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axial-anomaly-corrected higher-twist distributions are included.
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I. INTRODUCTION

During the last several years, the investigation of the
electromagnetic, weak, and strong decay channels of heavy
mesons, with the computation of their numerous transition
form factors and their strong couplings with different
hadrons, has become a rapidly growing branch of hadronic
physics. Progress in understanding the nature of such
mesons, including bottom-strange (and charm-strange)
ones, has been achieved from both the experimental and
theoretical sides.
Thus, experimental measurements of hadronic processes

and the extraction of the parameters of bottom/
charm-strange mesons have been performed by different
collaborations [1–6]. Theoretical calculations of parameters
related to these mesons were fulfilled by applying various
nonperturbative approaches and schemes, such as the
lattice QCD calculations [7], the QCD and three-point
sum rule methods (for instance, see Refs. [8–15]), and
different quark models [16,17]. In this way, the masses,
strong couplings, and form factors of some bottom/
charm-strange mesons were obtained.
Studies of the vertices consisting of interacting bottom/

charm-strange and light mesons have also attracted con-
siderable interest. In fact, the strong couplings determined
by the vertices D�

sDsη
ð0Þ and B�

sBsη
ð0Þ have been recently

calculated in Ref. [12], where the three-point sum rule
approach is used. The present work is devoted to the
analysis of these vertices, but within the context of the
QCD light-cone sum rule (LCSR) method [18]. The latter
provides more elaborate theoretical tools to perform
detailed analysis of the aforementioned problems.
Indeed, the light-cone sum rule method invokes such
quantities of the eta mesons as their distribution amplitudes
(DAs) of different twists and partonic contents. This allows
one to take into account the quark-gluon structure of
particles in a more clear form than other approaches.
It should be noted that the η − η0 system of light

pseudoscalar mesons accumulate important properties of
the particle phenomenology, like the mixing of the SUð3Þ

flavor group singlet η1 and octet η8 states to form the
physical mesons, the problem of axial Uð1Þ anomaly, and
its impact on the relevant distribution amplitudes of the eta
mesons. To this list of features, one should add also the
complicated quark-gluon structure of the η and η0 mesons
and subtleties in the treatment of their gluon components
that contribute to exclusive processes, the vertices under
consideration being sample ones, at the next-to-leading
order (NLO) of the perturbative QCD. These features of the
η − η0 system, as well as new experimental data, have
triggered numerous theoretical works devoted to the
analysis of the mesons’mixing problems and computations
of various exclusive processes to extract some constraints
on the parameters of their distribution amplitudes, includ-
ing the two-gluon ones [19–31]. The aim of this work is to
study the bottom/charm-strange meson strong couplings
and consider the vertices D�

sDsη
ð0Þ and B�

sBsη
ð0Þ by includ-

ing in the analysis a gluon component of the η and η0

mesons. The computation of a gluonic contribution to such
strong couplings is a new issue that is considered in the
present study.
This paper is structured in the following manner: In

Sec. II, we present rather comprehensive information on the
quark-gluon structure of the η and η0 mesons and details of
their leading and higher-twist distribution amplitudes.
Existing singlet-octet and quark-flavor mixing schemes
of the η − η0 system are briefly outlined, along with their
advantages and drawbacks. In Sec. III, the light-cone sum
rules for the strong couplings are derived. Here, the
mesons’ leading and higher-twist DAs up to twist 4 are
utilized. In this section, we calculate the NLO corrections to
the leading twist term, and also include in the light-cone
sum rules contributions appearing due to the gluon com-
ponent of the eta mesons. In Sec. IV, we perform numerical
computations to find the values of the corresponding strong
couplings. In this section we also make our brief con-
clusions. In the Appendix, the QCD two-point sum rule
expressions to determine some of the parameters in higher-
twist DAs of the η − η0 system are collected.
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II. MIXING SCHEMES AND DISTRIBUTION
AMPLITUDES OF η, η0 MESONS

Computation of the strong couplings D�
sDsη

ð0Þ and
B�
sBsη

ð0Þ, and relevant matrix elements within the frame-
work of the QCD LCSR method, requires knowledge of the
η and η0 mesons’ distribution amplitudes. In this work we
use the mixing scheme for the eta mesons’ DAs elaborated
in Ref. [31] and relevant expressions presented there by
adding the necessary formulas for the three-particle twist-3

DAs ΦðsÞ
3MðαÞ.

Below we concentrate mainly on the s-quark distribu-

tions, because only s valence quarks from the heavy Dð�Þ
s

and Bð�Þ
s mesons contribute to quark-antiquark and quark-

gluon-antiquark DAs of the eta mesons. Nevertheless,
when necessary, we provide some information also on q
components of the corresponding DAs.
Hence, we define two-particle DAs for the s-quark

flavor as

hMðqÞjs̄ðxÞγμγ5sð0Þj0i

¼ −iqμF
ðsÞ
M

Z
1

0

dueiqxuϕðsÞ
M ðu; μÞ; ð1Þ

where MðqÞ is the ηðqÞ or η0ðqÞ meson state. In this

expression ϕðsÞ
M ðuÞ is the leading twist, i.e. the twist-2 DA

of the MðqÞ meson. For brevity, in the matrix element, the
gauge link is not shown explicitly. The normalization is
chosen such that

Z
1

0

duϕðsÞ
M ðu; μÞ ¼ 1. ð2Þ

Similar distribution amplitudes can be defined for q ¼
u; d quarks as well, with evident replacement s → q in
Eqs. (1) and (2). Then, assuming exact isospin symmetry
and denoting mq ¼ ðmu þmdÞ=2, we can determine the

couplings FðuÞ
M ¼ FðdÞ

M , FðsÞ
M as the matrix elements

h0jJðiÞμ5 jMðqÞi ¼ ifðiÞM qμ; i ¼ q; s ð3Þ

of flavor-diagonal axial vector currents Jiμ5:

JðqÞμ5 ¼ 1ffiffiffi
2

p ½ūγμγ5uþ d̄γμγ5d�; JðsÞμ5 ¼ s̄γμγ5s: ð4Þ

The couplings FðuÞ
M , FðdÞ

M , and FðsÞ
M are connected with

fðiÞM couplings by means of the following simple
expressions:

FðuÞ
M ¼ FðdÞ

M ¼ fðqÞMffiffiffi
2

p ; FðsÞ
M ¼ fðsÞM :

This definition of the distributions corresponds to the
quark-flavor (QF) basis introduced to describe mixing in
the η − η0 system. In the QF basis, mixing of the q and s
states forms the physical η and η0 mesons. Alternatively,
one can determine DAs of the eta mesons starting from the
singlet-octet (SO) basis of the SUð3Þ flavor group. To this

end, one introduces the SUð3Þ flavor singlet Jð1Þμ5 and octet

Jð8Þμ5 currents

Jð1Þμ5 ¼ 1ffiffiffi
3

p ½ūγμγ5uþ d̄γμγ5dþ s̄γμγ5s�;

Jð8Þμ5 ¼ 1ffiffiffi
6

p ½ūγμγ5uþ d̄γμγ5d − 2s̄γμγ5s� ð5Þ

and defines the corresponding matrix elements as

h0jJðiÞμ5 jMðqÞi ¼ ifðiÞM qμ; i ¼ 1; 8: ð6Þ

The eta mesons’ quark-flavor and singlet-octet combina-
tions of the distributions are connected with each other as

 
fð8ÞM ϕð8Þ

M ðu; μÞ
fð1ÞM ϕð1Þ

M ðu; μÞ

!
¼ Uðφ0Þ

 
fðqÞM ϕðqÞ

M ðu; μÞ
fðsÞM ϕðsÞ

M ðu; μÞ

!
: ð7Þ

Here

Uðφ0Þ ¼
�
cosφ0 −sinφ0

sinφ0 cosφ0

�
¼

0
B@

ffiffi
1
3

q
−

ffiffi
2
3

q
ffiffi
2
3

q ffiffi
1
3

q
1
CA; ð8Þ

with φ0 ¼ arctanð ffiffiffi
2

p Þ.
In the singlet-octet basis, the scale dependence of the

DAs is considerably simpler than in the QF approach. In
fact, SO couplings and DAs do not mix with each other via

renormalization. Moreover, the octet coupling fð8ÞM is scale

independent, whereas the singlet coupling fð1ÞM evolves due
to the Uð1Þ anomaly [32]:

fð1ÞM ðμÞ ¼ fð1ÞM ðμ0Þ
�
1þ 2nf

πβ0
½αsðμÞ − αsðμ0Þ�

�
; ð9Þ

where nf is the number of light quark flavors.
This basis is also preferable for solution of the evolution

equations. Thus, the quark-antiquark DAs in the singlet-
octet basis can be expanded in terms of Gegenbauer
polynomials C3=2

n ð2u − 1Þ that are eigenfunctions of the
one-loop flavor-nonsinglet evolution equation:

ϕð1;8Þ
M ðu; μÞ ¼ 6uū

�
1þ

X
n¼2;4;…

að1;8Þn;M ðμÞC3=2
n ð2u − 1Þ

�
:

ð10Þ
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The sum in Eq. (10) runs over polynomials of even
dimension n ¼ 2; 4;…, implying that the quark-antiquark
DAs are symmetric functions under the interchange of the
quark momenta

ϕð1;8Þ
M ðu; μÞ ¼ ϕð1;8Þ

M ðū; μÞ: ð11Þ

Another twist-2 DA of the η − η0 system is connected with
its two-gluon component. This distribution can be defined
as a nonlocal matrix element

hMðpÞjGμνðxÞ ~Gμνð0Þj0i

¼ CF

2
ffiffiffi
3

p fð1ÞM ðqxÞ2
Z

1

0

dueiqxuϕðgÞ
M ðu; μÞ; ð12Þ

whereGμν ¼ Ga
μνλ

a=2with tr½λaλb� ¼ 2δab. The dual gluon

field strength tensor is defined as ~Gμν ¼ ð1=2ÞϵμναβGαβ,
and CF ¼ 4=3.
The gluon DA is antisymmetric,

ϕðgÞ
M ðu; μÞ ¼ −ϕðgÞ

M ðū; μÞ; ð13Þ

and can be expanded in a series of Gegenbauer polynomials
C5=2
n−1ð2u − 1Þ of odd dimension:

ϕðgÞ
M ðu; μÞ ¼ 30u2ū2

X
n¼2;4;…

aðgÞn;MðμÞC5=2
n−1ð2u − 1Þ: ð14Þ

It should be emphasized that the octet components of the
eta mesons’ DAs are renormalized multiplicatively to the
leading order and mix with the gluon components only at
the next-to-leading order, whereas the singlet components
mix with gluon ones already in the LO (see Appendix B in

Ref. [31] for details). The values of the parameters að1;8;gÞn;M at
a certain scale μ0 determine all nonperturbative information
on the DAs.
In the exact SUð3Þ flavor symmetry limit, η ¼ η8, and η0

is a flavor singlet, η0 ¼ η1. In this limit fðqÞη ¼ fπ , with
fπ ¼ 131 MeV being equal to the pion decay constant.
However, it is known empirically that the SUð3Þ-breaking
corrections are large and, as a result, the relation of physical
η; η0 mesons to the basic octet and singlet states becomes
complicated and involves two different mixing angles; see,
e.g., a discussion in Ref. [19].
To avoid these problems and reduce a number of free

parameters necessary to treat the η − η0 system, a new
mixing scheme (FKS) was proposed [19]. It uses the QF
basis and is founded on the observation that vector mesons
ω and ϕ are to a very good approximation pure ūuþ d̄d
and s̄s states, and the same is true also for tensor mesons.
The smallness of mixing corresponds to the OZI rule that is
phenomenologically very successful. Therefore, if the axial
Uð1Þ anomaly is the only effect that makes the situation in

the pseudoscalar channel different, it is natural to suggest
that the physical states are related to the flavor ones by an
orthogonal transformation

� jηi
jη0i

�
¼ UðφÞ

� jηqi
jηsi

�
; UðφÞ ¼

�
cosφ −sinφ
sinφ cosφ

�
:

ð15Þ

The assumption on the state mixing implies that the same
mixing pattern applies to the decay constants and to the
wave functions as well. In other words,

 
fðqÞη fðsÞη

fðqÞη0 fðsÞη0

!
¼ UðφÞ

�
fq 0

0 fs

�
; ð16Þ

and

 
fðqÞη ϕðqÞ

η fðsÞη ϕðsÞ
η

fðqÞη0 ϕ
ðqÞ
η0 fðsÞη0 ϕ

ðsÞ
η0

!
¼ UðφÞ

�
fqϕq 0

0 fsϕs

�
ð17Þ

are held with the same mixing angle φ.
This conjecture allows one to reduce four DAs of

physical states η; η0 to the two DAs, ϕqðu; μÞ and
ϕsðu; μÞ, of the flavor states:

ϕðqÞ
η ðuÞ ¼ ϕðqÞ

η0 ðuÞ ¼ ϕqðuÞ;
ϕðsÞ
η ðuÞ ¼ ϕðsÞ

η0 ðuÞ ¼ ϕsðuÞ: ð18Þ

The singlet and octet DAs is this scheme are given by

 
fð8Þη ϕð8Þ

η fð1Þη ϕð1Þ
η

fð8Þη0 ϕ
ð8Þ
η0 fð1Þη0 ϕ

ð1Þ
η0

!
¼ UðφÞ

�
fqϕq 0

0 fsϕs

�
UTðφ0Þ;

ð19Þ

and the same relation is valid for the couplings fðiÞM and

the couplings multiplied by the parameters fðiÞM aðiÞn;M. The
couplings fq and fs, as well as mixing angle φ in the quark-
flavor scheme have been determined in Ref. [19] from the
fit to the experimental data

fq ¼ ð1.07� 0.02Þfπ;
fs ¼ ð1.34� 0.06Þfπ;
φ ¼ 39.3°� 1.0°: ð20Þ

It is worth noting that the flavor-singlet and flavor-octet
couplings have different scale dependence, and Eq. (19)
cannot hold at all scales. It is natural to assume that the
scheme refers to a low renormalization scale μ0 ∼ 1 GeV
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and the DAs at higher scales are obtained by the QCD
evolution.
Then, for the gluon DA, we assume that

hηqjGμνðxÞ ~Gμνð0Þj0i ¼ hηsjGμνðxÞ ~Gμνð0Þj0i

and as a result get

ϕðgÞ
η ðuÞ ¼ ϕðgÞ

η0 ðuÞ: ð21Þ

We define two-particle twist-3 DAs for the strange
quarks in the following way:

2mshMðqÞjs̄ðxÞiγ5sð0Þj0i ¼
Z

1

0

dueiqxuϕðsÞp
3M ðuÞ ð22Þ

and

2mshMðqÞjs̄ðxÞσμνγ5sð0Þj0i

¼ i
6
ðqμxν − qνxμÞ

Z
1

0

dueiqxuϕðsÞσ
3M ðuÞ; ð23Þ

with the normalization

Z
1

0

duϕðsÞp
3M ðuÞ ¼

Z
1

0

duϕðsÞσ
3M ðuÞ ¼ hðsÞM : ð24Þ

Here [22,31]

hðsÞM ¼ m2
Mf

ðsÞ
M − AM;

AM ¼ h0j αs
4π

Ga
μν
~Ga;μνjMðpÞi; ð25Þ

which follows from the anomaly relation

∂μJðsÞμ5 ¼ 2mss̄iγ5sþ
αs
4π

Ga
μν
~Ga;μν:

Twist-3 DAs for the light q ¼ u or d quark can be defined
by similar expressions with substitutions s → q; e.g.

HðqÞ
M ¼ m2

MF
ðqÞ
M − AM, where

HðuÞ
M ¼ HðdÞ

M ¼ hðqÞMffiffiffi
2

p : ð26Þ

Writing the normalization of the twist-3 DAs in this form
[see Eqs. (22)–(25)], we follow Refs. [22,25,31]. Note that
this definition formally remains correct in the chiral ms → 0
limit. As mentioned above, in this case η and η0 are purely
flavor octet and flavor singlet, respectively, so that η
becomes massless and η0 remains massive due to the axial
anomaly [33,34]. Equation (25) is then satisfied trivially for
η, because all three terms vanish, and for η0 the cancellation
of the two terms on the rhs implies the well-known relation
for the η0 mass in terms of the anomaly matrix element. The

ratio hs=ms (and the similar ratios for light quarks) remains
finite, so the contribution of twist-3 DAs to correlation
functions remains finite in the case in which they enter the
coefficients without a quark mass factor. For further dis-
cussion and examples, we refer to Ref. [25].
We assume that at low scales, the FKS mixing scheme is

valid for all quantities and distributions, and introduce two
new parameters hq and hs [22]:

 
hðqÞη ; hðsÞη

hðqÞη0 ; h
ðsÞ
η0

!
¼ UðφÞ

�
hq; 0

0; hs

�
ð27Þ

with numerical values (in GeV3)

hq ¼ 0.0016� 0.004; hs ¼ 0.087� 0.006: ð28Þ

Within the FKS scheme, we can rewrite four DAs ϕðq;sÞp
3M

in terms of two functions ϕp
3sðuÞ and ϕp

3qðuÞ. The same
argumentation is valid for the distribution amplitudes

ϕðq;sÞσ
3M , as well. Let us note that for calculation of the

strong couplings of interest we need only the s components
of the DAs. Therefore, we get

ϕðsÞp
3η0 ðuÞ ¼ ϕp

3sðuÞ cosφ; ϕðsÞp
3η ðuÞ ¼ −ϕp

3sðuÞ sinφ;
ϕðsÞσ
3η0 ðuÞ ¼ ϕσ

3sðuÞ cosφ; ϕðsÞσ
3η ðuÞ ¼ −ϕσ

3sðuÞ sinφ;
ð29Þ

where

ϕp
3sðuÞ ¼ hs þ 60msf3sC

1=2
2 ð2u − 1Þ;

ϕσ
3sðuÞ ¼ 6ūu½hs þ 10msf3sC

3=2
2 ð2u − 1Þ�: ð30Þ

The coupling f3s is defined as

h0js̄σnξγ5gGnξsjηsðpÞi ¼ 2iðpzÞ2f3s;

and we assume that

fðsÞ
3η0 ¼ f3s cosφ; fðsÞ3η ¼ −f3s sinφ: ð31Þ

For the coupling f3s, as an estimate, we adopt a value of
the similar parameter obtained for the pion. The latter at the
scale μ0 ¼ 1 GeV is equal to

f3sðμ0Þ≃ f3πðμ0Þ ¼ ð0.0045� 0.0015Þ GeV2:

The scale dependence of f3sðμÞ is determined by the
formula
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f3sðμÞ ¼
�
αsðμÞ
αsðμ0Þ

�
55=9β0

f3sðμ0Þ: ð32Þ

Here some comments are in order. Let us explain our
choice of the parameters in the higher-twist DAs. First of
all, there is not any information on flavor-singlet contri-
butions to these parameters. Moreover, computation of
these parameters using the QCD sum rule method by taking
into account only quark contents of η and η0 mesons leads to
numerical values that are very close to parameters of the
pion DAs. In fact, calculations of the parameters f3s and

δ2ðsÞM presented in the Appendix illustrate the correctness of
this choice. Therefore, in what follows we will use
parameters from the pion DAs, keeping in mind that the
approximation accepted here does not encompass the
flavor-singlet effects.
The eta mesons’ three-particle twist-3 DAs are defined in

accordance with Ref. [35]:

hMðqÞjs̄ðxÞgGμνðvxÞσαβγ5sð0Þj0i
¼ ifðsÞ3M½qαðqμgνβ − qνgμβÞ − ðα↔βÞ�

×
Z

Dαeiqxðα1þvα3ÞΦðsÞ
3MðαÞ; ð33Þ

where

Z
Dα ¼

Z
1

0

dα1dα2dα3δ

�
1 −

X
αi

�
:

The expansion of the function ΦðsÞ
3MðαÞ in the conformal

spin leads to the known expression

ΦðsÞ
3MðαÞ ¼ 360α1α2α

2
3

�
1þ 1

7
ω3sð7α3 − 3Þ

�
; ð34Þ

with

ω3sðμ0Þ≃ ω3πðμ0Þ ¼ ð−1.5� 0.7Þ GeV2 ð35Þ

and

ðf3sω3sÞðμÞ ¼
�
αsðμÞ
αsðμ0Þ

�
104=9β0ðf3sω3sÞðμ0Þ:

Finally, we will need the DAs of twist 4, which are rather
numerous. First of all, there are 4 two-particle twist-4
distribution amplitudes of the η − η0 system stemming from
the matrix element

hMðqÞjs̄ðxÞγμγ5sð0Þj0i

¼ −iqμF
ðsÞ
M

Z
1

0

dueiqxu
�
ϕðsÞ
M ðuÞ þ x2

16
ϕðsÞ
4MðuÞ

�

− i
xμ
qx

FðsÞ
M

Z
1

0

dueiqxuψ ðsÞ
4MðuÞ: ð36Þ

Other three-particle twist-4 distributions are given by the
expressions

hMðqÞjs̄ðxÞγμγ5gsGαβðvxÞsð0Þj0i

¼ FðsÞ
M

qμ
qx

ðqαxβ − qβxαÞ
Z

Dαeiqxðα1þvα3ÞΦðsÞ
4MðαÞ

þ FðsÞ
M

�
qβ

�
gαμ −

xαqμ
qx

�
− qα

�
gβμ −

xβqμ
qx

��

×
Z

Dαeiqxðα1þvα3ÞΨðsÞ
4MðαÞ ð37Þ

and

hMðqÞjs̄ðxÞγμγ5gs ~GαβðvxÞsð0Þj0i

¼ FðsÞ
M

qμ
qx

ðqαxβ − qβxαÞ
Z

Dαeiqxðα1þvα3Þ ~ΦðsÞ
4MðαÞ

þ FðsÞ
M

�
qβ

�
gαμ −

xαqμ
qx

�
− qα

�
gβμ −

xβqμ
qx

��

×
Z

Dαeiqxðα1þvα3Þ ~ΨðsÞ
4MðαÞ: ð38Þ

The distribution amplitudes ΦðsÞ
4M and ΨðsÞ

4M can be
expanded in orthogonal polynomials that correspond to
contributions of increasing spin in the conformal expan-
sion. Taking into account contributions of the lowest and
the next-to-lowest spin, one finds [31,35–37]

ΦðsÞ
4MðαÞ ¼ 120α1α2α3½ϕðsÞ

1;Mðα1 − α2Þ�;
~ΦðsÞ
4MðαÞ ¼ 120α1α2α3½ ~ϕðsÞ

0;M þ ~ϕðsÞ
2;Mð3α3 − 1Þ�;

~ΨðsÞ
4MðαÞ ¼ −30α23

�
ψ ðsÞ
0;Mð1 − α3Þ

þ ψ ðsÞ
1;M½α3ð1 − α3Þ − 6α1α2�

þ ψ ðsÞ
2;M

�
α3ð1 − α3Þ −

3

2
ðα21 þ α22Þ

��
;

ΨðsÞ
4MðαÞ ¼ −30α23ðα1 − α2Þ

�
ψ ðsÞ
0;M þ ψ ðsÞ

1;Mα3

þ 1

2
ψ ðsÞ
2;Mð5α3 − 3Þ

�
: ð39Þ

The coefficients ϕðsÞ
kM, ψ

ðsÞ
kM are related by QCD equations of

motion (EOMs) [31]. From these EOMs one obtains
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~ϕðsÞ
0M ¼ ψ ðsÞ

0M ¼ −
1

3
δ2ðsÞM ð40Þ

and

~ϕðsÞ
2M ¼ 21

8
δ2ðsÞM ωðsÞ

4M;

ϕðsÞ
1M ¼ 21

8

�
δ2ðsÞM ωðsÞ

4M þ 2

45
m2

M

�
1 −

18

7
aðsÞ2M

��
;

ψ ðsÞ
1M ¼ 7

4

�
δ2ðsÞM ωðsÞ

4M þ 1

45
m2

M

�
1 −

18

7
aðsÞ2M

�
þ 4ms

fðsÞ3M

fðsÞM

�
;

ψ ðsÞ
2M ¼ 7

4

�
2δ2ðsÞM ωðsÞ

4M −
1

45
m2

M

�
1 −

18

7
aðsÞ2M

�
− 4ms

fðsÞ3M

fðsÞM

�
:

ð41Þ

Here the parameter δ2ðsÞM is defined as

h0js̄γρig ~GρμsjMðpÞi ¼ pμf
ðsÞ
M δ2ðsÞM :

Its value at μ0 is chosen to be equal to

δ2ðsÞM ðμ0Þ≃ δ2πðμ0Þ ¼ ð0.18� 0.06Þ GeV2; ð42Þ

and its evolution is given by the formula

δ2ðsÞM ðμÞ ¼
�
αsðμÞ
αsðμ0Þ

�
10=β0

δ2ðsÞM ðμ0Þ:

We set the parameter ωðsÞ
4Mðμ0Þ equal to ω4πðμ0Þ:

ωðsÞ
4Mðμ0Þ≃ ω4πðμ0Þ ¼ ð0.2� 0.1Þ GeV2; ð43Þ

with

ðδ2ðsÞM ωðsÞ
4MÞðμÞ ¼

�
αsðμÞ
αsðμ0Þ

�
32=9β0ðδ2ðsÞM ωðsÞ

4MÞðμ0Þ:

The DAs ϕðsÞ
4MðuÞ and ψ ðsÞ

4MðuÞ can be calculated in terms
of the three-particle DAs of twist 4 and the DAs of
lower twist. As a result, one obtains the expressions for

the two-particle DAs ψ ðsÞ
4MðuÞ and ψ ðsÞ

4MðuÞ that can be
separated in “genuine” twist-4 contributions and meson
mass corrections as

ψ ðsÞ
4MðuÞ ¼ ψ ðsÞtwist

4M ðuÞ þm2
Mψ

ðsÞmass
4M ðuÞ; ð44Þ

with

ψ ðsÞtwist
4M ðuÞ ¼ 20

3
δ2ðsÞM C1=2

2 ð2u − 1Þ þ 30ms
fðsÞ3M

fðsÞM

×

�
1

2
− 10uūþ 35u2ū2

�
;

ψ ðsÞmass
4M ðuÞ ¼ 17

12
− 19uūþ 105

2
u2ū2

þ aðsÞ2;M

�
3

2
− 54uūþ 225u2ū2

�
; ð45Þ

and similarly

ϕðsÞ
4MðuÞ ¼ ϕðsÞtwist

4M ðuÞ þm2
Mϕ

ðsÞmass
4M ðuÞ; ð46Þ

where

ϕðsÞtwist
4M ðuÞ ¼ 200

3
δ2ðsÞM u2ū2 þ 21δ2ðsÞM ωðsÞ

4Mfuūð2þ 13uūÞ
þ 2½u3ð10 − 15uþ 6u2Þ ln uþ ðu↔ūÞ�g

þ 20ms
fðsÞ3M

fðsÞM

uū½12 − 63uūþ 14u2ū2�;

ϕðsÞmass
4M ðuÞ ¼ uū

�
88

15
þ 39

5
uūþ 14u2ū2

�

− aðsÞ2;Muū

�
24

5
−
54

5
uūþ 180u2ū2

�

þ
�
28

15
−
24

5
aðsÞ2;M

�
½u3ð10 − 15uþ 6u2Þ ln u

þ ðu↔ūÞ�: ð47Þ

These expressions complete the list of the distribution
amplitudes that are necessary for analyzing the strong
vertices D�

sDsη
ð0Þ and B�

sBsη
ð0Þ with twist-4 accuracy.

It is worth noting that we have chosen parameters of the
higher-twist DAs in order to obey the pattern of the state
mixing accepted for the η − η0 system. In fact, it is not
difficult to see that the relations in Eq. (17) are true for

the DAs ϕð3Þp
3M ðuÞ, ϕð3Þσ

3M ðuÞ, and fðsÞ3MΦ
ðsÞ
3MðαÞ as well. This

formula is fulfilled approximately for twist-4 DAs

FðsÞ
M ϕðsÞ

4MðuÞ and FðsÞ
M ψ ðsÞ

4MðuÞ. The main sources of deviation
from Eq. (17) are terms ∼m2

M in twist-4 DAs that,
nevertheless, numerically have rather small effects on final
results.

III. THE LCSR FOR STRONG COUPLINGS

In the context of the QCD sum rules on the light cone,
heavy-heavy-light-meson strong couplings were analyzed
already in Refs. [38–40], where the vertices D�Dπ, B�Bπ,
as well as vertices with ρ mesons were considered. In
the present work, we calculate within the QCD LCSR
method the strong couplings that correspond to the vertices
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D�
sDsη

ð0Þ and B�
sBsη

ð0Þ. Below, we concentrate on the
couplings gB�

sBsM; results for gD�
sDsM can be easily obtained

from relevant expressions by replacements b → c,
B0
s → D−

s , and B0�
s → D�−

s .

A. Leading-order results

In the calculation of the leading-order contribution to the
LCSR, we use technical tools and methods elaborated in
the original paper [38]. We start from the correlation
function

Fμðp; qÞ ¼ i
Z

d4xeipxhMðqÞjT fs̄ðxÞγμbðxÞ;

× b̄ð0Þiγ5sð0Þgj0i: ð48Þ

It is well known that this correlator can be calculated in
both hadronic and quark-gluon degrees of freedom. Within
the QCD LCSR method obtained in this way, expressions
should be matched in order to find the couplings gB�

sBsη and
gB�

sBsη
0 and extract numerical estimates for them. In terms of

hadronic quantities, the aforementioned correlation func-
tions are given by the expression

Fh
μðp; qÞ ¼

gB�
sBsMm

2
Bs
mB�

s
fBs

fB�
s

mbðp2 −m2
B�
s
Þ½ðpþ qÞ2 −m2

Bs
�

×

�
qμ þ

1

2

�
1 −

m2
Bs
þm2

M

m2
B�
s

�
pμ

�
;

where we have defined the couplings gB�
sBsM and decay

constants fBs
, fB�

s
by means of the following matrix

elements:

hB�0
s ðpÞMðqÞjB0

sðpþ qÞi ¼ −gB�
sBsMqμϵ

μ;

hBsjb̄iγ5sj0i ¼
m2

Bs
fBs

mb
;

h0js̄γμbjB�
si ¼ mB�

s
fB�

s
ϵμ: ð49Þ

The correlation function depends on the invariants p2, ðpþ
qÞ2 and can be written as a sum of invariant amplitudes

Fμðp; qÞ ¼ Fðp2; ðpþ qÞ2Þqμ þ ~Fðp2; ðpþ qÞ2Þpμ:

For our purposes, it is enough to consider the func-
tion Fðp2; ðpþ qÞ2Þ.
Computation of the amplitude Fðp2; ðpþ qÞ2Þ in terms

of the hadronic quantities leads to an expression that
contains the contribution of the ground state and the
contribution of the higher resonances and continuum states
with relevant quantum numbers in the form of a double
dispersion integral:

Fhðp2; ðpþ qÞ2Þ ¼ gB�
sBsMm

2
Bs
mB�

s
fBs

fB�
s

mbðp2 −m2
B�
s
Þ½ðpþ qÞ2 −m2

Bs
�

þ
Z

ds1ds2ρhðs1; s2Þ
ðs1 − p2Þ½s2 − ðpþ qÞ2� þ � � � :

ð50Þ

Here the dots stand for single dispersion integrals that,
in general, should be included to make the expression
finite.
Considering p2 and ðpþ qÞ2 as independent variables

and applying the Borel transformation, we find

BM2
1
BM2

2
Fhðp2; ðpþ qÞ2Þ

¼ gB�
sBsMm

2
Bs
mB�

s
fBs

fB�
s

mb
e
−
m2
B�s
M2
1

−
m2
B�s
M2
2

þ
Z

ds1ds2e
− s1
M2
1

− s2
M2
2ρhðs1; s2Þ: ð51Þ

In order to obtain the sum rules expression for the
strong couplings, the double Borel transformation should
be applied to the same invariant amplitude, but now
calculated using the quark-gluon degrees of freedom. To
this end, one needs to employ the general expression for
the correlation function Eq. (48) and compute it by
substituting the light-cone expansion for the b-quark
propagator

h0jT fbðxÞb̄ð0Þgj0i

¼
Z

d4k
ð2πÞ4i e

−ikx kþmb

m2
b − k2

− igs

Z
d4k
ð2πÞ4 e

−ikx

×
Z

1

0

dv

�
1

2

kþmb

ðm2
b − k2Þ2G

μνðvxÞσμν

þ kþmb

m2
b − k2

vxμGμνðvxÞγν
�

ð52Þ

and expressing remaining nonlocal matrix elements
in terms of distribution amplitudes of the eta mesons.
The diagrams corresponding to the free b-quark propa-
gator, and to the one-gluon field components in the
expansion Eq. (52), are depicted in Figs. 1(a) and 1(b),
respectively.
Technical details of similar calculations can be found in

Ref. [38]. Therefore, we do not concentrate here on these
procedures and provide below only final results. Thus, for
the contribution arising from Fig. 1(a) we find
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FðaÞðp2; ðpþ qÞ2Þ

¼
Z

1

0

du
Δðp; q; uÞ

�
mbF

ðsÞ
M

�
ϕðsÞ
M ðuÞ− m2

Muū
Δðp; q; uÞϕ

ðsÞ
M ðuÞ

þ 1

Δðp; q; uÞ
�
2uGðsÞ

4MðuÞ−
m2

bϕ
ðsÞ
4MðuÞ

2Δðp; q; uÞ
��

þ ϕðsÞp
3M ðuÞ
2ms

uþ ϕðsÞσ
3M ðuÞ
6ms

þ ϕðsÞσ
3M ðuÞ
12ms

m2
b þ p2

Δðp; q; uÞ
�
:

ð53Þ

In this expression we have introduced the shorthand
notation for the denominator of the free b-quark propagator
[see the first term in Eq. (52)],

Δðp; q; uÞ ¼ m2
b − ð1 − uÞp2 − uðpþ qÞ2;

and also defined the new function GðsÞ
4MðuÞ,

GðsÞ
4MðuÞ ¼ −

Z
u

0

ψ ðsÞ
4MðvÞdv:

The meson mass correction ∼m2
M in Eq. (53) comes from

the expansion of the leading-order twist-2 term.
Computations with one-gluon field components in the

b-quark propagator lead to the following result:

FðbÞðp2; ðpþ qÞ2Þ

¼
Z

1

0

dv
Z

Dα

�
4fðsÞ3MΦ

ðsÞ
3MðαÞvpq

½m2
b − ðpþ qðα1 þ vα3ÞÞ2�2

þFðsÞ
M mb

2ΨðsÞ
4MðαÞ − ΦðsÞ

4MðαÞ þ 2 ~ΨðsÞ
4MðαÞ − ~ΦðsÞ

4MðαÞ
½m2

b − ðpþ qðα1 þ vα3ÞÞ2�2
�
:

ð54Þ

Now, having applied the formula for the double Borel
transformation

BM2
1
BM2

2

ðl − 1Þ!
½m2

b − ð1 − uÞp2 − uðpþ qÞ2�l
¼ ðM2Þ2−le−m2

b=M
2

δðu − u0Þ;

with

u0 ¼
M2

1

M2
1 þM2

2

; M2 ¼ M2
1M

2
2

M2
1 þM2

2

;

it is not difficult to find a desired expression for the Borel
transformation of the invariant amplitude in terms of the
quark-gluon degrees of freedom.
By this manner we obtain

BM2
1
BM2

2
FQCDðp2; ðpþ qÞ2Þ

¼ e−m
2
b=M

2

×M2

�
mbF

ðsÞ
M ϕðsÞ

M ðu0Þ
�
1 −

m2
Mu0ū0
M2

�

þϕðsÞp
3M ðu0Þ
2ms

u0 þ
ϕðsÞσ
3M ðu0Þ
6ms

þ 1

12ms
u0

dϕðsÞσ
3M ðu0Þ
du

þm2
bϕ

ðsÞσ
3M ðu0Þ

6msM2
þ 2FðsÞ

M mb

M2
u0G4ðu0Þ −

FðsÞ
M m3

b

4M4
ϕðsÞ
4Mðu0Þ

þ 2fðsÞ3MI
3ðsÞ
M ðu0Þ þ FðsÞ

M mb
I4ðsÞM ðu0Þ

M2

�
: ð55Þ

In Eq. (55) the new functions

I3ðsÞM ðu0Þ ¼
Z

u0

0

dα1

�
ΦðsÞ

3Mðα1; 1 − u0; u0 − α1Þ
u0 − α1

−
Z

1−α1

u0−α1
dα3

ΦðsÞ
3Mðα1; 1 − α1 − α3;α3Þ

α23

�
ð56Þ

and

I4ðsÞM ðu0Þ ¼
Z

u0

0

dα1

Z
1−α1

u0−α1

dα3
α3

½2ΨðsÞ
4MðαÞ − ΦðsÞ

4MðαÞ

þ 2 ~ΨðsÞ
4MðαÞ − ~ΦðsÞ

4MðαÞ� ð57Þ
are introduced.
Equation (55) is the required Borel transformed expres-

sion for the function FQCDðp2; ðpþ qÞ2Þ given in the
quark-gluon degrees of freedom. In order to derive the
light-cone sum rule formulas for the couplings gB�

sBsη and
gB�

sBsη
0 , one should equate the Borel transformations of

Fhðp2; ðpþ qÞ2Þ as in Eq. (51) and FQCDðp2; ðpþ qÞ2Þ as
written down in Eq. (55). Then the only unknown term is a
contribution of higher resonances and continuum states
represented in Eq. (51) as the integral with double spectral
density ρhðs1; s2Þ. To solve this problem, in accordance
with the main idea of the sum rule methods, we suggest
that above some threshold in the ðs1; s2Þ plane, the
double spectral density ρhðs1; s2Þ can be replaced by

(a) (b)

FIG. 1. Leading-order diagrams contributing to the correlation
function. Thick lines correspond to a heavy quark. Diagram
(a) describes quark-antiquark contributions of various twists to
the correlator, whereas (b) shows the contribution coming from
three-particle components of the meson distribution amplitude.
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ρQCDðs1; s2Þ. Then the continuum subtraction can be
performed in accordance with the procedure developed
in Refs. [18,38,41]. It is based on the observation that
double spectral density in the leading contributions, i.e. in
those proportional to the positive powers of the Borel
parameter M2, is concentrated (or can be expanded) near
the diagonal s1 ¼ s2. In this case, for the continuum
subtraction, the simple expressions can be derived, which
are not sensitive to the shape of the duality region
[18,38,41]. The general formula in the case M2

1 ¼ M2
2 ¼

2M2 and u0 ¼ 1=2 reads

M2ne−
m2
b

M2 →
1

ΓðnÞ
Z

s0

m2
b

dse−
s

M2ðs −m2
bÞn−1; n ≥ 1:

ð58Þ

For terms ∼M2, it leads to the simple prescription

M2e−m
2
b=M

2

→ M2ðe−m2
b=M

2 − e−s0=M
2Þ ð59Þ

adopted in our work, as well.
For the higher-twist terms, which are proportional to the

zeroth or to the negative powers of M2, on the one hand,

continuum subtraction is not expected to have a large effect,
and, on the other hand, it is not known how to perform it in
a theoretically clean way. The difficulty here is that the
quark-hadron duality is not expected to work pointwise in
the two-dimensional plane ðs1; s2Þ, but, at best, after
integration over the line s1 þ s2 ¼ const. (see, for example,
Refs. [42,43]). For this reason a naive subtraction using the
“square” duality region s1 < s0; s2 < s0 does not have a
strong theoretical basis. The spectral densities correspond-
ing to the higher-twist terms under consideration are not
concentrated near the diagonal s1 ¼ s2; as a result, the
required continuum subtractions take rather complicated
forms. Because the higher-twist spectral densities decrease
with s1 and s2 quickly enough and the impact of the
subtracted terms on the final result is not significant, in a
standard technique for the LCSRs of this type, one does not
perform continuum subtractions in these terms at all [38].
Here we follow these procedures and subtract the con-
tinuum contributions only in the terms ∼M2.
The masses of the Bs and B�

s mesons are numerically
close to each other, hence in our calculations we can safely
setM2

1 ¼ M2
2 and u0 ¼ 1=2. Then, it is not difficult to write

down the following sum rule:

fBs
fB�

s
gB�

sBsM ¼ mb

m2
Bs
mB�

s

e
m2
Bs

þm2
B�s

2M2

�
M2ðe−

m2
b

M2 − e−
s0
M2Þ
�
mbF

ðsÞ
M ϕðsÞ

M ðu0Þ þ
ϕðsÞp
3M ðu0Þ
2ms

u0 þ
ϕðsÞσ
3M ðu0Þ
6ms

þ 1

12ms
u0

dϕðsÞσ
3M ðu0Þ
du

þ 2fðsÞ3MI
3ðsÞ
M ðu0Þ

�
þ e−

m2
b

M2

�
FðsÞ
M mb

�
−m2

Mu0ū0ϕ
ðsÞ
M ðu0Þ þ 2u0G

ðsÞ
4Mðu0Þ

þI4ðsÞM ðu0Þ −
m2

b

4M2
ϕðsÞ
4Mðu0Þ

�
þ m2

b

6ms
ϕðsÞσ
3M ðu0Þ

��
u0¼1=2

: ð60Þ

This result differs from the corresponding expression of
Ref. [38] due to new definitions of the DAs and the
additional mass term in the sum rule expression.
For self-consistent treatment of Eq. (60), one needs

expressions for fBs
and fB�

s
with NLO accuracy. A recent

calculation of the heavy-light mesons’ decay constants,
performed in the context of QCD sum rules method by
taking into account Oðα2sÞ terms in the perturbative part
and OðαsÞ corrections to the quark-condensate contribu-
tion, can be found in Ref. [44]. For further details and
explicit expressions, we refer to this work (see
also Ref. [45]).

B. NLO corrections: Gluonic contributions
to the strong couplings

The QCD LCSRs for the strong couplings [Eq. (60)]
have been derived at the leading order of the perturbative
QCD with twist-4 accuracy. In order to improve our results
and make more precise theoretical predictions for the

strong couplings, we need to find NLO perturbative
corrections at least to the leading twist term, and in this
way include in our analysis also the gluon component of the
eta mesons. The NLO correction to the leading twist term
and the relevant double spectral density for the strong
vertices B�Bπ and D�Dπ were found in Ref. [40]. In this
work, the authors demonstrated that, to this end, it is
sufficient to utilize the NLO correction to the transition
form factor B → π calculated in Ref. [46], and from the
corresponding expression deduced the double spectral
density for the coupling gB�Bπ . Because the pion is a
pseudoscalar particle and has only a quark component, after
some corrections that depend on the definitions of DAs and
decay constants, results of this work can be used to find
NLO corrections to the leading twist term in the LCSRs for
strong couplings arising from the quark component of the η
and η0 mesons. Therefore, we borrow the corresponding
expression for the NLO correction from Ref. [40], and for

the asymptotic DAs ϕðsÞ
ηðη0ÞðuÞ we get
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QðsÞ
ηðη0ÞðM2; sBs

0 Þ ¼ αsCF

4π

FðsÞ
ηðη0Þmbffiffiffi

2
p

×
Z

2sBs
0

2m2
b

f

�
s
m2

b

− 2

�
e−s=2M

2

ds; ð61Þ

where

fðxÞ ¼ π2

4
þ 3 ln

�
x
2

�
ln

�
1þ x

2

�

−
3ð3x3 þ 22x2 þ 40xþ 24Þ

3ð2þ xÞ3 ln

�
x
2

�

þ 6Li2

�
−
x
2

�
− 3Li2ð−xÞ − 3Li2ð−1 − xÞ

− 3 lnð1þ xÞ lnð2þ xÞ − 3ð3x2 þ 20xþ 20Þ
4ð2þ xÞ3

ð62Þ

þ 6xð1þ xÞ lnð1þ xÞ
ð2þ xÞ2 : ð63Þ

In order to find the gluonic contributions to the LCSRs,
one has to compute the quark box diagrams shown in
Fig. 2. For the transitions B → ηð0Þ they were calculated in
Ref. [25] (see also Ref. [47]). We adapt to our problem the
relevant expressions obtained in Ref. [25] and use them in
our calculations.
To derive the double spectral density, we start from the

expression

FðgÞðp2; ðpþ qÞ2Þ ¼ αsCF

4π
fð1ÞM mb

Z
∞

m2
b

dαgðα; p2Þ
α − ðpþ qÞ2 ;

ð64Þ

where

gðα; p2Þ ¼ 25

6
ffiffiffi
3

p aðgÞ2;M

�
m2

b − α

ðα − p2Þ5 ½59m
6
b þ 21p6 − 63p4α

− 19p2α2 þ 2α3 þm2
bαð164p2 þ 13αÞ

−m4
bð82p2 þ 95αÞ� þ 6

ðm2
b − p2Þðα −m2

bÞ
ðα − p2Þ5

× ½5m4
b þ p4 þ 3p2αþ α2 − 5m2

bðp2 þ αÞ�

×

�
2 ln

α −m2
b

m2
b

− ln
μ2

m2
b

��
: ð65Þ

We employ a method described in detailed form in
Ref. [43]. In other words, we first perform the double
Borel transformations

Bt1ðp2ÞBt2ððpþ qÞ2ÞFðgÞðp2; ðpþ qÞ2Þ
≡ F̂ðgÞðt1; t2Þ

¼ 1

t1t2

Z
ds1ds2ρðs1; s2Þe−s1=t1−s1=t2 ;

and then apply the Borel transformations in τ1 ¼ 1=t1 and
τ2 ¼ 1=t2 in order to extract ρðs1; s2Þ

B1=s1ðτ1ÞB1=s2ðτ2Þ
1

τ1τ2
F̂ðgÞð1=τ1; 1=τ2Þ ¼ s1s2ρðs1; s2Þ:

Having subtracted the contribution of the resonances and
continuum states, we get the gluonic correction as the
double dispersion integral:

FMðp2; ðpþ qÞ2Þ

¼ αsCF

4π
fð1ÞM mb

Z
sBs
0

m2
b

Z
sBs
0

m2
b

ds1ds2ρðs1; s2Þ
ðs1 − p2Þðs2 − ðpþ qÞ2Þ ;

ð66Þ

where

ρðs1; s2Þ ¼
25

6
ffiffiffi
3

p aðgÞ2;M½ρ1ðs1; s2Þ þ 6ρ2ðs1; s2Þ�:

Here

ρ1ðs1; s2Þ ¼ 21Δð1Þðs1 − s2Þ −
82

6
Δð3Þðs1 − s2Þ

−
59

24
Δð4Þðs1 − s2Þ; ð67Þ

and

ρ2ðs1; s2Þ ¼ Lðs1; μÞ
�
Δð2Þðs1 − s2Þ

þ 1

3
Δð3Þðs1 − s2Þ þ

1

24
Δð4Þðs1 − s2Þ

�
: ð68Þ

In Eqs. (67) and (68),

(a) (b) (c)

FIG. 2. Quark box diagrams that determine the gluonic con-
tribution. Thick lines correspond to a heavy quark.
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ΔðnÞðs1 − s2Þ ¼ ðs1 −mbÞnδðnÞðs1 − s2Þ;

Lðs; μÞ ¼ 2 ln
s −m2

b

m2
b

− ln
μ2

m2
b

; ð69Þ

with δðnÞðs1 − s2Þ being defined as

δðnÞðs1 − s2Þ ¼
∂n

∂sn1 δðs1 − s2Þ:

The Borel transformations in the variables p2 and ðpþ qÞ2
of the integral in Eq. (66) give us the desired gluonic
contribution to the sum rules:

BM2
1
BM2

2
FMððpþ qÞ2; p2Þ

¼ αsCF

4π
fð1ÞM mb

Z
sBs
0

m2
b

ds1

Z
sBs
0

m2
b

ds2ρðs1; s2Þe−s1=M2
1e−s2=M

2
2 :

ð70Þ

In the case M2
1 ¼ M2

2 ¼ 2M2, by applying methods from
Appendix B of Ref. [38], we calculate the integrals in
Eq. (70),

Z
sBs
0

m2
b

ds1

Z
sBs
0

m2
b

ds2ΔðkÞðs1 − s2Þe−ðs1þs2Þ=2M2

¼ ð−1Þk
2kþ1

Z
2sBs

0

2m2
b

dse−s=2M
2

�
d
dv

�
k
�
v −

m2
b

s

�
k

v¼1=2
ð71Þ

and

Z
sBs
0

m2
b

ds1

Z
sBs
0

m2
b

ds2 ln ðs1 −m2
bÞΔðkÞðs1 − s2Þ

× e−ðs1þs2Þ=2M2 ¼ ð−1Þk
2kþ1

Z
2sBs

0

2m2
b

dse−s=2M
2

�
d
dv

�
k

×

��
v −

m2
b

s

�
k

ln ðsv −m2
bÞ
�
v¼1=2

: ð72Þ

The integrations over s can be performed explicitly,
allowing us to find the gluonic contribution in a rather
simple form:

~Qηðη0ÞðM2;sBs
0 Þ¼αsCF

4π
fð1Þηðη0Þmb½r1ðM2;sBs

0 Þþr2ðM2;sBs
0 Þ�;
ð73Þ

where

r1ðM2; sBs
0 Þ ¼ M2ðe−m2

b=M
2 − e−s0=M

2Þ
�
−
51

32

�
ð74Þ

and

r2ðM2; sBs
0 Þ ¼ 3

16
M2e−m

2
b=M

2

�
22þ 20ψð7Þ

−20Γ
�
0;
sBs
0 −m2

b

M2

�
þ 20 ln

2M2

m2
b

− 10 ln
μ2

m2
b

�

þ 3

16
M2e−s

Bs
0
=M2

�
−27− 20 ln

2ðsBs
0 −m2

bÞ
m2

b

þ 10 ln
μ2

m2
b

�
: ð75Þ

Here ψðzÞ ¼ ðd=dzÞ lnΓðzÞ and Γða; zÞ are digamma and
incomplete gamma functions, respectively.
Then, the NLO corrections to LCSRs arising from the

quark and gluonic components of the eta mesons are given
by the expression

mb

m2
Bs
mB�

s

e
m2
Bs

þm2
B�s

2M2 ðQðsÞ
ηðη0Þ þ ~Qηðη0ÞÞ; ð76Þ

which should be added to Eq. (60).
It is interesting to note that strong couplings given by

Eqs. (60) and (76) may be presented in the form

gB�
sBsη ≃ −sinφGðsÞ

B�
sBsη

;

gB�
sBsη

0 ≃ cosφGðsÞ
B�
sBsη

0 : ð77Þ

In fact, excluding some terms, the couplings with the high
accuracy follow the mixing pattern discussed above that
can be demonstrated explicitly.

IV. NUMERICAL RESULTS AND CONCLUSIONS

The LCSR expressions for gB�
sBsη and gB�

sBsη
0 in Eqs. (60)

and (76) contain numerous parameters that should be fixed
in accordance with the usual procedures. But apart from
that, in numerical calculations there is also a necessity to
utilize equalities to connect η and η0 mesons’ DAs and
decay constants obtained using different bases. Indeed, as
we have emphasized above, in order to solve renormaliza-
tion group equations, it is convenient to use the singlet-
octet basis. This basis was used in Ref. [31] to describe the
evolution of the flavor-octet and flavor-singlet DAs with
NLO accuracy. One should note that the gluon DA in

Eq. (12) is normalized in terms of the decay constant fð1ÞM .
From another side, the QF basis is more suitable to analyze
the η − η0 mixing phenomena and solve equations of
motion, which determine parameters in twist-4 DAs. The
values of the decay constants in Eq. (20) were deduced
within the QF mixing scheme, as well. The general
expression for such transformations can be found in
Eq. (19). Here we provide the formula for eta mesons’
decay constants in the SO basis:
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� fð8Þη fð1Þη

fð8Þη0 fð1Þη0

�
¼
�
cos θ8 −sin θ1
sin θ8 cos θ1

��
f8 0

0 f1

�
;

with the numerical values of the parameters

f1 ¼ ð1.17� 0.03Þfπ; f8 ¼ ð1.26� 0.04Þfπ;
θ1 ¼ −ð9.2°� 1.7°Þ; θ8 ¼ −ð21.2°� 1.6°Þ:

The Bs and B�
s mesons’ decay constants and masses enter

into Eqs. (60) and (76) as input parameters. Their values are
collected below (in MeV):

mη ¼ 547.86� 0.02; mη0 ¼ 957.78� 0.06;

mBs
¼ 5366.77� 0.4; mB�

s
¼ 5415.4� 1.5:

The decay constants fBs
and fB�

s
were calculated from the

two-point QCD sum rules in Ref. [45] (in MeV):

fBs
¼ 231� 16; fB�

s
¼ 213� 18: ð78Þ

We employ the masses of the quarks in the MS scheme
(in GeV):

mbðmbÞ ¼ 4.18� 0.03; mcðmcÞ ¼ 1.275� 0.025:

ð79Þ
Their scale dependencies are taken into account in accor-
dance with the renormalization group evolution

mqðμÞ ¼ mqðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γq
;

with γb ¼ 12=23 and γc ¼ 12=25. The strange quark mass
is ms ¼ 0.137 GeV. The renormalization scale is set equal
to

μb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bs
−m2

b

q
≃ 3.4 GeV: ð80Þ

The parameters and quantities are evolved to this scale,
employing the two-loop QCD running coupling αsðμÞ with
Λð4Þ ¼ 326 MeV. The same QCD two-loop coupling is
used throughout this work, for example, to compute NLO
corrections. The evolution of the leading twist DAs is
calculated with NLO accuracy by taking into account
quark-gluon mixing [31]. Calculations require us to fix
the threshold parameter s0 and a region within which it may
be varied. For s0 we employ

sBs
0 ≡ sB

�
s

0 ≃ 36� 2.5 GeV2:

Additionally, the eta mesons’ DAs contain the Gegenbauer

moments að1;8Þn ðμ0Þ and aðgÞn ðμ0Þ. In Ref. [31] they were
extracted from the analysis of the eta mesons’

electromagnetic transition form factors. In the present

work, for að1;8Þn and aðgÞ2 we utilize values that are com-
patible with ones from this work and accept the following
models for DAs:

I: að1;8Þ2 ¼ að1;8Þ4 ¼ 0.1; aðgÞ2 ¼ −0.2;

II: að1;8Þ2 ¼ að1;8Þ4 ¼ 0.2; aðgÞ2 ¼ −0.2;

III: að1;8Þ2 ¼ 0.2; að1;8Þ4 ¼ 0; aðgÞ2 ¼ −0.2: ð81Þ

Results of the computations of the “scaled” couplings
fBs

fB�
s
gB�

sBsη
0 and fBs

fB�
s
jgB�

sBsηj are depicted in Fig. 3.
Calculations have been carried out employing model I.
From analysis, we find the range of values of the Borel
parameter 8 GeV2 < M2 < 12 GeV2, where the effects of
the higher resonances and continuum states is less than
30% of the leading-order twist-2 contribution, and terms
∼M−2 form only ∼5% of the sum rule. Additionally, in this
interval the dependence of the couplings on M2 is stable,
and one may expect that the sum rule gives reliable
predictions.
The sum rules receive contributions from the different

terms, as shown in Fig. 4. The main component is the
leading-order twist-2 term: it forms approximately 60%
of the strong couplings. The effect of the NLO quark
correction is also essential: in the explored range of
the Borel parameter, it equals ≃12.5% of the coupling
fBs

fB�
s
gB�

sBsη
0 . The same estimation is valid for

fBs
fB�

s
gB�

sBsη, as well. The correction originating from
the gluon content of the meson is very small. In fact, it
is only ≃ −0.5% of fBs

fB�
s
gB�

sBsη
0 .

The higher-twist terms play an essential role in forming
the couplings. Indeed, ∼28% of their values within the
considered range of M2 are due to HT corrections. The

fBs fBs
g GeV2

model I
6 8 10 12 14

0.0

0.5

1.0

1.5

2.0

M 2 GeV2

FIG. 3 (color online). The strong couplings as functions of the
Borel parameter M2. The solid (red) line describes fBs

fB�
s
gB�

sBsη
0 ,

whereas the dashed (blue) curve corresponds to fBs
fB�

s
jgB�

sBsηj. In
computations the model I is used. The parameter sBs

0 is set equal
to 36 GeV2.
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main part of the HT corrections are determined by

the two-particle twist-3 DAs ϕðsÞp
3η0 ðuÞ and ϕðsÞσ

3η0 ðuÞ: they
give ∼33%, whereas the corrections of remaining HT terms
are small, −5%.
The extracted couplings, in general, depend on the

distribution amplitudes utilized in calculations. We have
computed the couplings using the different model DAs and
given the results in Fig. 5. Some of the DAs (models I and
II) lead to almost identical predictions, such that corre-
sponding lines become undistinguishable. Therefore, in
Fig. 5 we show only the line corresponding to model I.
At the same time, the results for couplings due to another
pair of DAs (models I and III) differ from each other
considerably.

The predictions in the present work are made employing
model I. By varying the parameters within the allowed
ranges, we estimate the uncertainties of computations. The
important sources of uncertainties are M2 and sBs

0 , as well
as the decay constants fBs

and fB�
s
, calculated within the

two-point QCD sum rules. Having changed M2 and sBs
0

within 8 GeV2 < M2 < 12 GeV2, and 33.5 GeV2 < sBs
0 <

38.5 GeV2, respectively, and having taken into account
uncertainties arising from the meson decay constants,
we get

fBs
fB�

s
jgB�

sBsηj ¼ 0.837� 0.08 GeV2;

fBs
fB�

s
gB�

sBsη
0 ¼ 0.994� 0.12 GeV2: ð82Þ

Dividing the product of the couplings by the decay
constants gives for the couplings the following predictions:

jgB�
sBsηj ¼ 17.08� 1.63; gBsB�

sη
0 ¼ 20.2� 2.44:

ð83Þ

We proceed in our studies and extract the strong
couplings gD�

sDsη and gD�
sDsη

0 (see Fig. 6). To this end, in
all expressions we have to replace b → c. The masses and
decay constants in units of MeV are

mDs
¼ 1969� 1.4; mD�

s
¼ 2112.1� 0.4;

fDs
¼ 240� 10; fD�

s
¼ 308� 21: ð84Þ

All parameters should be adjusted to the new problem. This
leads to the replacements

μc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ds
−m2

c

q
≃ 1.68 GeV ð85Þ

fBs fBs
gBs Bs ’ GeV2

6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

M 2 GeV2

FIG. 4 (color online). Contributions to the coupling
fBs

fB�
s
gB�

sBsη
0 originating from the leading, the higher-twist,

and the NLO terms. The upper solid (red) line is the contribution
of the LO twist-2 term, the upper dashed line (blue) shows the
contribution of the higher-twist terms, the lower solid (red) curve
is the NLO effect coming from the meson’s quark component,
and the lower dashed (blue) line is the gluonic contribution to the
coupling. The parameters are the same as in Fig. 3.

fBs fBs
gBs Bs ’ GeV2

6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

M 2 GeV2

FIG. 5 (color online). The coupling fBs
fB�

s
gB�

sBsη
0 computed

using the different model DAs. The solid (red) line shows model
I, and the dashed (blue) line shows model III.

fDs fDs
g GeV2

model I
2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

M 2 GeV2

FIG. 6 (color online). The couplings as functions of the Borel
parameter M2. The solid (red) line corresponds to fDs

fD�
s
gD�

sDsη
0 ,

and the dashed (blue) curve is the coupling fDs
fD�

s
jgD�

sDsηj. In
computations, the model I is used. The parameter sDs

0 is set equal
to 7 GeV2.
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and sDs
0 ¼ 7� 1 GeV2. It has been found that the range

of the Borel parameter 3 GeV2 < M2 < 5 GeV2 is suitable
for evaluating the sum rules. From the relevant sum rules
for the product of the decay constants and coupling we
extract the following values:

fDs
fD�

s
jgD�

sDsηj ¼ 0.411� 0.04 GeV2;

fDs
fD�

s
gD�

sDsη
0 ¼ 0.473� 0.042 GeV2: ð86Þ

Then, for the couplings we get

jgD�
sDsηj ¼ 4.51� 0.44; gD�

sDsη
0 ¼ 5.19� 0.46: ð87Þ

Our results have been obtained within the quark-
hadron duality ansatz of Ref. [38], where gD�Dπ and
gB�Bπ were evaluated. But there is a discrepancy between
the predictions for gD�Dπ and the data of the CLEO
Collaboration [48]. One of the main input parameters in
these calculations is a value of the leading twist DA at
u0 ¼ 1=2. In Ref. [38] it was chosen as ϕπð1=2Þ≃ 1.2,
whereas recent analysis of the pion electromagnetic
transition form factor performed in Refs. [49,50] predicts
LT pion DAs enhanced at the middle point: these model
DAs at u0 ¼ 1=2 are very close to the asymptotic DA
with ϕasyð1=2Þ ¼ 1.5. The usage of updated twist-3 DAs
may also lead to sizeable corrections, because twist-3
terms contribute to gD�Dπ at the level of 50%–60%, and
are as important as the twist-2 term. All these questions
necessitate new, updated investigation of the couplings
gD�Dπ and gB�Bπ in the context of the LCSR method. The
real accuracy of this method is not completely clear at
present. On the one hand, it leads to results with 30%–
50% deviation from experimental data as in the gD�Dπ

case; on the other hand, it gives rather precise predictions
for radiative decays of mesons. Indeed, the LCSR
prediction for gD�Dγ [51,52] correctly describes exper-
imental data: the value of the quark condensate’s mag-
netic susceptibility that enters into this sum rule as a
nonperturbative parameter is known from both QCD sum
rules and lattice computations [53], and the two agree
with each other. As QCD lattice simulations of gD�Dπ (see
Ref. [54]) agree with the CLEO data, it will be instructive
to compare our predictions for the strong couplings
gB�

sBsη
ð0Þ and gD�

sDsη
ð0Þ with relevant lattice results, when

they become available.
The couplings gB�

sBsη
ð0Þ were calculated in Ref. [12] by

applying the three-point sum rule method, as well.
Differences in adopted definitions for the couplings,
chosen structures, and explored kinematical regimes to
extract their values make direct comparison of relevant
findings rather problematic: we note only a sizeable
numerical discrepancy between our predictions and the
results of Ref. [12]. We emphasize also the advantage of
the LCSR method compared to the three-point sum rule

approach in calculations of the strong couplings and/or
form factors. Indeed, in the three-point sum rules, the
higher orders in the operator product expansion (OPE)
are enhanced by powers of the heavy quark mass, and for
sufficiently large masses the OPE breaks down. The
LCSR method does not suffer from such problems: It is
consistent with the heavy-quark limit and provides more
elaborate tools for investigation than alternative
approaches.
In the present work we have investigated the strong

D�
sDsη

ð0Þ and B�
sBsη

ð0Þ vertices and calculated the relevant
couplings using the method of QCD sum rules on the
light cone. We have included in our analysis effects of
the eta mesons’ gluon components. The derived expres-
sions have been explored, and numerical values of the
strong couplings gD�

sDsη
ð0Þ and gB�

sBsη
ð0Þ have been evalu-

ated. Studies have demonstrated that the direct contribu-
tion to the strong couplings arising from the two-gluon
components of the η and η0 is small. But owing to
mixing, the gluon components affect the quark DAs,
which cannot be ignored.
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APPENDIX

This appendix is devoted to the calculation of f3s and

δ2ðsÞM , which enter as parameters into higher-twist DAs of
the η and η0 mesons. To this end, in the two-point sum rules
written down below, we consider fs and hs, as well as the

mixing angle φ, as input parameters; then only f3s and δ
2ðsÞ
M

remain unknown.

f3s and δ2ðsÞM can be defined in terms of matrix
elements of some local operators. Indeed, the parameter
f3s can be defined through the matrix element of the
following twist-3 operator:

h0js̄σzνγ5gGzνsjMðpÞi ¼ 2ifðsÞ3MðpzÞ2:

In order to extract its value, we use the correlation
function of nonlocal light-ray operators, which enter the
definition of the three-particle distribution amplitude with
the corresponding local operator. Such a so-called “non-
diagonal” correlation function is given by the following
expression [36]:
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Πs
ND ¼ i

Z
d4ye−ipyh0jT f½s̄ðzÞσμzγ5gGμzðvzÞsð0Þ�

× ½s̄ðyÞγ5sðyÞ�gj0i

≡ ðpzÞ2
Z

Dαe−ipzðα2þvα3ÞπsNDðαÞ: ðA1Þ

The sum rule for the coupling f3s is derived by
expanding the correlation function in powers of pz:

Πs
ND ¼ ðpzÞ4fΠð0Þs

ND þ iðpzÞ½Πð1AÞs
ND

þð2v − 1ÞΠð1BÞs
ND � þ � � �g: ðA2Þ

The hadronic content of the function Π has been modeled
employing “ηþ η0 þ continuum” approximation. Then
we get the following sum rule:

fðsÞ3η

hðsÞη

ms
e−

m2
η

M2 þ fðsÞ
3η0

hðsÞη0

ms
e−

m2

η0
M2 ¼ BM2 ½Πð0Þs

ND �:

The left-hand side of this expression can be modified
using information on mixing of the decay constants:

f3shs
ms

ðsin2φe−
m2
η

M2 þ cos2φe−
m2

η0
M2 Þ ¼ BM2 ½Πð0Þs

ND �: ðA3Þ

Now, having applied the explicit expression for

BM2 ½Πð0Þs
ND �, we determine f3s using the sum rule:

f3shs
ms

ðsin2φe−
m2
η

M2 þ cos2φe−
m2

η0
M2 Þ

¼ αs
73π3

Z
s0

0

dsse−
s

M2 þ 1

12

	
αs
π
G2




−
4αs
9π

mshs̄si
�
19

6
þ γE − ln

M2

μ2
þ
Z

∞

s0

ds
s
e−

s
M2

�

þ 80

27

αsπ

M2
hs̄si2 þ 1

3M2
mshs̄σgGsi: ðA4Þ

Numerical calculations have been performed at the scale
μ0 ¼ 1 GeV. To evaluate a continuum contribution we set
s0 ¼ 1.5 GeV2 and vary it within the limits 1.3GeV2 <
s0 < 1.7GeV2 to estimate errors. The Borel parameter M2

is changed in the interval 0.8 GeV2 < M2 < 1.8 GeV2.
The parameters have been extracted at M2 ¼ 1.3 GeV2.
For f3sðμ0Þ we have found

f3s ≃ 0.0041 GeV2: ðA5Þ

The varying of s0 in the allowed limits results in error
�0.00005, which may be neglected.

We introduce the parameter δ2ðsÞM through the local matrix
element

h0js̄γρig ~GρμsjMðpÞi ¼ pμf
ðsÞ
M δ2ðsÞM ; ðA6Þ

considering it as the universal one; i.e., we suggest that it
does not depend on the particles η and η0. In the local matrix
element, information on the mixing is contained in the

decay constants fðsÞM . Then we can write

f2sδ
4ðsÞ
M ½sin2 φe−

m2
η

M2 þ cos2 φe−
m2

η0
M2 � ¼ BM2 ½ΠAðsÞ

0 �;

where BM2 ½ΠAðsÞ
0 � is given by the expression [36]

BM2 ½ΠAðsÞ
0 � ¼ αs

160π3

Z
s0

0

dss2e−
s

M2 þ 1

72

	
αs
π
G2




×
Z

s0

0

dse−
s

M2 −
αs
9π

mshs̄si
Z

s0

0

dse−
s

M2

þ 8παs
9

hs̄si2 − 13αs
54π

mshs̄σgGsi

þ 59παs
81

m2
0

M2
hs̄si2 þ π

9M2

	
αs
π
G2



mshs̄si

−
2αs
π

mshs̄σgGsi

×

�
γE − ln

M2

μ2
þ
Z

∞

s0

ds
s
e−

s
M2

�
: ðA7Þ

Computations of δ2ðsÞM with the same input parameters as in
the previous case lead to the following prediction:

δ2ðsÞM ðμ0Þ≃ 0.1896� 0.001 GeV2: ðA8Þ

As is seen, f3s and δ2ðsÞM numerically are very close to the
pion’s parameters f3π and δ2π , respectively.
The values of the quark and quark-gluon condensates at

μ0 utilized in numerical calculations are listed below:

hq̄qi¼ð−0.24�0.01Þ3GeV3; hq̄σgGqi¼m2
0hq̄qi;

m2
0¼ð0.8�0.1ÞGeV2; hs̄si¼ ½1−ð0.2�0.2�hq̄qi;	

αs
π
G2



¼ð0.012�0.006ÞGeV4;

hs̄σgGsi¼ ½1−ð0.2�0.2Þ�hq̄σgGqi: ðA9Þ
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