designed to be sensitive in
these frequency regimes [130,131].
The GW amplitudes and frequencies of the TK11

catalogue are consistent with those obtained in previous
2D [128,129] and 3D [79] MHD models. We chose to take
the signal predictions from 2D models in order to compare
the wave amplitudes with those in 3D models (i.e., the
KTK14 catalogue), and also to discuss how difficult it is to
detect the low-frequency components for ground-based
interferometers even by performing the coherent network
analysis.

APPENDIX B: COHERENT
NETWORK ANALYSIS

In order to compute the signal detection, reconstruction,
and source localization of the model waveforms in the last
section, we perform a coherent network analysis using a
pipeline called RIDGE (see Ref. [94] for details). In the
algorithm, one combines information from multiple GW
detectors coherently to perform a maximum likelihood
analysis, taking into account the antenna patterns, geo-
graphical locations of the detectors, and the sky direction
to the source (see Refs. [93,94,107,132–135] and refer-
ences therein). The RIDGE pipeline takes full advantage
of the global network of currently working and future
interferometers [LIGO Hanford (H), LIGO Livingston (L),

VIRGO (V), and KAGRA (K)], resulting in enhanced
detection efficiency. For the detailed description of the
pipeline, see Refs. [94,106].
Using the RIDGE pipeline, we perform Monte Carlo

simulations (see Refs. [94,106] for more details) to inves-
tigate the detectability of the model waveforms in
Appendix A. For the detector noise spectrum densities of
the four detectors (H,L), (V), and (K), we use the ones in
Refs. [8,136,137] and keep the locations and orientations the
same as the real detectors. Gaussian, stationary noise was
generated by first generating four independent realizations of
white noise with a sampling frequency of 2048 Hz, and then
passing them through the finite impulse response filters
having transfer functions that approximately match the
design curves.
Signals placed at a distance of 10 kpc from the Earth

were added to the simulated noise at regular intervals. The
sky locations (longitude,latitude) where signals are injected
are ð−180°;−90°Þ to (180°, 90°) with a resolution of (10°,
10°). The time windows for the data analysis are 100 ms,
300 ms, and 1 s for waveforms in the KTK14, TK11, and
KK+09, KK+11 catalogues, respectively. These time win-
dows are much larger than the signal durations, so the
detection performance is not optimized. It is possible to
obtain higher detection efficiency by optimizing the search
algorithm, but the optimization is beyond the scope of this
paper. The value of the likelihood of the multiple detector
data is calculated by changing over the possible sky
locations Ω̂ ¼ ðθ;ϕÞ, and the maximum of the likelihoods
is chosen. If the maximum likelihood value is above a given
threshold, the chosen event candidate is recorded in a
detection list. Since the likelihood values are obtained as a
function of θ and ϕ, this two-dimensional output, Sðθ;ϕÞ,
is called the sky map.
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