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We study the effect of the change of the current quark mass on the inhomogeneous chiral phase in the
QCD phase diagram and discuss the properties of the phase transition using the generalized Ginzburg-
Landau expansion. The strong external magnetic field spreads this phase over the low chemical potential
region even if the current quark mass is finite. This implies that the existence of this phase can be explored
by the lattice QCD simulation.
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I. INTRODUCTION

Exploring the finite density region of the QCD phase
diagram is one of the challenging issues in nuclear physics.
Recently, the possible existence of the inhomogeneous
chiral phase has been energetically discussed by the
analysis of the Nambu-Jona-Lasinio (NJL)-type model
[1–3] or the Shwinger-Dyson approach [4]. In this phase,
the scalar and pseudoscalar quark condensates spatially
modulate, and the complex order parameter, ϕðrÞ, repre-
senting this phase takes the form

ϕðrÞ≡ hψ̄ψi þ ihψ̄iγ5τ3ψi ¼ ΔðrÞeiθðrÞ: ð1Þ

As a definite form of ϕðrÞ, the dual chiral density wave
(DCDW) ðΔðrÞ ¼ Δ; θðrÞ ¼ qzÞ [1,4]; the real kink crystal
(RKC) ðΔðrÞ ∼ ΔsnðκzÞ; θðrÞ ¼ 0Þ, with the Jacobi elliptic
function sn [2,3]; or the hybrid condensate ðΔðrÞ ∼
ΔsnðκzÞ; θðrÞ ¼ qzÞ [5] has been often used. These con-
figurations can be obtained by using the Hartree-Fock
solutions of the 1þ 1-dimensional NJLðNJL2Þ model in
the chiral limit [6–8]. Most analyses have shown that the
inhomogeneous chiral phase appears as an intermediate
phase during the standard chiral phase transition.
Nowadays, various magnetic aspects of QCD have

also attracted much interest because quark matter subjected
to the strong magnetic field (B) is expected to occur in
the early Universe, during the heavy ion collision
[B ¼ Oðm2

π ∼ 1017 GÞ] or in the core of compact stars
(B > 1012−15 G). Theoretically, the lattice QCD simula-
tions have been done for the deconfinement transition or
the chiral transition under the magnetic field with various
strength. One of the interesting subjects there is the
symmetry behavior in the presence of the magnetic field.
It has been suggested that the chiral symmetry breaking is
enhanced due to B in the effective model, magnetic
catalysis [9–12]. However, the recent lattice simulations
have shown inverse magnetic catalysis or magnetic inhib-
ition [13,14]. This phenomenon is not well understood yet,
and its origin is still controversial. It may be plausible that

some fluctuation effects become important, since the
magnetic catalysis has been shown within the mean-field
approximation. Recently, to explain this phenomenon
within the effective models, an effective B-dependent
four-Fermi coupling constant has been proposed. This
dependence was introduced through the coupling of the
quark or gluon loops to B perturbatively [15,16] or in the
framework of functional renormalization group [17,18].
In the external magnetic field, the DCDW phase is

remarkably extended in the low chemical potential ðμÞ
region except for μ ¼ 0 [19]. The energy spectrum of the
quark field exhibits the asymmetry, which gives rise to such
distinctive behavior1 [21]. Note that complex ϕðrÞ is
necessary for the energy spectrum to be asymmetric about
zero. A peculiar role of the spectral asymmetry can be also
seen around the transition point: it induces a new term in
the thermodynamic potential, and consequently a new
Lifshitz point (LP) should appear on the μ ¼ 0 line in
the chiral limit [21]. If this is the case, one may expect a
direct observation of DCDW by a lattice QCD simulations.
The QCD phase diagram in the finite-μ region has been
explored by the lattice QCD simulation, but its availability
is severely restricted due to the sign problem. Some
methods to overcome the sign problem have been pro-
posed: for example, the Taylor expansion method [22,23],
the reweighting method [24–27], the canonical approach
[28–31], the analysis of Lee-Yang zero in QCD [32–34],
and the analytic continuation method from imaginary
chemical potentials [35–39]. However, these methods are
limited in the high-temperature (T) region, μ=T < 1 region.
Therefore, if the inhomogeneous chiral phase develops in
the low-μ region, we may have a chance to observe the
existence of this phase by the lattice QCD simulation.
In the present work, we shall further discuss this issue in

a realistic situation. We study the region around the phase

1In the recent paper, we have suggested a possibility of the
spontaneous magnetization in the DCDW phase due to the
spectral asymmetry [20].
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transition by using the generalized Ginzburg-Landau (GL)
expansion [3] with the finite current quark mass. The
current mass is small but should be important below the
low-energy scale of Oð102Þ MeV, since it is well known
that a pion mass of Oð102Þ MeV is generated from the tiny
current quark mass of several MeV. Thus, it is conceivable
that the finite quark mass becomes very important in the
vicinity of the critical point, where the wave number as well
as the amplitude becomes very small. The current mass
explicitly breaks chiral symmetry, and the energy degen-
eracy of states is lost under the symmetry operation; the
degeneracy form → −mðZ2Þ in the case of RKC or that for
θ → θ þ αðconstÞ [Uð1Þ] is lost in the case of DCDW.
Since we must utilize these states to construct the configu-
ration of the order parameter together with spontaneously
symmetry breaking (SSB), the current mass is expected to
disfavor the appearance of the inhomogeneous chiral phase.
For RKC, the exact solution can be obtained in the massive
Gross-Neveu model [40], and the critical point has been
demonstrated to be largely shifted [2] to reduce the phase
region. For DCDW, although no exact solution is known,
the effect of the current mass has been perturbatively
discussed in Ref. [41]. They have found that the DCDW
phase does not appear for the small coupling constant and
the large current mass within the NJL model, while the
DCDW phase appears for the same coupling constant in the
chiral limit. However, the discussion may not be sufficient
because any deformation of the DCDW form is not
considered. To take into account the deformation, a
variational method may work well [42]. Consequently,
the effect of the current quark mass is almost similar to the
case of RKC: the function form of DCDW is largely
deformed near the transition point, and accordingly the
DCDW region of the phase diagram is reduced. We shall
follow the similar approach here and find the proper
solution of θðrÞ instead of qz near the transition point.
In particular, the effect of the finite current quark mass

should be important when our idea is confronted with the
lattice QCD simulations; one may also extract more
information by changing its value by hand. We know that
the LP resides on the μ ¼ 0 line in the chiral limit. Once the
current mass is turned on, a competition arises between the
positive effect on the DCDW phase by the magnetic field
and the negative effect by the current mass. Consequently,
the critical point should leave the μ ¼ 0 line, and some gap
is formed between them. In contrast with the crossover for
the usual chiral transition in the presence of the finite
current mass, we shall see that the inhomogeneous tran-
sition should still have a clear phase boundary due to the
loss of translational symmetry.
The paper is organized as follows. In Sec. II, we

construct the thermodynamic potential by using the gen-
eralized GL expansion with the finite current quark mass,
and the configuration of ϕðrÞ is determined by the sta-
tionary condition. A peculiar role of the spectral asymmetry

of the quark energy eigenvalues is emphasized there. In
Sec. III, the phase diagram of the DCDW phase is presented
in the presence of the magnetic field, and some features of
the phase transition are figured out around the transition
point. The effect of the inverse magnetic catalysis is
discussed there. The possibility of the observation is also
discussed in the lattice QCD simulations, based on
Ref. [43], where nonanalyticity of the partition function
is studied in the DCDW phase. Section IV is devoted to a
summary and concluding remarks.

II. THERMODYNAMIC POTENTIAL WITH
FINITE CURRENT QUARK MASS

The thermodynamic potential near the transition point is
given by the generalized GL expansion based on the NJL
model [3]. The NJL model Lagrangian takes the form

LNJL ¼ ψ̄ðiD −mcÞψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2�; ð2Þ

with the covariant derivative, Dμ ¼ ∂μ þ iQAμ, where
Q is the electric charge matrix in flavor space, Q ¼
diagðeu; edÞ, and the SUð2Þ symmetric quark mass,
mc ≡mu ¼ md ≃ 5 MeV. We assume the mean field of
the quark condensates,

MðrÞ≡ −2GϕðrÞ ¼ meiθðzÞ; ð3Þ

where m ¼ −2GΔ plays a role of the dynamical quark
mass, and the direction of modulation is taken to be parallel
to the z axis. Then, the Lagrangian within the mean field
approximation takes the form

LMF¼ ψ̄ ½iD−mc−mðcosθðzÞþ iγ5τ3 sinθðzÞÞ�ψ −
m2

4G
:

ð4Þ

Taking the external magnetic field B along the z axis, the
thermodynamic potential can be written up to the fourth
order about the order parameters and its derivative and the
first order in mc as

Ωðμ; T; BÞ

¼ Ω0 þ
Z

d3x
V

�
α1m cos θ

þ 1

2

�
α2 þ

1

2G

�
m2 þ ~α2mðsin θÞ0

þ α3
4
½4m3 cos θ −mðcos θÞ00� þ ~α3m2θ0

þ α4
4
ðm4 −m2θθ00Þ þ 3~α4am3ðsin θÞ0

þ ~α4bmðsin θÞ000
�
; ð5Þ

R. YOSHIIKE and T. TATSUMI PHYSICAL REVIEW D 92, 116009 (2015)

116009-2



with a shorthand notation, θ0 ≡ ∂θ=∂z, for given μ, T, and
B. The GL coefficients read

α2j ¼ ð−1Þj2Nc

X
f

T
X
k

jefBj
2π

X
n≥0

×
Z

dp
2π

2 − δn;0
½ðωk þ iμÞ2 þ p2 þ 2jefBjn�j

; ð6Þ

α2j−1 ¼ mcα2j; ð7Þ

~α3 ¼ Nc

X
f

jefBj
16π3T

Imψ ð1Þ
�
1

2
þ i

μ

2πT

�
; ð8Þ

~α2 ¼ mc ~α3; ð9Þ

~α4b ¼ mcNc

X
f

jefBj
1536π5T3

Imψ ð3Þ
�
1

2
þ i

μ

2πT

�
; ð10Þ

where ωk ¼ ð2kþ 1ÞπT is the Matsubara frequency and
Ω0 is the constant term independent of the order param-
eters. The derivation of these equations is somewhat
cumbersome and is relegated to Appendix A. Here, ~α4a
cannot be represented as a simple form (see Appendix A for
details). Note that the effect of the current quark mass
appears in α2j−1, ~α2, ~α4a, and ~α4b, which are proportional to
mc. The coefficients αiði ¼ 1 − 4Þ include an ultraviolet
divergence and should be properly regularized by applying
some regularization scheme. In the present calculation, the
Pauli-Villars regularization (PVR) is used (Appendix B).
It may be worth mentioning that the ~α3 term originates

from the spectral asymmetry of the quark energy eigen-
values and is proportional to B. The presence of such term
has been shown in the chiral limit, and a close relation to
the chiral anomaly has been demonstrated [21]. This
argument can be easily generalized even if the current
mass is taken into account (see Appendix C). Note that the
~α3 term remarkably extends the DCDW phase in the
presence of the magnetic field [21], while it cannot appear
in the RKC phase because of the absence of the phase
degree of freedom.
The surface terms in Eq. (5) are irrelevant for the

stationary condition: δΩ=δθðzÞ ¼ 0. Thus, we find the
equation in the sine-Gordon form,

θ00 þ signðα1 þm2α3Þm�2
π sin θ ¼ 0; ð11Þ

with,

m�2
π ≡ 2

jα1 þm2α3j
mα4

; ð12Þ

and the relevant solution to Eq. (11) can be obtained as

θðzÞ ¼ 2am

�
m�

π

k
z; k

�
þ πθð−α1 −m2α3Þ; ð13Þ

where “am” is the amplitude function with modulus
k ∈ ½0; 1�. Note here that the ~α3 term never affects the
stationary condition; it plays instead an important role
through the thermodynamic potential. Then, the period ðlÞ
and the wave number ðQÞ of condensates are defined by the
relations

l ¼ 2kKðkÞ
m�

π
; Q ¼ 2π

l
¼ πm�

π

kKðkÞ ; ð14Þ

whereKðkÞ is the complete elliptic integral of the first kind.
There are two order parameters, m and k (or Q), where m
characterizes the magnitude of SSB, and k measures a
degree of the inhomogeneity. We plot the function π þ
2amðx; kÞ in Fig. 1. When k ¼ 1, Eq. (13) takes the form

θðzÞjk¼1 ¼ 4tan−1ðem�
πzÞ − πθðα1 þm2α3Þ ð15Þ

and behaves like the single kink. Accordingly, l diverges
and Q vanishes because Kðk → 1Þ → ∞. Then, we can see
that the thermodynamic potential is reduced to the one in
the homogeneous phase. On the other hand, when k andmc
simultaneously go to zero and 2m�

π=k → q, Eq. (13) takes
the form

θðzÞ → qzþ πθð−α1 −m2α3Þ; ð16Þ

and the original DCDW phase is recovered. In the follow-
ing, we call the phase where 0 < k < 1,m ≠ 0, the massive
DCDW phase.
Then, the thermodynamic potential takes the form

Ω ¼ Ω0 − jα1mþ α3m3jC1ðkÞ þ
1

2

�
α2 þ

1

2G

�
m2

þ ~α3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
jα1 þm2α3j

α4

s
m3=2C3ðkÞ þ

α4
4
m4; ð17Þ

FIG. 1 (color online). Plot of π þ 2amðx; kÞ. The red, green,
and blue lines describe the functions at k ¼ 0.8, 1, 0, respectively.
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with

C1ðkÞ≡ 2

k2
− 1 −

4EðkÞ
k2KðkÞ ; ð18Þ

C3ðkÞ≡ π

kKðkÞ ; ð19Þ

where EðkÞ is the complete elliptic integral of the second
kind. Note that ~α2; ~α4a; ~α4b terms vanish by the spatial
integral. We can easily observe that Eq. (17) restored the
thermodynamic potential in the homogeneous phase at
k → 1 because C1ðk → 1Þ ¼ 1 and C3ðk → 1Þ ¼ 0.
One may also find another possible solution of Eq. (11),

θosðzÞ ¼ 2cos−1½k0snðm�
πz; k0Þ� þ πθð−α1 −m2α3Þ; ð20Þ

with modulus k0 ∈ ½0; 1�. The previous solution (13) is the
monotonically increasing function, while this solution is
the oscillating function. Then, the thermodynamic potential
takes the form

Ω ¼ Ω0 − jα1mþ α3m3jCos
1 ðk0Þ þ

1

2

�
α2 þ

1

2G

�
m2

þ α4
4
m4; ð21Þ

with

Cos
1 ðk0Þ≡ 3 − 2k02 −

4Eðk0Þ
Kðk0Þ : ð22Þ

When k0 ¼ 1, the solution (20) corresponds to θðzÞjk¼1, and
the thermodynamic potential becomes the one in the
homogeneous phase. However, we can see that the oscillat-
ing solution is never favored compared to the homogeneous
solution because Cos

1 ðk0Þ ≤ Cos
1 ðk0 ¼ 1Þ. Therefore, the

phase with the oscillating solution does not appear in the
present situation.2

III. RESULTS AND DISCUSSIONS

A. Phase diagram around the transition point

For obtaining the phase diagram, the order parameters
are determined to minimize Eq. (17). In the following, Q is
used as the order parameter characterizing the inhomo-
genity instead of k. In the present calculation, we use the
parameter set in Ref. [44], Λ ¼ 851 MeV andGΛ2 ¼ 2.87,
which reproduce pion decay constant fπ ¼ 93 MeV, pion
mass mπ ¼ 135 MeV, and scalar condensate hψ̄ψi ¼
ð−250 MeVÞ3 in the vacuum with mc ¼ 5.2 MeV.
In Fig. 2, we show the resulting phase diagram at

mc ¼ 5 MeV,
ffiffiffiffiffiffi
eB

p ¼ 1 GeV. There are the phase boun-
dary between the massive DCDW phase and the homo-
geneous phase and the crossover line constituted by the
pseudocritical temperature ðTpcÞ defined as the peak of the
chiral susceptibility: −∂m=∂T.
In Fig. 3, the change of the phase diagram is described

when mc or B changes. We can find out that the massive
DCDW phase is extended to the low-μ region with the
decrease of mc. Then, the result in Ref. [21] is recovered in
the chiral limit, mc ¼ 0, and it is expected that the crossing
point of the phase boundary and the crossover line agrees
with the LP in the chiral limit. On the other hand, B raises
the critical temperature in the phase transition, which is
consistent with the magnetic catalysis. In other words, the
smaller mc or the larger B becomes, the more widely the
massive DCDW phase develops over the region: μ=T < 1.
A dependence of the order parameters on T is shown in

Fig. 4. The discontinuity in the both order parameters can

FIG. 2 (color online). Phase diagram at mc ¼ 5 MeV,
ffiffiffiffiffiffi
eB

p ¼ 1 GeV (left panel). The red line describes the phase boundary between
the massive DCDW phase (shaded area) and the homogeneous phase. The solid blue line describes the crossover line. The conventional
crossover line without the massive DCDW phase corresponds to the dashed blue line. The right upper (lower) panel shows the value ofm
ðQÞ at the same range of μ − T as the left panel.

2The oscillating solution may be relevant near the critical point
in the absence of the magnetic field, where the similar equation is
derived for θ [42].

R. YOSHIIKE and T. TATSUMI PHYSICAL REVIEW D 92, 116009 (2015)

116009-4



be found at the critical temperature ðTcÞ. Therefore, it can
be concluded that there is a first-order phase transition
between the massive DCDW phase (m is large and Q ≠ 0)
and the homogeneous phase (m is small but finite and
Q ¼ 0), though there is a second-order phase transition
between the DCDW phase and the chiral-restored phase in
the chiral limit [21]. The difference is caused by the finite
mc. In the chiral limit, Q can take any value in the chiral-
restored phase since there is no condensate. On the other
hand, the value ofQ is uniquely determined in the case of the
finitemc because the condensate never vanishes there. In the
right panel, we can see that the first-order phase transition is
strong, while it becomes weaker for lower μ. The crossover
between the homogeneously chiral-broken phase and the
nearly restored phase is also observed at the pseudocritical
temperature T ¼ Tpc in the left panel. The RKC or DCDW
phase appears in the region μ≳ 300 MeV and T ≲ 50 MeV
with mc and B ¼ 0 [2,42]. However, we can see that B
enlarges the massive DCDWphase over the low-μ and high-
T region even if mc is finite. Furthermore, the dynamical
quark mass in the massive DCDW phase is larger than the

conventional one, and they coincide after the phase tran-
sition. In other words, the chiral symmetry breaking is
enhanced in the massive DCDW phase. The fact may be
consistent with the result in the chiral limit [21]: the chiral
symmetry breaking is enhanced in the DCDWphase and the
critical temperature is greater than the conventional one.

B. Effect of the inverse magnetic catalysis

In this subsection, the effect of the inverse magnetic
catalysis is discussed in the present model. Here, it is
assumed that the effect is described by giving a B
dependence to the coupling constant of the NJL model
ðGÞ. According to Ref. [45], G is fitted to reproduce the
result of the lattice simulation [13,14]. For the parameter
set, Λ ¼ 851 MeV, GΛ2 ¼ 2.87, mc ¼ 5 MeV, the pseu-
docritical temperature can be obtained as TpcðeB ¼ 0Þ ¼
173 MeV at μ ¼ B ¼ 0. In the following, we consider the
case at

ffiffiffiffiffiffi
eB

p ¼ 1 GeV. The coupling constant is put as
GΛ2 ¼ 1.85, which gives the ratio Tpc=TpcðeB ¼ 0Þ ¼
0.86 at μ ¼ 0. In Fig. 5, the change of the phase boundary

FIG. 3 (color online). Change of the phase boundary. In the left panel, the red, green, and blue lines describe the result at
mc ¼ 0; 5; 20 MeV and fixed

ffiffiffiffiffiffi
eB

p ¼ 1 GeV. In the right panel, the red, green, and blue lines describe the result at
ffiffiffiffiffiffi
eB

p ¼
1; 0.7; 0.5 GeV and fixed mc ¼ 5 MeV. The solid lines describe each phase boundary between the massive DCDW phase and the
homogeneous phase. The dashed lines describe each crossover line.

FIG. 4 (color online). Dependence of the order parameters on T for the same parameter set in Fig. 2. The red and green lines describe
the amplitude m and the wave number Q, respectively. The dashed blue line shows the conventional dynamical quark mass without the
inhomogeneous chiral condensate. The left panel shows the result at μ ¼ 70 MeV, and there are the phase transition point between the
homogeneous phase and the massive DCDW phase on Tc ¼ 181 MeV and the pseudocritical point on Tpc ¼ 222 MeV. The right panel
shows the result at μ ¼ 120 MeV, and there is the phase transition point on Tc ¼ 219 MeV.
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by the inverse magnetic catalysis is shown. The region of
the massive DCDW phase shrinks, and the phase transition
temperature decreases due to this effect. However, the
massive DCDW phase remains in the μ=T < 1 region if mc
is sufficiently small.

C. Possibility of the observation of the
inhomogeneous chiral phase

In Ref. [43], the possibility of the observation of the
DCDW phase has been discussed in the case with the
singular line at μ ¼ 0. Though the existence of the line is
pointed out by the generalized GL expansion with B in the
chiral limit [21], the phase boundary is moved to the μ ≠ 0
region due to the current quark mass. The discussion
becomes somewhat simple in the present case. In the
Taylor expansion method, some quantity is expanded around
μ=T ¼ 0 for considering the effect of the finite μ. Therefore,
this method cannot describe the singularity at μ ≠ 0, and the
massive DCDW phase cannot be grasped. For the same
reason, the analytic continuation method from the imaginary
chemical potential to the real one does not work, either. In
other words, the applicable region of these methods is
extremely restricted for the massive DCDW phase.
The reweighting method can overcome the difficulty

of the singularity, in principle. In this method, the impor-
tance sampling is carried out for some parameter choice, for
example, Re μ ¼ 0, where there is no sign problem.
However, the massive DCDW phase does not develop in
that region. Therefore, we need to find a special region with
the massive DCDW phase and no sign problem there.
In the canonical approach, the problem of the singularity is

irrelevant and the grand canonical potential with the real μ can
be constructed from the one with the imaginary μ. If there is a
massive DCDW phase in the μ ≠ 0 region, it may be found
that the quark number density has the discontinuity derived
from some first-order phase transition. However, the phase
transition cannot be identified as one from the homogeneous

phase to the massive DCDW phase. Therefore, we need to
find some specific order parameters on the phase transition.
There is a similar difficulty in the Lee-Yang zero analysis in
QCD. The behavior of zeros of the partition function
indicates the existence of some phase transition. However,
we cannot distinguish the phase transition including the
massive DCDW phase by their distribution.
We also comment on the two color lattice QCDðQC2DÞ.

In the QC2D, there is no sign problem because the quark
determinant is always real even if the chemical potential is
real and finite [46]. Therefore, the existence of the
inhomogeneous chiral phase may be investigated by the
usual Monte Carlo simulation. It is also thought that this
analysis works without sufficiently small mc. It will be
discussed elsewhere [47].

IV. SUMMARY AND CONCLUDING REMARKS

We have discussed the inhomogeneous chiral phase at
B ≠ 0 and mc ≠ 0. In this paper, the thermodynamic
potential around the phase transition is obtained by the
generalized GL expansion based on the NJL model. It is
found that B extends the massive DCDW phase over the
low-μ region similar to the DCDW phase in the chiral limit
though mc tends to reduce this phase. Then, there is the
first-order phase transition between the massive DCDW
phase and the homogeneous phase. Furthermore, the chiral
symmetry is strongly broken in this phase compared to the
conventional homogeneous phase.
Within our analysis based on the NJL model, B seems to

raise the critical temperature. A similar mechanism to the
magnetic catalysis should lead to this behavior. So we
adjust the coupling constant of the NJL model to estimate
the qualitative influence of the inverse magnetic catalysis.
As a consequence, the critical temperature decreases.
However, the massive DCDW phase can develop in the
region μ=T < 1 if mc is sufficiently small. Therefore, we
suggest that the inhomogeneous chiral phase can be found
by the lattice QCD simulations just by choosing some
proper method, for example, the reweighting method or the
canonical approach. Since there is little work where the
local chiral condensate is discussed [48], it is challenging
work to actually confirm the existence of the inhomo-
geneous chiral phase by the lattice QCD simulations.
On the other hand, the possibility of the massive DCDW

phase in B is also interesting from the view of the
phenomenology. It is thought that the quark matter includ-
ing s-quarks exists with a strong magnetic field in neutron
stars. Therefore, the phase structure of massive quark
matter is needed to discuss properties of neutron stars.
Though they assume the s-quark condensate to be homo-
geneous in the previous works [49,50], s-quarks may be
inhomogeneously condensed in neutron stars. Since the
analysis in this paper works only at high temperature, we
need to investigate the growth of the massive DCDW phase
at zero or low temperature.

FIG. 5 (color online). Phase boundary obtained including the
inverse magnetic catalysis. The red line corresponds to the phase
boundary in the Fig. 2. On the other hand, the green and blue lines
describe one at mc ¼ 5; 1 MeV with the inverse magnetic
catalysis.
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APPENDIX A: GENERALIZED GL EXPANSION
OF THE THERMODYNAMIC POTENTIAL

In this Appendix, the thermodynamic potential is
expanded about the order parameter and its derivative with
mc ≠ 0 and the external magnetic field (B) along the z axis
based on Nickel’s work [3]. The thermodynamic potential
of the NJL model in the mean field approximation takes
the form

Ωðμ; T; BÞ ¼ −
T
V
TrD;c;f;VLn½S−1B − ðRe ~M þ iγ5τ3Im ~MÞ� þ jMj2

4G

¼ Ω0 −
T
V

X
j≥1

1

j
TrD;c;f;V ½SBðRe ~M þ iγ5τ3Im ~MÞ�j þ jMj2

4G
; ðA1Þ

with ~M ≡mc þMðzÞ, whereMðzÞ is given in the Eq. (3) and Ω0 is independent of the order parameters. SB corresponds to
the propagator in the chiral limit,

SB ¼ 1

iDþ μγ0
: ðA2Þ

Then, odd j parts always vanish by the Dirac trace. We need the expansion up to the fifth order about ~M and its derivative to
obtain the thermodynamic potential constituted by the terms up to the fourth order about M and its derivative and the first
order in mc. The thermodynamic potential is expanded into the form in B ¼ 0 [51],

Ω ¼ Ω0 þ
Z

d3x
V

�
α2
2
j ~Mj2 þ α4

4
½j ~Mj4 − Reð ~M ~M00Þ� þ jMj2

4G

�

¼ Ω0 þ
Z

d3x
V

�
α2
2
ðjMj2 þ 2mcReMÞ þ α4

4
ðjMj4 þ 4mcjMj2ReM þ jM0j2 −mcReM00Þ þ jMj2

4G

�
þOðm2

cÞ; ðA3Þ

with the GL coefficients,

α2j ¼ ð−1Þj4NcNfT
X
k

Z
d3p
ð2πÞ3

1

½ðωk þ iμÞ2 þ p2�j : ðA4Þ

Switching on B, the summation of the eigenstate and the energy spectrum in α2j should change as

4NcNf

Z
d3p
ð2πÞ3 → 2Nc

X
f

jefBj
2π

X
n

Z
dpz

2π
ð2 − δn;0Þ; ðA5Þ

p2 → p2
z þ 2jefBjn; ðA6Þ

where n represents the Landau levels. Furthermore, some odd-order terms are added. The third-order term is derived from a
part of j ¼ 2 in Eq. (A1),

−
T
V
1

2
TrD;c;f;V ½SBðRe ~M þ iγ5τ3Im ~MÞ�2

→ −
T
V
1

2
Nc

X
f

Z
d4xd4x0trf½Re ~Mðx3Þ þ iγ5σfIm ~Mðx3Þ�SBðx; x0Þ

× ½Re ~M0ðx3Þ þ iγ5σfIm ~M0ðx3Þ�ðx03 − x3ÞSBðx0; xÞg

¼ Nc

X
f

jefBj
16π3T

Imψ ð1Þ
�
1

2
þ i

μ

2πT

�Z
d3x
V

Imð ~M� ~M0Þ

¼ ~α3

Z
d3x
V

½ImðM�M0Þ þmcImM0�; ðA7Þ
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with σu ¼ þ1, σd ¼ −1. It is convenient to use SB in the momentum representation [52,53]. The fifth-order terms are
derived from a part of j ¼ 2 in Eq. (A1),

−
T
V
1

2
TrD;c;f;V ½SBðRe ~M þ iγ5τ3Im ~MÞ�2

→ −
T
V
1

2
Nc

X
f

Z
d4xd4x0tr

�
½Re ~Mðx3Þ þ iγ5σfIm ~Mðx3Þ�SBðx; x0Þ

×
1

6
½Re ~M000ðx3Þ þ iγ5σfIm ~M000ðx3Þ�ðx03 − x3Þ3SBðx0; xÞ

�

¼ Nc

X
f

jefBj
1536π5T3

Imψ ð3Þ
�
1

2
þ i

μ

2πT

�Z
d3x
V

Imð ~M� ~M000Þ

∼ ~α4b

Z
d3x
V

ImM000: ðA8Þ

From a part of j ¼ 4,

−
T
V
1

4
TrD;c;f;V ½SBðRe ~M þ iγ5τ3Im ~MÞ�4

→ −
T
V
3

4
Nc

X
f

Z
d4xd4x0d4x00d4x000

× trf½Re ~Mðx3Þ þ iγ5σfIm ~Mðx3Þ�SBðx; x0Þ½Re ~Mðx3Þ þ iγ5σfIm ~Mðx3ÞÞ�SBðx0; x00Þ
× ½Re ~Mðx3Þ þ iγ5σfIm ~Mðx3Þ�SBðx00; x000Þ½Re ~M0ðx3Þ þ iγ5σfIm ~M0ðx3Þ�ðx0003 − x3ÞSBðx000; xÞg: ðA9Þ

Here, we can see that only the j ~Mj2Imð ~M� ~M0Þ ∼mcjMj2ImM0 þ 2mcReMImðM�M0Þ term survives after taking the Dirac
trace and integrating. Therefore, this term can be described as

~α4a

Z
d3x
V

½jMj2ImM0 þ 2ReMImðM�M0Þ�; ðA10Þ

where the coefficient is written as ~α4a for convenience. In
summary, the thermodynamic potential to fourth order
takes Eq. (5).

APPENDIX B: REGULARIZATION OF THE GL
COEFFICIENTS

In this Appendix, the GL coefficients including diver-
gence are regularized by PVR. For convenience, we
introduce the function Ij and rewrite Eq. (6),

α2j ¼ ð−1ÞjNc

X
f

jefBj
2π

Ijð0Þ; ðB1Þ

where

IjðΛ2Þ≡ 2T
X
k

X
n≥0

Z
dp
2π

2 − δn;0
½ðωk þ iμÞ2 þ E2

nðΛ2Þ�j ;

ðB2Þ

EnðΛ2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Λ2 þ 2jefBjn

q
: ðB3Þ

Then, I1ð0Þ and I2ð0Þ should be regularized. Taking the
Matsubara summation,

I1 ¼
X
n≥0

Z
dp
2π

2 − δn;0
En

½1 − fFðEn þ μÞ − fFðEn − μÞ� ;

ðB4Þ
I2 ¼

1

2

X
n≥0

ð2 − δn;0Þ

×
Z

dp
2π

�
1

E3
n
½1 − fFðEn þ μÞ − fFðEn − μÞ�

þ 1

E2
n
½f0FðEn þ μÞ þ f0FðEn − μÞ�

�
; ðB5Þ

where fF is the Fermion distribution function. Therefore,
the diverging vacuum part can be decomposed into the form
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I1;vac ¼
X
n≥0

Z
dp
2π

2 − δn;0
En

; ðB6Þ

I2;vac ¼
1

2

X
n≥0

Z
dp
2π

2 − δn;0
E3
n

: ðB7Þ

Then, I1ð0Þ and I2ð0Þ are regularized as the following:

I1;vacð0Þ → I1;vacð0Þ − 2I1;vacðΛ2Þ þ I1;vacð2Λ2Þ; ðB8Þ

I2;vacð0Þ → I2;vacð0Þ − I2;vacðΛ2Þ: ðB9Þ

Thus, all divergence of coefficients can be excluded.

APPENDIX C: Spectral asymmetry with mc

In this Appendix, we show that the ~α3 term is derived
from the spectral asymmetry and relevant to the chiral
anomaly when the inhomogeneous chiral condensate has
the degree of freedom of the phase. Generally, the quark
number with the finite T is given as [21]

N ¼ −
1

2
ηH þ

Z
dEρðEÞ

�
θðEÞ

1þ eβðE−μÞ
−

θð−EÞ
1þ e−βðEþμÞ

�
;

ðC1Þ

where ρðEÞ is the density of state. The first term, which is
called the Atiyah-Patodi-Singer η invariant, represents the
anomalous particle number [54,55],

ηH ¼ lim
s→þ0

Z
dEρðEÞsignðEÞjEj−s; ðC2Þ

and measures the extent of spectral asymmetry about zero.
The second term ðNnomÞ corresponds to the normal particle
number, and we rewrite it as the form including the
summation of the Matsubara frequency,

Nnom ¼ 1

2
ηH −

Z
dEρðEÞT

X
k

1

E − μ − iωk
: ðC3Þ

Here, we can see that the first term in (C3) cancels out the
anomalous particle number. However, the information of
the η invariant is not washed away since the infinite series
reproduces the anomalous particle number at μ ¼ T ¼ 0.
The local density of state takes the form

ρðx; EÞ ¼ 1

π
ImtrD;f;c½Rðx; Eþ iϵÞ�

¼ −
Nc

π

X
f

∂
∂E ImtrDhxj lnðH − E − iϵÞjxi; ðC4Þ

with the resolvent: Rðx; EÞ≡ hxj 1
H−E jxi. In the present

model, Hamiltonian takes the form

H ¼ ~α · Pþ γ0½mc þmeiγ
5τ3θðrÞ�; ðC5Þ

where αi ¼ γ0γi and P is the covariant derivative. After the
Weinberg transformation, ψ → ψW ¼ eiγ

5τ3θðrÞ=2ψ , the
Hamiltonian changes to ~H,

~H ¼ ~H0 þ δ ~H; ðC6Þ

~H0 ≡ ~α · Pþ γ0m; ðC7Þ

δ ~H ≡ γ0
�
mce−iγ

5τ3θðrÞ −
1

2
γ5τ3~γ · ∇θðrÞ

�
: ðC8Þ

Therefore, ρðx; EÞ can be expanded to the form

ρðx; EÞ ¼ Nc

π

X
f

Imtr

	
x





 1

~H0 − E





x
�

−
Nc

π

X
f

∂
∂E Imtr

	
x





 1

~H0 − E − iϵ





x
�
δ ~HðxÞ

þOð∂ðδ ~HÞ; ðδ ~HÞ2Þ; ðC9Þ

where the first term does not depend on θ. Here,
hxj 1

~H0−E−iϵ
jxi can be rewritten into the propagator decom-

posed over the Landau levels [21].
Then, the reading term proportional to ∂θ takes the form

ρ∂θðx; EÞ

¼ −
Nc

4π2
X
f

jefBj∂zθðxÞ
∂
∂E

� jEjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p θðjEj −mÞ
�
:

ðC10Þ

From Eq. (C3), the part of the quark number generated by
ρ∂θ takes the form

N∂θ ¼
Nc

4π2
X
f

jefBj
Z

d3x∂zθðxÞ
�
1þ T

X
k

Z
∞

0

dy

×

�
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm2

p
− μ − iωkÞ2

þ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm2

p
þ μþ iωkÞ2

��
; ðC11Þ

where the first term is derived from the surface term in the
partial integral about E and we take y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
. Then,

the second term can be expanded with respect to m2. It can
be seen that the m0 part of the second term cancels out the
first term, and the remnant of N∂θ takes the form
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N∂θ ¼ −
Nc

16π3T

X
f

jefBj
Z

dx3∂zθðxÞ

×
∂
∂μ Imψ ð1Þ

�
1

2
þ i

μ

2πT

�
m2 þOðm4Þ: ðC12Þ

From the thermodynamic relation, N=V ¼ −∂Ω=∂μ, we
can see that the ~α3 term is generated.
On the other hand, the result from the chiral anomaly

[56] is recovered in the limit m → ∞. Then, the second
term in Eq. (C11) vanishes, and the first term is the very
contribution of chiral anomaly. This limit is consistent with
the case where there are no valence quarks argued in the
Ref. [20]. Furthermore, substituting the configuration of θ
(13), the quark number takes the form

N∂θ →
Nc

4π2
X
f

jefBj
πm�

π

kKðkÞ : ðC13Þ

For investigating the variation from the case of the chiral
limit [21], we take 2m�

π=k ¼ q, where q is the wave vector
of the DCDW condensate. Then, it can be expanded with
respect to ðm�

π=qÞ2,

N∂θ ¼
Nc

4π2
X
f

jefBjq
�
1 − 2

m�2
π

q2
þO

�
m�4

π

q4

��
: ðC14Þ

The second term represents the correction by the finite mc

because of m�2
π ∼mc. The result also implies that the

spectral asymmetry has the correction OðmcÞ although
the exact energy spectrum cannot be obtained at the
finite mc.
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