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The strong DD ;") and B:B,n") vertices are studied and the relevant couplings are calculated in the
context of the light-cone QCD sum rule method with twist-4 accuracy by including the next-to-leading-
order corrections. In the analysis, both the quark and gluon components of the 7 and 7’ mesons and the
axial-anomaly-corrected higher-twist distributions are included.
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I. INTRODUCTION

During the last several years, the investigation of the
electromagnetic, weak, and strong decay channels of heavy
mesons, with the computation of their numerous transition
form factors and their strong couplings with different
hadrons, has become a rapidly growing branch of hadronic
physics. Progress in understanding the nature of such
mesons, including bottom-strange (and charm-strange)
ones, has been achieved from both the experimental and
theoretical sides.

Thus, experimental measurements of hadronic processes
and the extraction of the parameters of bottom/
charm-strange mesons have been performed by different
collaborations [ 1-6]. Theoretical calculations of parameters
related to these mesons were fulfilled by applying various
nonperturbative approaches and schemes, such as the
lattice QCD calculations [7], the QCD and three-point
sum rule methods (for instance, see Refs. [8—15]), and
different quark models [16,17]. In this way, the masses,
strong couplings, and form factors of some bottom/
charm-strange mesons were obtained.

Studies of the vertices consisting of interacting bottom/
charm-strange and light mesons have also attracted con-
siderable interest. In fact, the strong couplings determined
by the vertices DD} and B*B,n") have been recently
calculated in Ref. [12], where the three-point sum rule
approach is used. The present work is devoted to the
analysis of these vertices, but within the context of the
QCD light-cone sum rule (LCSR) method [18]. The latter
provides more elaborate theoretical tools to perform
detailed analysis of the aforementioned problems.
Indeed, the light-cone sum rule method invokes such
quantities of the eta mesons as their distribution amplitudes
(DAs) of different twists and partonic contents. This allows
one to take into account the quark-gluon structure of
particles in a more clear form than other approaches.

It should be noted that the 5 —#' system of light
pseudoscalar mesons accumulate important properties of
the particle phenomenology, like the mixing of the SU(3)
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flavor group singlet #; and octet g states to form the
physical mesons, the problem of axial U(1) anomaly, and
its impact on the relevant distribution amplitudes of the eta
mesons. To this list of features, one should add also the
complicated quark-gluon structure of the # and #' mesons
and subtleties in the treatment of their gluon components
that contribute to exclusive processes, the vertices under
consideration being sample ones, at the next-to-leading
order (NLO) of the perturbative QCD. These features of the
n—1n system, as well as new experimental data, have
triggered numerous theoretical works devoted to the
analysis of the mesons’ mixing problems and computations
of various exclusive processes to extract some constraints
on the parameters of their distribution amplitudes, includ-
ing the two-gluon ones [19-31]. The aim of this work is to
study the bottom/charm-strange meson strong couplings
and consider the vertices D*D,n") and B*B,n"") by includ-
ing in the analysis a gluon component of the # and #’
mesons. The computation of a gluonic contribution to such
strong couplings is a new issue that is considered in the
present study.

This paper is structured in the following manner: In
Sec. II, we present rather comprehensive information on the
quark-gluon structure of the 7 and #' mesons and details of
their leading and higher-twist distribution amplitudes.
Existing singlet-octet and quark-flavor mixing schemes
of the # — i’ system are briefly outlined, along with their
advantages and drawbacks. In Sec. III, the light-cone sum
rules for the strong couplings are derived. Here, the
mesons’ leading and higher-twist DAs up to twist 4 are
utilized. In this section, we calculate the NLO corrections to
the leading twist term, and also include in the light-cone
sum rules contributions appearing due to the gluon com-
ponent of the eta mesons. In Sec. IV, we perform numerical
computations to find the values of the corresponding strong
couplings. In this section we also make our brief con-
clusions. In the Appendix, the QCD two-point sum rule
expressions to determine some of the parameters in higher-
twist DAs of the n —# system are collected.
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II. MIXING SCHEMES AND DISTRIBUTION
AMPLITUDES OF 7, 7 MESONS

Computation of the strong couplings D*D.y") and
BBy, and relevant matrix elements within the frame-
work of the QCD LCSR method, requires knowledge of the
n and 1/ mesons’ distribution amplitudes. In this work we
use the mixing scheme for the eta mesons’ DAs elaborated
in Ref. [31] and relevant expressions presented there by
adding the necessary formulas for the three-particle twist-3
DAs @g};(a).

Below we concentrate mainly on the s-quark distribu-

tions, because only s valence quarks from the heavy D§*>

and BE‘*) mesons contribute to quark-antiquark and quark-
gluon-antiquark DAs of the eta mesons. Nevertheless,
when necessary, we provide some information also on ¢
components of the corresponding DAs.

Hence, we define two-particle DAs for the s-quark
flavor as

(M(q)[5(x)7,755(0)|0)

1 A S
— ig,FY) / due ¢S ), (1)

where M(q) is the 5(gq) or #'(g) meson state. In this

expression qﬁg&) (u) is the leading twist, i.e. the twist-2 DA
of the M(g) meson. For brevity, in the matrix element, the
gauge link is not shown explicitly. The normalization is
chosen such that

1
| e =1 2)

Similar distribution amplitudes can be defined for ¢ =
u,d quarks as well, with evident replacement s — ¢ in
Egs. (1) and (2). Then, assuming exact isospin symmetry
and denoting m, = (m, + m,)/2, we can determine the

couplings F 5,/';) =F gf,l), F 5&) as the matrix elements

OUDIM(q)) = if\lq,.  i=q.s (3)

of flavor-diagonal axial vector currents JLS:

1 = 7 s -
J,(fg) = ﬁ [ityyysu + dy,ysd], J,(g = 57,58, (4)

The couplings Fﬁ;) , FI(S), and Fgfl) are connected with

f[(é) couplings by means of the following simple
expressions:
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This definition of the distributions corresponds to the
quark-flavor (QF) basis introduced to describe mixing in
the n — #' system. In the QF basis, mixing of the ¢ and s
states forms the physical # and #' mesons. Alternatively,
one can determine DAs of the eta mesons starting from the
singlet-octet (SO) basis of the SU(3) flavor group. To this

end, one introduces the SU(3) flavor singlet JLIS) and octet

7®

s currents

1 Ly d 5
J( ) _ [u}/ﬂ)/su =+ d}"u}/sd + S}/ﬂySS]’

U5 \/g
1 - _
Jfg-) = 76 ity ysu + dy,ysd — 257,755 (5)

and defines the corresponding matrix elements as

(121M(q)) = if}) g,

The eta mesons’ quark-flavor and singlet-octet combina-
tions of the distributions are connected with each other as

(8) 1(8) (q) 1(q)
(f;(vll>¢1(v11)(u,ﬂ)> _ U(¢0><f?f>¢§f>(u’m)~ 7
Tl ®ar (us ) Tar P (u, )

i=18. (6)

Here

COS @
Ulpy) = < sin g
0

. L _ /2
—s1nq)0> 3 3

)
3 3
with @, = arctan(v/2).

In the singlet-octet basis, the scale dependence of the
DAs is considerably simpler than in the QF approach. In
fact, SO couplings and DAs do not mix with each other via

COS ¢

renormalization. Moreover, the octet coupling f,(‘j) is scale

independent, whereas the singlet coupling f$,> evolves due
to the U(1) anomaly [32]:

2n

1 1

7000 = 1560 { 1+ 2L ) = sl ). )
where n; is the number of light quark flavors.

This basis is also preferable for solution of the evolution
equations. Thus, the quark-antiquark DAs in the singlet-
octet basis can be expanded in terms of Gegenbauer
polynomials C3/ >(2u—1) that are eigenfunctions of the
one-loop flavor-nonsinglet evolution equation:

S dlWweeu-1).

(j)g},’g)(u,y) = 6uil {1 +
n=24,...

(10)
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The sum in Eq. (10) runs over polynomials of even
dimension n = 2,4, ..., implying that the quark-antiquark
DAs are symmetric functions under the interchange of the
quark momenta

1.8 1.8) /-
O™ () = ™ (@), (1)
Another twist-2 DA of the # — %’ system is connected with

its two-gluon component. This distribution can be defined
as a nonlocal matrix element

(M(p)|G,,(x)G"(0)[0)

C 1 )
— L@ [ e g, (2)

=55 "
where G, = G414 /2 with tr[4°A”] = 26%". The dual gluon
field strength tensor is defined as G,, = (1/2)€,,qsG?,
and Cp = 4/3.
The gluon DA is antisymmetric,
Pt () = =47 (0. ). (13)

and can be expanded in a series of Gegenbauer polynomials
52

5 (2u —1) of odd dimension:

i) () =302 Y @l (WCA2u—-1). (14)
n=24,...

It should be emphasized that the octet components of the
eta mesons’ DAs are renormalized multiplicatively to the
leading order and mix with the gluon components only at
the next-to-leading order, whereas the singlet components
mix with gluon ones already in the LO (see Appendix B in

Ref. [31] for details). The values of the parameters aﬁ{ﬁ'g ) at

a certain scale y determine all nonperturbative information
on the DAs.
In the exact SU(3) flavor symmetry limit, 7 = #g, and '

is a flavor singlet, ¥/ = 5. In this limit £\ = f,. with
f. =131 MeV being equal to the pion decay constant.
However, it is known empirically that the SU(3)-breaking
corrections are large and, as a result, the relation of physical
n,7’ mesons to the basic octet and singlet states becomes
complicated and involves two different mixing angles; see,
e.g., a discussion in Ref. [19].

To avoid these problems and reduce a number of free
parameters necessary to treat the n —#' system, a new
mixing scheme (FKS) was proposed [19]. It uses the QF
basis and is founded on the observation that vector mesons
@ and ¢ are to a very good approximation pure iu + dd
and §s states, and the same is true also for tensor mesons.
The smallness of mixing corresponds to the OZI rule that is
phenomenologically very successful. Therefore, if the axial
U(1) anomaly is the only effect that makes the situation in
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the pseudoscalar channel different, it is natural to suggest
that the physical states are related to the flavor ones by an
orthogonal transformation
—sing )
cosgp )

()= v () vo=(Gon
(15)

The assumption on the state mixing implies that the same
mixing pattern applies to the decay constants and to the
wave functions as well. In other words,

(fZ‘I) f’ZS>> - U((ﬂ) <];q f )7 (16)

and

RSN iy 0\
W (0 g0, | V@ b, (17)
£OBE g, fibs

are held with the same mixing angle ¢.

This conjecture allows one to reduce four DAs of
physical states 7,5 to the two DAs, ¢,(u,u) and
¢y (u, p), of the flavor states:

A (1) = 97 (1) = gy (),
¢ (1) = ) (u) = by (w). (18)

The singlet and octet DAs is this scheme are given by

FOHE 040 0
( ©.® .0 )= U(<0)<fq¢q )UT(fﬂo)a
F by f'by 0 fidbs

(19)

and the same relation is valid for the couplings fg? and
the couplings multiplied by the parameters fgyaﬁi)M. The
couplings f, and f, as well as mixing angle ¢ in the quark-
flavor scheme have been determined in Ref. [19] from the
fit to the experimental data

fq = (1.07£0.02)f,,

fs=(1.34 £0.06)f,,
@ =39.3°+1.0° (20)
It is worth noting that the flavor-singlet and flavor-octet
couplings have different scale dependence, and Eq. (19)

cannot hold at all scales. It is natural to assume that the
scheme refers to a low renormalization scale uy ~ 1 GeV
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and the DAs at higher scales are obtained by the QCD

evolution.
Then, for the gluon DA, we assume that
(141G (x)G*(0)]0) = (]G, (x)G*(0)[0)
and as a result get

¢ (1) = B (u). (21)

We define two-particle twist-3 DAs for the strange
quarks in the following way:

2, (M(q)[5(x)irss(0)]0) = / Ldue gl (w)  (22)

and

2ms <M(Q) |§<X>O'ﬂy}/5S(0> |0>

1 i S)o
— o —a,) [ gl @3

with the normalization

1 1
[ ansre = [Fangioo =y e
Here [22,31]

A = gy - A,
Xs o Fauw
AM = <O|EG/41/G : |M(p)>, (25)
which follows from the anomaly relation
s —. X ~u Fauw
8"];5) = 2m3iyss + EGWG .
Twist-3 DAs for the light ¢ = u or d quark can be defined

by similar expressions with substitutions s — ¢; e.g.

H\Y = m2,F\) — A,;, where

(q)
u d h
HY =\ = % (26)

Writing the normalization of the twist-3 DAs in this form
[see Egs. (22)—(25)], we follow Refs. [22,25,31]. Note that
this definition formally remains correct in the chiral m; — 0
limit. As mentioned above, in this case # and #’ are purely
flavor octet and flavor singlet, respectively, so that 5
becomes massless and 7 remains massive due to the axial
anomaly [33,34]. Equation (25) is then satisfied trivially for
1, because all three terms vanish, and for 7’ the cancellation
of the two terms on the rhs implies the well-known relation
for the #/ mass in terms of the anomaly matrix element. The
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ratio h;/mg (and the similar ratios for light quarks) remains
finite, so the contribution of twist-3 DAs to correlation
functions remains finite in the case in which they enter the
coefficients without a quark mass factor. For further dis-
cussion and examples, we refer to Ref. [25].

We assume that at low scales, the FKS mixing scheme is
valid for all quantities and distributions, and introduce two
new parameters i, and h, [22]:

.y .0
=U ” 27
<h(7),h(f) <‘”)<o,hs> 27

n n

with numerical values (in GeV?)

h, = 0.0016 + 0.004, hg = 0.087 £ 0.006. (28)

Within the FKS scheme, we can rewrite four DAs ¢\
in terms of two functions ¢%,(u) and @5 (u). The same
argumentation is valid for the distribution amplitudes

gﬁ;)g, as well. Let us note that for calculation of the

strong couplings of interest we need only the s components
of the DAs. Therefore, we get

@5 (1) = —¢h (u) sin g,

P8 () = —¢b3, () sin g,
(29)

#5)" () = @5, (u) cos .

) (u) = 3, () cos .

where

@5 (u) = hy + 60m, f3,C;/*(2u — 1),
#5, (1) = 6itulh, + 10m, £3,C5*2u—1)].  (30)

The coupling f5, is defined as

(056,6759G"slns(p)) = 2i(pz)* £,

and we assume that

£ =Fycosp,  fy) ==fysing.  (31)

For the coupling f5, as an estimate, we adopt a value of
the similar parameter obtained for the pion. The latter at the
scale g = 1 GeV is equal to

Fas(io) = Fan(uo) = (0.0045 £ 0.0015) GeV2.

The scale dependence of f3,(u) is determined by the
formula
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e ]
fut = [ZE " . @

Here some comments are in order. Let us explain our
choice of the parameters in the higher-twist DAs. First of
all, there is not any information on flavor-singlet contri-
butions to these parameters. Moreover, computation of
these parameters using the QCD sum rule method by taking
into account only quark contents of 77 and 7’ mesons leads to
numerical values that are very close to parameters of the
pion DAs. In fact, calculations of the parameters f3, and

6%,53) presented in the Appendix illustrate the correctness of
this choice. Therefore, in what follows we will use
parameters from the pion DAs, keeping in mind that the
approximation accepted here does not encompass the
flavor-singlet effects.

The eta mesons’ three-particle twist-3 DAs are defined in
accordance with Ref. [35]:

(M(q)[5(x)g

lfg;l)l [Q(l(qﬂgl/ﬂ ql/gﬂﬂ)

ﬂu(vx)gaﬂ}/Ss(O) ’0>
(a<>p)]
X Dgeiqx(a1+va3)q)<33}&l(a)’ (33)

where

1
Dgz/dadada&(l— ai>.
[ Pa= [ dardondas(1-3

The expansion of the function @S&,(a) in the conformal

spin leads to the known expression
s 1
o) (@) = 36002y {1 5 03(Ta - 3)] . (34)

with

(1.5 +0.7) GeV? (35)

w35 (Ho) = w3, (ko) =

and

%%M—P@ (Fay3s) (t0)-

:| 104/94,
Xs (/l())

Finally, we will need the DAs of twist 4, which are rather
numerous. First of all, there are 4 two-particle twist-4

distribution amplitudes of the 7 — 77/ system stemming from
the matrix element
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(M(q)[5(x)7,r55(0)|0)

— —iq F(S) /1 dueidt |:¢(S)(u)
- M 0 M

. 1 . .
- ix—”FS‘f,)/ due’qx“y/f&(u). (36)
qx 0

2
X N
+ Efﬁm(”)

Other three-particle twist-4 distributions are given by the
expressions

(M(q)[5(x)7,,759:Gap(vx)s(0)]0)

_ F( )q (anﬁ dpXq /Daequ a1+w3)q)é(”3[(a)

(s) Xaqu Xp4u
+Fy {qﬂ(ga,, r ) —qq <gﬁ,, T ﬂ

X / Daeinaia) ) () (37)

and

(M(q)[5(x)7,7595Gap(vx)5(0)[0)

4q igx(a+va
= Fl(lfl)q_;(qaxﬂ - Qﬂxa)/DQe g tvas) 4(1/31

s Xaqu Xpq
+ Fj(w) |:q/} <gay gx ) 9a (gﬁﬂ ! ”>i|

/Daequ aj+vaz) ‘(1)( ) (38)

The distribution amplitudes ‘1’5{3\)4 and \IJE& can be

expanded in orthogonal polynomials that correspond to
contributions of increasing spin in the conformal expan-
sion. Taking into account contributions of the lowest and
the next-to-lowest spin, one finds [31,35-37]

D) (@) = 12000005 (@) — ),
i’f&(a) = 120a;m a3 [(?)ész)w + €Z<23,z)u(3a3 - 1),
%m@=4w4wma—@

(s
1

+y ,1)\/1[0‘3(1 - a3) — 6a,@,)

s 3
+ Wéz)u {03(1 —a3) —5(0‘% + 0‘%)} }

¥4 (0) = =30ad(an - ) { iy + v

| =

+ (e -3 . (39)

The coefficients ¢1§§121’ l//,((;al are related by QCD equations of

motion (EOMs) [31]. From these EOMs one obtains
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(s s 1 2(s
Bowr = Vo = =35 (40)

fu
(41)
Here the parameter 612&&) is defined as
(0157719G,,5 1M (p)) = pofiy 63"
Its value at y is chosen to be equal to
529 (o) = 82(up) = (0.18 £0.06) GeV2,  (42)
and its evolution is given by the formula
a0 = |25 ),
We set the parameter wf& (Ho) equal to @y, (uo):
@y (Ho) = @4z (uo) = (02£0.1) GeV2,  (43)

with

(&3 @) () = [%} T G ol )

The DAs qﬁf&(u) and wi}&(u) can be calculated in terms
of the three-particle DAs of twist 4 and the DAs of
lower twist. As a result, one obtains the expressions for
the two-particle DAs wf{}}(u) and 1//4(5') (u) that can be
separated in “genuine” twist-4 contributions and meson

mass corrections as

v () = wiog ™ () + malo™ (), (44)

with

PHYSICAL REVIEW D 92, 116010 (2015)

(s)
§ ) twis 20 S
W ) = 25 Y u = 1) 4 30m, L
I
1
X (5 — 10un + 35u2ﬁ2),
§)mass 17 7 105 u
lllé(t/l)l (u) :E— 19“”""7”2”2
A
+al), (5 — S4ui + 225u2ﬁ2> : (45)

and similarly

P () = Plop™™ () + m i (), (46)

where
§)twis 200 s — s K — —
PSS () = Téi} i 42150 ) {uin(2 + 13ui)
+2[u* (10 = 15u + 6u?) Inu + (u<>it)]}
(s)
+ 20ms%uu[12 — 63ui + 14u”i?],
fu
s)mass _ 88 39 _ _
¢§A)4 (u) = un {B —l-?uu + 14u2u2]
s 24 54
- ag,;)wuﬁ {? — 5 Ui+ 180142&2}
28 24
+ (E - ?a51>u> [4?(10 — 15u + 6u°) Inu
+ (uein)]. (47)

These expressions complete the list of the distribution
amplitudes that are necessary for analyzing the strong
vertices D*D ;") and BB,y with twist-4 accuracy.

It is worth noting that we have chosen parameters of the
higher-twist DAs in order to obey the pattern of the state
mixing accepted for the # — 7' system. In fact, it is not
difficult to see that the relations in Eq. (17) are true for
the DAs ¢ (u), p3) (u), and £33, ®%) (@) as well. This
formula is fulfilled approximately for twist-4 DAs
F 5&) ¢f{;)4(u) and F 1(&) wf&(u}. The main sources of deviation
from Eq. (17) are terms ~m3, in twist-4 DAs that,
nevertheless, numerically have rather small effects on final
results.

III. THE LCSR FOR STRONG COUPLINGS

In the context of the QCD sum rules on the light cone,
heavy-heavy-light-meson strong couplings were analyzed
already in Refs. [38—40], where the vertices D*Dx, B*Br,
as well as vertices with p mesons were considered. In
the present work, we calculate within the QCD LCSR
method the strong couplings that correspond to the vertices
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D:D#y") and B:By"). Below, we concentrate on the
couplings gp:p u; results for gp:p p can be easily obtained
from relevant expressions by replacements b — c,
BY - D7, and B% — D*~.

A. Leading-order results

In the calculation of the leading-order contribution to the
LCSR, we use technical tools and methods elaborated in
the original paper [38]. We start from the correlation
function

Fupoq) =i / dxeP (M (g)| T {5(x)y,b().

x b(0)iyss(0)}0). (48)

It is well known that this correlator can be calculated in
both hadronic and quark-gluon degrees of freedom. Within
the QCD LCSR method obtained in this way, expressions
should be matched in order to find the couplings gz , and
9p:B,y and extract numerical estimates for them. In terms of
hadronic quantities, the aforementioned correlation func-
tions are given by the expression

2
ngBSMmBJmB}‘f 8,SB;
Fli(p.q) = ’ 2]

my(p* = my)[(p + q)* — mp,
1 mp_ + my
g {‘Iﬁz(l T )

where we have defined the couplings gg:p p and decay
constants fp, fp: by means of the following matrix
elements:

(B (P)M(q)|BS(p + 4)) = —gB;8,mdue".

2
_ m
(By|biyss|0) = ™8, ,
my
(0[57,,b|By) = mp: fp:€,. (49)

The correlation function depends on the invariants p?, (p -+
g)? and can be written as a sum of invariant amplitudes

F,(p.q) =F(p*.(p+ @)*)g, + F(p>.(p + 9)*)p,.

For our purposes, it is enough to consider the func-
tion F(p?. (p + q)*).

Computation of the amplitude F(p?, (p + ¢)?) in terms
of the hadronic quantities leads to an expression that
contains the contribution of the ground state and the
contribution of the higher resonances and continuum states
with relevant quantum numbers in the form of a double
dispersion integral:

PHYSICAL REVIEW D 92, 116010 (2015)

2
9:,m™Mp Mp: [ [B;
F'(p*.(p+q)?) = 3]

my(p* — m%;;)[(]’ +q)* - mg

dsydsyp" (s, 5,)
" / 1= P2~ + 9

(50)

Here the dots stand for single dispersion integrals that,
in general, should be included to make the expression
finite.

Considering p? and (p + ¢)* as independent variables
and applying the Borel transformation, we find

By By F'(p*. (p +4)%)

2 2
mB* mB*

. 2 __Ts__ s
B gB;BS.MmBSmB§fBXfB§ P

my

31 s
+/ds1ds2e MM (51, 85). (51)

In order to obtain the sum rules expression for the
strong couplings, the double Borel transformation should
be applied to the same invariant amplitude, but now
calculated using the quark-gluon degrees of freedom. To
this end, one needs to employ the general expression for
the correlation function Eq. (48) and compute it by
substituting the light-cone expansion for the b-quark
propagator

(017 {b(x)b(0)}|0)

&k km, [ dk
= 4.ezx > > — ig, —4€tx
(27)*i m;, —k (27)

1 1 k + mb
dv |=———7—=G"
X [) v [2 (mi G (vx)o,,
k + my,

R vx”G"”(vx)yy] (52)
b

and expressing remaining nonlocal matrix elements
in terms of distribution amplitudes of the eta mesons.
The diagrams corresponding to the free b-quark propa-
gator, and to the one-gluon field components in the
expansion Eq. (52), are depicted in Figs. 1(a) and 1(b),
respectively.

Technical details of similar calculations can be found in
Ref. [38]. Therefore, we do not concentrate here on these
procedures and provide below only final results. Thus, for
the contribution arising from Fig. 1(a) we find

116010-7



S.S. AGAEYV, K. AZIZI, and H. SUNDU

q q
p+q pooptaf p
(a)

(b)

FIG. 1. Leading-order diagrams contributing to the correlation
function. Thick lines correspond to a heavy quark. Diagram
(a) describes quark-antiquark contributions of various twists to
the correlator, whereas (b) shows the contribution coming from
three-particle components of the meson distribution amplitude.

FO(p. (p+q)?)

I du (s) { (s) myui ()
= m u)———mm— u
A A(p,q,u){ bFy ¢M( ) A ¢M( )

(p.q.u)

LI PO _Mﬂ

A(p.q.u) <2uG4M(u) 2A(p.q.u)

L) ) | B (W) mierz}
2m, 6m, 12mg; A(p,q,u))’

(53)

In this expression we have introduced the shorthand
notation for the denominator of the free b-quark propagator
[see the first term in Eq. (52)],

A(p.q.u) =my— (1 —u)p* —u(p + q)*

and also defined the new function Gg;},(u),

G () = — / Wi (v)dv.

The meson mass correction ~m%4 in Eq. (53) comes from
the expansion of the leading-order twist-2 term.

Computations with one-gluon field components in the
b-quark propagator lead to the following result:

FO(p2 (p+q)?)
» o 4f3M 3M( )”PCI
/d/D{ — (p+ qlay + vaz))*?
Fm Z\Pi‘ma)—@m(awwz&(a)— 4M<a)}
me [m2 = (p + gl + vay))22 ‘
(54)

Now, having applied the formula for the double Borel
transformation
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(1—1)!
BuzBug [my = (1= u)p* —u(p + )|

= (M2 (= wg),

with
M
M3 + M3

MM3

2
M3 + M3

Uy =

it is not difficult to find a desired expression for the Borel
transformation of the invariant amplitude in terms of the
quark-gluon degrees of freedom.

By this manner we obtain

BMfBMgFQCD(Pz, (p+49)*)

2 _
= I MZ{meﬁj)cﬁﬁi’ (1) (1 - uO)
(s)p (s)o 1 A
+¢3M (uo) " +¢3M (o) n " b3m (uo)
2m, 0 6m, 12m, °  du
mi(ﬁg;zf(uo) 2F§‘f,)mh F(
+ 6msM2 M2 MOG4(”£0) 4M4 ¢4M( )
) ] ] 14(S> u
s) 3(s K
+ 20559 (w) + Fm, MM(Z 0)}. (55)
In Eq. (55) the new functions
. w [ (a1 = ug, g —
113‘/5)(”0) :/ Odal[ sm (@ o, Uy — ay)
0 Up —
_/1_a] da3 ¢g;\2]<a17 1 _z(xl - (X3,(X3>:| (56)
uy—a az
and
ar da
0 ) = [ day [ 2 (@) - 2
uy—a,
+ 204 (a) - @532(00] (57)

are introduced.

Equation (55) is the required Borel transformed expres-
sion for the function FP(p? (p + g)?) given in the
quark-gluon degrees of freedom. In order to derive the
light-cone sum rule formulas for the couplings gp:p , and
9p:B,y» one should equate the Borel transformations of
F'(p?.(p + ¢)*) asin Eq. (51) and FRP(p?, (p + q)?) as
written down in Eq. (55). Then the only unknown term is a
contribution of higher resonances and continuum states
represented in Eq. (51) as the integral with double spectral
density p"(s;,s,). To solve this problem, in accordance
with the main idea of the sum rule methods, we suggest
that above some threshold in the (s;,s,) plane, the
double spectral density p”(s;,s,) can be replaced by
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pUP(s,,s,). Then the continuum subtraction can be
performed in accordance with the procedure developed
in Refs. [18,38,41]. It is based on the observation that
double spectral density in the leading contributions, i.e. in
those proportional to the positive powers of the Borel
parameter M2, is concentrated (or can be expanded) near
the diagonal s; = s,. In this case, for the continuum
subtraction, the simple expressions can be derived, which
are not sensitive to the shape of the duality region
[18,38,41]. The general formula in the case M3 = M3 =
2M? and uy = 1/2 reads

m?

MPeE —F(l ) /SO dse™ (s — m2)nt,
n n’lz
b

(58)
For terms ~M?, it leads to the simple prescription
1‘426—m}27/M2 N 1‘/[2(e—m,27/M2 _ e—so/Mz) (59)

adopted in our work, as well.
For the higher-twist terms, which are proportional to the
zeroth or to the negative powers of M2, on the one hand,
|
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continuum subtraction is not expected to have a large effect,
and, on the other hand, it is not known how to perform it in
a theoretically clean way. The difficulty here is that the
quark-hadron duality is not expected to work pointwise in
the two-dimensional plane (s;,s,), but, at best, after
integration over the line s; + s, = const. (see, for example,
Refs. [42,43]). For this reason a naive subtraction using the
“square” duality region s, < s¢, s, < So does not have a
strong theoretical basis. The spectral densities correspond-
ing to the higher-twist terms under consideration are not
concentrated near the diagonal s; = s,; as a result, the
required continuum subtractions take rather complicated
forms. Because the higher-twist spectral densities decrease
with s; and s, quickly enough and the impact of the
subtracted terms on the final result is not significant, in a
standard technique for the LCSRs of this type, one does not
perform continuum subtractions in these terms at all [38].
Here we follow these procedures and subtract the con-
tinuum contributions only in the terms ~M?.

The masses of the B, and B} mesons are numerically
close to each other, hence in our calculations we can safely
set M? = M3 and uy = 1/2. Then, it is not difficult to write
down the following sum rule:

m2 +m? 2 (s)p (s)o
m s s __b _S0 K ¢ u ¢ u
fBXfB}‘gB?;BSM = m2 ’[/:13 e wm? {M2(€ M — e M2> |:me1(‘;>¢1(&)(”0) + 31;”/5 0) I =+ 31%4"/5 0)
BB s s

L dgy (o)

')(F
* 12m, °  du

_mp
4M?

A(s
+IM( )(”0)

This result differs from the corresponding expression of
Ref. [38] due to new definitions of the DAs and the
additional mass term in the sum rule expression.

For self-consistent treatment of Eq. (60), one needs
expressions for fp and fp- with NLO accuracy. A recent
calculation of the heavy-light mesons’ decay constants,
performed in the context of QCD sum rules method by
taking into account O(a?) terms in the perturbative part
and O(a;) corrections to the quark-condensate contribu-
tion, can be found in Ref. [44]. For further details and
explicit expressions, we refer to this work (see
also Ref. [45]).

B. NLO corrections: Gluonic contributions
to the strong couplings

The QCD LCSRs for the strong couplings [Eq. (60)]
have been derived at the leading order of the perturbative
QCD with twist-4 accuracy. In order to improve our results
and make more precise theoretical predictions for the

+ 2f§;)41§}'>(u0)} + e

2
N m S)o
i) ) + 2241

m

SN}

)

|:F1(lfl)mb (—m@uoﬁoqﬁg&)(uo) + 2”0G4<1§\)4(”0)

() }/ (60)

strong couplings, we need to find NLO perturbative
corrections at least to the leading twist term, and in this
way include in our analysis also the gluon component of the
eta mesons. The NLO correction to the leading twist term
and the relevant double spectral density for the strong
vertices B*Bx and D*Dn were found in Ref. [40]. In this
work, the authors demonstrated that, to this end, it is
sufficient to utilize the NLO correction to the transition
form factor B — 7 calculated in Ref. [46], and from the
corresponding expression deduced the double spectral
density for the coupling g¢p:p,. Because the pion is a
pseudoscalar particle and has only a quark component, after
some corrections that depend on the definitions of DAs and
decay constants, results of this work can be used to find
NLO corrections to the leading twist term in the LCSRs for
strong couplings arising from the quark component of the #
and 1’ mesons. Therefore, we borrow the corresponding
expression for the NLO correction from Ref. [40], and for

the asymptotic DAs ¢f1‘21,>(u) we get
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(s)
a,Cp Fﬂ(ﬂ’)mb

dr 2
285

X/ L (iz—z)e_”mzd& (61)
Zmi ny

s By
Qi (M. 57) =

i X X
—4+3ln<2> In <1+2>

3(3x° +22x% +40x4-24)  (x
3(2 +x)?

"2
+6Li, <— ;f) — 3Liy(=x) — 3Lis(~1 — x)

3(3x2 + 20x + 20)

=3Il +x) 2 +x) - == 7

(62)

6x(1 4+ x)In(1 + x) . (63)
(2 +x)?

In order to find the gluonic contributions to the LCSRs,
one has to compute the quark box diagrams shown in
Fig. 2. For the transitions B — 5(") they were calculated in
Ref. [25] (see also Ref. [47]). We adapt to our problem the
relevant expressions obtained in Ref. [25] and use them in
our calculations.

To derive the double spectral density, we start from the
expression

C « dag(a, p?)
F(q) 2’ 2 :as F £(1) / AR A
(P (p+4)7) ==~ fumy i a—(p+q)
(64)
where
m:—a
gla, p*) = (){ b [59mf + 21p° — 63p*a
6\f G\ (@=prp

- 19p%a® + 2a* + mia(164p? + 13a)

¢ Uy — p?)(a—mj)

m (82p2 + 95a)] +
(a—p*)p
x [5m} + p* + 3p*a+ a® — S5mi(p? + a)]
2 2
x [2111“ ;"”—m”—z]}. (65)
my, my,

We employ a method described in detailed form in
Ref. [43]. In other words, we first perform the double
Borel transformations
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00,
00000,

\

FIG. 2. Quark box diagrams that determine the gluonic con-
tribution. Thick lines correspond to a heavy quark.

() (b) (©

B, (p*)B,((p + q)*)F9(p>
= F@(t,,tz)

(p+49)?)

—51/t1—51/127

1
— [ dsidsyp(si, s2)e
Ity

and then apply the Borel transformations in 7; = 1/¢, and
7, = 1/t, in order to extract p(sy, s,)

1
B1/s,(71)31/s2(72)7F J(1/71.1/75) = 51500(51,52).
717y

Having subtracted the contribution of the resonances and
continuum states, we get the gluonic correction as the
double dispersion integral:

Fy(p*.(p+q)%)
oo CFf / / dslds2p(slvs2)
e m? _(P‘FQ)z)’
(66)
where
25 ()
S1,8)) = ——=a, S1,87) + 6ps(s1,857)].
p(s1.52) 6v3 2,ML01( 1 2) Pz( 1 2)]
Here
oAl 82,0
pi(s1,s2) = 21AW () — 57) _FA (s1=152)
59
—ﬁAM)(Sl - 52), (67)
and
p2(81.82) = L(sy.p) A(2>(Sl—52)
() N0
+-AB) (s s2)+ﬁA (s1—$2) (68)

In Egs. (67) and (68),
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AN (s = 55) = (51 = myp)"8" (51 = 52),
—m? 2
L(s,u) =22 1 2 (69)
my, h,
with 8(")(s, — s,) being defined as
aﬂ
5(")( —5) = os" 3(s; —52).

The Borel transformations in the variables p? and (p + ¢)*
of the integral in Eq. (66) give us the desired gluonic
contribution to the sum rules:

By By Fy((p + q)*. p?)

B By

a,Cr (1 50 So _ 2 _ 2

== fg,,)m,, ds, ds,p(sy,s,)e " 1/Mig=s2/M,
47 2 2
m, m,

(70)

In the case M7 = M3 = 2M?, by applying methods from
Appendix B of Ref [38], we calculate the integrals in
Eq. (70),

/ dsl/ ds, AW (s; —sy)e =(s1+s,)/2M*
2
b
( )/23’*‘ o d\F m2\ k
= d s/2M _my 71
25 S - a) "7 v=1/2 )

b

and

/ dS] / dS21n ) ( )(Sl —SQ)

m,

(—l)k ngs _s/2M? d\*

k+1 m2 dse o %
b

x KU—’”T%)kln (sv—mg)] o (72)

The integrations over s can be performed explicitly,
allowing us to find the gluonic contribution in a rather
simple form:

X e_(51+52)/2M2 —

pd a,C
) (M2.s55") = 47;Ff(()/>mh[r1(M2,ng)+rz(M2,soBt‘)}v
(73)
where
2 By __ 2( —m? | M? —so/M? 51
NP s = MY eI - eI (-5 ) (4)

and
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3
(M2, s5) = M o/ M [22+201,/< )

B, 2 2 2
- M
—20T <o,¥) +20In " 10m#-

mj m
B — 2
NNV G [—27 201250 ~m)
16 Z
b
2
+10In —} (75)
mj

Here w(z) = (d/dz)InT(z) and I'(a, z) are digamma and
incomplete gamma functions, respectively.

Then, the NLO corrections to LCSRs arising from the
quark and gluonic components of the eta mesons are given
by the expression

m2 +mz*
mb B,\‘M 5 (‘) ~
iy mg (Do + Qo)) (76)

which should be added to Eq. (60).
It is interesting to note that strong couplings given by
Egs. (60) and (76) may be presented in the form

(s)

ngBl\,n = —sin (PGB;B“,,’
gB:By = COS (pGE;t)Bw" (77)

In fact, excluding some terms, the couplings with the high
accuracy follow the mixing pattern discussed above that
can be demonstrated explicitly.

IV. NUMERICAL RESULTS AND CONCLUSIONS

The LCSR expressions for g , and gg:p v in Egs. (60)
and (76) contain numerous parameters that should be fixed
in accordance with the usual procedures. But apart from
that, in numerical calculations there is also a necessity to
utilize equalities to connect 7 and 7/ mesons’ DAs and
decay constants obtained using different bases. Indeed, as
we have emphasized above, in order to solve renormaliza-
tion group equations, it is convenient to use the singlet-
octet basis. This basis was used in Ref. [31] to describe the
evolution of the flavor-octet and flavor-singlet DAs with
NLO accuracy. One should note that the gluon DA in

Eq. (12) is normalized in terms of the decay constant fl(vl,).
From another side, the QF basis is more suitable to analyze
the n—# mixing phenomena and solve equations of
motion, which determine parameters in twist-4 DAs. The
values of the decay constants in Eq. (20) were deduced
within the QF mixing scheme, as well. The general
expression for such transformations can be found in
Eq. (19). Here we provide the formula for eta mesons’
decay constants in the SO basis:
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(fff) f%”) <cos€8 —sind, ) (fs 0 )
fff) f'(;) ~ \sinfy cosé, 0 f)
with the numerical values of the parameters

f1=(1.17 £0.03)f,.
0, = —(9.2° + 1.7°),

fs = (126 £0.04)1,,
0y = —(21.2° £+ 1.6°).
The B, and B} mesons’ decay constants and masses enter
into Egs. (60) and (76) as input parameters. Their values are
collected below (in MeV):
m, = 547.86 + 0.02,
mg = 5366.77 + 0.4,

m, = 957.78 = 0.06,
mp. = 54154+ 1.5.

The decay constants fp and fp. were calculated from the
two-point QCD sum rules in Ref. [45] (in MeV):

fp =231416,  fp =213+18.  (78)

We employ the masses of the quarks in the MS scheme
(in GeV):

my(my) =418 £0.03,  m.(m.) = 1.275 + 0.025.

(79)

Their scale dependencies are taken into account in accor-
dance with the renormalization group evolution

mq(:“O) {aS(ﬂ) } y,,’

Oy (//lO)

mgy(p) =

with y, = 12/23 and y, = 12/25. The strange quark mass
is my = 0.137 GeV. The renormalization scale is set equal
to

Uy = m%x —m? =34 GeV. (80)

The parameters and quantities are evolved to this scale,
employing the two-loop QCD running coupling a,(x) with
A® =326 MeV. The same QCD two-loop coupling is
used throughout this work, for example, to compute NLO
corrections. The evolution of the leading twist DAs is
calculated with NLO accuracy by taking into account
quark-gluon mixing [31]. Calculations require us to fix
the threshold parameter s, and a region within which it may
be varied. For s, we employ

st =500 =36+2.5 GeV2.

Additionally, the eta mesons’ DAs contain the Gegenbauer

moments a(l’g)(,uo) and af (#o). In Ref. [31] they were

extracted from the analysis of the eta mesons’

PHYSICAL REVIEW D 92, 116010 (2015)

electromagnetic transition form factors. In the present

work, for a(l’g) and agy) we utilize values that are com-

patible with ones from this work and accept the following
models for DAs:

Lal™ =a"® =01, 4 =-02,
Lol =a"® =02, 4 =-02,
m.al® =02,  o'"¥=0 49=-02. (81

Results of the computations of the “scaled” couplings
fe.f:98:8,y and fp fp:|gp:p ,| are depicted in Fig. 3.
Calculations have been carried out employing model I.
From analysis, we find the range of values of the Borel
parameter 8 GeV? < M? < 12 GeV?, where the effects of
the higher resonances and continuum states is less than
30% of the leading-order twist-2 contribution, and terms
~M~? form only ~5% of the sum rule. Additionally, in this
interval the dependence of the couplings on M? is stable,
and one may expect that the sum rule gives reliable
predictions.

The sum rules receive contributions from the different
terms, as shown in Fig. 4. The main component is the
leading-order twist-2 term: it forms approximately 60%
of the strong couplings. The effect of the NLO quark
correction is also essential: in the explored range of
the Borel parameter, it equals =12.5% of the coupling
fB.fB:98:B,y- The same estimation is valid for
fB.fB:98:8,y> @ well. The correction originating from
the gluon content of the meson is very small. In fact, it
is only = —0.5% of fg fp:-9p:p.y-

The higher-twist terms play an essential role in forming
the couplings. Indeed, ~28% of their values within the
considered range of M? are due to HT corrections. The

20— —
[ ]
I8, fB:2 (GeV7) 1

15k ]

00—
6

8 10 12 14
M? (GeV?)

FIG. 3 (color online). The strong couplings as functions of the
Borel parameter M>. The solid (red) line describes f 8,JB:9B: By
whereas the dashed (blue) curve corresponds to f5 fp:|gp:p 4| In

computations the model I is used. The parameter sg * is set equal
to 36 GeV2.
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1.0 ———

[ f3,f5: 81y (GeV?) ]
0.8F ]

0.4k __ ]
0.2: __________________ ]
e ]
it el tala et iat talattafalfiateieteietetas
6 8 10 12 14

M? (GeV?)

FIG. 4 (color online). Contributions to the coupling
S SfB: 9B,y originating from the leading, the higher-twist,
and the NLO terms. The upper solid (red) line is the contribution
of the LO twist-2 term, the upper dashed line (blue) shows the
contribution of the higher-twist terms, the lower solid (red) curve
is the NLO effect coming from the meson’s quark component,
and the lower dashed (blue) line is the gluonic contribution to the
coupling. The parameters are the same as in Fig. 3.

main part of the HT corrections are determined by
the two-particle twist-3 DAs ¢g;)/p (u) and ¢g;),0(u) they
give ~33%, whereas the corrections of remaining HT terms
are small, —5%.

The extracted couplings, in general, depend on the
distribution amplitudes utilized in calculations. We have
computed the couplings using the different model DAs and
given the results in Fig. 5. Some of the DAs (models I and
1) lead to almost identical predictions, such that corre-
sponding lines become undistinguishable. Therefore, in
Fig. 5 we show only the line corresponding to model I.
At the same time, the results for couplings due to another
pair of DAs (models T and III) differ from each other
considerably.

20— ———F————————

T

2
IB,JB: 845, (GEVT)

00

M?* (GeV?)

FIG. 5 (color online). The coupling fp fp:gp:p,y computed
using the different model DAs. The solid (red) line shows model
I, and the dashed (blue) line shows model III.
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The predictions in the present work are made employing
model I. By varying the parameters within the allowed
ranges, we estimate the uncertainties of computations. The

important sources of uncertainties are M2 and sg *, as well
as the decay constants fp and fp:, calculated within the
two-point QCD sum rules. Having changed M? and sg“'
within 8 GeV? < M? < 12 GeV?2, and 33.5 GeV? < 5§ <
38.5 GeV?, respectively, and having taken into account

uncertainties arising from the meson decay constants,
we get

[B.fB:198:8,5] = 0.837 £ 0.08 GeV?,

IS8 988,y = 0.994 £0.12 GeV>. (82)

Dividing the product of the couplings by the decay
constants gives for the couplings the following predictions:

|9:pgl = 17.08 £1.63,  gg gy =202+£2.44,

(83)
We proceed in our studies and extract the strong
couplings gp:p , and gp:p , (see Fig. 6). To this end, in

all expressions we have to replace b — ¢. The masses and
decay constants in units of MeV are

mp, = 1969 + 1.4,
fp, =240 + 10,

mp; = 2112.1+ 0.4,
fp; =308 £21. (84)

All parameters should be adjusted to the new problem. This
leads to the replacements

fe = \/m} —m? =168 GeV (85)

08—
[ N
[ Jo,fp;g (GeV?) |

0.6} 1
L. ]
F \\~~ 4

04F  TTmmm e _______C 1

02} |
' model I

0.0 n n n 1 n n n 1 n n n 1 n n n
2 4 6 8 10

M? (GeV?)

FIG. 6 (color online). The couplings as functions of the Borel
parameter M>. The solid (red) line corresponds to f p.fD:9D:D s
and the dashed (blue) curve is the coupling fp_fp:|gp:p |- In
computations, the model I is used. The parameter sOD * is set equal

to 7 GeVZ2.
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and sOD * =741 GeV2. It has been found that the range
of the Borel parameter 3 GeV? < M? < 5 GeV? is suitable
for evaluating the sum rules. From the relevant sum rules
for the product of the decay constants and coupling we
extract the following values:

Fo.f:|9pip.g| = 0.411 £ 0.04 GeV2,
IS dpip,y = 0473 +0.042 GeV2.  (86)

Then, for the couplings we get

|9p:p,y| = 4.51 £0.44, gp:py =519 £0.46. (87)

Our results have been obtained within the quark-
hadron duality ansatz of Ref. [38], where ¢p:p, and
gp-px Were evaluated. But there is a discrepancy between
the predictions for g¢p:-p, and the data of the CLEO
Collaboration [48]. One of the main input parameters in
these calculations is a value of the leading twist DA at
ug = 1/2. In Ref. [38] it was chosen as ¢,(1/2) = 1.2,
whereas recent analysis of the pion electromagnetic
transition form factor performed in Refs. [49,50] predicts
LT pion DAs enhanced at the middle point: these model
DAs at ug = 1/2 are very close to the asymptotic DA
with ¢, (1/2) = 1.5. The usage of updated twist-3 DAs
may also lead to sizeable corrections, because twist-3
terms contribute to gp-p, at the level of 50%—60%, and
are as important as the twist-2 term. All these questions
necessitate new, updated investigation of the couplings
9p pr and gp-p, in the context of the LCSR method. The
real accuracy of this method is not completely clear at
present. On the one hand, it leads to results with 30%-—
50% deviation from experimental data as in the gpp,
case; on the other hand, it gives rather precise predictions
for radiative decays of mesons. Indeed, the LCSR
prediction for gpp, [51,52] correctly describes exper-
imental data: the value of the quark condensate’s mag-
netic susceptibility that enters into this sum rule as a
nonperturbative parameter is known from both QCD sum
rules and lattice computations [53], and the two agree
with each other. As QCD lattice simulations of gp:p, (see
Ref. [54]) agree with the CLEO data, it will be instructive
to compare our predictions for the strong couplings
Ggg 40 and 9p:p .y with relevant lattice results, when
they become available.

The couplings gg.p ,» were calculated in Ref. [12] by
applying the three-point sum rule method, as well.
Differences in adopted definitions for the couplings,
chosen structures, and explored kinematical regimes to
extract their values make direct comparison of relevant
findings rather problematic: we note only a sizeable
numerical discrepancy between our predictions and the
results of Ref. [12]. We emphasize also the advantage of
the LCSR method compared to the three-point sum rule
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approach in calculations of the strong couplings and/or
form factors. Indeed, in the three-point sum rules, the
higher orders in the operator product expansion (OPE)
are enhanced by powers of the heavy quark mass, and for
sufficiently large masses the OPE breaks down. The
LCSR method does not suffer from such problems: It is
consistent with the heavy-quark limit and provides more
elaborate tools for investigation than alternative
approaches.

In the present work we have investigated the strong
D:D ") and B:B,y") vertices and calculated the relevant
couplings using the method of QCD sum rules on the
light cone. We have included in our analysis effects of
the eta mesons’ gluon components. The derived expres-
sions have been explored, and numerical values of the
strong couplings gp.p, ¢y and gp.p o have been evalu-
ated. Studies have demonstrated that the direct contribu-
tion to the strong couplings arising from the two-gluon
components of the # and #' is small. But owing to
mixing, the gluon components affect the quark DAs,
which cannot be ignored.
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APPENDIX

This appendix is devoted to the calculation of f3, and
5,2VS‘Y), which enter as parameters into higher-twist DAs of
the n and 5/ mesons. To this end, in the two-point sum rules
written down below, we consider f and h,, as well as the

mixing angle ¢, as input parameters; then only f3, and 5%”

remain unknown.

f3s and 5}2&) can be defined in terms of matrix
elements of some local operators. Indeed, the parameter
f3s can be defined through the matrix element of the
following twist-3 operator:

(0[56.,759G.,s|M(p)) = 2if 'y (p2)2.

In order to extract its value, we use the correlation
function of nonlocal light-ray operators, which enter the
definition of the three-particle distribution amplitude with
the corresponding local operator. Such a so-called “non-
diagonal” correlation function is given by the following
expression [36]:
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My, =i / e (01T {[5(2)0,754G,e(12)5(0)]
< [5()7ss)1}10)

= (pz)2/Dge‘ipz(“2+”“3>7erD(g). (A1)

The sum rule for the coupling f3, is derived by
expanding the correlation function in powers of pz:
Iyp =

(PZ) {HND +i(p )[Hgvlg)s

+(20 = D)IGE] + - ). (A2)
The hadronic content of the function IT has been modeled
employing “n + ' 4 continuum” approximation. Then
we get the following sum rule:

(s) 2 (s) mz

_n s 7”
f3;7 e m +f§,7), e =
mS mS

B[y

The left-hand side of this expression can be modified
using information on mixing of the decay constants:

2

fashy == (sin’gpe = —|— cos’pe M2) = B, Y2

S

(A3)

Now, having applied
By Iy,

], we determine f3, using the sum rule:

the explicit expression for

2

g, 1y
Jashs (sinpe™v? + cos’pe w?)

s

a So _s 1 a
= il d M2 — _S (;2
737;3/ sse 12<n >

_da, my(3s) 19—|— lnﬁz—l-/ooée_Lz
97[ 6 TET u? s

0o S

80 a
27 M?

(55)% + my(369Gs). (A4)

1
3M?
Numerical calculations have been performed at the scale
1o = 1 GeV. To evaluate a continuum contribution we set
so = 1.5 GeV? and vary it within the limits 1.3GeV? <
5o < 1.7GeV? to estimate errors. The Borel parameter M>
is changed in the interval 0.8 GeV? < M? < 1.8 GeV>.
The parameters have been extracted at M? = 1.3 GeV>.
For f3,(py) we have found

f3s = 0.0041 GeV2. (A5)
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The varying of s, in the allowed limits results in error
40.00005, which may be neglected.

We introduce the parameter 5,%,?)

element

through the local matrix

o e = 5) Q2

OfsigGpusM(p) = pufi/ 5™ (A6)
considering it as the universal one; i.e., we suggest that it
does not depend on the particles 7 and #'. In the local matrix

element, information on the mixing is contained in the

decay constants fl(‘f,). Then we can write

2

2 m
W

m

7251 sin? e + cos? pe ] = By [I) ),

where B, [Hg(s)] is given by the expression [36]

. S s 1 (o8
B[] = 2 /“d 20w 4 - (%2
w2y ] 1607 /, ssce +72 .

A s a _ S0 s
X dse v’ — —m(5s) dse™w?
0 I 0

8ra; 13a,
+ I —_

5 > (55)? i (569Gs)
S9na,m} _ , m /a;
S_ - - _§G2
TR >+9M2<n > (8s)
2
—&mxsagGs)
b3
M? ods s
X {yE—ln—z—l-/ Ze MZ} (A7)
Wy, s
2(s)

Computations of d,,”” with the same input parameters as in
the previous case lead to the following prediction:

52 () = 0.1896 + 0.001 GeV?2.

(A8)
As is seen, f3, and 5}2&@ numerically are very close to the
pion’s parameters f3, and 52, respectively.

The values of the quark and quark-gluon condensates at
Uo utilized in numerical calculations are listed below:

(=0.244+0.01)3GeV3, (gogGq)

(0.8+£0.1)GeV2, (3s)=[1-

=my(qq),
(02+0.2)(3q),

(aq

)=
2
0
<ﬁG > (0.0120.006)GeV*,
T

(569Gs)=[1-(0.24+0.2)](gogGq). (A9)
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