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The hierarchy of fermion masses in the standard model may arise via the breaking of discrete gauge
symmetries. The renormalizable interactions of the flavor-symmetry-breaking potential can have accidental
global symmetries that are spontaneously broken, leading to pseudo-Goldstone bosons that may drive
inflation. We consider two-field, axion-monodromy inflation models in which the inflaton is identified with
a linear combination of pseudo-Goldstone bosons of the flavor sector. We show that the resulting models
are nontrivially constrained by current cosmological data as well as the requirements of viable flavor
model building.
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I. INTRODUCTION

The prevailing approach to solving the horizon and
flatness problems of conventional big bang cosmology is
inflation, a period in which the Universe underwent expo-
nential expansion due to the effects of the nearly constant
energy density provided by a scalar field [1]. Models of
inflation are often studied in terms of the properties of the
inflaton potential, with somewhat less focus on other roles
the inflaton might play in extensions of the standard model.
If the inflaton has no purpose other than to provide the
source of the energy density that drives inflation, then model
building becomes isomorphic to studying ways of generating
different functional forms for the inflaton potential. These
possibilities, now cataloged (see for example [2]), differ in
their detailed predictions for the spectrum of fluctuations in
the microwave background that is observed in experiments
like Planck [3] and BICEP2 [4].
In this paper, we consider a scenario in which the

inflaton is an integral component of an extension of the
standard model that aims to address one of its substantial
mysteries: the hierarchy of elementary fermion masses.
Models of flavor based on horizontal discrete symmetries
postulate that these symmetries are broken via a set of
fields, called flavons, that couple to standard model
fermions through higher-dimension operators. Discrete
flavor symmetries can often lead to accidental continuous
global symmetries among the renormalizable terms of the
flavon potential. In the present work, we consider the
possibility that the inflaton may be identified as a linear
combination of the approximate Goldstone bosons that
arise when these accidental symmetries are spontaneously
broken. We are ultimately interested in two-field models of
inflation, for reasons described below, which distinguishes

the present work from the relatively sparse literature that
explores the use of flavon fields for a similar purpose [5].
Consider the simplest possibility, a ZN flavor symmetry

under which a single flavon field Φ transforms as Φ → ωΦ,
where ω ¼ expð2πi=NÞ. If the fermions of the standard
model are charged under the discrete group, then a tree-
level Yukawa coupling that would otherwise be forbidden
can arise via a higher-dimension operator. For example, for
a down-type quark, one might have

1

Mp
F
Q̄LHϕpDR þ H:c:; ð1:1Þ

where H is the standard model Higgs doublet, MF is the
flavor scale, and p is an integer. The Yukawa coupling is
associated with the ratio ðhϕi=MFÞp which can be much
less than one; operators with different values of p can easily
provide a hierarchical pattern of entries in the associated
Yukawa matrix. If less than the Planck scale, the scale MF
is identified with that of new heavy states that account for
the origin of the higher-dimension operators. However, a
simpler assumption, which we adopt henceforth, is that the
scale MF is the reduced Planck scale M�; the desired
operators appear as part of the most general set that is
allowed by the local symmetries of the theory, as one
expects based on our current understanding of quantum
gravity [6]. An immediate implication of our assumptions
is that the vacuum expectation value (vev) hΦi < M�,
which will provide an important constraint in our attempt
to identify the inflaton with a part of the field Φ.
To obtain an inflaton potential that is sufficiently flat, we

require that the Goldstone boson degree of freedom
receives no contributions to its potential from renormaliz-
able terms involvingΦ. Let us therefore assume thatN ≥ 5.
The renormalizable terms in the potential are simply

VðΦÞ ¼ −m2
ΦΦ

†Φþ λΦ
2
ðΦ†ΦÞ2: ð1:2Þ
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Terms such as ðΦ4 þ H:c:Þ are forbidden by the ZN
symmetry. Using the nonlinear decomposition

Φ ¼ ϕþ fffiffiffi
2

p expðiθ=fÞ; ð1:3Þ

where f=
ffiffiffi
2

p ≡ hΦi, one sees immediately that VðΦÞ is
independent of θ, i.e., the potential VðθÞ is exactly flat. The
potential in Eq. (1.2) has an accidental global U(1)
symmetry and the field θ is the Goldstone boson that
results from its spontaneous breaking. Global symmetries
are not respected by quantum gravitational corrections, so it
is no surprise that there are Planck-suppressed corrections,

L ⊃
c0
2

1

MN−4�
ΦN þ H:c:; ð1:4Þ

that generate a potential for θ, where c0 is an unknown
order-one coefficient. Planck-suppressed operators that
directly break the discrete flavor symmetry are not present
since we assume in this example (and will require in all our
models henceforth) that we work with discrete gauge
symmetries, which satisfy appropriate anomaly cancella-
tion conditions and are immune to quantum gravitational
corrections. For the reader who is unfamiliar with discrete
gauge symmetries, we review the basic issues relevant to
our model building in the appendix.
The operator in Eq. (1.4) leads to the θ potential

VðθÞ ¼ c0M4�

�hΦi
M�

�
N
½1 − cos ðNθ=fÞ�; ð1:5Þ

where we have added a constant so that Vð0Þ ¼ 0. This is
nothing more than the potential of “natural inflation”
scenarios [7]. However, this potential is not adequate for
our purposes. It is well known that if one requires that
natural inflation provides ∼50–60 e-folds of inflation and
predicts a spectral index ns within the range allowed by
current Planck data, then f must be well above the Planck
scale [8]. For our present application, this would imply that
hϕi=M� is not a small flavor-symmetry-breaking parameter
and we lose the ability to predict standard model Yukawa
couplings in a controlled approximation.
We therefore must consider other ways of generating

potentials for the pseudo-Goldstone inflaton that allow a sub-
Planckian decay content f. The options assuming a single-
field inflation model are limited. For example, models of
“multinatural” inflation [9], in which one arranges for
additional sinusoidal terms in the potential, can accommo-
date a sub-Planckian flavon vev, but tend to predict ns ¼
0.95 in this limit [9], at the very edge of the 95% exclusion
region following from Planck data. A different class of
models that can more easily provide cosmological predic-
tions consistent with Planck data is the class of two-field

models of the axion monodromy type [10–17]. We show that
these can be adapted for the present purpose.
The two pseudo-Goldstone fields can have their origin if

there are two flavon fields, Φ and χ, that transform under
the discrete group ZΦ

p × Zχ
r . We assume that each field

transforms only under one of the ZN factors,

Φ → ωΦΦ and χ → ωχχ; ð1:6Þ

where ωΦ ¼ expð2πi=pÞ and ωχ ¼ expð2πi=rÞ, where p
and r are integers. For p ≥ 5 and r ≥ 5, the renormalizable
terms in the potential are

VðΦ; χÞ ¼ −m2
ΦΦ

†Φþ λΦ
2
ðΦ†ΦÞ2 −m2

χχ
†χ þ λχ

2
ðχ†χÞ2

þ λpΦ†Φχ†χ; ð1:7Þ

where λp is a portal-type coupling. There is no difficulty in
choosing parameters such that each field develops a vev.
This potential has an accidental Uð1Þ × Uð1Þ global sym-
metry that is spontaneously broken. Extending our previous
parametrization, we write

Φ ¼ ϕ0 þ fθffiffiffi
2

p expðiθ=fθÞ and χ ¼ χ0 þ fρffiffiffi
2

p expðiρ=fρÞ:

ð1:8Þ

Spontaneous symmetry breaking renders the fields ϕ0 and
χ0 massive so that they are decoupled from the inflation
dynamics. The potential for the Goldstone bosons Vðρ; θÞ
that follows from Eq. (1.7) is exactly flat.
We discuss later how to generate a potential for ρ and θ

of the following axion-monodromy form,

Vðρ; θÞ ¼ Λ4
1

�
1þ cos

�
ρ

fρ

��
þ Λ4

2

�
1 − cos

�
nρ
fρ

−
θ

fθ

��
;

ð1:9Þ

where n is an integer. The first few terms in the expansion
of the first cosine factor have the same form as −m2

rr2=
2þ λrr4=4!, the shift-symmetry-breaking potential WðrÞ
assumed in the Dante’s waterfall scenario discussed in
Ref. [12]. In that work, WðrÞ was assumed to be generated
by nonperturbative effects associated with moduli stabili-
zation in string theory, as for example in Ref. [11]. In this
paper, we only consider field theoretic origins of the
potential, where the emergence of the functional form
given in Eq. (1.9) is readily obtained. For the purposes of
graphical display, if one plots the potential as if ρ and θ
were polar coordinates, one would find a “hill” generated
by the first cosine factor, circumscribed by a descending
spiral “trench” generated by the second. Inflationary
trajectories track the minimum of the trench. As θ advances
by 2πfθ along the trench, the ρ coordinate does not return
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to the same value; this monodromy allows for large
numbers of e-folds to be achieved within a bounded,
sub-Planckian region of field space. We assume that the
decay constant fθ satisfies

fθffiffiffi
2

p ¼ λM� ≈ 0.22M�; ð1:10Þ

where λ is a flavor-symmetry-breaking parameter of the
same size as the Cabibbo angle. This allows us to identify
the field Φ (and perhaps in some models both Φ and χ) as
flavons that can be used in flavor model building. We see
that the discrete symmetry ZΦ

p × Zχ
r serves four purposes:

(i) it ensures that there are Goldstone bosons that have no
potential generated by renormalizable couplings; (ii) it will
serve as a flavor symmetry to create a hierarchy of standard
model fermion Yukawa couplings; (iii) it will lead to the
correct pattern of couplings in a new gauge sector that
provides for the desired form of the inflaton potential,
Eq. (1.9); and (iv) it will keep quantum gravitational
corrections to the potential highly suppressed.
Our paper is organized as follows. In the next section, we

discuss the inflationary dynamics that follows from the
potential given in Eq. (1.9). We identify solutions in which
inflation ends when single-field slow-roll conditions are
violated and other solutions where the termination of
inflation is analogous to a hybrid model [18]. In Sec. III,
we consider model-building issues, in particular, how the
discrete symmetries of the theory play an important role in
assuring that we obtain the proper potential, and how the
same symmetries can be used to produce a plausible model
of standard model fermion masses. In the final section, we
summarize our conclusions. A brief appendix is provided to
review relevant facts about discrete gauge symmetries.

II. INFLATIONARY TRAJECTORIES

In this section, we consider inflationary trajectories in the
two-field potential given by Eq. (1.9) that are compatible
with the flavor model-building requirement Eq. (1.10). We
give two example solutions that differ qualitatively in how
inflation ends. Note that a more general potential that
subsumes Eq. (1.9) was studied in a different context in
Ref. [19]; the types of trajectories described therein are
consistent qualitatively with those presented here.

A. Termination without a waterfall

For our first solution, we make the parameter choice
fρ ¼ fθ ≡ f1 and also define f1=n≡ f2. We assume
f1 ≫ f2, which is equivalent to n ≫ 1. The potential
Eq. (1.9) then takes the form

Vðρ; θÞ ¼ Λ4
1

�
1þ cos

�
ρ

f1

��
þ Λ4

2

�
1 − cos

�
ρ

f2
−

θ

f1

��
:

ð2:1Þ

The second cosine term creates a series of trenches on the
surface of the potential defined by the first cosine term. If
the field θ is plotted as a polar coordinate, the trenches form
spirals originating at ρ ¼ 0. As in Ref. [12], it is convenient
to work in the rotated field basis ρ ¼ c~ρþ s~θ and θ ¼
c~θ − s~ρ with

c ¼ f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p and s ¼ f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p : ð2:2Þ

This allows us to rewrite the potential as

Vð~ρ; ~θÞ ¼ Λ4
1

�
1þ cos

�
c~ρþ s~θ

f1

��
þ Λ4

2

�
1 − cos

�
~ρ

f

��
;

ð2:3Þ

where f ¼ f1f2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p
. The modulations in the poten-

tial due to the cosð~ρ=fÞ term create the trench, whose
location is given by ∂V=∂ ~ρ ¼ 0, or

sin

�
~ρ

f

�
− sc

Λ4
1

Λ4
2

sin

�
c~ρþ s~θ

f1

�
¼ 0: ð2:4Þ

The inflaton is the linear combination of the fields that
slowly rolls along the trench; inflation terminates when the
slow-roll conditions are violated. With the assumptions
made throughout this paper, the inflaton is well approxi-
mated by the linear combination

~θ ¼ sρþ cθ; ð2:5Þ
where c and s are given in Eq. (2.2). For the solutions
considered in this subsection, the stability condition
∂2V=∂ ~ρ2 > 0 holds throughout this trajectory.
To study inflationary observables, we first consider a

good approximation to the single-field inflaton potential,
which holds for our choice of parameters and can be
studied analytically, and then discuss an exact numerical
approach that we use to confirm the validity of our results.
Let us define κ ≡ scðΛ4

1=Λ
4
2Þ and consider parameter

choices where κ ≪ 1. It follows from Eq. (2.4) that to
good approximation

~ρ=f ≈ 2πj; ð2:6Þ
where j is an integer. Given our assumption that f1 ≫ f2,
it follows from Eqs. (2.3)–(2.6) that ∂2Vð~ρ; ~θÞ=∂ ~ρ2 > 0,
confirming that the trench is stable. Substituting Eq. (2.6)
into our original potential yields

Vð~θÞ ¼ Λ4
1½1þ cos ðδþ ~θ=f0Þ�; ð2:7Þ

where δ ¼ 2πscj and f0 ¼ f1=s. Setting j ¼ 0 is equiv-
alent to redefining the origin of field space, so we ignore δ
henceforth. We note that the present approximation scheme
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differs from the one used in Ref. [12], in which one would
expand the sinusoidal functions in Eq. (2.4) to linear order
in their arguments, but is nonetheless accurate as we
confirm numerically later. We note that s ≪ 1 in the limit
n ≫ 1, so that the derived quantity f0 can be super-
Planckian even when the decay constants f1 and f2 are not.
We compare the predictions of the model to the latest

results from the Planck Collaboration [3]. The slow-roll
parameters are defined by

ϵ ¼ 1

2

�
V 0

V

�
2

; η ¼ V 00

V
and γ ¼ V 0V 000

V2
; ð2:8Þ

where the primes refer to derivatives with respect to the
inflaton field and we work in units where the reduced
Planck massM� ≡MP=

ffiffiffiffiffiffi
8π

p ¼ 1. In the present case, these
are given by

ϵ ¼ 1

2f20
tan2½~θ=ð2f0Þ�; ð2:9Þ

η ¼ −
1

f20

cosð~θ=f0Þ
1þ cosð~θ=f0Þ

; ð2:10Þ

γ ¼ −
1

f40
tan2½~θ=ð2f0Þ�: ð2:11Þ

Inflation ends when ϵð~θfÞ ¼ 1. The initial value of the
inflaton, ~θi, is determined by the requirement that we
achieve a desired number of e-folds of inflation, given in
general by

N ¼
Z ~θf

~θi

1ffiffiffiffiffi
2ϵ

p d~θ ¼ 2f20 ln

�
sin½~θf=ð2f0Þ�
sin½~θi=ð2f0Þ�

�
: ð2:12Þ

We set N ¼ 60 in the numerical results that follow. We
evaluate the slow-roll parameters and the potential Vð~θÞ at
~θi in determining the spectral index ns ¼ 1 − 6ϵþ 2η, the
ratio of tensor-to-scalar amplitudes r ¼ 16ϵ, the running of
the spectral index nr ¼ 16ϵη − 24ϵ2 − 2γ and the scalar
amplitude Δ2

R ¼ V=ð24π2ϵÞ. From Eqs. (2.9)–(2.11), it
follows that

ns ¼ 1þ 1

f20
ð1 − 2 sec2½~θi=ð2f0Þ�Þ; ð2:13Þ

r ¼ 8

f20
tan2½~θi=ð2f0Þ�; ð2:14Þ

nr ¼ −
2

f40
tan2½~θi=ð2f0Þ�sec2½~θi=ð2f0Þ�; ð2:15Þ

Δ2
R ¼ 1

12π2
Λ4
1f

2
0ð1þ cos½~θi=f0�Þ3csc2½~θi=f0�: ð2:16Þ

To illustrate a viable solution, consider the parameter choice
(again, in units where M� ¼ 1)

f1 ¼ 0.22
ffiffiffi
2

p
; ð2:17Þ

f2 ¼ f1=21; ð2:18Þ

Λ1 ¼ Λ2 ¼ 0.006; ð2:19Þ

which corresponds to n ¼ 21 and κ ≈ 1=21. We find that
the initial and final fields for the inflaton trajectory are
given by

ð~ρ; ~θÞi ¼ ð6.04 × 10−4; 6.74Þ and

ð~ρ; ~θÞf ¼ ð1.50 × 10−4; 19.14Þ; ð2:20Þ

respectively. Using this value for ~θi, we find the following set
of cosmological parameters:

ns ¼ 0.96; ð2:21Þ

r ¼ 0.060; ð2:22Þ

nr ¼ −0.00046; ð2:23Þ

Δ2
R ¼ 2.2 × 10−9: ð2:24Þ

Figure 1 displays the path followed by the inflaton during
the 60 e-folds of inflation for this particular solution.
The predictions in Eq. (2.24) are consistent with the results
from the Planck experiment [3]: ns ¼ 0.968� 0.006,

FIG. 1 (color online). Path followed by the inflaton during
60 e-folds of inflation corresponding to the solution of Sec. II A,
in units where M� ¼ 1. The background is a density plot where
darker zones have lower values of the potential than lighter ones.
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r < 0.12 (95% C.L.), nr ¼ −0.003� 0.007 and Δ2
R ¼

2.19� 0.08 × 10−9. (The value of Δ2
R, also called As,

was taken from the first column of Table III in Ref. [3].)
We may check the validity of the results in this section by

numerically evaluating the slow-roll parameters in the two-
field problem. Let a represent the linear combination of the
fields that evolves along the minimum of the trench. Given

that da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d~ρ2 þ d~θ2

q
along the trench, it follows that we

can write the nth derivative of the potential with respect
to a as

dnV
dan

¼
��

1þ d~ρ

d~θ

�
−1=2

tr

d

d~θ

�
n
Vð~θ; ~ρð~θÞtrÞ; ð2:25Þ

where the subscript “tr” indicates quantities evaluated along
~ρð~θÞtr, the solution to Eq. (2.4). Note that as the quantity da
is defined above, the kinetic terms for a are canonically
normalized. The slow-roll parameters can be evaluated
numerically according to Eq. (2.25). We find in this case
that ns ¼ 0.96, r ¼ 0.060, nr ¼ −0.00046 and Δ2

R ¼
2.2 × 10−9, in agreement with the results in Eq. (2.24).

B. Termination with a waterfall

For different choices of the model parameters, inflation
will end before ϵ ¼ 1 is reached, at a point where there is no
longer a solution to Eq. (2.4). At this point, the stability
condition ∂2V=∂ ~ρ2 > 0 is also not satisfied, and the fields
evolve rapidly in a direction orthogonal to the original
trajectory [12]. If one visualizes the motion by plotting the
fields as polar coordinates, the evolution corresponds to a
transition from spiraling to rapid motion in the radial
direction, eventually ending at a global minimum. In
Ref. [12] this was called the waterfall, in analogy to the
behavior of hybrid inflation models [18], where stability in
one field direction can be a function of the value of a
second field.
Given an input of model parameters, we determine the

final inflaton field value af by solving

∂2V
∂ ~ρ2

����
tr
¼ 0; ð2:26Þ

and then the initial value ai from

N ¼
Z

af

ai

���� VV 0

����da; ð2:27Þ

where the primes refer to derivatives evaluated numerically
according to Eq. (2.25), and a (≈~θ) is the canonically
normalized inflaton field. Again, we set N ¼ 60. To
illustrate a solution that ends with the waterfall behavior,
consider the parameter choices

f1 ¼ 0.22
ffiffiffi
2

p
; ð2:28Þ

f2 ¼ f1=17; ð2:29Þ

Λ1 ¼ 3.38 × 10−3; ð2:30Þ

Λ2 ¼ 1.61 × 10−3; ð2:31Þ

which correspond to n ¼ 17 and κ ¼ 1.13. We find that the
initial and final fields for the inflaton trajectory are given by

ð~ρ; ~θÞi ¼ ð6.83 × 10−3; 1.63Þ and

ð~ρ; ~θÞf ¼ ð0.0281; 5.2970Þ; ð2:32Þ

respectively. Using this value for ~θi, we find the following
set of cosmological parameters:

ns ¼ 0.96; ð2:33Þ

r ¼ 0.0078; ð2:34Þ

nr ¼ −7.2 × 10−5; ð2:35Þ

Δ2
R ¼ 2.2 × 10−9: ð2:36Þ

These are consistent with the ranges allowed by Planck, as
quoted in the previous subsection. That Eq. (2.34) is much
smaller than Eq. (2.22) is consistent with the observation of
Ref. [19] that trajectories terminating at a saddle point of
the potential can have significantly smaller r than those
terminating near minima. Note that our solutions here and
in the previous subsection do not involve fine-tuning; for
example, we have checked in the present case that varying
the initial value of ~θ at the 1% level only results in a change

FIG. 2 (color online). Inflaton trajectory, in ρ − θ space, over-
laid on a contour plot of the potential, in units where M� ¼ 1.
The bottom of the trench is indicated by the thick red line while
the inflation trajectory is denoted by the thin green line.
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at the 2% level in the observables described above. The
complete inflaton trajectory, extending beyond the point
where Eq. (2.4) is no longer satisfied, can be found by
solving the coupled equations of motion

ρ̈þ 3H _ρþ ∂V
∂ρ ¼ 0;

θ̈ þ 3H _θ þ ∂V
∂θ ¼ 0; ð2:37Þ

where H is the Hubble parameter. The result is shown in
Fig. 2, assuming the initial field values ρð0Þ ¼ 0.103
and θð0Þ ¼ 1.63 [equivalent to Eq. (2.32)] and _ρð0Þ ¼
_θð0Þ ¼ 0. The qualitative form of the solution does not
depend strongly on the choice of the initial first time
derivative, provided that the slow-roll conditions are
satisfied. One can see from the plot that the bottom of
the trench given by Eq. (2.4), denoted by the thick red line,
approximates the actual trajectory, given by the thin green
line, very well. The inflaton eventually oscillates about and
then settles at the global minimum of the potential.

III. MODELS

A. Origin of the potential

The successful inflation potentials presented in the
previous section correspond to a potential of the form
given in Eq. (1.9). Here we consider the possibility that this
potential arises via the effects of anomalies associated with
new gauge groups.
Hence, we extend the standard model gauge group by

the additional factors SUðN1Þ × SUðN2Þ, and introduce the
fermions AL ∼ AR ∼ ðN1; 1Þ and BðiÞ

L ∼ BðiÞ
R ∼ CL ∼ CR∼

ð1;N2Þ. We would like the Lagrangian to contain the
following interactions:

L ⊃ h1ĀRALχ þ
Xn
i¼1

hðiÞ2 B̄ðiÞ
R BðiÞ

L χ þ h3C̄RCLΦ� þ H:c::

ð3:1Þ

Here, the hj s are Yukawa couplings and the terms shown
generate heavy fermion masses when the Φ and χ fields
develop vevs. The accidental global U(1) symmetries are
each chiral when appropriate charges are assigned to the A,
B and C fermions. However, these symmetries are anoma-
lous with respect to the new gauge groups. Triangle
diagrams lead to the interactions [13]

g21
32π2

�
ρ

fρ

�
F1

~F1 þ
g22

32π2

�
nρ
fρ

−
θ

fθ

�
F2

~F2: ð3:2Þ

Note that the interactions in Eq. (3.1) are of exactly the
same form as Eq. (2.1) of Ref. [13], so that the F ~F
interactions that are relevant in our case can be obtained by

adjusting for the multiplicity of the given fermion field
(either 1 or n), and taking into account that χ contains
expðiρ=fρÞ while Φ� contains expð−iθ=fθÞ. With the F ~F
interactions included in the action, the potential is gen-
erated nonperturbatively by integrating over instanton
gauge field configurations [20]. This leads to the form [13]

Vðρ; θÞ ¼ Λ4
1

�
1 − cos

�
ρ

fρ

��
þ Λ4

2

�
1 − cos

�
nρ
fρ

−
θ

fθ

��
;

ð3:3Þ
with the scales Λ1 and Λ2 identified with the scale of strong
dynamics for each SUðNÞ factor. (We assume N1 and N2

are chosen so that each group is asymptotically free, and
that the gauge couplings in the ultraviolet are chosen so that
any desired values of Λ1 and Λ2 can be achieved.)
Redefining the origin of field space via

ρ → ρþ πfρ and θ → θ þ nπfθ ð3:4Þ
puts the potential in the form that we previously assumed in
Eq. (1.9). Note that the new gauge groups may be
spontaneously broken at a scale well below Λ1 and Λ2

without affecting our conclusions.
The interactions given in Eq. (3.1) are clearly not

generic. In the absence of our discrete charge assignments
for Φ and χ, there would be no reason for the Φ field to
avoid coupling to the A- and B-type fermions directly; nor
would there be any prohibition of explicit fermion mass
terms. Hence, this sector is suggestive of additional
symmetries even had we not put them forward immediately
as a starting assumption in our model building. Given
the transformation properties of Φ and χ fields under the
ZΦ
p × Zχ

r symmetry, Eq. (1.6), we can account for the
desired pattern on couplings in Eq. (3.1) by choosing

AR → ωχAR; BðiÞ
R → ωχB

ðiÞ
R ; CL → ωΦCL; ð3:5Þ

with the remaining heavy fermions taken as singlets under
the discrete group. However, we must now enlarge the
fermion content to assure that discrete gauge anomalies are
canceled (see the appendix), and do so in a way that ensures
that the additional fermions can become massive. To
demonstrate that this can be accomplished, let us consider
an example suggested by one of our previous cosmological
solutions, discussed in Sec. II A, corresponding to the
potential in Eq. (1.9) with n ¼ 21. Let us choose
p ¼ r ¼ 21. First, we note that there are 21 B-type
fermions transforming each with Zχ

21 charge þ1, where
we specify the charge Q by defining the group element to
be expð2iπQ=21Þ. This implies that the Zχ

21 − SUðN2Þ2
discrete anomaly cancellation condition would be satisfied
by the B particle content alone. The A and C fermions, on
the other hand, lead to anomalies, so we include additional
fermions with matching gauge quantum numbers and the
discrete transformation rules
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AðiÞ
R → ω10

χ AðiÞ
R ; AðiÞ

L → AðiÞ
L ði ¼ 1…2Þ

CðiÞ
L → ω10

Φ CðiÞ
L ; CðiÞ

R → CðiÞ
R ði ¼ 1…2Þ ð3:6Þ

which allow the anomaly cancellation conditions to be
satisfied. Finally, we note that these fields will develop
masses as a result of Planck-suppressed operators,
for example, ĀðiÞ

R χ10AðiÞ
L =M9� þH:c: and C̄ðiÞ

L Φ10CðiÞ
R =

M9� þ H:c:, which lead to masses of order λ10M�∼
1011 GeV.
The discrete symmetry that we have assumed to ensure

the form of couplings in Eq. (3.1) also leads to a
suppression of direct Planck-suppressed corrections to
the potential. Since quantum gravitational effects must
respect the discrete gauge symmetry, the lowest order
operators that will correct the potential have the form
Φ21=M17� or χ21=M17� ; the scale of these corrections is of
order λ21M4� ∼ 10−14M4�, negligible compared to the values
of Λ1 and Λ2 that we found previously to be of
order 10−3M�.

B. Standard model flavor

The fields Φ and χ can now be utilized in constructing
models of standard model fermion masses. These fields will
appear in higher-dimension operators that generate the
small entries of the standard model Yukawa matrices.
Given our choice hΦi=M� ¼ hχi=M� ¼ λ, the size of these
entries will be determined by powers of the Cabibbo angle
λ. In this subsection, we present one example in which the
desired set of higher-dimension operators is obtained via
the same discrete symmetries that were used to obtain the
inflaton potential. We focus on the n ¼ p ¼ r ¼ 21 model
just discussed, in which the Φ and χ fields each transform
under a separate Z21 symmetry. Of course, other choices of
the symmetry group are possible, and the present choice
does not suggest a unique set of fermion charge assign-
ments (since there are many possible Yukawa textures that
are viable). The example we give here will suffice by
serving as a proof of principle.1

The simplest incorporation of the n ¼ 21 model in a
flavor sector is via the identification of ZΦ

21 as the flavor
symmetry and Φ as the sole flavon field. The charge
assignments of the standard model fermions and a set of
right-hand neutrinos are given in Table I. Entries of the
Yukawa matrices arise from ZΦ

21-invariant higher-dimen-
sion operators. For example, the 1-1 entry in the up-sector
Yukawa matrix involves the fields Q̄1LHuR, which have
flavor charge −8. This arises at lowest order via

1

M8�
Q̄1LHΦ8uR þ H:c:; ð3:7Þ

and hence the corresponding Yukawa matrix entry is of
order λ8. Since ω8 and ω−13 are identical, there is another
possible operator, Q̄1LHΦ�13uR=M13� þ H:c:, but it is of
higher order and can be neglected. We may populate the
remaining entries of the quark and charged lepton Yukawa
matrices in a similar manner. We find

Yu ¼

0
B@

λ8 λ5 λ3

λ7 λ4 λ2

λ5 λ2 1

1
CA; Yd ¼

0
B@

λ5 λ4 λ4

λ4 λ3 λ3

λ2 λ λ

1
CA;

Ye ¼

0
B@

λ5 λ3 λ

λ5 λ3 λ

λ5 λ3 λ

1
CA; ð3:8Þ

where order-one coefficients in each entry have been
suppressed. These achieve the desired ratios mu=mt ∼ λ8,
mc=mt ∼ λ4, md=mb ∼ λ4, and ms=mb ∼ λ2, with the
charged lepton Yukawa mass eigenvalues comparable in
size to those of the down quark sector. It is not hard to
verify that the choice of right-hand neutrino charge assign-
ments leads via the seesaw mechanism to a neutrino mass
matrix of the form ½hHi2=ΛR�Yν, whereΛR is the right-hand
neutrino mass scale, hHi is the standard model Higgs vev,
and Yν is a matrix in which each entry is of order λ0 times a
function of (typically many) undetermined order-one coef-
ficients. These can be chosen to obtain the desired
phenomenology without unnaturally large or small values
of the individual coefficients.2

Finally, we must check that the standard model fermion
charge assignments in this model satisfy the linear Ibáñez-
Ross anomaly cancellation conditions for the non-Abelian
gauge groups and gravity. Summing the ZΦ

21 charges times
the appropriate multiplicity factors for the color SU(3),
weak SU(2), and gravitational anomalies gives 21, 42 and
63, respectively. These results mod 21 are zero, indicating
that the discrete gauge anomaly cancellation conditions
discussed in Appendix remain satisfied.

IV. CONCLUSIONS

Models of standard model flavor that are based on
discrete gauge symmetries can have accidental continuous
global symmetries that are spontaneously broken. We have
argued that a linear combination of the approximate
Goldstone bosons that may arise in these models can serve

1It should also be clear that one could alternatively construct a
model starting with the n ¼ 17 potential that we discussed earlier,
but there are no new qualitative insights gained by presenting two
very similar examples.

2It is not necessarily the case that an alternative model that
predicts the neutrino mass hierarchy via powers of λ is more
desirable than this example. The reason is that the predictions
for neutrino mass matrix entries in such a model also come
multiplied by functions of products of a number of the order-one
operator coefficients. This can spoil the naive λ power counting
without any individual operator coefficient being unnaturally
small or large. This is a problem that is unique to the neutrino
sector in such models when the mass matrix arises via the seesaw
mechanism.
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plausibly as the inflaton in two-field models of inflation
based on the axion-monodromy idea. These models can
accommodate the current Planck data on the microwave
background [3] while allowing the flavor-symmetry-
breaking vevs to remain sub-Planckian. This is important
in the present work since the ratios of the flavon vevs to the
reduced Planck scale serve as small flavor-symmetry-
breaking parameters in our models, which allows one to
predict the standard model Yukawa coupling entries in a
controlled approximation. In addition to making correct
Yukawa coupling predictions possible, the discrete sym-
metries of the theory also maintain the correct pattern of the
interactions in a new gauge sector, leading to the desired
form of the inflaton potential; they also keep the quantum
gravitational corrections to the potential well under control.
The literature on models of standard model fermion masses
is vast and it is imaginable that more economical and
compelling examples of flavor-sector inflation models are
yet to be found. The present work suggests that exploring
the full landscape of such models may be a fertile direction
for future investigation.
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APPENDIX: DISCRETE GAUGE
SYMMETRIES, BRIEFLY

It is well known that continuous gauge symmetries are
not violated by quantum gravitational effects. Under what
circumstances is the same true for discrete symmetries? It
was noted long ago by Ibáñez and Ross (IR) [21] that a
discrete group that arises as a subgroup of a continuous
gauge symmetry inherits this protection. While the full
theory must satisfy the anomaly cancellation conditions
relevant for the continuous gauge groups, IR determined
the conditions that are relevant in the low-energy theory,
below the scale at which the continuous gauge symmetries
are broken. Since some of the fermions in the complete
theory may become massive and decoupled when sym-
metry breaking occurs, the low-energy theory includes only
part of the fermion content that contributes to anomaly
cancellation in the full theory. The low-energy constraints
should refer only to the light fermion content, which in the
present context corresponds to models defined below the
reduced Planck scale M�. If the appropriate consistency
conditions are satisfied, the discrete gauge symmetry can be
treated as fundamental, without reference to specific high-
energy embeddings.
The constraints that we apply in our model building are

the linear IR conditions involving non-Abelian gauge
group factors; these follow from triangle diagrams involv-
ing two non-Abelian gauge group factors and one factor of

the continuous gauge group in which the discrete symmetry
is embedded. For example, the ZN − SUðMÞ2 anomaly
cancellation condition is [21]

X
i

Ciqi ¼
1

2
rN: ðA1Þ

Here r is an integer, qi is the ZN charge of the ith fermion
(which transforms underZN by exp½i2πqi=N�) and Ci is the
Casimir invariant given by TrðTaTbÞ ¼ Ciδ

ab, where the
Ta are SUðMÞ generators in the representation of the ith
fermion. Since all the fermions in the model presented in
Sec. III are in the fundamental representations of the
relevant SUðMÞ gauge groups, Ci ¼ 1=2; the linear IR
conditions simply require that the ZN charges of the
fermions that transform under a specified SUðMÞ factor
sum to an integer multiple of N. According to IR, when N
is odd (relevant to the model of Sec. III) the gravitational
anomalies linear in ZN are canceled when the sum of all
the ZN charges is also an integer multiple of N. It is
straightforward to verify that these conditions are satisfied
by the charge assignments displayed in Table I.
What about the other possible anomaly cancellation con-

ditions? First, IR note that the linear conditions involving the
Abelian gauge groups do not lead to any useful constraints on
the low-energy theory [21]. Banks and Dine (BD) [22] later
showed that the IR conditions nonlinear in the discrete group
make a tacit assumption about the high-energy embedding of
the theory, through the requirement that both the light and the
heavy fermionshave integerU(1) charges.BDshow that there
are consistent, nonanomalous theories (ones in which the
effective discrete symmetry at low energies is smaller than
that of the full theory) inwhich the low-energy spectrum does
not satisfy the nonlinear IR constraints; their failure only
implies the existence of heavy fermions with fractional
charges. Thus, the nonlinear IR conditions are not required
for the consistency of the low-energy effective theory. BD
note that the surviving discrete anomaly cancellation con-
ditions are physically sensible: for example, the condition for
the cancellation of the ZN − SUðMÞ2 anomaly also guaran-
tees that there are no t’Hooft interactions generated by
SUðMÞ instantons that would explicitly break the ZN
symmetry. This physical constraint [23] is completely inde-
pendent of the high-energy embedding.

TABLE I. ZΦ
21 charge assignments q, where the group trans-

formation is defined by expð2iπq=21Þ. The Higgs doublet is a
singlet under the flavor symmetry.

Q1L Q2L Q3L ucR ccR tcR dcR scR bcR

6 5 3 2 −1 −3 −1 −2 −2

L1L L2L L3L ecR μcR τcR νc1R νc2R νc3R

0 0 0 5 3 1 −3 −3 −3
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