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A recently developed variant of the so-called optimized perturbation theory (OPT), making it
perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically
improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is
illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar λϕ4 field theory. We
show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and
turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated
resummation methods at two-loop order, such as the two-particle irreducible approach typically. This
lowest order also reproduces the exact large-N results of theOðNÞmodel. Although very close in spirit, our
RGOPT method and corresponding results differ drastically from similar variational approaches, such as
the screened perturbation theory or its QCD-version, the (resummed) hard thermal loop perturbation theory.
The latter approaches exhibit a sensibly degrading scale dependence at higher orders, which we identify as
a consequence of missing RG invariance. In contrast RGOPT gives a considerably reduced scale
dependence at two-loop level, even for relatively large coupling values

ffiffiffiffiffiffiffiffiffiffi
λ=24

p
∼Oð1Þ, making results

much more stable as compared with standard perturbation theory, with expected similar properties for
thermal QCD.
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I. INTRODUCTION

It is a well-established fact that evaluations devoted to
describe quantum chromodynamics (QCD) phase transi-
tions need to be done in a nonperturbative fashion, such as
numerically solving it on the lattice (LQCD) [1], which
nowadays is considered the most reliable way to tackle the
problem at vanishing densities. Unfortunately, LQCD is
still plagued by the so-called sign problem [2] which
prevents the method from being used to describe the
transitions expected to take place at lower temperatures
and higher densities. On the other hand, multiloop pertur-
bative results for many QCD physical quantities are within
reach so that an appealing alternative would be to use them
in conjunction with some resummation procedure in order
to generate nonperturbative results. In this vein, different
analytical techniques envisaged to combine the easiness of
purely perturbative evaluations with nonperturbative opti-
mization/resummation procedures have been proposed in
the past decades [3]. Some of these methods are based on a
reorganization of a given interacting Lagrangian, so that it
becomes written in terms of an arbitrary mass parameter
which, for massless theories, also works as an infrared
regulator (as in hard thermal loop resummations [4,5]). One
of these approaches is the so-called screened perturbation

theory (SPT) [6,7], in which the variational parameter is
described by a thermal mass. The SPT was originally
proposed to describe the thermodynamics of massless
scalar theories, but it has been later generalized so that
the equation of state of thermal gauge-invariant theories [4],
such as QCD, could also be obtained. This gauge invariant
generalization known as hard thermal loop (resummed)
perturbation theory (HTLpt) [8], has been already used to
calculate QCD thermodynamic functions up to three loop
order at finite values of the temperature and chemical
potential [9,10]. The SPT and HTLpt are actually concep-
tually similar to the so-called linear delta expansion (LDE)
and optimized perturbation theory (OPT), developed earlier
under various different names [11–13] mainly in the
context of zero-temperature field theories. Within this
technique, perturbative evaluations are performed using
propagators written in terms of an arbitrary mass parameter,
so that optimized nonperturbative results can be generated
by requiring the mass parameter to satisfy a variational
criterion. The two major problems the above mentioned
methods try to solve are the poor convergence and the
notoriously bad scale-dependence of the standard pertur-
bative series both for the thermal mass and for the pressure
at higher orders (see e.g. [3] for a review): not only the
increasing perturbative orders show no clear sign of
stability, but the scale-dependence worsens substantially
at higher orders, at odds with what is intuitively expected
for most known perturbative series at T ¼ 0. Part of this
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bad behavior is commonly explained [3] by the unavoid-
able complicated interplay of soft and hard thermal con-
tributions. Actually, the dynamical generation of a thermal
screening mass mD ∼

ffiffiffi
λ

p
T influences the relevant expan-

sion of physical quantities, such as the pressure, which are
then expressed in powers of

ffiffiffi
λ

p
rather than λ. In this case

the predictions are, a priori, less convergent than for the
T ¼ 0 case, yet most of the interesting thermal physics
happens at rather moderate coupling values, so that one
could expect a better behavior. Despite the unavoidable

ffiffiffi
λ

p
“nonperturbative” dependence, both SPT [6,7] and OPT
[14] applications to hot scalar theory show how these
methods indeed improve the stability of the predictions
when higher orders in the loop expansion are considered.
Given the inherent technical difficulties associated with the
(three loop) evaluation of the QCD pressure for the case of
hot and dense quark matter, the recent results in [10]
represent an impressive achievement. However, the same
results exhibit a substantial increasing scale-dependence at
increasing two- and three-loop orders, even for moderately
large coupling values, which remains a surprising issue.
This is more pronounced for HTLpt in QCD applications at
the three loop level [9,10]. While the latter are sometimes
remarkably close to lattice results for temperatures down to
T ≳ 2Tc, for the central renormalization scale choice μ ∼
2πT in the MS-scheme, it appears puzzling that a moderate
scale variation of a factor 2 dramatically affects the pressure
and related thermodynamical quantities by relative varia-
tions of order 1 or more. It is argued [10] that resumming
the logarithmic dependence of HTLpt results may improve
this problem, but as we shall explain below the missing RG
invariance properties is more basic within the SPT/HTLpt
approach.
Recently, the standard OPT procedure at zero temper-

ature has been modified to incorporate consistently per-
turbative renormalization group (RG) properties. It was
shown to considerably improve the convergence of OPT, as
tested for the Gross-Neveu (GN) model mass gap [15], and
further used to determine with a good accuracy the basic
QCD scale in the MS scheme, ΛMS, and corresponding
value of the strong coupling ᾱS [16,17]. Very recently the
same method has been used to estimate [18] the QCD chiral
quark condensate. Here, we extend the construction to the
case of a scalar theory with quartic interaction to show how
this RG improved OPT (RGOPT) can easily cope with the
introduction of control parameters such as the temperature,
developing in detail the construction presented very
recently in [19]. Using this textbook example we aim to
illustrate how the RGOPT takes care of the scale depend-
ence problems of thermal theories, those being more clearly
visible within the SPT [6,7] and HTLpt higher loop results
[8–10], but also present in other resummation approaches.
In a nutshell, leaving aside technical details, our basic

observation is that the arbitrary variational mass introduced
in the SPT/OPT context can (and should) be treated as any

“proper” mass, from the RG viewpoint. In particular, this
means that it involves its own standard anomalous dimen-
sion, which is unrelated to the coupling β function, and
should be incorporated consistently within RG properties.
This brings crucial consequences already in the form of an
explicitly RG-invariant pressure, prior to any further
improved/resummed perturbation approaches. It also more
clearly separates the hard and soft modes from a RG/scale
dependence perspective, at least in an intermediate stage of
the calculations. In the more standard approach both
contributions are mixed up since all relevant quantities
are expressed as a function of the coupling and temperature
only. That being accepted, one realizes that most of the
observed worsening scale-dependence at higher orders is
actually due to a manifest failure of RG invariance for a
massive theory. This is at least particularly transparent in
the MS scheme largely used within SPT/HTLpt methods,
where we show that minimally subtracting the vacuum
energy divergences, without finite vacuum energy contri-
butions, explicitly misses RG invariance.
In addition, even when starting from an explicitly RG

invariant perturbative expression, RG invariance is gener-
ally lost as a consequence of the standard (linear) modi-
fication of perturbative expansion implied in OPT/SPT, a
fact that has been seldom appreciated in the relevant
literature so far. However, RG properties can easily be
restored by a consistent use of renormalization group
properties for a massive theory, automatically incorporated
in the RGOPT approach [17], whereby a drastically
improved scale-dependence follows naturally. This opens
up the possibility of rather simply exploiting many non-
trivial SPT/HTLpt results performed up to three-loop order
so far, by improving substantially their scale independence
after applying appropriate RGOPT adaptations.
Incidentally, other resummation approaches, like typi-

cally the so-called “two-loop-Φ-derivable” approach,
[related to the two-particle-irreducible (2PI) method]
[20,21] are manifestly scale invariant when applied to
the scalar model in a certain approximation. In fact one
observes interesting analogies (but also important
differences) between the first nontrival (two-loop) 2PI
order and our one-loop RGOPT results, as will be elab-
orated in more detail below. However, as it happens the
scale-invariance of the above-mentioned 2PI results [20,21]
is essentially due to a renormalization that appears peculiar
to the scalar model, inspired by the properties of the OðNÞ
symmetric theory in the large-N limit [22] (for which
indeed the two-loop-Φ-derivable 2PI results become exact).
Thus, to the best of our understanding, this scale invariance
appears somewhat accidental and difficult to translate to
higher orders and to QCD. Incidentally, the 2PI approach
has been pushed even to three-loop order for the ϕ4 theory
in Ref. [23], with remarkably stable results with respect to
two-loop order, but the method becomes more involved,
and a definite scale-dependence reappears, although much
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more moderate than in the three-loop order SPT and HTLpt
cases. Other approaches like the nonperturbative renorm-
alization group (NPRG) [24], should be RG invariant by
construction. But solving the relevant NPRG equations for
thermal QCD beyond approximative truncation schemes
becomes very involved in practice. We also remark that our
approach shares some qualitative features with the ideas
invoked and the framework developed very recently in
Ref. [25], in which the authors explored some form of
massive renormalization scheme and its consequences.
However, the RGOPT differs substantially in its approach
as it incorporates by construction [17,19] all relevant RG
properties systematically order by order, relying basically
on standard perturbation theory. Being largely based on
(but not limited to) MS-scheme results, the RGOPT can
easily be extended to any higher order calculations per-
formed in the framework of different models, when already
available, including thermal QCD. Therefore, it appears to
us that the method presented here is conceptually simpler
than other more sophisticated resummation approaches
mentioned above.
The paper is organized as follows. In the next section we

quickly review some basic results of thermal scalar theory
for the free energy at the relevant two-loop level. Then, in
Sec. III we address in some details the RG (non) invariance
issue in the massive case, paying special attention to the
MS scheme largely used in the SPT (or the similar HTLpt)
method. In the same section we also explain how to restore
the perturbative RG invariance at arbitrary orders in a
simple fashion. Next, the resummation by optimized
perturbation (OPT), with the crucial modification to main-
tain its perturbative RG invariance, RGOPT, is discussed in
rather general terms in Secs. IV and V respectively. The
method is then illustrated in details by evaluating the free
energy of a hot scalar field theory at one- and two-loop
level in Secs. VI and VII. We emphasize that all the
construction developed in Secs. III to VII for the ϕ4 model
(for which we also briefly consider the large-N case) is
actually more general, most of it being straightforwardly
applicable to thermal QCD. We occasionally mention some
properties anticipated to be similar (or eventually different)
in the QCD case. Finally, our conclusions are presented in
Sec. VIII, and one appendix deals with some technical
details on the RG-invariant construction of counterterms.

II. FINITE TEMPERATURE SCALAR
FIELD THEORY

We consider, as a starting point, the massive scalar field
theory described by the Lagrangian density

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

λ

4!
ϕ4; ð2:1Þ

where we introduce a (yet unspecified) generic mass term
(m) which can be thought as a thermal mass generated by

higher perturbative orders in an originally massless theory.
One may then evaluate the free energy using known results
from ordinary perturbation theory for the massive case.
Then, up to the two-loop level the basic expression of the
(bare) free energy is formally [3,7,26]:

F 0 ¼
1

2

Z
p
lnðp2 þm2Þ þ λ

8

�Z
p

1

p2 þm2

�
2

þ F ct
0 ;

ð2:2Þ

where the temperature is introduced via Matsubara’s
imaginary time formalism (p2 ≡ ω2

n þ p2 with the bosonic
Matsubara ωn ¼ 2πnT) and we have also defined

Z
p
≡
�
eγE

μ2

4π

�
ϵ

T
X
n

Z
dD−1p
ð2πÞD−1 : ð2:3Þ

The divergent integrals are regulated using dimensional
regularization techniques with D ¼ 4 − 2ϵ while renorm-
alization is carried out in the MS-scheme. The term F ct

0

represents all the relevant counterterms contributions to
OðλÞ (see Ref. [7] for details). After all the mass, coupling,
and vacuum energy counterterms have been consistently
introduced to cancel the original divergences, one obtains
the (MS-scheme) renormalized free energy [3,7]:

ð4πÞ2F 0 ¼ E0 −
1

8
m4

�
3þ 2 ln

�
μ2

m2

��
−
1

2
T4J0

�
m
T

�

þ 1

8

λ

16π2

��
ln

�
μ2

m2

�
þ 1

�
m2 − T2J1

�
m
T

��
2

;

ð2:4Þ

where we have explicitly separated the thermal and non-
thermal contributions for later convenience. Here and in all
related renormalized expressions below, μ represents the
arbitrary renormalization scale introduced by dimensional
regularization in the MS-scheme, and λ≡ λðμÞ. Note
carefully in Eq. (2.4) that E0 represents a possible finite
vacuum energy term which is usually ignored, i.e. mini-
mally set to zero in the (thermal) literature [7]. However,
within our approach this quantity is necessarily nonzero
and plays a crucial role as will become clear in the sequel.
The standard (dimensionless) thermal integrals appear-

ing in Eq. (2.4) are given by

JnðxÞ ¼ 4
Γ½1=2�

Γ½5=2 − n�
Z

∞

0

dt
t4−2nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

p 1

e
ffiffiffiffiffiffiffiffiffi
t2þx2

p
− 1

;

ð2:5Þ

where t ¼ p=T and x ¼ m=T. Different integrals can be
easily related by employing derivatives such as
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Jnþ1ðxÞ ¼ −
1

2x
∂
∂x JnðxÞ: ð2:6Þ

Also, a high-T expansion such as

J0ðxÞ≃ 16

45
π4 − 4

π2

3
x2 þ 8

π

3
x3

þ x4
�
ln

�
x
4π

�
þ γE −

3

4

�
þOðx6Þ; ð2:7Þ

is often useful since it represents a rather good approxi-
mation as long as x≲ 1, i.e., T larger than m.
Finally, for later comparison we recall that the thermal

screening mass (mD), defined [27] by the pole of the (static)
propagator, is obtained for weak coupling for the massless
theory as a perturbative series which to lowest orders reads
[27]:

m2
D

T2
¼ λ

24

�
1 −

ffiffiffi
6

p �
λ

16π2

�
1=2

−
�

λ

16π2

�

×

�
3 ln

μ

2πT
− 2 ln

λ

16π2
− 6.4341

�
þOðλ3=2Þ

�
:

ð2:8Þ

III. RG INVARIANT FREE ENERGY IN MASSIVE
RENORMALIZATION SCHEMES

We now discuss the lack of RG invariance when E0 is
minimally set to zero in Eq. (2.4). Remark first that to
obtain (2.4), calculations have been performed with an
arbitrary mass m in the dressed propagators (mainly to
subsequently treat it variationally in the OPT/SPT
approach), with no prejudice at this stage that it should
be a thermal mass of order m2 ∼ λT2 in the actually
massless theory. Thus from the RG viewpoint, everything
in (2.4) should behave as if it was a genuine massive theory,
in particular the mass should have its standard anomalous
dimension. Recall that the (homogeneous) RG operator
acting on a physical quantity with mass dependence, such
as the free energy in the present case, is defined as

μ
d
dμ

¼ μ
∂
∂μþ βðλÞ ∂

∂λþ γmðλÞm
∂
∂m ; ð3:1Þ

where our normalization for the β function is

βðλÞ≡ dλ
d ln μ

¼ b0λ2 þ b1λ3 þ � � � ð3:2Þ

while for the anomalous mass dimension it is given by

γmðλÞ≡ d lnm
d ln μ

¼ γ0λþ γ1λ
2 þ � � � ð3:3Þ

with [28]

ð4πÞ2b0 ¼ 3; ð4πÞ2γ0 ¼
1

2
;

ð4πÞ4b1 ¼ −
17

3
; ð4πÞ4γ1 ¼ −

5

12
: ð3:4Þ

It is easy to see that the renormalized expression, Eq. (2.4),
requires a finite E0 contribution to be RG-invariant, as one
can readily see by considering the one-loop term which has
an explicit ln μ dependence. Thus, acting with the RG
operator, Eq. (3.1), on the right-hand side (RHS) of
Eq. (2.4) gives a nonzero contribution of order Oð1Þ:
−ð1=2Þm4, which is not compensated by terms in Eq. (3.1)
coming from the lowest orders in βðλÞ∂λ or
mγmðλÞ∂m ∝ λm4, those being at least of next order
OðλÞ. This is a manifestation of the fact that (perturbative)
RG invariance generally occurs from cancellations between
terms coming from RG coefficients at order λk and the
explicit μ dependence at the next order λkþ1. This can also
be understood alternatively by considering solely the
original bare contribution to the free energy: although
the latter only depends on the RG-invariant bare mass and
coupling m0; λ0 (and on 2ϵ ¼ 4 −D in dimensional regu-
larization), its finite part is not a priori separately RG
invariant. In other words for a massive theory the
T-independent vacuum energy divergences cannot be
absorbed by an arbitrary redefinition of the vacuum energy
without spoiling RG-invariance. Now, as we recall below
the subtraction needed to recover RG invariance is pertur-
batively well defined and easy to construct order by order.
The vacuum energy gets its own anomalous dimension
which, within dimensional regularization, is essentially
determined by the coefficients of the poles in
2ϵ ¼ 4 −D, stemming from the remaining divergences
once the mass and the coupling have been properly
renormalized. This procedure had been exploited in an
earlier application of the OPT to evaluate the vacuum
energy of the Gross-Neveu (massive) model [29] and then
extended to the QCD case [30,31]. Similarly, a well-known
related result is that the Coleman-Weinberg effective
potential for a general massive theory is not RG invariant
without finite “vacuum energy” terms independent of the
fields, as was originally carried out in Ref. [32] and in
the MS-scheme in the context of RG-improvements of the
effective potential [33]. Indeed, for theOðNÞ ϕ4 model, the
vacuum energy anomalous dimension has even been
computed up to four- and five-loop order in Ref. [34].
However, to the best of our knowledge, this point

appears to have been overlooked in the context of thermal
theories. In applications of improved/resummed massive
perturbation schemes such as SPT [6], HTLpt [9], and the
standard OPT [14] the calculations are mostly performed
within the MS-scheme and the T ¼ 0 vacuum energy
divergence is minimally cancelled out by appropriate (zero

JEAN-LOÏC KNEUR and MARCUS B. PINTO PHYSICAL REVIEW D 92, 116008 (2015)

116008-4



point) counterterms but missing out those extra finite
subtractions required by RG properties. In fact, as far as
the purely perturbative massless theory is concerned, the
only mass is actually a thermal mass:m2

th ∼ λT2, so that the
lack of RG invariance pointed out above is rather postponed
to higher (three-loop) perturbative order λ2, where it plainly
resurfaces. Within the SPT, or the similar HTLpt,
approaches the variational mass parameter is similarly
perturbatively of order m2 ∼ λT2. It is thus not surprising
that the scale dependence observed within SPT/HTLpt
results appears to worsen at higher orders [7,9]. But more
generally one wishes to use the nonperturbative mass gap
resulting from such variational approaches possibly beyond
standard perturbation for moderately large coupling values,
as can be relevant near a critical temperature. Thus, the lack
of RG invariance appears more serious since as we recall in
next section [see Eq. (4.1)], the variational procedure
formally treats the mass to be of the same perturbative
order as the lowest order considered contributions, like e.g.
the “hard” thermal one-loop contributions of order ∼λ0T4.
Moreover, in the standard procedure one makes the
arbitrary renormalization scale μ effectively temperature
dependent by choosing μ ∼ 2πT, such as to avoid large
ln μ=ð2πTÞ contributions coming from the remnant scale-
dependence. In this way the pressure can be studied as a
function of T=Tc in QCD applications, where Tc is related
to the basic QCD ΛQCD, e.g. in the MS-scheme. But if the
scale dependence appears not much reliable at higher loop
orders, one may question as well the reliability of the
corresponding T=Tc dependence of the pressure, even for
the well-motivated central μ ¼ 2πT prescription.
While those issues in MS or related schemes may

perhaps not explain at once all the problems that thermal
theories face with perturbative expansions at increasing
coupling, a part of those problems are likely to be reduced
if one adopts from the beginning a prescription fully
consistent with RG properties. This problem appears partly
circumvented (but are actually rather delayed to higher
orders) in thermal perturbative calculations performed in
some other renormalization schemes, where the zero-point
energy, F 0ðT ¼ 0Þ, is subtracted for convenience prior to
any subsequent calculations. Indeed, subtracting the T ¼ 0
contribution from Eq. (2.4) washes out all the first μ-
dependent terms, making scale-independence (trivially)
satisfied at one-loop order, and (less trivially) at the two
loop level as well. But then the one-loop result becomes
also trivial, with the only left contribution being the pure
thermal, third term in the RHS of Eq. (2.4). So, there are no
possible optimized solutions of the OPT/SPT/HTLpt form,
which can only be obtained at the two-loop level.
Moreover, applying subsequently the standard SPT/OPT
procedure anyway spoils RG invariance. In any case it is
most convenient to have a prescription generically valid
both for zero and finite temperatures, so that subtracting
T ¼ 0 contributions is not satisfactory for a more general

framework. Accordingly, the subtraction procedure we will
consider next only depends on T ¼ 0 contributions but is
generically valid also for T ≠ 0. Moreover, a remarkable
consequence is that the subsequent mass optimization, as
implied by RGOPT, will give a nontrivial solution already
at the one-loop order, and very similar to what is normally
obtained at two-loop order with the other mentioned
resummation schemes (SPT/OPT, HTLPT, 2PI,…), as
we will examine in detail.
Following Refs. [16,17,29–31] the easiest way to con-

struct an RG-invariant finite vacuum energy is to determine
E0 order by order as a perturbative series from the reminder
of acting with Eq. (3.1) on the non RG-invariant finite part
of Eq. (2.4):

μ
d
dμ

E0ðλ; mÞ≡ −Remnantðλ; mÞ

¼ −μ
d
dμ

½F 0ðE0 ≡ 0Þjfinite� ð3:5Þ

where the RHS of (3.5) thus defines the anomalous
dimension of the vacuum energy. As above mentioned,
it is easy to see that, as a perturbative series, E0 has the
convenient form in MS or similar schemes

E0ðλ; mÞ ¼ −
m4

λ

X
k≥0

skλk; ð3:6Þ

where the constant coefficients sk are perturbatively deter-
mined order by order, being essentially determined by the
coefficients of the (single) powers of ln μ term at order
kþ 1 (or equivalently by the single poles in 1=ϵ of the
unrenormalized expression) [17,30]. This procedure leaves
non RG-invariant remnant terms of perturbative higher
orders to be cared for similarly once higher order terms are
considered. The apparently odd divergent behavior for
λ → 0 of this first order term is actually not a problem
since, as we will see explicitly, it completely disappears
from the final results.
We stress that all the previous considerations, being only

dependent on the renormalization procedure, do not depend
on the thermal contribution so that, at arbitrary perturbative
orders, the subtraction function represented by Eq. (3.6)
can be determined simply from the T ¼ 0 contributions
only.1 Note that Eq. (3.6) is not the only possible sub-
traction form in general, but a very convenient one in MS or
related schemes to proceed systematically at higher orders.

1However, when the T ¼ 0 and the T ≠ 0 contributions are not
explicitly separated, like in the case of two- and three-loop HTLpt
[9], due to the systematic m=T expansion making such involved
calculations tractable, caution will be needed to expand at a
sufficient order in m=T so as to get all the relevant terms of the
same perturbative order to construct the corresponding subtrac-
tions in Eq. (3.6).
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Moreover, it is particularly convenient once introducing
below the RGOPT modification of perturbation, since the
1=λ term will be responsible for a nontrivial RGOPT
solution already at one-loop order.
Explicitly, one finds the RG-invariant form of Eq. (2.4)

up to two-loop order with a nontrivial E0 given by

E0 ¼ −m4

�
s0
λ
þ s1 þ s2λþOðλ2Þ

�
: ð3:7Þ

After some algebra one obtains

s0 ¼
1

2ðb0 − 4γ0Þ
¼ 8π2; s1 ¼

ðb1 − 4γ1Þ
8γ0ðb0 − 4γ0Þ

¼ −1;

s2 ¼
96π2ðb0 − 128π2ðð1þ 4s1Þγ1 − s0ðb2 − 4γ2ÞÞ − 41

12288π4ðb0 þ 4γ0Þ
¼ 23þ 36ζ½3�

480π2
≃ 0.01399; ð3:8Þ

where the explicit RG dependence in the intermediate terms
emphasizes the more general form of these results, while
the last terms are specific to the N ¼ 1 ϕ4 theory. To derive
s2 according to the previous discussion we had to use the
(T ¼ 0) ln μ coefficient at three-loop order given e.g. in
Ref. [7].
One may equivalently derive the finite subtraction in

Eq. (3.7) in an alternative manner by RG invariance
considerations solely on the bare expression of the free
energy. For completeness, this is presented in the appendix.
Instead of minimally subtracting the bare vacuum energy
divergence, an RG-invariant counterterm can be added to
cancel the remnant divergences, and necessarily incorpo-
rates also the same finite subtraction terms in Eq. (3.8). As a
nontrivial crosscheck of our calculation, let us note that
now acting with the RG operator, Eq. (3.5), on the results
given by Eqs. (3.7) and (3.8) one recovers, for N ¼ 1, the
results up to λ3 of the anomalous dimension βvðλÞ [with
μdE0=dμ≡ 2m4βvðλÞ] which has been calculated up to
four and five loops for arbitrary N in Ref. [34]. (Actually
we could have used directly the results in [34] in the present
scalar model case to derive the sk in Eq. (3.8), but the above
derivation using the basic available perturbative expres-
sions shows precisely how to proceed for an arbitrary
theory, where the vacuum energy anomalous dimension
may not always be explicitly available.)
One sees that the subtractionwith sk, explicitly depending

on RG coefficients, incorporates a nontrivial RG-
dependence already at first (one-loop) order, only depending
on already known one-loop standard RG coefficients. This
result has important consequences for the subsequent OPT
application. Now, there is a subtlety at this stage: while the sk
subtraction terms are strictly necessary to recover RG
invariance at order λk, i.e. up to neglected λkþ1 terms, they
enter the free energy expression at order λk−1 as Eq. (3.6)
indicates. For instance only s0 is needed to recover RG-
invariance at one-loopOð1Þ, but the next term s1 is of order
Oð1Þ, so strictly speaking s1 should also be included in the
full “one-loop” free energy results. This appears as a
complication a priori, meaning that at order k one needs

in principle the more demanding information from (the ln μ
coefficient of) perturbative order kþ 1. On the other hand
since RG invariance is constructed perturbatively, one may
expect that the simplest minimal prescription of keeping
only the sk terms at order λk should already be a good enough
approximation. Accordingly, we mainly consider below the
simplest prescription but also examine both prescriptions,
indicating the differences whenever relevant. We will see
that, after the modification of perturbative expansion
implied by RGOPT, incorporating the higher order skþ1

at order λk makes no crucial differences, even at one-loop
order, the resummation results being not very sensitive to
such purely perturbative variations. The same stability with
respect to such variations was also observed at vanishing
temperature in Ref. [17] (where those different prescriptions
were incorporated within the intrinsical theoretical errors of
the method).
It should be clear from the previous derivation that by

construction the subtraction terms make the free energy
perturbatively RG-invariant. But just to crosscheck it in a
more pedestrian way, let us now reexamine the result at
one-loop order, with the −s0m4=λ subtraction included in
Eq. (2.4), using the standard one-loop RG running coupling
and mass. These are given from integrating respectively
Eq. (3.2), (3.3) which yields the standard textbook result:

λðμÞ ¼ λðμ0Þ
�
1 − b0λðμ0Þ ln

μ

μ0

�
−1

≃ λðμ0Þ
�
1þ 3

16π2
λðμ0Þ ln

μ

μ0
þOðλ2Þ

�
; ð3:9Þ

mðμÞ ¼ mðμ0Þ
�
1 − b0λðμ0Þ ln

μ

μ0

�
−1=6

≃mðμ0Þ
�
1þ 1

32π2
λðμ0Þ ln

μ

μ0
þOðλ2Þ

�
; ð3:10Þ

where λðμ0Þ and mðμ0Þ are the coupling and mass at some
arbitrary reference scale μ0. Expanding Eq. (2.4) to first
order in λ (i.e. to order λ0) one obtains:
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ð4πÞ2F 0 ≃m4ðμ0Þ
�
−

8π2

λðμ0Þ
−
1

8
ð4 ln μþ 3þ � � �Þ þ 8π2

�
3

16π2
ln μ −

2

16π2
ln μ

�
þOðλÞ

�
þ thermal part

≃m4ðμ0Þ
�
−

8π2

λðμ0Þ
−
3

8
þOðλÞ

�
; ð3:11Þ

(where � � � stands for μ-independent terms). This relation
explicitly displays the cancellation, up to terms of higher
order OðλÞ, of all ln μ contributions coming respectively
from the original one in Eq. (2.4), and from the running
coupling and mass [third and fourth terms respectively in
Eq. (3.11)]. We have neglected above the thermal contri-
butions, but including these does not alter the results since
the exact T-dependent contribution does not depend
explicitly on μ. Alternatively, when the high-T expansion
is considered, the explicit ln μ=m in Eq. (2.4) is replaced by
a ln μ=ð4πTÞ with the same coefficient consistently. It is
instructive to push this exercise a step further now
incorporating in the free-energy (2.4), restricted at one-
loop order, all thermal contributions in the high-T limit,
from Eq. (2.7), and plugging into the resulting expression
m ¼ mD, the standard perturbative thermal mass, Eq. (2.8)
also restricted at first order. Then, the expression only
depends on the coupling, and using Eq. (3.9) gives the
result:

ð4πÞ2F 0

≃ T4

�
−
8π2

45
þ π2

72
λðμ0Þ −

π

36
ffiffiffi
6

p λ3=2ðμ0Þ þOðλ2; ln μÞ
�
;

ð3:12Þ

where all μ dependence has been canceled out up to order
λ2, since m4

D ∼ λ2. This was expected since the subtraction
takes care of the T ¼ 0 lowest orders μ-dependence as
shown previously, while the thermal contribution
∝J0ðm=TÞ in Eq. (2.4) does not depend on the scale.
More interestingly, one recognizes from Eq. (3.12) the
standard perturbative expansion for the pressure which,
upon using the common normalization with the free gas
pressure P0 ¼ π2T4=90 and λ0 ¼ 4!g2, can be expressed
as:

P
P0

¼ 1 −
15

8

g2

π2
þ 15

2

g3

π3
: ð3:13Þ

In particular, the term −s0=λ is incorporated in the
final result Eq. (3.12) once using Eq. (2.8) since
−s0m4

D=λ ∼OðλÞ. The latter gives a contribution
ð15=8Þg2 to P=P0, making this complete one-loop ex-
pression consistent with the standard perturbative expres-
sion of the pressure up to order λ3=2, while the original
(unsubtracted) perturbative one-loop expression is not,
giving an expansion similar to (3.13) but with a twice

too large g2 term −ð15=4Þg2. However, this agreement is
merely an accident of one-loop order: at two-loop order,
including the next order subtraction term from (3.7) does
not give the correct massless perturbative pressure when
replacing m by mD. (In particular the subtraction −s0m4=λ
happens to be exactly cancelled by the hard contribution of
order λ, ∝ λT4). But this is not surprising, since more
generally the perturbative massless pressure [27] cannot be
obtained consistently from simply replacing the perturba-
tive thermal mass (2.8) in the expression of the massive
pressure. However, when the mass is traded for a varia-
tional parameter, like in the OPT/SPT resummation ap-
proaches to be recalled next, one may recover the massless
pressure results under specific conditions. This is made
possible because the OPT construction and mass optimi-
zation drastically modifies the massive contributions as
compared with the original perturbative expansion.
To summarize this section, starting with Eq. (2.4)

including E0 from Eq. (3.7) to obtain a perturbatively
RG-invariant free energy provides a sound basis for more
elaborate resummation procedures like the OPT method to
be addressed next. As above mentioned, an extra advantage
of the subtraction terms (3.7) starting with 1=λ, is that the
optimization procedure will provide a nontrivial mass ~mðλÞ
already at the lowest one-loop order, in contrast with the
standard SPT and HTLpt approaches (where at one-loop
order the mass optimization gives a trivial λ-independent
solution [6–8]). This is a welcome feature specially for
more involved theories like thermal QCD where higher
order contributions are challenging to evaluate, and a
comparison between successive orders is crucial to estab-
lish the stability of the resummation results.

IV. OPTIMIZED PERTURBATION THEORY (OPT)

The basic feature of the optimized perturbation theory
(OPT) (appearing also under different names and variations
[11–13]), is to introduce an extra parameter 0 < δ < 1,
which interpolates between Lfree and Lint in Eq. (2.1), so
that the mass m is traded for an arbitrary trial parameter.
This is perturbatively equivalent to taking any standard
perturbative expansions in λðμÞ, after renormalization,
reexpanded in powers of δ after substituting:

m → m ð1 − δÞa; λ → δ λ: ð4:1Þ
This procedure is consistent with renormalizability
[29,35,36] and gauge invariance [31], whenever the latter
is relevant, provided of course that the above redefinition of
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the coupling is performed consistently for all interaction
terms and counterterms appropriate for renormalizability
and gauge invariance in a given theory.2 Note that in
Eq. (4.1) we have introduced an extra parameter, a, to
reflect a priori a certain freedom in the interpolation form.
As will be demonstrated below this parameter plays an
essential role within our method for allowing compelling
constraints to be imposed. Applying Eq. (4.1) to some
given renormalized perturbative expansion for a physical
quantity, Pðm; λÞ, reexpanding in δ to order k, and taking
afterwards the δ → 1 limit (to recover the original massless
theory) leaves a remnant m-dependence at any finite δk-
order. The arbitrary mass parameter m is then most
conveniently fixed by a variational optimization prescrip-
tion known as the principle of minimal sensitivity [13]

∂
∂mPðkÞðm; λ; δ ¼ 1Þjm≡ ~m ≡ 0; ð4:2Þ

thus determining a nontrivial optimized mass ~mðλÞ, with
nonperturbative λ-dependence, realizing dimensional trans-
mutation (more precisely, e.g. for asymptotically free
theories at vanishing temperatures, the optimized mass is
automatically of the order of the basic scale Λ ∼ μe−1=ðb0λÞ,
in contrast with the original vanishing mass).
In simpler (D ¼ 1) models, at vanishing temperatures,

the procedure may be seen as a particular case of “order-
dependent mapping” [12], which has been proven [37] to
converge exponentially fast for the D ¼ 1 ϕ4 oscillator
energy levels. For higher dimensional D > 1 renormaliz-
able models, no rigorous convergence proof exists,
although the OPT was shown to partially damp the
factorially divergent (infrared renormalons) perturbative
behavior at large orders [38]. Nevertheless, this technique
can give rather successful approximations to some non-
perturbative quantities beyond the large-N (or mean field)
approximations in a large variety of physical situations
which include the study of phase transitions within
condensed matter related renormalizable models [39–42]
as well as within QCD nonrenormalizable effective
models [43].
We emphasize that at finite temperatures the very same

basic idea has been exploited by the SPT [5,6]/HTLpt [8]
method, where in this thermal context the screening thermal

mass is treated as an arbitrary variational parameter, and in
Eq. (4.2) P also depends on T like e.g., Eq. (2.4).

V. RENORMALIZATION GROUP
COMPATIBILITY OF OPT

In most previous standard OPT (or similarly SPT and
HTLpt) applications, the so-called linear δ-expansion is
used, assuming a ¼ 1=2 (i.e. m2 → m2ð1 − δÞ for a scalar
mass) in Eq. (4.1) mainly for simplicity and economy of
parameters while the more recent approach, developed in
Refs. [15–17], differs in two crucial aspects which turn out
to drastically improve the convergence. First, it introduces a
straightforward marriage between OPTand renormalization
group (RG) properties, by requiring the (δ-modified)
expansion to satisfy, in addition to the OPT Eq. (4.2), a
standard RG equation:

μ
d
dμ

PðkÞðm; λ; δ ¼ 1Þ ¼ 0; ð5:1Þ

where the RG operator was defined in Eq. (5.1). Moreover,
once combined with Eq. (4.2), the RG equation takes the
reduced massless form:�

μ
∂
∂μþ βðλÞ ∂

∂λ
�
PðkÞðm; λ; δ ¼ 1Þ ¼ 0: ð5:2Þ

Therefore, Eqs. (5.2) and (4.2) if used together, completely
determine optimized m≡ ~m and g≡ ~g “variational” fixed
point values.
Since interaction and free terms from the original

perturbative series are rather drastically reshuffled by the
modification implied by Eq. (4.1), the RG invariance is in
general no longer perturbatively satisfied, even when the
original perturbative series is RG-invariant prior to per-
forming (4.1). This spoiled RG invariance has to be
restored in some manner, and thus Eq. (5.1) gives a
nontrivial additional constraint. This feature has been
seldom appreciated and considered in many former appli-
cations of the δ-expansion/OPT method to renormalizable
theories (perhaps in part because in many analyses with
more elaborated theories the OPT is restricted to first order,
where RG improvements are supposed to play a minor
role). This important role of RG properties was recognized
much earlier in Refs. [29,30] where to recover the RG
consistency the standard linear δ-expansion was resummed
to all orders. Indeed, this resummation can be done, at least
for the pure RG dependence up to two-loop, but the result
comes as a rather involved integral representation, not
practically intuitive and making difficult to perform the
mass optimization or to generalize to other physical
quantities and other models. In contrast, the purely per-
turbative procedure together with Eq. (5.1) appears a
considerable shortcut, straightforward to apply to any
model. Intuitively, just as the stationary point solutions

2Contrary to what is sometimes claimed (and worked out) in
the literature, the OPT/SPT/HTLpt does not need any extra
counterterms besides the standard ones of the corresponding
massive theory: in particular all seemingly new divergences
generated at arbitrary orders from the first replacement in
Eq. (4.1) are evidently related to the single standard mass
counterterm. Moreover at arbitrary orders, temperature-
dependent divergences and associated counterterms should not
appear, as expected from general principles, provided that one
keeps the mass as an arbitrary parameter and carefully subtract all
nested subdivergences until renormalization has been completed,
before using a gap-equation giving perturbatively ~m ∝ T

ffiffiffi
λ

p
.
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from Eq. (4.2) are expected to give sensible approxima-
tions, at successive orders, to the actually massless theory,
one similarly expects that combining the latter with the RG
solutions should further give a sensible sequence of best
approximations to the exactly scale invariant all order
results.
Still, a well-known drawback of the standard OPT

approach is that, beyond lowest order, solving Eq. (4.2)
generally gives more and more solutions at increasing
orders, some of which are likely to be complex-valued.
More generally, without some insight on the nonperturba-
tive behavior of the solutions, it may be difficult to select
the right one, and the unphysical complex-valued opti-
mized solutions at higher orders are embarrassing. This is
incidentally a problem encountered first at three-loop order
in SPT [7] and HTLpt applications to QCD[9]. The mass
optimization is then replaced by alternative prescriptions,
most often using simply the purely perturbative screening
mass, but accordingly losing a more nonperturbative
ingredient from the optimized mass. But RG considerations
also provide a possible way out, which is the second main
difference and new feature of the present RGOPT version.
For QCD a compelling selection criterion was proposed, in
which only the solution(s) continuously matching the
standard perturbative (asymptotically free) RG behavior
for vanishing coupling are retained [16,17]. This prescrip-
tion can easily be generalized to any model, like the
nonasymptotically free (AF) ϕ4 theory, by similarly requir-
ing to asymptotically match the solutions to the standard
perturbative behavior for small coupling, namely for fixed
~m and arbitrary scale μ:

~λðμ ≪ ~mÞ ∼
�
b0 ln

~m
μ

�
−1

þO
�
ln−2

�
~m
μ

��
: ð5:3Þ

At zero temperature this turns out to give a unique solution
for both the RG and OPT equations, up to rather high
orders. An additional welcome feature is that by requiring
at least one RG solution to fulfill Eq. (5.3) leads to a strong
necessary condition on the basic interpolation, Eq. (4.1),
uniquely determining a from the universal (scheme-inde-
pendent) first order RG coefficients: a≡ γ0=b0, as we
derive in more detail below. A connection of the OPT
exponent a with RG anomalous dimensions/critical expo-
nents had also been established in a very different context,
in the D ¼ 3 ϕ4 model for the Bose-Einstein condensate
(BEC) critical temperature shift by two independent OPT
approaches [41,42], where it also led to real OPT solutions
[42]. However, AF-compatibility and reality of solutions
can appear to be mutually exclusive beyond lowest order,
depending on the particular model. A simple way out is to
further exploit the RG freedom, considering a perturbative
renormalization scheme change to attempt to recover
RGOPT solutions both AF-compatible and real [17]. We
will see that this extra complication is not even necessary in

the present case, where (at least up to the two-loop order)
the RG-compatible solutions remain real for a large range
of relevant values of the coupling and temperature. All
these features are easy to generalize at finite temperatures
due to the fact that RG properties are essentially determined
by the divergence structure of the T ¼ 0 part. So, the only
complication is technical since at finite temperature the
previous Eqs. (4.2), (5.1), and (5.2) come with an extra T
dependence. Let us now illustrate explicitly all those
features by evaluating the RGOPT modification of the
free energy of a thermal scalar field.

VI. 1-LOOP, Oðδ0Þ
A. T ¼ 0

Let us first truncate Eq. (2.4) at strict one-loop order, and
first restricting to T ¼ 0 which is simpler and sufficient to
determine the RG-exponent a in Eq. (4.1). We have

ð4πÞ2FRGI
0 ðT ¼ 0Þ ¼ −

s0
λ
m4 −

1

8
m4

�
3þ 2 ln

μ2

m2

�
;

ð6:1Þ
where the superscript RGI emphasizes the (perturbative)
RG invariance of this quantity. At this order the calculation
is elementary so it can best illustrate the main steps. Now,
applying Eq. (4.1), performing the δ-expansion to order δ0

consistently, and taking afterwards δ → 1, gives:

ð4πÞ2FRGI
0 ðδ0;δ¼1Þ¼m4

�
−
s0
λ
ð1−4aÞ−1

8

�
3þ2 ln

μ2

m2

��
:

ð6:2Þ

Note that the Oð1Þ term remained unmodified (this is a
general property of OPT: expanding at order δk and taking
δ → 1 leaves the order λk term unaffected due to the
screening from λ → δλ). Then, requiring Eq. (6.2) to be
perturbatively RG-invariant after this modification of the
perturbative series, i.e. applying the RG Eq. (5.2), on gets

m4

��
1 −

b0
γ0

a

�
þOðλÞ

�
¼ 0; ð6:3Þ

which uniquely fixes

a ¼ γ0
b0

¼ 1

6
; ð6:4Þ

where, in Eqs. (6.3) and (6.4), we made the RG coefficient
dependence explicit to emphasize the generality of these
results. At this point several remarks are in order:

(i) the very same result, Eq. (6.4), was obtained [16,17]
(up to a trivial b0 difference of normalization by
a factor 2), while considering the RGOPT for
QCD (with appropriate QCD values for those RG
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coefficients). The exponent a is universal for a given
model, in the sense that it only depends on the first-
order RG coefficients, which are renormalization
scheme independent. Furthermore, at vanishing
temperature, Eq. (6.4) greatly improves the conver-
gence of the procedure at higher orders: considering
only the first RG coefficients b0; γ0 dependence (i.e.,
neglecting higher RG orders and non-RG terms), it
gives the exact nonperturbatively resummed result at
the first δ order and any successive order [17]. This
is not the case for a ¼ 1=2 (for a scalar mass), where
the convergence appears very slow, if any.

(ii) The standard linear δ-expansion interpolation,
widely used for zero temperature models and for
SPT/HTLpt, takes a ¼ 1=2 [7,11,14,36]:

m2 → m2ð1 − δÞ; ð6:5Þ

thus our RG-compatible exponent (6.4) is three
times smaller.3 Indeed the standard OPT/SPT inter-
polation (6.5) leads to an unmatched RG equation,
while the OPT equation (4.2) solved for λðmÞ (or
equivalently for mðλÞ gives, in the perturbative
regime μ ≪ m:

λðμ ≪ mÞ ∼ −
16π2

lnðmμÞ
; ð6:6Þ

in clear contradiction with the true running by a
wrong overall sign plus a factor three too large.

(iii) At the very first nontrivial δ0 order, once having
fixed a ¼ γ0=b0 the RG equation is satisfied and
thus does not give further constraint. We will see that
at the next and higher orders in δ, Eq. (6.4) is always
required for the RG equation to have at least one
solution matching Eq. (5.3). In addition, it also fixes
λ in terms of the other parameters (m, and the only
remaining parameter μ=T when considering the
thermal part).

Let us next consider the other OPT constraint given by
Eq. (4.2). Still neglecting the thermal part, and pulling out
an overall factor yields

m3

�
1

b0λ
þ 1

2

�
1þ ln

μ2

m2

��
¼ 0: ð6:7Þ

One readily remarks the explicit exact scale-invariance of
Eq. (6.7), thus of its solution, provided that one uses for
λ≡ λðμÞ the exact (one-loop resummed) running in
Eq. (3.9), since the expression 1=λðμÞ þ b0 ln μ is explicitly
μ-independent. Letting apart the trivial m ¼ 0 solution,
Eq. (6.7) has the more interesting solution

~m2 ¼ μ2e1þ
2

b0λ; ð6:8Þ

which is seen to be compatible, for λ → 0, with the
perturbative first order standard RG solution obtained from
solving Eq. (3.2) for λðμÞ at first order. Namely, for fixed
m and arbitrarily small μ, it exhibits infrared free-
dom: λðμ ≪ mÞ≃ ðb0 lnðm=μÞÞ−1.
Moreover, plugging Eq. (6.8) within the modified

vacuum energy expression (6.2) for the case of vanishing
temperatures, gives a remarkably simple result:

F 0ð ~m; λÞ ¼ −
~m4

8ð4πÞ2 : ð6:9Þ

Despite its somewhat trivial look, Eq. (6.9) represents a
nonperturbative result, in the sense that it only involves the
expression of ~m4 from Eq. (6.8). Apart from the one in
Eq. (6.8) all λ-dependence disappeared [in particular
the −s0=λ term has consistently disappeared upon using
the OPT gap equation (6.7)]. Therefore, Eq. (6.9) gives a
nontrivial T ¼ 0 (negative) vacuum energy contribution
and resembles much the large-N nonperturbative result, up
to appropriate identification of b0λ, but here obtained from
the OPT. When higher RG orders and non-RG contribu-
tions are included, they spoil this simple form result [17], as
does also the thermal part, that we will consider next. In
these cases there are remnant coupling dependences, once
having used the solution of Eq. (4.2) within the physical
expression of the vacuum energy.

B. T ≠ 0

Let us now consider the thermal contributions in
Eq. (2.4) still at one-loop order. After performing the
δ-expansion to the lowest corresponding order δ0 we obtain
the T ≠ 0 free energy, similarly as in (6.2):

ð4πÞ2FRGI
0 ðT ≠ 0; δ0; δ ¼ 1Þ

¼ m4

�
−

1

2b0λ
−
1

8

�
3þ 2 ln

μ2

m2

��
−
1

2
T4J0

�
m
T

�
;

ð6:10Þ

where the first term −s0m4ð1 − 4aÞ=λ ¼ −m4=ð2b0λÞ is
the only one affected by (4.1) at this lowest order.
Calculations are slightly more involved than for T ¼ 0
but note that the δ-expansion and subsequent OPT mini-
mization equation involve successive derivatives of the
thermal function Jnðm=TÞ. For more generality and to
make contact with various other resummation methods, it
turns out to be particularly convenient to express all our
RGOPT results in terms of the one-loop renormalized
self-energy, including all thermal dependence:

3In QCD e.g for 3 light quark flavors a ¼ γ0=ð2b0Þ ¼ 4=9 is
also substantially smaller than the linear case value a ¼ 1 for
fermion masses.
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ΣR ≡ λ

2

Z
p

1

p2 þm2
þ Σct

¼ γ0λ

�
m2

�
ln
m2

μ2
− 1

�
þ T2J1

�
m
T

��
; ð6:11Þ

[where for completeness the mass counterterm reads Σct

reads γ0λm2=ð2ϵÞ]. This simple factorization is possible for
the scalar ϕ4 model up to the two-loop level, because the
two-loop contribution [the last order λ term in Eq. (2.4)]
factorizes as the square of one-loop expressions (i.e. graphs
with a different “nested” topology only appear at the three-
loop level for the λϕ4 interactions).
Then, noting that ∂

∂m2

R
p lnðp2 þm2Þ ¼ 2ΣR=λ, the exact

solution of the OPT Eq. (4.2) can easily be written in the
form of a self-consistent “gap” equation for ~m:

~m2 ¼ ð4πÞ2b0ΣR ¼ b0
λ

2

�
~m2

�
ln

~m2

μ2
− 1

�
þ T2J1

�
~m
T

��
;

ð6:12Þ

which like the T ¼ 0 previous case, is exactly scale-
invariant by construction, as we will illustrate more
explicitly below.

1. Digression: Connection with large-N and 2PI results

As an important digression, we point out that Eq. (6.12)
is recognized as the very same solution obtained for the
large-N OðNÞ ϕ4 model in Ref. [22], upon appropriate b0
definition for the large-N case. Indeed, in the leading 1=N
approximation, the only contributing graphs have the one-
loop structure, and the mass-gap equation can be solved
exactly. More precisely it is easily found from the arbitrary
N RG coefficients given e.g. in Ref. [28] that in our
normalization,

ð4πÞ2b0ðNÞ ¼ N þ 8

3
; ð4πÞ2γ0ðNÞ ¼ N þ 2

6
; ð6:13Þ

so that in particular we have for the crucial exponent
in (4.1):

a≡ γ0
b0

¼ 1

2

�
N þ 2

N þ 8

�
→

1

2
for N → ∞ ð6:14Þ

for which values all our previous construction, and the
corresponding mass gap equation in (6.12), reproduce
exactly the large N results in [22]. Note in particular that
a ¼ 1=6 for N ¼ 1 while accidentally the large N value of
a ¼ 1=2 is the standard linear one, but here being fully
consistent with RG properties. The fact that the one-loop
RGOPT reproduces exactly the large N result can be seen
as the finite temperature analog of similar RGOPT proper-
ties [15] obtained for the large N limit of the GN model.

Similarly, Eq. (6.12) is also recognized as the very same
form of mass gap solution obtained in the 2PI formalism but
at two-loop order [21] (or also in the tadpole approximation
for the self-energy [20]), except that in [21] the correct b0 ¼
3=ð16π2Þ is effectively replaced by b0=3 because, as
explained by the authors, only one channel out of three is
taken into account at this level of the 2PI approximation,
similarly to the leading 1=N approximation. We will come
back below on this apparent b0 value mismatch when
discussing the perturbative reexpansion of the pressure to
make contact with standard perturbation results. In fact, the
analogy with Ref. [21] goes further, in particular their
expression of the mass gap solution is also exactly scale
invariant at two-loop order, and the free energy involves,
after renormalization, a term−m4=ð2λÞ, once again identical
to our subtraction terms −m4=ð32π2b0λÞ in Eq. (6.2), when
takingb0 → b0=3. But the origin of this 1=λ term inRef. [21]
is very different, emerging upon using the gap equation.
Incidentally, the scale-invariance of the 2PI results is
essentially due to a renormalization procedure that is
peculiar to the scalar model, inspired by the large N limit
[22], which thus appears to us as being accidental, and
limited to the first nontrivial two-loop level. In contrast the
mass gap (6.12) is obtained already at the one-loop level, and
it should be clear from the previous construction that the
RGOPT systematic procedure is applicable in any model at
arbitrary orders.

2. One-loop RGOPT mass gap and pressure solutions

Although Eq. (6.12) may easily be solved numerically, it
is instructive to consider next the approximation given by
the high-T expansion, which is very precise as long as
T ≳m: in fact this condition can be easily checked
a posteriori considering the optimized solution ~m. At
one-loop level, it turns out that the optimized mass always
satisfies this criterion for all the relevant range of coupling
values. Therefore, we will not need to solve the exact
Eq. (6.12) for all practical purposes. In the high-T approxi-
mation (2.7), the one-loop order OPT Eq. (4.2) produces
(discarding the trivial solution ~m ¼ 0) a simple quadratic
equation for m:

�
1

b0λ
þ LT

�
x2 þ 2πx − 2

π2

3
¼ 0; ð6:15Þ

where m≡ xT and we defined for shorthand notations the
μ=T dependent part LT ≡ ln½μ=ð4πTÞeγE �. As already
explained above the RG Eq. (5.2) reduces to Eq. (6.3)
which is already satisfied for Eq. (6.4), thus it gives no
additional constraint.
Solving Eq. (6.15) gives two real solutions, but one is

clearly unphysical, giving ~m < 0 for any λ. The other
unique physical solution is thus
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~mð1Þ

T
¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
ð 1
b0λ

þ LTÞ
q

− 1

1
b0λ

þ LT
; ð6:16Þ

where for more generality we kept the dependence on b0
explicit. Despite the apparently minor modification of the
series represented by Eq. (6.2) at this first order, the
solution given by Eq. (6.16) has clearly a nonperturbative
dependence on λ. We stress that the variational mass (6.16)
is unrelated to the physical screening mass [27] in Eq. (2.8),
and thus has no reason to reproduce the latter. Moreover, as
anticipated, Eq. (6.16) is strictly exactly scale-invariant,
provided that one uses for λ≡ λðμÞ the exact (one-loop
resummed) running in Eq. (3.9) (now with μ being
temperature-dependent as usual), since the expression
1=λðμÞ þ b0LT ≡ 1=λðμÞ þ b0 ln μþ � � � is explicitly μ-
independent. In other words the mass gap in (6.16) actually
only depends on the single parameter b0λðμ0Þ, where μ0 is
some reference scale, typically μ0 ¼ 2πT.
Before we proceed, it is worthwhile to comment a little

more on this result: recall that prior to the δ-expansion, the
basic one-loop expression [first line in Eq. (2.4)] with the
first term s0 in the subtraction E0, is by construction RG-
invariant to one-loop order, i.e. up to neglected higher order
termsOðλÞ. But what is more remarkable is that the optimal
mass resulting from solving (4.2) is exactly scale-invariant
to all orders (of course “all orders” but neglecting genuine
higher orders in the running coupling, i.e. keeping only the
b0 dependence to all orders). This is a direct consequence
of the value a ¼ γ0=b0 in the interpolating relation,
Eq. (4.1). This result is the finite temperature analog of
what was similarly obtained generically for zero temper-
ature QCD in Ref. [17]: namely, “all-order” (one-loop RG)
resummed results are correctly obtained by the very first
RGOPT δ order. Indeed, since this is a generic result, we
anticipate that applying the same procedure to thermal
QCD will give similar one-loop results, with an OPT
equation and solution very similar to Eqs. (6.15) and
(6.16) up to obvious changes in some factors, but also
exhibiting exact scale-invariance). However, this exact
scale-invariance is due to the form of the exact one-loop
running of the coupling, perfectly matching Eqs. (6.15),
(6.16), which does not generalize once including higher RG
orders in the β function and non-RG dependence at higher
orders. As we examine in next section, at the two-loopOðλÞ
order, the scale invariance resulting from RGOPT extends
beyond the two-loop perturbative order at which it is
imposed by construction, but a (moderate) scale depend-
ence reappears unavoidably at a finite higher perturbative
order, precisely at order λ3, thus one order higher than
naively expected.
To proceed one may expand Eq. (6.16) perturbatively,

which is easily seen to be an expansion in
ffiffiffi
λ

p
, as expected.

One then finds:

~mð1Þ

T
∼ π

� ffiffiffi
2

3

r ffiffiffiffiffiffiffi
b0λ

p
− b0λþ

1

2
ffiffiffi
6

p ð3 − 2LTÞðb0λÞ3=2

þ LTðb0λÞ2 þ � � �
�
; ð6:17Þ

where we kept the b0 dependence explicit on purpose.
As an important side remark, up to now we have

considered the simplest minimal prescription of incorpo-
rating only the −m4ðs0=λÞ subtraction at one-loop order,
strictly necessary for recovering perturbative RG invari-
ance. It is thus opportune to mention what is changing if
incorporating the next order subtraction s1 ≠ 0 term from
(3.7), being formally also of one-loop order. In fact this
simply amounts to the replacement LT → LT þ 2s1 ¼
LT − 2 consistently in all previous expressions (6.15),
(6.16), and (6.17), as could be easily traced by consistently
introducing −m4s1 into Eqs. (6.10), (6.12). Therefore, it
means that at one-loop RGOPT order s1 can be simply
absorbed by a change of scale (or renormalization scheme)
definition, μ → μe2s1 ¼ μe−2. Thus apart from changing
the reference scale with respect to the MS-scheme, it does
not really change physical results: if redefining accordingly
the coupling with a RG evolution μ → μe−2, we obtain
strictly identical results. With this in mind, for now on we
proceed with the simplest choice s1 ¼ 0 at one-loop.
Coming back to Eq. (6.16) it is obviously an expansion

solely in the single parameter ðb0λÞ. Using the b0 value
from Eq. (3.4) we have: π

ffiffiffiffiffiffiffiffiffiffiffiffi
2b0=3

p ¼ 1=ð2 ffiffiffi
2

p Þ, which tells
that the first order coefficient differs from the standard
Debye mass in (2.8),m2

D ∼ ðλ=24ÞT2, being
ffiffiffi
3

p
larger. This

originates directly from the correct value b0 ¼ 3=ð16π2Þ
used in a ¼ γ0=b0 in (4.1), which is the only value
compatible with RG invariance. The factor 3 in b0 is the
statistical factor originating from three similar graphs
contributing to the β function, as is well known. Thus,
the first perturbative coefficient of the Debye screening
mass would be obtained from Eq. (6.16) if one would take
b0=3 ¼ 1=ð16π2Þ as given by a single loop contributing to
the self-energy at one-loop, as argued in Ref. [21]. The
standard perturbative term of order λ, comparing with
Eq. (2.8), is also reproduced provided again that one takes
b0 ¼ 1=ð16π2Þ in Eq. (6.16). But, as mentioned above,
Eqs. (6.16)–(6.17) reproduce exactly (at arbitrary orders)
the large N-results (e.g. Eq. (5.7) of ref. [22]), as can be
checked upon identifying the correct large-N value of b0 ¼
1=ð16π2Þ in the normalization of [22]. This factor 3
discrepancy in the optimized mass for the N ¼ 1 ϕ4 model
from b0 mismatch is not a problem, since the OPT
nonperturbative variational mass, not being a physical
parameter, has no physical connection with the perturbative
physical screening mass in Eq. (2.8) and is therefore not
required to reproduce the latter. Indeed, there are lnðλÞ
terms appearing at the three-loop order in the genuine
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screening mass [3,7], Eq. (2.8), that are not present in the
expansion of Eq. (6.16) which only involves λ and λ1=2

powers. Incidentally the fact that the standard OPT or SPT/
HTLpt correctly reproduces the first two orders of the
thermal perturbative mass expansion [6,8] appears in
retrospect merely accidental, due to the common canonical
choice a ¼ 1=2 in (4.1), i.e. as if one had taken a ¼ γ0=b0
with b0 → b0=3.

4

The (exact) expression given by Eq. (6.16) is plotted as a
function of the coupling in Fig. 1 in the very common
normalization [3] λ≡ 24g2, where it is compared to the
standard purely perturbative thermal screening mass,
mD=T, with scale dependence illustrations. In particular,
we remark the saturation of the optimized mass for
sufficiently large coupling, which agrees qualitatively well
with what is obtained at the two-loop order in [21]. This
saturation can be seen more explicitly by expanding
Eq. (6.16) for strong coupling:

~mð1Þ

T
∼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
LT

q
− 1

LT
þOðλ−1Þ: ð6:18Þ

The above relation reveals that even if we do not expect our
approximation to be valid for arbitrarily large coupling the
relation ~m=T ≲ 1 is always valid while ~m=T ≪ 1 in the
more perturbative range (see Fig. 1). Therefore, the high- T
approximation used to derive those analytic expressions is
fully justified a posteriori. Concerning the scale depend-
ence, in order to compare with standard results, we use the
physical OPT solution, Eq. (6.16), replacing λ≡ λðμÞ by its
“exact” one-loop running coupling in Eq. (3.9). We take
μ0 ≡ 2πT as a reference scale, and vary as usual the scale μ
in the range ½πT; 4πT�. The plot in Fig. 1 is only made for
illustration and comparison with the standard perturbative
thermal mass, since as explained earlier Eq. (6.16) is
exactly scale-invariant, i.e. the RGOPT mass gap in
Fig. 1 has actually zero thickness, being valid for any
scale.5 Even if one would use the approximate one-loop
expanded running coupling [i.e. the last expression in the
RHS of Eq. (3.9)], the scale dependence would be
extremely moderate, barely visible on the same plot.
Next, coming to the pressure it has a rather simple

expression at this one-loop order, in terms of the OPT mass

~m and normalized to the ideal gas pressure P0 ¼ π2T4=90
(still keeping the general b0-dependence):

Pð1Þ

P0

¼ 1 −
15

4π2
~m2

T2
þ 15

2π3
~m3

T3

þ 45

16π4

�
1

b0λ
þ LT

�
~m4

T4
þOð ~m6=T6Þ ð6:19Þ

where we recall that this is actually an approximation
according to using (2.7), which we argue is however precise
at the 10−3 level up to x ¼ m=T ≲ 1. One can thus plug the
OPT mass expression, Eq. (6.16), into Eq. (6.19) to obtain
the full λ-dependence. After some algebra it takes a
compact form:

Pð1Þ

P0

ðGÞ ¼ 1 −
5

4
G −

15

2
G2ð1þGÞ

þ 5

3

ffiffiffi
6

p �
G

�
1þ 3

2
G

��
3=2

þOðx6Þ; ð6:20Þ

where we defined 1=G≡ 1=ðb0λðμÞÞ þ LT ¼
1=ðb0λðμ0ÞÞ þ γE − ln 2, to emphasize that P is exactly
scale-invariant and only depends on the single parameter
λðμ0Þ. Expression (6.20) also explicitly separates the
“perturbative” first three terms from the clearly “non-
perturbative” last term, and is valid implicitly in the
high-T approximation as indicated, but very precise as
long as x≲ 1, corresponding to G≲ 3.3 meaning very
strong coupling for λðμ0Þ ∼G=b0. The first neglected term
in (6.20) is actually −15ζ½3�=ð128π6Þx6 ≃ −1.4710−4x6
(which is indeed exactly the last term of Eq. (5.8) in [22] in
the large-N normalization of b0). One should be evidently
cautious not to use (6.20) beyond its range of validity,

pert.1 loop

RGOPT 1 loop

m/T

g
0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 1 (color online). RGOPT massm=T at one-loop (δ0) order
(thick line), versus standard one-loop perturbative mass as
functions of gðμ0¼2πTÞ¼ðλðμ0Þ=24Þ1=2 with scale-dependence.
Grey (light blue) bands: variation of the standard perturbative
mass between μ ¼ πT and 4πT using the exact one-loop running
coupling in Eq. (3.9). NB: the RGOPT mass has actually zero
thickness since it is exactly scale-invariant.

4We anticipate that for QCD, it happens accidentally that
γG0 ðQCDÞ ¼ b0ðQCDÞ=2, where γG0 ðQCDÞ is the gluon anoma-
lous mass dimension easily calculable from the relevant counter-
term given e.g. in [8,9]. Thus a ¼ 1=2 for the gluonic
contributions, but the analogous RG-compatible OPT mass
(6.17) will not necessarily coincide for the first few perturbative
terms with the QCD gluon screening mass [3].

5Except for the fact that at some large scale μ, depending
on λð2πTÞ value, one hits the naive (one-loop) Landau pole,
more precisely at μ=ð2πTÞ ¼ e1=ðb0λð2πTÞÞ: for instance for g ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λð2πTÞ=24p ¼ 1 the Landau pole is reached at μ=ð2πTÞ≃ 8.96.
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typically for m ≫ T, in such a case one rather solves the
exact mass gap, Eq. (6.12).
One may also easily derive the perturbative expansion of

the pressure, which reads to few first orders

Pð1Þ

P0

≃ 1 −
5

4
αþ 5

3

ffiffiffi
6

p
α3=2 þ 5

4
ðLT − 6Þα2

−
5

2

ffiffiffi
6

p �
LT −

3

2

�
α5=2 −

5

4
½LTðLT − 12Þ þ 6�α3

þ 5

32

ffiffiffi
6

p
½20LTðLT − 3Þ þ 9�α7=2

þ 5

4
LT ½LTðLT − 18Þ þ 18�α4 þOðα9=2Þ; ð6:21Þ

where α≡ b0λ. We remark again that the one- and two-
loop standard perturbative terms for the physical massless
pressure [3,7,44] would be reproduced by Eq. (6.21) if
effectively replacing, following Ref. [21], b0 → b0=3 ¼
1=ð16π2Þ. But it is easily seen that the correct coefficients
of the leading logarithm terms of the pressure at arbitrary
order n: αnlnn−1ðμÞ and αnþ1=2 lnn−1ðμÞ (appearing first at
three-loop order λ2), are given by ðb0λ=3Þðb0 lnðμÞλÞn−1
with the correct b0 (comparing with Ref. [44] where the
calculation was performed up to order α4 ln α using RG
techniques). Thus taking b0=3 is not consistent beyond the
first two perturbative terms. Equation (6.21) being RG
invariant by construction correctly reproduces the leading
logarithm structure to all orders beyond two-loop order. We
stress also that Eq. (6.21) correctly reproduces all pertur-
bative terms of the large-N result in [22], when taking the
correct value of the large-N b0. Since our expressions
(6.19), (6.20) are valid for arbitrary N we can in principle
follow continuously the pressure from large N to N ¼ 1,
and while doing this there is no reason to abruptly modify
the correct b0ðNÞ to some other “effective” b0 value. It is
useful at this stage to compare this behavior with the SPT
pressure up to two-loop or higher order [7], basically build
on taking a ¼ 1=2 in (4.1): it does reproduce the coef-
ficients of the standard perturbative pressure up to second
α3=2 order, but not the correct leading logarithm coefficients
at order α2 and beyond, as a consequence of missing RG
invariance (it would need to rescale ln μ → 3 ln μ to
reproduce those logarithms). So, the scale dependence of
the SPT pressure is unmatched at order α2 and beyond if
using the standard running coupling with b0.
Thus, keeping the correct b0, which is compelling in our

RG-based approach, the optimized results Eqs. (6.20) and
(6.21) differ from the first two terms of the standard
(massless) perturbative pressure for small coupling values
by λðμ0Þ → λpertðμ0Þ=3, for the canonically normalized
coupling of the N ¼ 1 scalar model. But this is not a
problem, simply a different calibration: the exactly scale-
invariant RGOPT pressure (6.20) only depends on the
single coupling G or equivalently λðμ0Þ, still an arbitrary

parameter at this stage, since the model is not fully
specified by any data fixing a physical input scale, μ0.
So the pressure as a function of this coupling has a limited
physical meaning. When going to higher loops, since the
nonperturbative RGOPT approximations resum more
higher orders, it is not surprising that they differ from
standard perturbation when expressed in terms of the
original perturbative coupling λðμÞ, and one expects to
obtain a better approximation for large coupling. The only
mandatory feature of any such approximation is certainly
the Stefan-Boltzmann limit P → P0 for λ → 0, trivially
fulfilled by (6.20). Indeed, those features do not contradict
truly physical results, as this apparent discrepancy dis-
appears if expressing the pressure in terms of the physical
mass: to see it, we solve Eq. (4.2) now reciprocally, for
~λðmÞ, and replacing it in (6.19). It gives simply:

Pð1Þ=P0 ¼ 1 − 15x2=ð8π2Þ þ 15x3=ð8π3Þ þOð10−4x6Þ:
ð6:22Þ

But here x ¼ m=T is arbitrary as we already used (6.15) to
fix ~λðmÞ. Now, taking for m the physical screening mass
[27]mD in Eq. (2.8), as easily checked it exactly reproduces
the first two terms of the standard physical pressure [3].
Thus if we would plot our results in terms of the screening
mass, Pðm2

D=T
2Þ, we would have very good agreement

with standard results for sufficiently small screening mass
m2

D, and deviations for larger m2, but the study of scale
dependence which is our main concern, especially for large
coupling values, would be much more difficult. In the
sequel we keep the results (6.20) in terms of the MS
coupling λðμ0Þ, which scale dependence is well-defined at a
given perturbative order, since our aim is mainly to
compare the scale dependence with other results in the
literature also mostly expressed in terms of the running
coupling.
The exact expression for Pð1Þ=P0, Eq. (6.19), is plotted in

Fig. 2 where the RGOPT result is compared with the
standard perturbative expansion at order λ ∼ g2. The pres-
sure for the rescaled coupling λ → λ=3 is also shown on the
same figure just for the sake of illustration, which accord-
ingly compares better with the standard perturbative
pressure for small coupling values. The improvement of
scale (in)dependence of RGOPT is once again drastic at this
one-loop order: using the exact one-loop resummed cou-
pling, Eq. (3.9), the RGOPT pressure is exactly scale-
invariant, which is obvious in Eq. (6.19) since ~m is itself
exactly scale-invariant and the combination 1=λðμÞ þ b0LT
too, as discussed above. This feature is well illustrated by
Fig. 2 by comparing the RGOPT with the standard
perturbative pressure at one-loop which has a notoriously
large scale dependence.
To conclude this section we stress that all the previous

RGOPT one-loop results, reproducing among other things
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the exact large-N results, only rely so far on the very simple
massive one-loop free energy graph and the knowledge of
the first order RG coefficients b0, γ0. But these results are
not too surprising since the RG properties, if fully
exploited, involve information on all orders “daisy” and
“super-daisy” foam graphs like those explicitly resummed
in the large-N limit in [22].

VII. 2-LOOP, OðδÞ
We now switch to the two-loop order, thus incorporating

all the terms in Eq. (2.4), adding the subtraction terms in
Eqs. (3.7) and (3.8), and then performing the δ-expansion
consistently to order δ before setting δ ¼ 1. For simplicity
we first consider the minimal prescription taking only
s1 ≠ 0, and will also later consider the relevant changes if
the s2 term, formally of order λ, is also included. The main
novelty at two-loop order is that now the RG relation,
Eq. (5.2), gives in general a nontrivial additional constraint,
that can be used alternatively to the OPT equation, or
combined with the latter to completely fixm and λ in terms
of the only remaining free parameter, μ=T (apart from the
overall dimensional dependence in T). This is another
difference with standard OPT or SPT/HTLpt, in which the
coupling remains undetermined and the generally adopted
prescription is to take its perturbative value as a function of
μ=T and a reference coupling λðμ0Þ value. In our case, as
explained previously one of the RG solutions is matching
this standard perturbative behavior for λ → 0, but for
moderate or larger coupling values it will give a non-
perturbative dependence. One may thus follow at this stage
different possible prescriptions: one can use any of the two
OPT and RG equations, to be solved customarily for ~mðλÞ,
next using a two-loop order running coupling, in order to
compare with other resummation methods. Alternatively,

one may consider the full RG and OPT combined solutions.
Whatever way, neither the optimized mass ~m solution of
Eq. (4.2), nor the optimized coupling ~λwhen combining the
former with the constraint given by Eq. (5.2), have intrinsic
universal physical meaning. Both should better be viewed
as intermediate stage values, to be used only within the
physical quantities such as the pressure Pð ~m; ~λ; μ=TÞ. In
particular there is no contradiction between the “fixed”
optimized coupling ~λ and the standard running coupling,
obtained from a different (standard) perturbative RG
equation.
Like for the one-loop approximation, we can express all

two-loop RGOPT results in terms of the one-loop self-
energy defined in Eq. (6.11). After some algebra, the
OðδÞ; δ → 1 free energy takes a compact form:

F 0 ¼ −
m4

ð4πÞ2
�

1

3b0λ
þ s1

3
þ s2λ

�
þ 1

2

Z
p;R

lnðp2 þm2Þ

−
m2

λ

�
2γ0
b0

�
ΣR þ 1

2λ
Σ2
R; ð7:1Þ

where the index “R” in the integration means taking the
finite part of this already renormalized expression. We also
kept as much as possible a general dependence on RG
coefficients. The first three terms originate from the
subtraction terms si in Eqs. (3.7)–(3.8). Notice also the
different coefficient 1=ð3b0Þ as a result of expanding to
Oðδ1Þ, instead of previous 1=ð2b0Þ at one-loop δ0 order. As
already mentioned we first consider for simplicity s2 ¼ 0 in
the sequel, while the effects from s2 ≠ 0 (that incorporates
a RG part of the three-loop contributions) will be dis-
cussed later.
Next after straightforward manipulations the OPT

Eq. (4.2), and the reduced RG operator, Eq. (5.2), acquires
a compact neat form:

fOPT

�
m;λ;

μ

T

�
¼2

3
h

�
−s1−

1

b0λ

�
þ2

3
SþΣ0

R

�
S−

1

3λ

�
≡0;

ð7:2Þ

fRG

�
m; λ;

μ

T

�
¼ h

�
1

6
þ
�
b1
3b0

− S

�
λ

�
þ 1

2
βð2ÞðλÞS2 ≡ 0;

ð7:3Þ

with h≡ ð4πÞ−2, βð2ÞðλÞ≡ b0λ2 þ b1λ3 is the standard β-
function restricted to two-loops, and recalling also that
s1 ¼ −1. We have defined for convenience the reduced
(dimensionless) self-energy Sðm; μ; TÞ≡ ΣR=ðm2λÞ thus
independent of λ, which makes the coupling dependence
very transparent in Eqs. (7.2) and (7.3). For completeness
and further use below we also have from Eq. (6.11):

rescaled RGOPT 1 loop

RGOPT 1 loop

pert. 1 loop

g

P/P0

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2 (color online). One-loop (δ0) RGOPT pressure (thick),
and rescaling λ→ λ=3 (dashed), versus standard one-loop (dotted,
light blue bands) pressure as function of g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðμÞ=24p
with

scale-dependence between μ ¼ πT and μ ¼ 4πT. NB: the
RGOPT pressure has actually zero thickness since it is exactly
scale-invariant.
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Σ0
R ≡ ∂ΣR

∂m2
¼ λ

�
Sþm2

∂S
∂m2

�

¼ γ0λ

�
ln
m2

μ2
− J2ðm=TÞ

�
: ð7:4Þ

Note that in principle the reduced RG Eq. (7.3) is only valid
when combined with Eq. (7.2) since the latter removes the
∂m part of the complete RG operator in Eq. (5.1). Clearly, in
the above normalization, the complete RG Eq. (5.1) reads

fRG full ≡ fRG þ 2γmðλÞfOPT ≡ 0; ð7:5Þ

where the anomalous mass dimension γm (truncated at the
two-loop order) was defined in Eq. (3.3). Therefore, to
obtain the most general solution ~mðλÞ consistent with
arbitrary coupling values, Eq. (7.5) should be solved. As
we shall see below, the solutions ~mRGðλÞ and ~mRG fullðλÞ are
very close for sufficiently small λ but can depart substan-
tially from each other for arbitrarily large coupling. The
advantage of using the reduced RG operator is that
the solution can be more easily found when looking for
the intersection between the two RG and OPT solutions
mOPTðλÞ and mRGðλÞ.
Before proceeding, another digressing remark is that the

standard OPT/SPT would correspond to a much simpler
OPTequation than Eq. (7.2), since in particular the first two
(subtraction) terms s0; s1 would be absent, resulting in a
simple OPT self-consistent solution: ~m2 ≡ ΣR. Moreover
the modified RG Eqs. (7.3) or (7.5) are usually never
considered within the standard OPT/SPT or HTLpt appli-
cations. The fact that the OPT and RG relations, Eq. (7.2)
and Eq. (7.3), are more involved is expected since the one-
loop RGOPT already gives nontrivial results qualitatively
similar to two-loop standard OPT/SPT. Accordingly, the
relative complexity of RGOPT equations at two-loop is due
to the more information they carry on higher RG orders,
and is a price for a more efficient and RG-consistent
resummation procedure. At this stage the OPT and RG
Eqs. (7.2), (7.3) could be solved exactly for λðm; μ=TÞ,
being respectively quadratic and cubic algebraic equations
in λ. But to compare with most results in the literature it is
more customary to rather solve for a mass gap mðλ; μ=TÞ,
to obtain in a next stage the pressure or other thermody-
namical quantities as a function of the coupling.
Considering first the (reduced) RG Eq. (7.3), it is best

solved in a first stage as a simple quadratic equation for
Sðm; μ; TÞ whose mass gap solutions are

S∓RGðλÞ≡ ΣR

λm2
¼

1∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ b1

b0
λÞð1þ 2b1

b0
λÞ

q
3λð1þ b1

b0
λÞ ; ð7:6Þ

where again the explicit RG dependence has been kept for
generality. Note that the coupling dependence is entirely
contained in the RHS of Eq. (7.6) since by definition S does

not depend on λ, prior to using the RG Eq. (7.3). Just to see
where we stand before considering the more involved exact
mass gap solutions at two-loop order, let us consider
Eq. (7.6) by crudely neglecting the two-loop β-function
coefficient, b1 ¼ 0, or equivalently taking the leading term
when expanding (7.6) for λ → 0. It gives immediately
SRGðλÞ ¼ 1=ð3λÞ which, recalling that Sðm; μ; TÞ≡
ΣR=ðλm2Þ and using (6.11), is nothing but the one-loop
mass gap Eq. (6.8) consistently recovered. Once we use a
nonzero b1 ≠ 0 in Eq. (7.6), at it should at two-loop RG
order, one could consider a perturbative expansion of
Eq. (7.6) to gradually include higher perturbative order
corrections to the one-loop solution (6.8), but it is alge-
braically not more complicated to solve Eq. (7.6) exactly.
Now in fact Eq. (7.6) also reflects a possible complication
appearing at two-loop order for large coupling values, due
to the two-loop ultraviolet fixed point (UVFP) at λ ¼
−b0=b1 since b1 < 0, see Eq. (3.4). This purely perturba-
tive UVFP is totally spurious, not only since it disappears at
three-loop level (where the next coefficient b2 is positive
[28] and large enough so that possible nontrivial fixed
points are complex) but more generally since the existence
of nonperturbative UVFP is excluded by the numerical
evidence for the triviality [45] of the ϕ4 theory.
Nevertheless, since the RGOPT construction basically
relies on perturbative RG properties, one may worry that
some of our two-loop results could be affected, if driven by
this spurious UVFP. Indeed the ðþÞ solution in Eq. (7.6) is
singular at the fixed point value of λ, which means that
~m2=ΣRð ~m2Þ → 0 i.e. ~m → 0, while the ð−Þ solution is
regular: S−RGð−b0=b1Þ ∼ b1=ð6b0Þ, which means that it is
a priori the solution not wrongly driven by the UVFP.
Thus, in the sequel we should be careful to identify any
behavior that could be an artifact of this perturbative fixed
point. Now, in terms of the rescaled coupling λ ¼ 24g2, the
UVFP is at g ∼ 1.866, and the maximum of the β-function
(beyond which the coupling is driven to a really wrong
behavior), is at λ ¼ −2b0=ð3b1Þ i.e. g≃ 1.524. Both values
are to be considered very large couplings, where the
validity of a resummation procedure is anyhow question-
able. Therefore, as long as one stays safely below these
large coupling values, say not too much above g≃ 1 in
practice, our results should remain valid. Moreover, here we
are basically focusing on the RG/scale invariance issues in
very general terms, rather than on the peculiar nonpertur-
bative dynamics of the ϕ4 model, which is beyond the
present scope. Another property to notice is that the exact
RG solutions, Eq. (7.6), become complex at a coupling
λc ¼−3b0=ð2b1Þ¼ ð4πÞ227=34 corresponding to g≃ 2.28,
thus irrelevant since located beyond the fixed point anyway.
Yet one should keep in mind that independently of the
presence of nontrivial perturbative fixed points, complex
optimized RG solutions are unavoidably expected to occur
at some higher perturbative order from exactly solving the
OPT and RG equations, as discussed above.
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A. T ¼ 0

To get some more feeling we first explore the T ¼ 0
case, which is much simpler since both RG and OPT
equations can be solved analytically, e.g. for lnm=μ in
terms of the (rescaled) coupling g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

(or its recip-
rocal function λðlnm=μÞ). The (real parts) of the OPT and
RG exact solutions, expressed as ln½mðgÞ=μ�, are plotted in
Fig. 3. We also show for comparison the one-loop solution
(dotted) from Eq. (6.7). The physical branch solutions are
clearly identified, i.e. those matching standard perturbation
for μ ≪ m with fixed m: lnm=μ → þ∞ for λ → 0þ [see
also the discussion after Eq. (6.8)]. One also sees the
asymptotic value lnm=μ≃ 1=2 reached for large coupling
g consistently with Eq. (6.7). The two-loop OPT (dashed)
physical branch becomes complex for g≳ 2.094 (where
there is a corresponding bifurcation on the figure), in fact
very close above the intersection between the two (real)
physical branch solutions, occurring at ~g≃ 2.08,
lnð ~m=μÞ≃ 0.083, thus at ~m=μ close to 1 and a quite strong
coupling value. The OPT branch is real again at about g≳ 6
(where the dashed curve shows a little bump). The RG
physical branch becomes also complex at a slightly higher
g≃ 2.28 value, as already noted above after Eq. (7.6).
There are also two other combined RG and OPT solutions
(intersections) sitting on the complex branches, see Fig. 3,
but these are to be considered unphysical solutions since
not connected with the perturbative branches. One can also
note that the RG branch has a pole behavior around g≃ 2,
which is a consequence of the above discussed perturbative
UVFP at g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−b0=ð24b1Þ
p ≃ 1.866.6 The reciprocal

function gðlnm=μÞ would show a frozen behavior at
g≃ 2. In fact, we stress that the behavior around g≃ 2,
including the solutions becoming complex, is all driven by

this naive perturbative two-loop UVFP, so that one should
simply not trust what happens for g close to those values,
say for g≳ 1 to be on the safe side. (Notice however that on
the figure the one-loop-like behavior is recovered for much
larger g values). In particular, the above mentioned real
OPTand RG intersection solution at ~g≃ 2.08 is beyond the
UVFP, thus very untrustable. From examples in other
theories [17], we expect that at higher orders the
RGOPT intersection solution may decrease below the
UVFP and stabilize to a more reasonably perturba-
tive value.
Switching on the thermal contributions modifies coef-

ficients of the relevant RG and OPT equations, which will
result in real intersecting points for the RG and OPT
solutions with somewhat lower coupling values g ∼ 1 for
generic μ=T values as we examine in next subsection
below.7

B. T ≠ 0

Considering now the thermal contributions, one may
solve numerically Eq. (7.6) [or the full RG Eq. (7.5)] and
the OPT Eq. (7.2), using the exact expression Sðm; T; μÞ
from Eq. (6.11), to obtain x≡m=T as function of λðμÞ at
some chosen scale μ. Concretely, to solve the OPT gap-
equation exactly for arbitrary temperature, it is convenient
to first solve Eq. (7.2) as a linear equation for Sðm=T; μ=TÞ
in terms of λ and S0ðm=T; μ=TÞ, giving trivially

S≡ ΣR

λm2
¼ 1

3λ
−

1

8π2ð2þ 3λS0Þ ; ð7:7Þ

to be then solved numerically as a mass gap ~mðλ; μ=TÞ as
function of the coupling and scale, using the expressions of
S; S0 in Eqs (6.11), (7.4). In the right-hand side of Eq. (7.7),
taking only the first term, dominant for λ → 0, one
immediately recovers again the one-loop RGOPT mass
gap solution Eq. (6.8) (just like for the above discussed RG
mass gap (7.6) when taking b1 ¼ 0), while the second term
of Eq. (7.7) clearly gives higher order corrections if seen as
a perturbative expansion. (However, for large coupling
values of order g ¼ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

∼ 1 such a perturbative expan-
sion of Eq. (7.7) would not give a very accurate mass gap
solution so it is better to solve it exactly numerically).
The exact OPT Eq. (7.7) and RG Eq. (7.6) are illustrated

with their roots for a rather strong coupling value g ¼ 1 in
Fig. 4. As one can see, in general both the two-loop order
OPT and RG equations have three real solutions, until two
solutions become complex (conjugates), which happens for

g

Re(Ln(m/µ))

0.2 0.5 1.0 2.0 5.0 10.0 20.0

0.001
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0.1

1

10

100

FIG. 3 (color online). T ¼ 0 two-loop (δ1) order OPT (dashed)
and RG (thick) (real parts of) solutions ln m

μ ðgÞ, g≡
ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ.
Also shown is the one-loop solution (dotted) from Eq. (6.7).

6The pole of lnm=μ is not exactly at the fixed point of βðλÞ due
to the mass-dependence entering the RG Eq. (5.2).

7When complex solutions occur on physical branches, one
may recover real solutions by performing a perturbative scheme
change, as done in [17]. But this more involved course of action
can be avoided in the ϕ4 case, at least at the two-loop level. We
anticipate however that for thermal QCD, RGOPT will unavoid-
ably gives complex solutions, mainly due to the opposite signs of
the b0; b1 coefficients due to asymptotic freedom.
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g≳ 2.09 and g≳ 2.28 respectively for the OPT and RG
equations. Since this is well beyond the fake perturbative
UVFP, we cannot trust the detailed consequences near such
large coupling values. For more moderate coupling values
as illustrated in Fig. 4, there is one RG and one OPT
solution with very large m=T ≫ 1, in fact behaving for
small λ as ~m ∼ e1=ðb0λÞ as one can easily trace even from the
one-loop mass gap Eq. (6.12): for m ≫ T the T2J1ðm=TÞ
term in (6.12) becomes negligible and one simply recovers
the T ¼ 0 solution for mðλÞ. But for T ≠ 0 this solution
does not have the property of a thermal mass, m → 0 for
T → 0, so that the other roots are the physically relevant
ones. The behavior of the two intermediate and large values
roots is qualitatively similar to the one-loop OPT also
illustrated and large-N mass gap solution [22], indeed
recovered as above explained at one-loop order. What is
new as compared to one-loop order and seen on Fig. 4 are
the two extra roots with the lowest x ¼ m=T values both for
the OPT and RG equations. Concerning the RG root with
the lowest x≃ 0.7 value, it is easily traced to be the one
driven by the UV fixed point: for λ → −b0=b1, it gives
x → 0, and we should reject it accordingly. The other OPT
root with lowest x≃ 0.6 value is more special: it is more
easily analyzed by solving the exact OPT Eq. (7.2) for
λðm=TÞ, which is a simple quadratic equation. It can also be
seen to correspond to the perturbatively odd situation where
the second term in Eq. (7.7) dominates over the first term.
Then matching with the perturbative behavior, it gives an
“ultrasoft” mass m=T ≃ ðπb0=2ÞλþOðλ2Þ for λ → 0,
which contradicts the expected behavior of a thermal mass
m ∼

ffiffiffi
λ

p
T on general grounds, that was indeed found at

one-loop order. At higher orders this optimized mass has a
standard power series in λ. So we consider this solution as a
spurious unphysical one, an artifact of the more involved
two-loop OPT equation. Therefore at two-loop order we
identify unique physical OPT and RG solution, which are

real and positive for all relevant coupling values and
compatible with the perturbative behavior of a thermal
mass, corresponding to the two intermediate value roots
near x≃ 1 illustrated on Fig. 4. Once correctly identified,
those physical solutions have a qualitative behavior not
drastically different from the one-loop order OPT solution
of (6.12), apart from the more involved algebra. Note also
that solving Eqs. (7.6) or (7.7) for ~λðm; lnðμ=TÞÞ one can
check analytically that for fixed m=T values, the physical
λðμ=TÞ solution decreases logarithmically in the two
extreme limits μ ≪ 2πT and μ ≫ 2πT, having a maximum
in between, a behavior qualitatively quite similar to the
large-N or one-loop case.
Alternatively for any solutions, as long as x≲ 1, one can

solve analytically both RG and OPTequations but using the
high-T approximation (2.7) and derivatives for the relevant
thermal integrals, giving

Sðx≡m=T ≲ 1Þ≃ −
1

ð4πÞ2
�
LT þ 2π

x
−
2π2

x2

�
: ð7:8Þ

In this way one obtains respectively quartic RG and cubic
OPT equations in x ¼ m=T, which are not particularly
telling but gives algebraic solutions. We checked that all the
approximate high-T RG solutions for ~m and the pressure
P=P0 for relevant scale values πT < μ < 4πT are excellent,
departing below 0.1% from the exact T-dependent solu-
tions, at least up to a value of the (rescaled) coupling
g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

∼ 1.5, simply because ~x remains always lower
than about ∼1. Concerning the OPT solutions, they can
give ~x > 1 at large coupling g≳ 1, particularly for the
higher scale choice μ ¼ 4πT, in which case the high-T
approximation starts to fail and we better use the exact
T-dependent numerical solutions8 of Eq. (7.7).

1. Comparison with standard perturbation theory

The OPT physical solution has the following perturba-
tive expansion

~mð2Þ
OPT

T
∼ π

ffiffiffi
2

3

r ffiffiffiffiffiffiffi
b0λ

p
− πb0λþ

3

128π2
ffiffiffi
2

p ð5 − 2LTÞλ3=2

−
9

1024π3
ð3 − 4LTÞλ2 þ � � � ð7:9Þ

consistently with the first two terms of Eq. (6.17).
Concerning the terms of order λ3=2 and λ2, the (leading)
logarithms coefficient of LT are the samewith respect to the
one-loop expansion Eq. (6.17), as it should be to all orders.
The differences appear only in the constant terms, due both
to s1 ≠ 0 and other terms of order λ0 in the original

2 loop RG Eq.

2 loop OPT Eq.

1 loop OPT Eq.

x=m/T0.1 0.5 1.0 5.0 10.0 50.0

0.0

0.5

1.0

1.5

1.0

0.5

1.5

FIG. 4 (color online). Roots of the two-loop (δ1) exact OPT
Eq. (7.2) and RG Eq. (7.3), as compared with one-loop OPT
Eq. (6.12) for g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðμ0Þ=24
p ¼ 1, μ0 ¼ 2πT. The y-axis values

are those of fOPT Eq. (7.2), fRG Eq. (7.3), and Eq. (6.12) in
convenient common units.

8Such remarks are important to keep in mind in view of
possible applications to thermal QCD, for which beyond the one-
loop level only high-T expansion results are available [9].
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expression of the free energy (7.1). Note that the relative
weight of s1 is changed at order δ1, with s1=3 in (7.1). Quite
similarly, incorporating s2 ≠ 0 gives differences only vis-
ible at order λ3 not given in Eq. (7.9), so it has very little
effect at least on the perturbative mass expansion. Plugging
this in the pressure expression and expanding perturba-
tively (while keeping the coupling free for the moment) we
obtain the ratio of the two-loop RGOPT pressure to the
ideal gas one P0 ¼ π2T4=90 as:

Pð2Þ
OPT

P0

∼1−
5

4
αþ5

3

ffiffiffi
6

p
α3=2þ5

4
ðLT−20=3Þα2

−
5

2

ffiffiffi
6

p
ðLT−13=6Þα5=2−5

4
½LTðLT−40=3Þþ44=3�α3

þOðλ7=2Þ; ð7:10Þ

where α≡ b0λ, giving the same first two perturbative terms
as the RGOPT one-loop result Eq. (6.21). We remark also,
just like in the one-loop case, that if rather solving either the
OPT or the RG Eqs. (7.2), (7.5) reciprocally for λðmÞ, and
then taking form the physical screening mass Eq. (2.8), one
consistently recovers the standard perturbative expression
of the physical pressure up to two-loop order. Remark that
the effect of incorporating s2 ≠ 0 instead of the simplest
choice with only s1, appears first in the very last non-
logarithmic term of order ~m4λ ∼ λ3 in (7.10), replacing
44=3 → 637=45 − 4ζ½3�=5, which has very little effects
upon the final numerical results as long as λ remains
reasonably perturbative. This is completely expected since
perturbatively m4s2λ in (3.7) is of lowest perturbative
order ∼λ2s2λ ∼ s2λ3.
Alternatively, we also consider the solution ~mðλ; μ=TÞ

obtained from the (full) RG Eqs. (7.3) and (7.5). The latter
equations can be solved for the exact T-dependence first as
quadratic equation for Sðm=T; μ=TÞ and then numerically
for mðλ; μ=TÞ. But as mentioned above the high-T approxi-
mation is excellent in this case for all relevant coupling
values. The high-T approximated RG equations gives two
negative and two positive ~m=T solutions, the latter having
both the correct perturbative behavior, but with one
saturating faster for large coupling, which is illustrated
as “solution 2” in Fig. 5. In Fig. 5 we also show the scale
dependence in the range πT < μ < 4πT for all solutions
~x≡ ~mðg; μÞ=T. The “lower” values RG solution 2 happens
to reach a maximum and then decreases toward zero for
large coupling g ∼ 1.86 (not shown in the figure), an odd
behavior which is in fact completely driven by the
perturbative two-loop UVFP. Incidentally this solution
exhibits an extremely small, almost totally negligible scale
dependence up to g ∼ 1, as can be seen in Fig. 5, in
agreement with what is intuitively expected near a RG fixed
point. The corresponding pressure, if plugging this solution
within (7.1), has even smaller scale dependence. Although
we shall simply discard this solution, since the naive

two-loop UVFP contradicts the genuine nonperturbative
dynamics of the ϕ4 model, it is worth remarking that the
corresponding RGOPT solution faithfully reflects the
quasi–scale-invariant behavior of the UVFP. The remaining
(then unique physical) RG solution 1 exhibits a more
pronounced scale dependence as seen in Fig. 5, which will
be further explained below. It has a perturbative expansion
for small coupling with the first two order terms identical
with the other OPT solution above, Eq. (7.9):

~mð2Þ
RG

T
∼ π

ffiffiffi
2

3

r ffiffiffiffiffiffiffi
b0λ

p
− πb0λþ

ð13 − 12LTÞ
256π2

ffiffiffi
2

p λ3=2

þ 9

4096π3
ð5þ 16LTÞλ2 þ � � � ð7:11Þ

where one can easily check that the coefficients of LT , thus
of ln μ, are identical, which should be the case to all orders
consistently with RG invariance properties.
The perturbative expansion of P=P0 is identical to (7.10)

for the first few orders and for LT coefficients at all orders if
we use instead the ~mðλÞ=T solution, Eq. (7.11).
Remark in Fig. 5 the intersections, for different μ scale

values, between the RG and OPT solutions, which only
exist for the higher of the two RG solution branches
(namely the physical solution not influenced by the
perturbative UV fixed point). Those intersections can be
considered as the full RGOPT solution, which is unique for
a given μ input scale. We shall come back later on those full
RGOPT solutions, while for the sake of comparison with
standard perturbation results we consider at the moment the
RG and OPT solutions separately, as given functions of the
coupling.

g

m/T

OPT

RG solution 2

RG Solution 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 5 (color online). Two-loop (δ1) optimized mass solutions
obtained from OPT Eq. (4.2) (dashed, light blue on line) and RG
Eq. (5.2) two solutions: thick lines (green on line) and dot-dashed
(red on-line) respectively, as function of g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðμÞ=24p
with

scale dependence πT < μ < 4πT.
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In Fig. 6 we plot the exact two-loop RGOPT pressure
P=P0ðg≡

ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ (dashed lines), as obtained from the
mass solution of the full RG Eq. (7.5), compared with one-
loop RGOPT and standard perturbative one- and two-loop
results, with scale dependence in the range πT < μ < 4πT.
To study the scale dependence we use a standard running
coupling exact at two-loop orders. The generic exact
expression for the two-loop running λðμÞ, generalizing
the exact one-loop running in Eq. (3.9), can be expressed
(see e.g. Ref. [31]) in terms of the (implicit) Lambert
“function” [46] WðxÞ≡ lnðx=WÞ:

λðμÞ ¼ λðμ0Þ
fWðλðμ0Þ; ln μ

μ0
Þ ; ð7:12Þ

with

fWðλ;LÞ ¼ 1− b0Lλþ
b1
b0

λ ln

�
fW

1þ b1
b0
λf−1W

1þ b1
b0
λ

�

¼ −
b1
b0

λ

�
1þW

�
−
�
1þ b0

b1λ

�
e−½1þ

b0
b1λ

ð1−b0λLÞ�
��

;

ð7:13Þ

where L≡ ln μ=μ0 and where we consider as usual the
reference scale μ0 ¼ 2πT. Actually Eq. (7.12) gives no
visible difference (at least up to the relevant moderately
large coupling values here studied and the moderate range

of scale variation) with a more handy perturbatively
truncated expansion at order λ3:

λ−1ðμÞ≃ λ−1ðμ0Þ − b0L − ðb1LÞλ −
�
1

2
b0b1L2

�
λ2

−
�
1

2
b21L

2 þ 1

3
b20b1L

3

�
λ3 þOðλ4Þ: ð7:14Þ

The RGOPT improvement on scale dependence with
respect to standard perturbative results is drastic for the
pressure, as one can clearly see in Fig. 6, although scale
invariance is not exact at two-loop like it is at one-loop
order: there is a moderate residual scale dependence,
clearly visible in Fig. 6 for moderately large (rescaled)
coupling values g≳ 0.6. What is also clearly seen in Fig. 6
is the much better stability of the RGOPT results, since up
to g≃ :5, both the scale dependence and the difference
between one- and two-loop RGOPT pressure are hardly
visible at the figure scale, in contrast with the already
poorly convergent standard perturbative pressure for those
values. Accordingly, there are important extra cancellations
of the scale-dependence happening when ~mðλ; μÞ opti-
mized solutions from Fig. 5 are plugged into the pressure
expression P=P0ð ~m; λ; μÞ in Eq. (7.1). But we emphasize

again that the optimized masses ~mðkÞ
OPTðλ; μÞ or ~mðkÞ

RGðλ; μÞ at
order-δk are intermediate, unphysical quantities, therefore
not expected to be themselves scale-invariant in general
[although at one-loop order, ~m0

OPTðλ; μÞ in Eq. (6.16) is
exactly (one-loop) scale-invariant as explained above].
Within the RGOPT procedure, RG-invariance is by con-
struction required only for the pressure which represents
the actual physical observable, resulting in Eqs. (7.3) and
(7.2) optimizing the pressure. Accordingly, the further
cancellation of scale-dependence of the two-loop OPT or
RG masses ~mOPTðλ; μÞ or ~mRGðλ; μÞ, once plugged into the
pressure P=P0ðm; λ; μÞ, is expected from the resummation
properties of the RGOPT procedure.
The residual scale dependence of the two-loop RGOPT

pressure is unavoidable due to the RGOPT construction
being not exact but resulting from the optimization of
actually two-loop restricted basic free energy by construc-
tion, where terms of order λ2 and higher are truncated. [In
contrast the one-loop results above were exactly scale
invariant because of the perfect matching of the exact
one-loop running coupling with the mass gap (6.16)].
One can make those statements more precise by studying

exactly at which perturbative order the scale dependence
reappears: examining the perturbative expansion of the
pressure above in Eq. (7.10) in which the coupling is
replaced by its running expression at truncated two-loop
order (so only with b0; b1 dependence) Eqs. (7.12) and
(7.14), we have checked explicitly that the leading scale
dependence reappears first at order λ3:

FIG. 6 (color online). RGOPT one-loop (black line) and two-
loop (dot-dashed, green on line) versus standard perturbative
pressure P=P0ðg≡

ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ at one-loop and two-loop. The
different bands give the scale dependence between μ ¼ πT
and μ ¼ 4πT. NB: the RGOPT one-loop curve has actually zero
thickness since it is exactly scale-invariant.
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Pð2Þ
OPT

P0

ðμÞjleading ≃ λ3ðμ0Þ
16384π6

�
85 ln

μ

μ0
− 2190.5

�
þOðλ7=2Þ; ð7:15Þ

i.e. formally at four-loop order, that is one order higher than
the naively expected three-loop λ2 from standard RG
invariance properties.9 This feature can be anticipated in
fact with a little insight without involved explicit high order
expansion calculations: recall that the RGOPT construction
including the subtraction terms in (3.7), together with the
RG invariance preserving interpolation (4.1), guarantees
that the two-loop free energy (2.4) is RG invariant up to
neglected three-loop terms, of order Oðm4λ2Þ, but for
arbitrary mass m. This implies that the mass gap obtained
either from the RG Eq. (7.6) or OPT Eq. (7.7) has a remnant
scale dependence appearing perturbatively at order
~m2=T2 ∼ λð1þ � � � þ λ2 ln μÞ, as could easily be checked
by explicit expansion too. So it means that the lowest
possible order at which a remnant scale dependence
appears in the free energy (2.4) is given by the first
subtraction terms −s0m4=λ, giving remnant scale depend-
ence at perturbative order λ3 ln μÞ. In contrast the remnant
scale-dependence of the standard perturbative two-loop
pressure appears at the expected order λ2.

Using alternatively the RG solution ~mð2Þ
RGðλÞ, we find a

residual perturbative scale-dependence reappearing also
consistently at order λ3 with the same coefficient of ln μ
than in Eq. (7.15), and a very similar constant term, with
∼ − 2190.5 in Eq. (7.15) replaced by∼ − 2009.9. However,
we stress that Eq. (7.15) allows us to understand the
perturbative behavior of the remnant scale dependence,
but does not properly reflect the actual nonperturbative
scale-dependence of the full RG or OPT solutions, which
we used for the plots in Fig. 6. Indeed the actual values and
scale dependence of the pressure for relatively large
coupling g > 0.6 are very different than what would be
obtained by a finite order perturbative truncation at order
λ3. Accordingly, the moderate residual scale dependence
seen on the plots for large g values appears much better than
what (7.15) would give, as a result of further nonperturba-
tive cancellations among successive higher orders (of
course higher orders of the RGOPT resummation anyway
based on a two-loop truncated free energy). Clearly when g
becomes of order 1 ~m=T is also of order 1 so that the
previous perturbative reasoning with (7.15) no longer apply
and we simply recover that the scale invariance is guaran-
teed by construction up to remnant terms of orderm4λ2 ln μ.
As another illustration, in Fig. 7 the exact pressure

obtained from the OPT mass solution of Eq. (7.2) is

compared with the one obtained from the RG equation.
Although both RG and OPT solutions have perturbative
scale-dependence reapparing at the same λ3 order, like in
(7.15), the nonperturbative scale dependence of the OPT
solution is almost negligible until g≃ 0.8, while for larger
coupling values it becomes more important than the one of
the RG solution (as one can see also for the corresponding
OPT mass in Fig. 5). We also remark in Fig. 7 that the
pressure obtained from the RG mass remains closer to the
one-loop RGOPT pressure for large coupling values, so
that the convergence appears better. This, together with the
better scale independence for large coupling, is not very
surprising since the RG mass solution originates from the
RG Eq. (7.5) at the two-loop level. In contrast, the OPT
solution results solely from the mass optimization,
Eq. (4.2), which incorporates RG properties more indi-
rectly: it also exhibits good scale invariance up to relatively
large values g≳ 0.8, beyond which it degrades quite
rapidly. Also, the fact that the RG and OPT solutions
are very close to each other until relatively large coupling
values g≃ 0.6 shows an overall consistency, by quantify-
ing the relatively small lack of exact RG invariance, since
for an exact nonperturbative result the OPT and RG
solutions would be identical.
We now consider incorporating the s2 ≠ 0 term from

Eq. (3.7), which formally belongs to the two-loop order. We
already mentioned above that perturbatively it evidently
only affects the (re)-expanded pressure (7.10) at order
~m4λ ∼ λ3. Accordingly, it does not affect the perturbative
order at which the moderate residual scale-dependence first
reappears, Eq. (7.15). However, the nonperturbative RG
and OPT pressures are affected for larger coupling values,
as intuitively expected since including s2 ≠ 0 incorporates
a (RG) part of the three-loop contributions. Indeed, as

RGOPT 1−loop

RG Eq. 2−loop

OPT Eq. 2−loop

P/P0

g
0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.92

0.94

0.96

0.98

1.00

FIG. 7 (color online). Two-loop pressure P=P0ðg≡
ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ
obtained from the full RG solution of (7.5) (dot-dashed, green)
and obtained from the OPT solution (4.2) (dotted, light red), with
scale dependence between μ ¼ πT and μ ¼ 4πT. The RGOPT
one-loop pressure (black line) is also shown for comparison.

9When rescaling the coupling as λ→ 24g2, the leading remnant
scale-dependence in Eq. (7.15) gives: ∼ð0.075 ln μ=μ0 − 1.92Þg6,
where the lowest order coefficients are roughly of order Oð1Þ in
this normalization.
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shown in Fig. 8, it improves slightly the (nonperturbative)
scale dependence of the RG pressure (long dashed), in
addition the OPT and RG pressures are closer to each other
for large coupling values (but the scale dependence is still
better for the RG solution than for the OPT one). More
remarkably, with s2 ≠ 0 the two-loop pressure obtained
from the RG mass gap is seen to almost coincide with the
one-loop pressure, up to relatively large coupling g ∼ 1,
thus improving the apparent convergence further more.
Actually, this rather spectacular coincidence with the one-
loop pressure for a large range of coupling values is partly
accidental: after applying (4.1), there are some partial
cancellations of the two-loop contributions happening
for relatively large coupling values (due to opposite signs
s1; s2), between s1=3 ¼ −1=3 and the dominant two-loop
term s2λ ¼ 24g2s2 [see (7.1), (3.7), (3.8)], with a maximal
cancellation for g≃ 1, with 24g2s2 ≃ 1=3. Since the sk
values depend on the particular RG coefficients, in a
different theory s1 and s2 may have the same sign, or
rather different magnitudes, possibly giving no such partial
cancellations. Nevertheless the coincidence with the one-
loop pressure is excellent even for relatively large inter-
mediate coupling values e.g. g≃ 0.6–0.7, where 24g2s2 ≃
:12–:16 does not make the cancellation much effective.
Accordingly, there is also clearly a more generic effective
stabilization of the perturbative series resulting from the
RGOPT construction, with an improved convergence and
scale dependence when incorporating higher RG order
dependence, as intuitively expected.

2. Comparison with other (SPT and HTLpt) variational
resummation approaches

This stability and improved scale-dependence is also
illustrated in the next Fig. 9, where the RG pressure is
compared with a standard two-loop OPT/SPT [7,14]: more
precisely, discardingE0 in (3.7), takinga ¼ 1=2 in (4.1), and
using solely Eq. (4.2). To compare with another mass
prescription, instead of the mass optimization we use the
screeningmass, Eq. (2.8) (consistently truncated at two-loop
order), plugged in the expression of the free energy, similarly

to the prescription mostly adopted for QCD HTLpt [9].10

One sees that using the optimized mass within the SPT/OPT
gives a better scale dependence, although SPT with opti-
mized or screening mass both have a definitely stronger
scale dependence than the RGOPT for moderately large
coupling values. To quantify what is illustrated in Fig. 9
more precisely, let us indicate the relative scale variation of
the various methods for the relatively large (rescaled)
coupling value gð2πTÞ ¼ 1: the corresponding variation
of P=P0 between μ ¼ πT and 4πT is ≃8%, 0.8%, 1.5%,
0.35%, and 0.3% respectively for the 2-loop standard
perturbation, SPT (optimized mass), SPT (screening mass),
RGOPT, and RGOPT with s2 ≠ 0. Beyond g≳ 1 the two-
loop RGOPT scale-dependence increases more rapidly, but
is still only ∼1.610−2 for g ∼ 1.5 (while for such large
coupling the relative variation of the standard perturbative
two-loop pressure is as large as ∼0.25, and the scale
variations of the HTLpt and standard OPT methods become
very important too). It would also be interesting to compare
quantitatively our scale variation results with the residual
scale-dependence appearing in the 2PI approach at three-
loop order [23]. However, a precise comparison appears
difficult, since the renormalization scheme and scale used in
[23] are completely different and not easy to translate into
the present scale variation in the MS-scheme.
The RGOPT improvement on scale dependence at the

two-loop order may not appear so spectacular as compared

RGOPT 1 loop

RG Eq. 2 loop, s2

OPT Eq. 2 loop, s2

0P/P

g
0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8 (color online). Same as in Fig. 7, but with s2 ≠ 0 in
Eq. (3.7).

FIG. 9 (color online). One- and two-loop RGOPT pressure
versus one and two-loop standard perturbative pressure and two-
loop SPT pressure, with scale-dependence.

10Using the perturbative screening mass instead of the
optimized mass gap is essentially the procedure in HLTpt
applications to QCD because the optimized mass has no real
solutions [9].
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with SPT, merely a factor ∼2–4 for g≃ 1, essentially
because the two-loop order SPT scale dependence here
illustrated is still moderate. But at the three-loop level the
SPT scale dependence becomes much larger [7] (and
similarly HTLpt QCD[9]), of order 1 for moderately large
coupling. As previously explained this can be traced both to
a ≠ γ0=b0 in (4.1) together with the missing RG invariance
from m4 ln μ terms for arbitrary m in (2.4): since perturba-
tively m4 ln μ ∼ λ2 ln μ, the lack of scale invariance at
formally one-loop order in the original massive free energy
remains somewhat screened at one- and two-loop thermal
perturbative expansion order, until it plainly resurfaces at
three-loop λ2 order. Remarkably the SPT pressure has even
been calculated more recently to four-loop order [47], and
these results show very good convergence with respect to
two- and thee-loop SPT for the central scale choice
μ ¼ 2πT. But the remnant scale dependence is not illus-
trated in [47]. According to our general arguments we do not
see how the missing RG-consistent one-loop terms could be
compensated by going to higher orders if not present from
the beginning. In contrast the RGOPT scale dependence
remains very moderate, as illustrated in Fig. 9 when
including a RG part of the three-loop contributions from
s2 ≠ 0. Moreover, without explicitly calculating the full
three-loop or higher order RGOPT pressure, we can be
confident that the scale-dependence should further improve
at higher orders: being built on perturbative RG invariance
at order k for arbitrary m, the RGOPT mass gap will
exhibit remnant scale dependence as ~m2 ∼ λT2ð1þ � � � þ
Oðλkþ1 ln μÞÞ, thus the dominant scale dependence in the
free energy (namely the lowest perturbative order at which
scale dependence will resurface), coming from the leading
term −s0m4=λ, should be of order Oðλkþ2Þ.
Coming back to the two-loop order pressure, we have also

checked the variation of our results against various pertur-
bative truncations: for instance given that all our calculation
relies on the basic two-loop free energy (2.4), it may be
unnecessary refinement to use the exact running coupling as
in (7.12). Thus we looked for variation when truncating the
running Eq. (7.14), at order λ2, or λ3 only. Also, we studied
the effect of truncating in the RG Eqs. (7.3) and (7.5) terms
of order λ3, originating from the b1λ3∂λ term in (3.2), as it is
formally one order higher than perturbatively strictly
required (and the b1-dependence enters anyway at lower
orders in the RG Eq. due to the −s0=λ subtraction). We
obtain very good stability, since the maximal resulting
variations, for the relatively large coupling g ¼ 1, and scale
choice μ ¼ 4πT, is below 10−3 for PRG=P0, and somewhat
worst but reasonably below 10−2 for POPT=P0.

3. Full RGOPT two-loop solution

Finally, we can calculate Pð2Þ
RGOPT=P0 for the complete

two-loop RGOPT solution, given by the nontrivial inter-
section between the RG and OPT equations (as illustrated
in Fig. 5), as function of the only free scale parameter, that

we choose as t≡ μ=ð2πTÞ (so the standard central scale
choice corresponds to t ¼ 1). Ideally for an all order
calculation with exact scale invariance one would expect
both RG and OPT equations to give identical ~mðλ; μ=TÞ
solutions. This is indeed the case for simpler models, like
typically [15] the large N-limit of theOðNÞGN-model. But
for a more involved theory at a finite order one expects
some differences between the RG and OPT solutions since
RG properties are only imposed perturbatively, those
remnant differences reflecting the lack of exact RG/scale
invariance. Just like the stationary mass solution is
expected to approximate the actually massless result, the
intersection between the OPT and RG curves at a given
order, defining (variational) “fixed-point” mass and cou-
pling, is expected to give a sensible approximation to the
exactly scale-invariant nonperturbative result.
For the standard central scale choice t ¼ 1, the solution

corresponding to the unique intersection of the physical RG
and OPT branch solutions, readily seen for ~m and ~g in
Fig. 5, gives:

~x≡ ~m
T
≃ 0.912; ~g≡

ffiffiffiffiffi
~λ

24

s
≃ 0.825;

Pð2Þ
RGOPT

P0

≃ 0.907;

ð7:16Þ
obtained using the simpler high-T expansion solutions.
(NB for t≳ :5 approximately, xðtÞ≡ ~mðμÞ=T remains
smaller than 1, justifying a posteriori the high-T approxi-
mation. Typically, for x ¼ :9 the high-T approximation is
already correct at the level of 0.2% and differences are
completely negligible for smaller x.)
The result in (7.16) needs further comments on its

physical interpretation. Recall that the truly nonperturbative
massless pressure expression Pðλðμ=TÞ; μ=TÞ=P0, if that
was available, would actually be a function of the single
coupling λðμ0 ¼ 2πT0Þ given at some input scale, thanks to
exact scale invariance: for any renormalization scale choice
μ the nonperturbative running λðμÞ would exactly com-
pensate the explicit μ=T dependence. Incidentally, this is
precisely the situation happening at the one-loop RGOPT
order, where the exactly scale invariant P=P0 in (6.20) only
depends on the single parameter b0λðμ0Þ. Now, at higher
loop orders in the standard perturbative approaches (or
similarly in the SPT/HTLpt approaches after expressing the
mass gap ~mðλÞ in terms of the coupling), due to imperfect
scale invariance giving remnant perturbative terms
lnpðμ=ð2πTÞÞ, one avoids large logarithms by fixing μ
of order ∼2πT, which makes the scale effectively T-
dependent and allows to study P=P0ðλðT=T0ÞÞ by varying
the coupling as a function of the scale/temperature. In our
case, using the second RG constraint Eq. (5.1) enforces RG
invariance at a limited (here two-loop) perturbative order,
mimicking exact RG invariance. At T ¼ 0 two-loop
order, as already mentioned in Sec. VII A there is also a
nontrivial intersecting OPT and RG solution at ~g ∼ 2.08,
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lnð ~m=μÞ≃ 0.08 (see also Fig. 3), that gives the free energy
as F 0 ∝ μ4, which still requires a reference physical scale μ
to be fully determined.11 At T ≠ 0, combining the OPT and
RG equation fixes λðμ=TÞ and mðμ=TÞ for a given μ=T
input, which also fixes P=P0 as in (7.16). But this
combined solution is somewhat academic for the ϕ4 model,
especially in the symmetric phase studied here, where there
is no particular physical input temperature to compare with.
Moreover, since the scale invariance of the RGOPT
pressure is still imperfect at two-loop order, the remnant
scale dependence implies different P=P0 values for differ-
ent μ=T input choices. For instance, solving similarly the
OPT and RG equations for t ¼ μ=ð2πTÞ ¼ 1=2 (respec-
tively t ¼ 2) gives P=P0 ¼ 0.881 (respectively 0.921).
This is consistent with the previously examined remnant
scale dependence of the RG and OPT pressures at such
relatively large coupling values.
As above mentioned one may expect that the full

RGOPT solution for arbitrary scale input could give a
sensible approximation of the genuine nonperturbative
scale dependence of the coupling. What Eq. (7.16) indi-
cates is that, for the physically reasonable scale choice
μ ∼ 2πT, the optimized coupling ~g and mass ~m=T are both
of order 1, lying in the rather nonperturbative range where
the soft modes ∼gT become comparable with the hard
modes ∼T. Had we rather found optimized values ~x; ~g ≪ 1,
we would not learn much beyond standard perturbation
theory. However, we cannot easily follow the combined
solution over an arbitrarily large range of scale: the physical
branch solution remains real for relatively large variations
of t > 1, but becomes complex for t≲ 0.27, which corre-
sponds to the already mentioned complex RG solution for
the large coupling λ ¼ −3b0=ð2b1Þ. Thus as already
stressed we should not trust our results for g above
g≳ 1, which corresponds to t≲ :5. For t > 1 (respectively
t < 1) within a reasonable range, the combined RGOPT
solution gives slightly smaller (respectively larger) opti-
mized ~g values as compared with the one in (7.16), unlike
the standard perturbative RG behavior of the ϕ4 model at
small coupling. Indeed for even larger μ ≫ 2πT, where one
expects to recover the four-dimensional T ¼ 0 ϕ4 model
properties, the RGOPT real solution gives a slowly (log-
arithmically) decreasing coupling and mass, which appears
roughly consistent naively with the expected triviality
property [45]. Conversely, for μ ≪ 2πT one expects to
recover the three-dimensional high-T limit, such that after
eventually reaching a maximum, the optimized coupling is
expected to decrease again for μ ≪ 2πT. But it is difficult
to follow the full RGOPT solution becoming complex for
μ ≪ 2πT. Nevertheless, even if they have no real

intersections, the OPT and RG solutions can be reliably
determined for μ ≪ 2πT, as discussed in Sec. VII B, and
for fixed m ≪ 2πT, λOPTðμ=TÞ or λRGðμ=TÞ decrease
logarithmically for μ ≪ 2πT.
Note that when incorporating the s2 ≠ 0 term from

Eq. (3.7), the full RGOPT solutions similar to (7.16) are
shifted to a different scale but with the same qualitative
behavior, so the net effect of s2 ≠ 0 appears essentially as a
renormalization scheme redefinition, without drastically
changing the results. Incidentally, for s2 ≠ 0 the full
RGOPT solution is already complex for t ¼ 1, while real
solutions appear for slightly larger t≳ 1.5 values, with
corresponding optimal P=P0 values very close to the one in
(7.16). This simply reflects that the occurrence of complex
RGOPT solutions in a given theory depend much on the
renormalization scheme, so that real solutions could be
recovered in principle from appropriate perturbative
scheme changes [17]. But this is a much more involved
task in the present finite temperature case. Moreover, since
the nontrivial RG and OPT intersecting solution happens
first at two-loop order, it is probably safer not to take as a
very firm prediction the result in (7.16), nor to vary in a
wide range around the preferred value μ ∼ 2πT. From the
example of T ¼ 0 results in other models [17] the RGOPT
variational fixed point solution is more likely to stabilize at
the three-loop order, and probably with a more perturbative
value of the optimized coupling.

VIII. CONCLUSIONS AND PROSPECTS

Let us summarize our main results. We have shown that
the standard treatment of the free energy (pressure) in
massive thermal theories, with minimally subtracted coun-
terterms, as primarily done in resummation approaches like
OPT/SPT,HTLpt typically, lacks RG invariance. We have
then recalled a general simple recipe to restore RG invari-
ance, leading unavoidably to additional finite, temperature-
independent vacuum energy contributions, systematically
derivable in a perturbative fashion. We have next explained
that the OPT/SPT,HTLpt resummation methods based on
the modification of the perturbative expansion from the
linear δ-expansion in general do not preserve RG invariance,
which can however be restored for a different interpolating
prescription, Eq. (4.1), uniquely dictated by universal first
order RG coefficients, a ¼ γ0=b0. Moreover, the resulting
RGOPT resummation can use the RG equation as an
alternative or additional combined constraint to determine
a self-consistent nonperturbative mass (and coupling), in
addition to the sole standardOPTprescription using only the
mass optimization. We have then illustrated the RGOPT in
details by evaluating the free energy of a thermal scalar field
theory at one- and two-loop level. The results show a
substantial improvement regarding this type of nonpertur-
bative approach. Namely, we obtain exact RG/scale invari-
ance at the first nontrivial one-loop RGOPT order, which
also reproduces all the exact large-N results [22] of theOðNÞ

11Similarly for QCD at zero temperature [16,17] the pion
decay constant has been used as a reference physical scale, and
the analog of the combined RG and OPT solutions completely
fixed Fπ=ΛQCD.
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scalar model. At two-loop RGOPTorder, the scale depend-
ence and stability are drastically improved up to relatively
large coupling values, with respect to most of the other
available resummation approaches. Not surprisingly the
pressure obtained from the RG mass gap equation happens
to have better convergence and scale dependence properties
for large coupling than the pressure obtained from the OPT
mass gap. We have also illustrated the full RGOPT result
obtained from combining the RG and OPT equations,
therefore completely fixing the coupling and mass for a
given input scale, with results that can be considered as a
variational approximation to the truly scale invariant non-
perturbative all order result. Beyond two-loop order, since
all relevant perturbative results are available at three-loop
order [7], theRGOPTprocedure can be applied, butwe leave
this for future work as it becomes algebraically and numeri-
cally somewhat more involved. Besides, we are confident
that it will further improve the scale dependencewith respect
to the two-loop results, without explicit three-loop calcu-
lations: as explained theRGOPTconstructionwill guarantee
the RGOPT free energy to be perturbatively RG invariant up
to neglected four-loopOðm4λ3Þ terms, for arbitrarymassm.
This implies, after using the (OPTor RG) gap equation, that
perturbatively a remnant scale dependence appears in the
free energy at order ∼λ4. The same line of reasoning also
explains why the lack of RG invariance of OPT/SPT at
formally one-loop order m4 for arbitrary m, remains partly
hidden at one- and two-loop but resurfaces maximally at
perturbative three-loop order λ2. We also see that the
RGOPT anticipates the predictions by one perturbative
order, the exact one-loop results being qualitatively similar
to standard two-loop resummation results. Therefore, one
may argue similarly that the two-loopRGOPTresults should
be qualitatively comparable to (standard) SPT three-loop
results12 (with a sensibly better scale invariance). Indeed,
incorporating the s2 subtraction term at two-loop order,
which includes a (RG) part of the three-loop contributions,
further improves the convergence and scale dependence in
the nonperturbative coupling range. For these reasons
considering the full three-loop contributions is certainly a
welcome refinement but not necessary a crucial one in order
to demonstrate the efficiency of the method which con-
stitutes our main goal here.
It should be also clear that the whole construction

illustrated in particular in Secs. III to V is actually more
general, and that it is applicable to QCD. We have already
mentioned some properties anticipated to be similar, or
sometimes different, in the QCD case. One could expect that

the thermal QCD application may be a priori much more
difficult than the traditionally simpler scalar model. But
given that the difficult gauge dependence and related QCD
issues have been solved by the HTL formalism [4,8], the
elaborate perturbative HTLpt calculations performed for
thermal QCD up to three-loop order in [9] should be readily
adaptable to our RGOPTmethod, which in a first stage relies
entirely on perturbative calculations. In HTLpt only vacuum
energy, mass, and coupling counterterms are necessary to
renormalize the thermodynamic potential. The quark mass
anomalous dimension is just the standard one, while the
gluon mass anomalous dimension is easily extracted from
corresponding known counterterms, given e.g. in [8,9]. Thus
our subtraction procedure to recover RG invariance will
work just like in the scalar model, applying RG with
Eq. (3.1), (3.3), and the modifed interpolation Eq. (4.1).
Moreover, the HTLpt formalism is inherently a high-T
expansion, therefore it will give OPT and RG equations in
m=T and g, simpler than the somewhat involved two-loop
exactT-dependentmass gap Eqs. (7.2), (7.3) (except that for
QCD, HTLpt at two-loop order involves m lnm terms, due
to the two-loop QCD free energy graph structure). Finally,
for QCD the known first four coefficients of the β-function,
b0…b3, all have the same (negative) sign, such that no fake
perturbative fixed points, such as the one present here in the
scalar model, will obstruct the identification of correct
RGOPT solutions. We are confident that a similarly
improved scale-dependence and overall stability will be
obtained also from RGOPT adaptation of HTLpt, which
could potentially put confrontationwith thermalQCD lattice
results on even firmer grounds.
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APPENDIX: ALTERNATIVE DERIVATION
OF SUBTRACTION TERMS FROM BARE

RG-INVARIANCE

For completeness is this appendix we derive the sub-
traction terms in Eq. (3.8) alternatively by RG invariance
considerations solely on the bare expression. The bare free
energy at two-loop level consists of Eq. (2.4) plus the
remnant divergent terms [7,34] (after mass and coupling
renormalization at this order) with D ¼ 4 − 2ϵ:

ð4πÞ2E0ðresidualÞ ¼ −m4

�
1

4ϵ
þ 1

8ϵ2

�
λ

16π2

��
: ðA1Þ

As amply explained, minimally subtracting Eq. (A1) would
not produce a finite RG-invariant expression. Instead, an
explicitly RG-invariant counterterm can be written
[17,29,30] in the general (perturbative) form in terms of
the RG invariant bare mass and couplings as:

12Of course with the limitations that our two-loop results,
while resumming some RG dependence of higher order terms,
does not reproduce the full three-loop contributions, in particular
those given by the three-loop thermal “basketball” graph [7,48].
When the subtraction term s2λ from (3.7), (3.8) is included, it is
related from RG properties to the single logarithm coefficient of
this three-loop basketball graph.
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ð4πÞ2ΔERG
0 ≡ −

m4
0

λ0
H0ðϵÞ; ðA2Þ

with H0ðϵÞ≡P
i≥0hiϵ

i an arbitrary series in ϵ, most
conveniently determined perturbatively order by order.
Now demanding Eq. (A2) to cancel the remnant divergent
terms in (A1), upon using in Eq. (A2) the well-known
expressions of the mass and coupling counterterms up to
two-loop order, reading in our convention:

Zλ ≡ λ0
λ
≃ 1þ b0

2ϵ
λþ

��
b0
2ϵ

�
2

þ b1
4ϵ

�
λ2 þ � � � ðA3Þ

Zm≡m0

m
≃ 1þ γ0

2ϵ
λþ

�
γ0ðγ0þb0Þ

8ϵ2
þ γ1
4ϵ

�
λ2þ� � � ðA4Þ

expanded in λ and ϵ series, after some algebra it uniquely
determines h0 ¼ s0 and h1 ¼ s1, given in Eq. (3.8). But it
leaves additional finite subtraction terms identical to
Eq. (3.8). Note that it necessarily involves an m4s0=λ:
using in Eq. (A2) simply m0 cannot cancel the one-loop
divergence in Eq. (A1) since the latter is Oðλ0Þ. Of course
for the present ϕ4 model this construction is equivalent to
the one performed in [34].
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