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We consider models of chaotic inflation driven by the real parts of a conjugate pair of Higgs superfields
involved in the spontaneous breaking of a grand unification symmetry at a scale assuming its supersymmetric
value.We combine a superpotential, which is uniquely determined by applying a continuousR symmetry, with
a class of logarithmic or semilogarithmic Kähler potentials which exhibit a prominent shift symmetry with a
tiny violation, whose strengths are quantified by c− and cþ. The inflationary observables provide an excellent
match to the recent BICEP2/Keck Array and Planck results, setting 3.5 × 10−3 ≲ r� ¼ cþ=c− ≲ 1=N, where
N ¼ 3 or 2 is the prefactor of the logarithm. Inflation can be attained for sub-Planckian inflatonvalues,with the
corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
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I. INTRODUCTION

Soon after the inflation’s [1] introduction as a solution to a
number of longstanding cosmological puzzles—such as the
horizon and flatness problems—many efforts have been
made so as to connect it with aGrand Unified Theory (GUT)
phase transition in the early Universe—see e.g. Refs. [2–10].
According to this economical and highly appealing setup, the
scalar fieldwhichdrives inflation (called an inflaton) plays, at
the end of its inflationary evolution, the role of a Higgs field
[2–6] or destabilizes other fields which act as Higgs fields
[7–11]. As a consequence, a GUT gauge groupGGUT can be
spontaneously broken after the end of inflation. The first
mechanism above can be also applied in the context of the
Standard Model (SM) [12] or the next-to-Minimal
Supersymmetric SM (MSSM) [13,14] and leads to the
spontaneous breaking of the electroweak gaugegroupGSM¼
SUð3ÞC×SUð2ÞL×Uð1ÞY by the Higgs/inflaton field(s).
We here focus on the earlier version of this idea—i.e. the

GUT-scale Higgs inflation—concentrating on its super-
symmetric (SUSY) realization [3–11], where the notorious
GUT hierarchy problem is elegantly addressed. The start-
ing point of our approach is the simplest superpotential

W ¼ λSðΦ̄Φ −M2=4Þ; ð1Þ
which leads to the spontaneous breaking of GGUT and is
uniquely determined, at renormalizable level, by a con-
venient [7] continuous R symmetry. Here, λ andM are two
constants which can both be taken positive by field
redefinitions; S is a left-handed superfield, singlet under
GGUT; Φ̄ and Φ is a pair of left-handed superfields
belonging to nontrivial conjugate representations of
GGUT, and reducing its rank by their vacuum expectation
values (VEVs)—see e.g. Refs. [8,10]. Just for definiteness
we restrict ourselves to the GGUT ¼ GSM ×Uð1ÞB−L [5,8]
gauge group which consists of the simplest GUT beyond
the MSSM—where B and L denote the baryon and lepton
number. With the specific choice of GGUT, Φ and Φ̄ carry
B − L charges 1 and −1, respectively.

Moreover, W combined with a judiciously selected
Kähler potential, K, gives rise to two types of inflation,
in the context of supergravity (SUGRA). In particular, we
can obtain F-term hybrid inflation (FHI) driven by Swith Φ̄
and Φ being confined to zero or nonminimal Higgs
inflation (nMHI), interchanging the roles of S and
Φ̄ − Φ. A canonical [8] or quasicanonical [9,10] K is
convenient for implementing FHI, whereas a logarithmic
K including a holomorphic function cRΦΦ̄ with large
cR > 0 [4] or tiny cR < 0 [5] is dictated for nMHI.
Although FHI can become compatible with data [15] at
the cost of a mild tuning of one [8,9] (or more [10])
parameters beyond λ and M, it exhibits a serious drawback
which can be eluded, by construction, in nMHI. Since
GGUT is broken only at the SUSY vacuum, after the end of
FHI, topological defects are formed, if they are predicted by
theGGUT breaking. This does not occur within nMHI, since
GGUT is already spontaneously broken during it, through
the nonzero Φ̄ and Φ values. By utilizing large enough cR’s
[4] or adjusting three parameters (λ, cR and M) [5],
acceptable values for the (scalar) spectral index, ns, can
be achieved with a low enough [4] or higher [5] tensor-to-
scalar ratio, r. In the former case, though, the largeness of
cR violates the perturbative unitarity [16,17], whereas in
the latter case, trans-Planckian values of the inflaton
jeopardize the validity of the inflationary predictions.
In this paper, we show that the shortcomings above can

be elegantly overcome, if we realize the recently proposed
[18] idea of kinetically modified nonminimal inflation with
a GGUT nonsinglet inflaton. The crucial difference of this
setting compared to the nMHI with large cR [4] is that the
slope of the inflationary potential and the canonical
normalization of the Higgs inflaton do not depend exclu-
sively on one parameter, cR, but separately on two
parameters, cþ and c−, whose ratio r� ¼ cþ=c− ≪ 1
determines ns and r. In particular, restricting r� to natural
values, motivated by an enhanced shift symmetry, the
inflationary observables can be nicely cover the 1σ domain
of the present data [15,19],*cpallis@ucy.ac.cy
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ns ¼ 0.968� 0.0045 and r ¼ 0.048þ0.035
−0.032 ; ð2Þ

independently ofM, which may be confined precisely at its
value entailed by the gauge unification within MSSM.
Contrary to our recent investigation [6], where we stick to
quadratic terms for Φ and Φ̄ in the selected K’s, we here
parametrize the relevant terms with an exponent m.
Moreover, we here insist on integer prefactors of the
logarithms involved in K’s, increasing thereby the natural-
ness of the model. As regards other simple and well-
motivated inflationary models [20,21] which share similar
inflationary potentials with the one obtained here, let us
underline that the use of a gauge nonsinglet inflatonwith sub-
Planckian values together with the enhanced resulting r’s, in
accordance with an approximate shift symmetry constitute
the main novelties of our approach.
Below we describe a class of Kähler potentials which

lead to kinetically modified nMHI, outline the derivation of
the inflationary potential, and restrict the free parameters of
the models testing them against observations. Finally, we
analyze the ultraviolet (UV) behavior of these models and
summarize our conclusions.

II. KÄHLER POTENTIALS

The key ingredient of our proposal is the selection
of a purely or partially logarithmic K including the real
functions

F� ¼ jΦ� Φ̄�j2 and FS ¼ jSj2 − kSjSj4; ð3Þ
which respect the symmetries of W; the star ( �) denotes
complex conjugation. As we show below, c−F− dominates
the canonical normalization of inflaton, cþFþ plays the role
of the nonminimal inflaton-curvature coupling, and FS
provides a typical kinetic term for S, considering the next-
to-minimal term for stability/heaviness reasons [13].
Obviously, FS is the same as that used in Ref. [18], apart
from an overall normalization factor, whereas F− and Fþ
correspond toFK andFR, respectively. However,Fþ is a real
and not a holomorphic function such as FR. Actually, it
remains invariant under the transformation Φ → Φþ c and
Φ̄ → Φ̄ − c� (where c is a complex number), whereas F−
respects the symmetry Φ → Φþ c and Φ̄ → Φ̄þ c�, which
coincides with the former only for c ¼ 0. Stability of the
selected inflationary direction entails that the latter symmetry
is to be the dominant one—see below. The particular
importance of the shift symmetry in taming the so-called η
problem of inflation in SUGRA is first recognized for gauge
singlets in Ref. [22] and for gauge nonsinglets in Ref. [14].
In terms of the functions introduced in Eq. (3), we

postulate the following form of K:

K1 ¼ −3 ln
�
1þ cþFþ −

1

3
ð1þ cþFþÞmc−F−

−
1

3
FS þ kΦF2

− þ 1

3
kSΦF−jSj2

�
; ð4aÞ

where we take for consistency all the possible terms up to
fourth order, whereas a term of the form −kSþFþmjSj2=3 is
neglected for simplicity, given that Fþ is considered as a
violation of the principal symmetry—we use throughout
units with the reduced Planck scalemP ¼ 2.433×1018 GeV
being set equal to unity. Identical results can be achieved if
we select K ¼ K2 with

K2 ¼−3 ln
�
1þcþFþ−

1

3
FS

�
þ c−F−

ð1þcþFþÞ1−m
· ð4bÞ

If we place FS outside the argument of the logarithm, we
can obtain two other K’s—not mentioned in Ref. [18]—
which lead to similar results. Namely,

K3¼−2 ln
�
1þcþFþ−

1

2
ð1þcþFþÞmc−F−

�
þFS ð4cÞ

and

K4¼−2 lnð1þcþFþÞþFSþð1þcþFþÞm−1c−F−: ð4dÞ
To highlight the robustness of our setting, we use only
integer prefactors for the logarithms, avoiding thereby any
relevant tuning—cf. Refs. [6,23]. Note that for m ¼ 0
[m ¼ 1], F− and Fþ in K1 and K3 [K2 and K4] are totally
decoupled; i.e., no higher-order term is needed. If we allow
for a continuous variation of the ln prefactor, too, we can
obtain several variants of kinetically modified nMHI. For
m ¼ 0 this possibility is analyzed in Ref. [6].
Given thatM ≪ 1 does not affect the inflationary epoch,

the free parameters of our models, for fixed m, are r� and
λ=c−, and not c−, cþ and λ as naively expected. Indeed,
performing the rescalings Φ → Φ=

ffiffiffiffiffi
c−

p
and Φ̄ → Φ̄=

ffiffiffiffiffi
c−

p
in Eqs. (1) and (4a)–(4d), we see that W and K depend
exclusively on λ=c− and r�, respectively. Therefore, our
models are equally economical as nMHI with cR < 0 [5],
and they have just one more free parameter than nMHI with
cR > 0 [4]—see also Ref. [21]. Unlike these models,
however, where the largeness [4] or the smallness [5] of
cR cannot be justified by any symmetry, our models can be
characterized as completely natural, in the ’t Hooft sense,
since in the limits r� ¼ cþ=c− → 0 and λ → 0, they enjoy
the following enhanced symmetries:

Φ→Φþc; Φ̄→ Φ̄þc� and S→ eiφS; ð5Þ
where c and φ are a complex and a real number,
respectively. The same argument guarantees the smallness
of kSþ in a possible term −kSþFþmjSj2=3 inside the
logarithms in Eq. (4a) or Eq. (4b). On the other hand,
our models do not exhibit any no-scale-type symmetry like
that postulated in Ref. [20].

III. INFLATIONARY POTENTIAL

The Einstein frame (EF) action within SUGRA for the
complex scalar fields zα ¼ S;Φ; Φ̄—denoted by the same
superfield symbol—can be written as [13]
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S¼
Z

d4x
ffiffiffiffiffiffi
−bgp �

−
1

2
bRþKαβ̄bgμνDμzαDνz�β̄− bV�; ð6aÞ

where summation is taken over zα; bR is the EF Ricci scalar
curvature; Dμ is the gauge covariant derivative, Kαβ̄ ¼
K;zαz�β̄ ; and Kαβ̄Kβ̄γ ¼ δαγ—the symbol, z as subscript

denotes derivation with respect to z. Also, bV is the EF
SUGRA potential which can be found in terms of W in
Eq. (1) and the K’s in Eqs. (4a)–(4d) via the formula

bV ¼ eKðKαβ̄DαWD�̄
β
W� − 3jWj2Þ þ g2

2

X
a

DaDa; ð6bÞ

where DαW ¼ W;zα þ K;zαW, Da ¼ zαðTaÞαβKβ and the
summation is applied over the generators Ta of GGUT. If
we express Φ; Φ̄ and S according to the parametrization

Φ¼ϕeiθffiffiffi
2

p cosθΦ; Φ̄¼ϕeiθ̄ffiffiffi
2

p sinθΦ; and S¼ sþ is̄ffiffiffi
2

p ; ð7Þ

with 0 ≤ θΦ ≤ π=2, we can easily deduce from Eq. (6b)
that a D-flat direction occurs at

s̄ ¼ s ¼ θ ¼ θ̄ ¼ 0 and θΦ ¼ π=4; ð8Þ
along which the only surviving term in Eq. (6b) is

bVHI ¼ eKKSS� jW;Sj2 ¼
λ2ðϕ2 −M2Þ2

16f2R
; ð9aÞ

since we obtain

KSS� ¼
�
fR
1

for K ¼
�
Ki

Kiþ2

with i ¼ 1; 2; ð9bÞ
where fR ¼ 1þ cþϕ2 plays the role of a nonminimal
coupling to the Ricci scalar in the Jordan frame (JF).
Indeed, if we perform a conformal transformation [6,13,23]
defining the frame function as Ω=N ¼ − exp ð−K=NÞ,
where

N ¼ 3 or N ¼ 2 for K ¼ Ki or K ¼ Kiþ2; ð10Þ
respectively, we can easily show that fR ¼ −Ω=N along
the path in Eq. (8). It is remarkable that bVHI turns out to be
independent of the coefficients c−; kΦ and kSΦ in Eqs. (4a)
and (4b). Had we introduced the term −kSþFþmjSj2=3
inside the logarithms in Eqs. (4a) and (4b), we would have
obtained an extra factor ð1þ kSþϕ2mÞ in the denominator
of bVHI. Our results remain intact from this factor provided
that kSþ ≤ 0.001. Note, finally, that the conventional
Einstein gravity is recovered at the SUSY vacuum,

hSi ¼ 0 and hϕi ¼ M ≪ 1; ð11Þ
since hfRi≃ 1.
To specify the EF canonically normalized inflaton, we

note that, for all choices of K in Eqs. (4a)—(4d), Kαβ̄ along
the configuration in Eq. (8) takes the form

ðKαβ̄Þ ¼ diagðMK;KSS� Þ with MK ¼ 1

f2R

�
κ κ̄

κ̄ κ

�
; ð12Þ

where κ ¼ c−fR1þm − Ncþ and κ̄ ¼ Nc2þϕ2. Upon diag-
onalization of MK we find its eigenvalues, which are

κþ ¼ c−ðf1þm
R þ Nr�ðcþϕ2 − 1ÞÞ=f2R; ð13aÞ

κ− ¼ c−ðfmR − Nr�Þ=fR; ð13bÞ
where the positivity of κ− is assured during and after nMHI
for r� ≲ 1=N given that hfRi≃ 1. By inserting Eqs. (7)
and (12) into the second term of the right-hand side (rhs) of
Eq. (6a), we can define the EF canonically normalized
fields (denoted below by a hat), which are found to be

dbϕ
dϕ

¼ J¼ ffiffiffiffiffiffi
κþ

p
; bθþ ¼ Jϕθþffiffiffi

2
p ; bθ−¼

ffiffiffiffiffi
κ−
2

r
ϕθ−; ð14aÞ

bθΦ ¼ ϕ
ffiffiffiffiffi
κ−

p ðθΦ − π=4Þ; ðbs; b̄sÞ ¼ ffiffiffiffiffiffiffiffiffi
KSS�

p
ðs; s̄Þ; ð14bÞ

where θ� ¼ ðθ̄ � θÞ= ffiffiffi
2

p
. Note, in passing, that the spinors

ψS and ψΦ� associated with the superfields S andΦ − Φ̄ are
normalized similarly, i.e., bψS ¼

ffiffiffiffiffiffiffiffiffi
KSS�

p
ψS and bψΦ� ¼ffiffiffiffiffiffi

κ�
p

ψΦ�, with ψΦ� ¼ ðψΦ � ψ Φ̄Þ=
ffiffiffi
2

p
.

Taking the limit c− ≫ cþ, we find the expressions of the
masses squared bm2

χα (with χα ¼ θþ; θΦ and S) arranged in
Table I, which approach rather well the quite lengthy, exact
expressions taken into account in our numerical computa-
tion. These expressions assist us to appreciate the role of
kS > 0 in retaining a positive bm2

s for K ¼ Ki and one heavy
enough for K ¼ Kiþ2. Indeed, bm2

χα ≫ bHHI
2 ¼ bVHI0=3 for

ϕf ≤ ϕ ≤ ϕ⋆, where ϕ⋆ and ϕf are the values of ϕ when
k⋆ ¼ 0.05=Mpc crosses the horizon of nMHI and at its end,
correspondingly. In Table I we display also the masses,
MBL, of the gauge boson ABL—which signals the fact that
GGUT is broken during nMHI—and the masses of the
corresponding fermions.
The derived mass spectrum can be employed in order to

find the one-loop radiative corrections, ΔbVHI, to bVHI.
Considering SUGRA as an effective theory with a cutoff
scale equal to mP, the well-known Coleman-Weinberg
formula can be employed, self-consistently taking into
account only the masses which lie well below mP, i.e., all
the masses arranged in Table I besides MBL and bmθΦ . The

resulting ΔbVHI leaves intact our inflationary outputs, pro-
vided that the renormalization-group mass scale Λ is
determined by requiring ΔbVHIðϕ⋆Þ ¼ 0 or ΔbVHIðϕfÞ ¼ 0.
The possible dependence of our findings on the choice of Λ
can be totally avoided if we confine ourselves to kSΦ ∼ 1 and
kS ∼ 1, resulting in Λ≃ 3.2 × 10−5 − 1.4 × 10−4. Under
these circumstances, our inflationary predictions can be
exclusively reproduced by using bVHI in Eq. (9a), cf. Ref. [6].
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IV. INFLATIONARY REQUIREMENTS

Applying the standard formulas quoted in Ref. [18] forbVCI ¼ bVHI, we can compute a number of observational
quantities, which assist us to qualify our inflationary
setting. Namely, we extract the number, bN⋆, of e-foldings
that the scale k⋆ experiences during nMHI and the
amplitude, As, of the power spectrum of the curvature
perturbations generated by ϕ for ϕ ¼ ϕ⋆. These observ-
ables must be compatible with the requirements [15]

bN⋆ ≃ 61.5þ ln
bVHIðϕ⋆Þ12bVHIðϕfÞ14

and As
1
2 ≃ 4.627× 10−5; ð15Þ

where we consider an equation-of-state parameter wint ¼
1=3 corresponding to quartic potential, which is expected to
approximate rather well bVHI for ϕ ≪ 1. We can then
compute the model predictions as regards ns, its running,
as and r or r0.002—see Ref. [18]. The analytic expressions
displayed in Ref. [18] for these quantities are applicable to
our present case too, for m > −1, performing the following
replacements:

n ¼ 4; rRK ¼ r�; and cK ¼ c−; ð16Þ
andmultiplying by a factor of 2 the rhs of the equationwhich
yields λ in terms of c−. We here concentrate on m > −1,
since for smaller m’s, confining ns to its allowed region in
Eq. (2), the predicted r’s, although acceptable, liewell below
the sensitivity of the present experiments [24]. This happens
because,when decreasingm below0, the first termon the rhs
of Eq. (13a) becomes progressively subdominant, and thus
cþ controls both the slope of bVHI and the value of J in
Eq. (14a) as in the standard nMHI [4,5].
The inflationary observables are not affected by M,

provided that it is confined to values much lower than mP.
This can be done if we determine it by identifying the
unification scale (as defined by the gauge-coupling unifica-
tion within the MSSM) MGUT ≃ 2=2.433 × 10−2 with the
value ofMBL—see Table I—at the SUSYvacuum.Given that
hfRi≃ 1 and hκþi≃ 1 − Nr�, we obtain, for r� ≲ 1=N,

M ≃MGUT=g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−ð1 − Nr�Þ

p
; ð17Þ

with g≃ 0.7 being the value of the GUT gauge
coupling constant. This result influences the inflaton mass

at the vacuum, which is estimated to be bmδϕ≃
λM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c−ð1 − Nr�Þ

p
.

V. RESULTS

Imposing the conditions in Eq. (15), we restrict λ=c− andbϕ⋆, whereas Eq. (2) constrains mainly m and r�. Focusing
initially on K ¼ Ki with i ¼ 1, 2, we present our results in
Figs. 1 and 2. Namely, in Fig. 1 we compare the allowed
curves in the ns − r0.002 plane with the observational data
[15] for m ¼ −1=2; 0; 1 and 10, shown by the double dot-
dashed, dashed, solid, and dot-dashed lines, respectively.
The variation of r� is shown along each line. Note that for
m ¼ 0, the line essentially coincides with the correspond-
ing one in Ref. [6]—cf. Refs. [18,21]—and declines from
the central ns value in Eq. (2). On the other hand, the
compatibility of the m ¼ 1 line with the central values in
Eq. (2) is certainly impressive. For low enough r�’s—i.e.
r� ≤ 10−4—the various lines converge to the ðns; r0.002Þ’s
obtained within quartic inflation; whereas, for larger r�,
they enter the observationally allowed regions and termi-
nate for r� ≃ 1=3, beyond which κ− in Eq. (13b) ceases to
be well defined. Notably, this restriction provides a lower
bound on r0.002 which increases with m. Indeed, we
obtain r0.002 ≳ 0.0017; 0.0028; 0.009 and 0.025 for
m ¼ −1=2; 0; 1 and 10, correspondingly. Therefore, our
results are testable in forthcoming experiments [24].
Repeating the same analysis for ð−1Þ ≤ m ≤ 10, we can

identify the allowed range of r�, as in Fig. 2. The allowed
(shaded) region is bounded by the dashed line, which
corresponds to r� ≃ 1=3, and the dot-dashed and thin lines,
alongwhich the lower andupper bounds onns and r in Eq. (2)
are saturated, respectively.We remark that increasing r� with
fixedm, ns increases whereas r decreases, in accordancewith
our findings in Fig. 1.We also infer that r� takesmore natural
(lower than unity) values for largerm’s. Fixingns to its central
value in Eq. (2), we obtain the solid line along which we get
clear predictions for r, as and bmδϕ. Namely,

0.18≲m≲ 10 and 1=3≳ r� ≳ 3.5 × 10−3; ð18aÞ
0.4≲ r=0.01≲ 7.6 and 5.4≲ −as=10−4 ≲ 6; ð18bÞ
with2.4 × 10−8 ≲ m̂δϕ ≲ 8.7 × 10−6. Since the resulting jasj
remains sufficiently low, our models are consistent with the

TABLE I. Mass-squared spectrum for K ¼ Ki and K ¼ Kiþ2 (i ¼ 1, 2) along the path in Eq. (8).

MASSES SQUARED
FIELDS EIGENSTATES SYMBOL K ¼ K1 K ¼ K2 K ¼ Kiþ2

2 real scalars bθþ bm2
θþ 4bHHI

2 6bHHI
2

bθΦ bm2
θΦ M2

BL þ 4bHHI
2 M2

BL þ 6bHHI
2

1 complex scalar bs; b̄s bm2
s 6ð2kSfR − 1=3ÞbHHI

2 12kS bHHI
2

1 gauge boson ABL M2
BL g2c−ðfRm−1 − Nr�=fRÞϕ2

4 Weyl spinors bψ� ¼ 1ffiffi
2

p ðbψΦþ � bψSÞ bm2
ψ� 24bH2

HI=c−ϕ2f1þm
R

λBL; bψΦ− M2
BL g2c−ðfm−1

R − Nr�=fRÞϕ2
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fitting of data with the ΛCDMþ r model [15]. Finally, thebmδϕ range leaves open the possibility of nonthermal lepto-
genesis [25] if we introduce a suitable coupling between Φ̄
and the right-handed neutrinos—see e.g. Refs. [4,8].
Had we employed K ¼ Kiþ2, the various lines in Fig. 1

and the allowed regions in Fig. 2 would have been extended
until r� ≃ 1=2. This bound would have yielded
r0.002 ≳ 0.0012, 0.002, 0.0066 and 0.023 for m ¼ −1=2,
0, 1 and 10, correspondingly, which are a little lower than
those designed in Fig. 1. The lower bounds of m, r� and r
in Eqs. (18a) and (18b) become 0.19, 1=2, and 0.003; the
upper bound on bmδϕ moves on to 1.3 × 10−5, whereas the
bounds on ð−asÞ remain unaltered.
Although λ=c− is constant in our setting for fixed r� and

m, the amplitudes of λ and c− can be bounded. This fact is
illustrated in Fig. 3, where we display the allowed (shaded)
area in the λ − c− plane, focusing on the m ¼ 1 case. We
observe that for any r� between its minimal (0.0037) and
maximal (1=3) values—depicted by bold dot-dashed and
dashed lines—there is a lower bound—represented
by a faint dashed line—on c−, above which ϕ⋆ < 1.

Consequently, our proposal can be stabilized against
corrections from higher order terms—e.g., ðΦ̄ΦÞl with
l > 1 in Eq. (1). The perturbative bound λ ¼ 3.5 limits
the region at the other end along the thin solid line. Plotted
is also the solid line for r� ¼ 0.015, which yields
ns ¼ 0.968. The corresponding r ¼ 0.043 turns out to be
impressively close to its central value in Eq. (2).

VI. THE EFFECTIVE CUTOFF SCALE

The fact that bϕ in Eq. (14a) does not coincide with ϕ at
the vacuum of the theory—contrary to the pure nMHI
[16,17]—assures that the corresponding effective theories
respect perturbative unitarity up to mP ¼ 1, although c−
may take relatively large values for ϕ⋆ < 1—see Fig. 3. To
clarify further this point, we analyze the small-field
behavior of our models in the EF for m ¼ 1. We focus
on the second term on the rhs of Eq. (6a) for μ ¼ ν ¼ 0, and
we expand it about hϕi ¼ M ≪ 1 in terms of bϕ. Our result
is written as

J2 _ϕ2 ≃ ð1þ 3Nr�2bϕ2 − 5Nr�3bϕ4 þ � � �Þ _bϕ2
: ð19aÞ

Expanding similarly bVHI—see Eq. (9a)—in terms of bϕ we
have

bVHI ≃ λ2bϕ4

16c2−
ð1 − 2r�bϕ2 þ 3r�2bϕ4 − � � �Þ: ð19bÞ

Similar expressions can be obtained for the other m’s too.
Given that the positivity of κ− in Eq. (13a) entails
r� ≲ 1=N < 1, we can conclude that our models do not
face any problem with the perturbative unitarity up to mP.

VII. CONCLUSIONS AND PERSPECTIVES

The feasibility of inflating with a superheavy Higgs field
is certainly an archetypal open question. We here outlined a
fresh look, identifying a class of Kähler potentials in
Eqs. (4a)–(4d) which can cooperate with the superpotential
in Eq. (1) and lead to the SUGRA potential bVHI collectively
given by Eq. (9a). Prominent in the proposed Kähler
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potentials is the role of a shift-symmetric quadratic function
F− in Eq. (3) which remains invisible in bVHI while
dominating the canonical normalization of the Higgs
inflaton. Using 0.18½0.19� ≤ m ≤ 10 and confining r� to
the range ð3.5 × 10−3 − 1=NÞ where N ¼ 3 [N ¼ 2] for
K ¼ Ki [K ¼ Kiþ2], with i ¼ 1, 2, we achieved observa-
tional predictions which may be tested in the near future
and converge towards the “sweet spot” of the present data.
These solutions can be attained even with sub-Planckian
values of the inflaton requiring large c−’s and without
causing any problem with the perturbative unitarity. It is
gratifying, finally, that our proposal remains intact from
radiative corrections; the Higgs-inflaton may assume ulti-
mately its VEV predicted by the gauge unification within
MSSM, and the inflationary dynamics can be studied
analytically and rather accurately.
As a last remark, wewould like to point out that, although

we have restricted our discussion to the GGUT ¼ GSM ×
Uð1ÞB−L gauge group, kinetically modified nMHI has a
much wider applicability. It can be realized, employing the
sameW andK’s within other SUSYGUTs based on a variety
of gauge groups, such as the left-right [10], the Pati-Salam

[4], or the flipped SUð5Þ group [10]—provided thatΦ and Φ̄
consist of a conjugate pair of Higgs superfields so that they
breakGGUT and compose the gauge-invariant quantities F�.
Moreover, given that the term λM2S=4 ofW in Eq. (1) plays
no role during nMHI, our scenario can be implemented by
replacing it with κS3 and identifying Φ and Φ̄ with the
electroweak Higgs doublets Hu and Hd of the next-to-
MSSM [13]. In this case we have to modify the shift
symmetry in Eq. (5), following the approach of Ref. [14];
consider the soft SUSY-breaking terms to obtain the radiative
breaking of GSM; and take into account the renormalization
group runningof thevarious parameters from the inflationary
up to the electroweak scale in order to connect convincingly
the high- with the low-energy phenomenology. In all these
cases, the inflationary predictions are expected to be quite
similar to the ones obtained here, although the parameter
space may be further restricted. The analysis of the stability
of the inflationary trajectory may also be different, due to the
different representations ofΦ and Φ̄. Since ourmain aimhere
is the demonstration of the kinetical modification on the
observables of nMHI, we opted to utilize the simplest GUT
embedding.
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