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Using a discrete flavor group, A5, combined with generalized CP, we study the mixing parameter
correlations which arise from breaking to residual symmetries in the neutrino Gν ¼ Z2 × CP, and the
charged lepton sectors Ge ¼ Z2. By focusing on patterns that agree with current experimental data we
demonstrate that nontrivial leptonic phases are predicted and discuss a number of distinctive correlations
between mixing parameters.
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I. INTRODUCTION

The mixing structure of the three families of the lepton
sector has inspired many to use non-Abelian flavor sym-
metries to predict the mixing angles and phases of the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix: three
mixing angles, θ13, θ12, θ23, the CP-violating phase δ and
Majorana phases α21 and α31. A significant experimental
result in 2012 was the measurement of θ13 [1–3]. This
somewhat large value of θ13 ruled out many classes of
flavor models that predicted small or zero θ13. These
models lead to simple mixing patterns such as bimaximal
[4–7], tribimaximal [8] and golden ratio [9] which result
from using small flavor groups such as A4, A5 and S4 (an in-
depth review of discrete groups can be found in Ref. [10]).
In order to produce mixing patterns that accommodate

experimental data, the flavor model paradigm has shifted to
include larger groups such as Δð96Þ [11,12], Δð150Þ [13],
Δð600Þ [14] andΔð1536Þ [15]. These non-Abelian discrete
flavor groups cannot be a symmetry at the low-energy scale
as leptonic masses are distinct. Therefore the flavor group
must be broken into Abelian residual symmetries in the
neutrino and charged lepton sectors. The structure of the
Abelian residual symmetries is shaped by the larger non-
Abelian flavor group and from these low-energy residual
symmetries leptonic observables can be predicted. In
general, there are two possible implementations of flavor
symmetries and they are often referred to as direct and
semidirect (e.g. see Ref. [10]). The distinction between the
two approaches is the low-energy residual symmetry of the
Majorana mass matrix: in the direct approach the Klein
group, Z2 × Z2, is a subgroup of the underlying flavor
symmetry while in the semidirect approach, Z2 emerges as
a residual symmetry of the flavor group. In the semidirect
models a continuous parameter is introduced, derived from
the freedom to rotate in the degenerate subspace of the
neutrino residual symmetry, allowing the prediction of a

nonzero θ13. There are several attractive features of
implementing such an approach: first, a UV-complete
theory is not necessary in order to predict leptonic
observables [16–22]. Second, correlations between the
observables can be derived and provide specific signatures
which allow the comparison of a range of models to
experimental data [18–25]. In contrast with the direct
and semidirect models, there have been predictions of
leptonic observables using Z2 residual symmetries which
do not inherit structure from a non-Abelian subgroup
[26,27].
These models can successfully predict mixing angles

consistent with data and a Dirac phase, δ. However, due to
the constraints imposed on the mass matrices used to
construct the PMNS matrix, a number of degrees of
freedom cannot be eliminated and therefore these models
cannot predict Majorana phases. By extending the flavor
group to include generalized CP (gCP) symmetry, the three
mixing angles and three phases can be determined using a
small number of input parameters [28]. This idea of
combining CP with a flavor symmetry is not a recent
one and was originally discussed in [29–31] together with a
μ − τ symmetry. There have been a number of interesting
works on the consistent relation between gCP and flavor
symmetry [28,32,33] and many plausible groups have been
studied such as A4 [28,34], S4 [28,35,36], Δð96Þ [11,12],
Δð150Þ [13], Δð600Þ [14], Δð1536Þ [15], Δð3n2Þ [37],
Δð6n2Þ [37,38] and most recently A5 [39–41]. In smaller
groups such as A4, S4 and A5 [28,34,35,39–41], it has been
found that the leptonic phases are either trivial or maximal.
Moreover, there are often share recurring patterns of
predictions such as maximally CP-violating δ associated
with maximal θ23, the origin of which was recently
discussed [42,43]. Applying the same framework with a
larger flavor group such as Δð3n2Þ or Δð6n2Þ, leptonic
phases are nontrivially dependent upon the continuous
parameter and can take values different from 0, π
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using non-Abelian flavor groups combined with gCP, there
have been interesting recent works which apply an invariant
approach to CP in flavor symmetries [44–46].
The work presented in this paper is an extension of the

study in [41], where a flavor group, A5, combined with
gCP is broken into residual symmetries in the charged
lepton, Ge ¼ fZ3;Z5;Z2 × Z2g, and the neutrino sectors,
Gν ¼ Z2 × CP. An additional motivation to further explore
the predictions of A5 is, unlike other small groups such as
A4 and S4, A5 is anomaly safe [47]. In this work, we
consider the possibility that the same high-energy sym-
metry breaks into low-energy residual symmetriesGe ¼ Z2

and Gν ¼ Z2 × CP. By relaxing the possible combination
of residual symmetries we find that nontrivial values of the
leptonic phases can be accommodated and there are
distinctive correlations between observables.
Throughout this work, we assume our low-energy

effective theory is the Standard Model augmented by a
Majorana mass term and we will use the following 3σ
global fit data [48]:

7.85° ≤ θ13 ≤ 9.10°; 31.29° ≤ θ12 ≤ 35.91°;

38.2° ≤ θ23 ≤ 53.3°:

The work presented in this paper is structured as follows:
in Sec. II we present the assumptions of our theoretical
framework; in Sec. III we discuss the construction of the
PMNS matrix from a symmetry constraint and the deriva-
tion of our results. A number of representative predictions,
along with an example, are given in Sec. IV and finally we
make concluding remarks in Sec. V.

II. SYMMETRIES OF THE MODEL

We briefly review the theoretical framework of this
study, where we have closely followed the discussion of
[41]. We first review the general concepts of flavor and
generalized CP symmetry and subsequently consider the
consistent relations between these two symmetry trans-
formations in preparation for constructing the PMNS
matrix.

A. Flavor symmetry

We assume there exists a finite, discrete flavor symmetry,
Gf, at the high-energy scale. The purpose of this symmetry
is to unify the three flavors of leptonic doublets into a single
mathematical object: a three-dimensional irreducible rep-
resentation of the flavor group, Ψ. The flavor group acts on
Ψ such that

Ψ → ρðgÞΨ; ð1Þ
where ρðgÞ is a three-dimensional unitary representation of
group element g ∈ Gf. The non-Abelian flavor symmetry
must be broken at the low-energy scale as leptonic masses

are distinct. This implies that if a flavor symmetry is
operational in the high-energy regime then only its Abelian
residual symmetries would be observable at the scale of
mass generation. Therefore, we assume that the non-
Abelian flavor symmetry is broken into Abelian residual
symmetries in the charged lepton sector, Ge, and the
neutrino sector, Gν. For group elements ge ∈ Ge and
gν ∈ Gν, the charged lepton and neutrino fields transform
under the residual symmetries according to

eL → ρðgeÞeL and νL → ρðgνÞνL; ð2Þ

where generational indices have been suppressed. The
transformations of Eq. (2) enforce constraints on the
charged lepton and neutrino mass matrices,

ρðgeÞ†ðmem
†
eÞρðgeÞ ¼ mem

†
e; ð3Þ

ρðgνÞTmνρðgνÞ ¼ mν: ð4Þ

To deduce the possible forms of the residual symmetries,
we must consider the largest symmetry of each sector and
the structure inherited from the larger non-Abelian flavor
group. On the basis in which the charged lepton mass
matrix is diagonal and the masses are distinct, the largest
symmetry of this sector is Uð1Þ3. This is derived from the
freedom to rephase the fields of each generation of the
charged leptons. The most general discrete residual sym-
metry of this sector must be a subgroup of Uð1Þ3 and is
therefore a direct product of the cyclic groups, Zn. The
Abelian subgroups of A5 that satisfy this condition are Z5,
Z3, Z2 × Z2 and Z2, where the cases of Z3;Z5 and Z2 ×
Z2 have been studied in the analysis of [41]. As we assume
that the neutrinos are Majorana in nature, rather than Dirac-
type particles, their mass matrix is always invariant under a
Klein symmetry,Z2 × Z2. Therefore the residual symmetry
of the neutrino sector is the Klein group or a subgroup
thereof.

B. Generalized CP symmetry

In addition to the non-Abelian flavor symmetry opera-
tional at the high-energy scale, we assume there also exists
a gCP symmetry. This symmetry parity transforms and
charge conjugates the field, as well as acting on its
generational indices [49]. The gCP transformation acts
on the multiplet of fields, Ψ, as

Ψ → XΨC; ð5Þ

where X is a unitary, symmetric matrix and ΨC denotes the
CP conjugate of Ψ. We have chosen gCP to be an
involutory, meaning that two gCP transformations are
equivalent to the identity: XX� ¼ 1. If gCP remains a
symmetry of the charged lepton or neutrino sector, it must
leave the mass terms invariant:
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XTmνX ¼ m�
ν; ð6Þ

X†ðmem
†
eÞX ¼ ðmem

†
eÞ�: ð7Þ

It has been demonstrated [35,50] that if gCP remains
unbroken at the low-energy scale in both the charged
lepton and neutrino sectors, then Eqs. (6) and (7) are
satisfied and consequently no CP-violating effects will be
observed. Therefore, in this paper we assume that gCP is
broken in the charged lepton sector and remains a preserved
symmetry of the neutrino sector.
In summary, the residual flavor and gCP symmetries

place a series of constraints on the charged lepton and
neutrino mass matrices. These constraints shape the form of
the diagonalizing matrices, Ue and Uν, which in turn
constrain the form of the PMNS matrix. The consistent
interaction between the non-Abelian flavor group and gCP
must be considered in order to determine which gCP
transformations are physical.

C. Combining flavor and gCP symmetries

To illustrate the consistency between the flavor and gCP
symmetries, consider a multiplet of fields transforming
under a gCP, flavor and subsequent gCP transformation,

Ψ → XρðgÞ�X�Ψ≡ ρðg0ÞΨ: ð8Þ

In [28,32], the authors showed that in order to combine
flavor and gCP symmetries consistently, gCP must act as an
automorphism on the flavor group, Gf [in Eq. (8), gCP
maps group element g to another element g0 such that the
identity and group multiplication is respected]. This idea
was further developed by [33], which pointed out that for a
physical CP transformation to occur, gCP should be an
outer automorphism that maps the representations of the
fields to their conjugate representations. Moreover, in a
generic setting, these outer automorphisms of the group
must be class-inverting automorphisms, implying that
Eq. (8) becomes

XρðgÞ�X�Ψ≡ ρðhÞρðg−1ÞρðhÞ−1Ψ; ð9Þ
for h ∈ Gf. The detailed derivation of X is discussed fully
in [41], however in this work we will briefly summarize the
group theoretic concepts that were considered. In order to
find the forms of X that constitute physical gCP trans-
formations, the outer automorphism of the flavor group
must be known. In general, the outer automorphism group
for An, where n ≤ 5, is Z2 (for more group theory insights
see Ref. [51]). This implies there is only one nontrivial
outer automorphism of A5 and this maps elements of one
conjugacy classes of order 5 to the other.1 In addition to

finding the nontrivial outer automorphism of the flavor
group, A5 has a special property that simplifies the
derivation of X. A5 is an ambivalent group, meaning each
element is conjugate to its inverse. Applying this property
of the group and choosing to work in a real representation,
Eq. (9) can be significantly simplified. Henceforth, a series
of deductions can be made and it can be concluded that the
forms of X that act on A5 as class-inverting, involutory
automorphism are the Klein group.

III. METHODOLOGY

We first discuss the construction of the PMNS matrix
from the symmetry constraints and subsequently describe
the method used to derive the correlations between
observables.

A. Constructing the PMNS matrix
from symmetry considerations

The flavor and gCP symmetry constrain the form of the
neutrino and charged lepton mass matrices. From these
constraints the form of their diagonalizing matrices, Uν

and Ue, may be deduced and thus the PMNS matrix
can be constructed: UPMNS ¼ U†

eUν. Let us consider
how to derive Ue from the symmetry constraints. First,
Eq. (3) can be reexpressed in the form of a commutator:
½ρðgeÞ; ðmem

†
eÞ� ¼ 0. As the unitary representation ρðgeÞ

commutes with the Hermitian matrix mem
†
e, there exists a

unitary matrix, Ue, that simultaneously diagonalizes both.
In the case where ρðgeÞ has degenerate eigenvalues, there is
not a unique diagonalizing matrix of ρðgeÞ but rather an
additional complex rotation can be performed in the
degenerate subspace of ρðgeÞ. Therefore, the most general
form of the diagonalizing matrix of ρðgeÞ and ðmem

†
eÞ is

Ue ¼ UlRðω; γÞ; ð10Þ
where Ul diagonalizes ρðgeÞ and Rðω; γÞ is an SU(2)
transformation in the degenerate eigenspace. It is worth
stressing that we allow for the existence of this complex
rotation by permitting Ge ¼ Z2. This differs from the
analysis of [41], as their choice of Ge had no such
degenerate subspace.
In order to deduce the form of Uν, we consider con-

straints from the flavor residual symmetry, gCP and the
logical relation between the two symmetries. The action of
gCP on the neutrino residual symmetry, ρðgνÞ, maps these
elements to their inverse:

XρðgνÞ�X� ¼ ρðgνÞ−1 ¼ ρðgνÞ; ð11Þ
where in the final step we have used the fact Z2 elements
are self-inverse. Equation (11) can equivalently be viewed
as forming a direct product between Z2 and gCP. In [28]
they showed that it is always possible to make a convenient
basis change Ω (X ¼ ΩΩT) such that

1A5 contains five conjugacy classes: one for order 1, 2 and 3
elements and two for order 5 elements.

PREDICTIONS FOR LEPTONIC MIXING ANGLE … PHYSICAL REVIEW D 92, 116007 (2015)

116007-3



ðΩTmνΩÞ ¼ ðΩTmνΩÞ�: ð12Þ
Therefore, this basis transformation ensures that mν is real
valued. Moreover, from Eq. (4), it can be seen that the
diagonal from of ρðgνÞ commutes with ðΩTmνΩÞ, which
implies that mν must be block diagonal. To fully diago-
nalize the matrix of Eq. (12), an additional real rotation,
RðθÞ, must be performed. From these considerations, Uν

may be written as

Uν ¼ ΩRðθÞ: ð13Þ
Using symmetry constraints alone, the PMNS matrix may
be written as

UPMNS ¼ Rðω; γÞUl
†ΩRðθÞ: ð14Þ

For our chosen representation of A5, Ω can take three
possible forms,

Ω12 ¼

0
B@

i 0 0

0 i 0

0 0 1

1
CA; Ω13¼

0
B@

i 0 0

0 1 0

0 0 i

1
CA and

Ω23 ¼

0
B@

1 0 0

0 i 0

0 0 i

1
CA; ð15Þ

which have been fully derived in [41].

B. Derivation of predictions for leptonic
mixing parameters

In the work of [41], the combination of Abelian residual
symmetries studied were Ge ¼ fZ3;Z5;Z2 × Z2g and
Gν ¼ Z2 × CP. The observables are a function of one
continuous parameter, derived from the freedom to make a
real rotation in the degenerate subspace of the Z2 residual
symmetry in the neutrino sector. Moreover, the authors of
[41] considered the combination of Gν ¼ Z2 × Z2 × CP
and Ge ¼ Z2. In this case, each observable would be a
function of two input parameters which is obtained from
the ability to make an SU(2) transformation in the degen-
erate eigenspace of the Z2 charged lepton residual sym-
metry. This was fully explored and there were no
predictions that agreed with data at the 3σ level. A further
consideration of Ge ¼ Z2 and Gν ¼ Z2 × CP was pro-
posed in [41]. Moreover, predictions that agreed to a 3σ
level with global fit data were found, however these
correlations were not analyzed further.
In this work, we aim to develop on this combination of

residual symmetries that was originally described in [41]
and explore the nontrivial correlations between leptonic
observables. This consideration allows for two additional
continuous parameters and therefore each observable is a
function of three input parameters: θ, ω and γ.

For each of the 15 charged lepton residual sym-
metries, ρðgeÞ, we construct a diagonalizing matrix,
Ue ¼ UlRðω; γÞ, where we have fixed the degenerate
subspace, Rðω; γÞ. To construct Uν we have explored all
possible combinations of ΩRðθÞ and from this, we can
construct UPMNS. For each constructed PMNS matrix, we
considered the arbitrary ordering of the diagonalizing
matrices and therefore appropriately permuted the rows
and columns. For each PMNS matrix, the three continuous
parameters (θ, ω, γ) are randomly scanned over the range
½0; π� and the three mixing angles are calculated for each
point in the phase space. Subsequently, only points that
simultaneously agree to a 3σ level with global fit data [48]
are retained and from these points the phases are calculated.
We have chosen to present our results in terms of
correlations between the leptonic phases θ13, θ12 as a
function of θ23.

IV. RESULTS

There is a varied program of currently running and
planned experiments that aim to increase precision in the
measurement of a number of the oscillation parameters. In
the near term, accelerator long-baseline experiments such
as T2K [52] and NOνA [53] aim at improving the current
measurements of parameters such as θ23, δ and Δm32

2. In
the longer term, accelerator facilities such as DUNE [54]
and T2HK [55] hope to further increase the sensitivity to
these oscillation parameters. T2HK will have the ability to
resolve δ to a 1σ uncertainty of 19° for all allowed values
(using an integrated beam power of 7.5 MW seconds of
exposure with 1.56 × 1022 protons on target). Moreover,
using a 10 kt detector and expected knowledge from T2K
and NOνA would allow DUNE to achieve a 3σ sensitivity
for detecting CP violation in 50% of δ values.
In conjunction, future medium baseline reactor experi-

ments such as RENO-50 [56] and JUNO [57] aim to better
the measurement of θ12. These experiments utilize the
survival probability of electron antineutrinos, which are
copiously produced in fission reactors, to determine the
mass ordering and make subpercent measurements of θ12.
The determination of the nature of the neutrino remains

of fundamental importance and neutrinoless double beta
decay (ν0ββ) experiments such as GERDA, CUORICINO,
EXO-200 and KamLAND-Zen hope to explore CP-
conserving upper boundary of the inverted ordering region.
The decay rate of this rare process is proportional to the
effective Majorana mass, mee (see e.g. [58–64]), and the
values ofmee are influenced by the combinations of phases,
eiα21 and eiðα31−2δÞ. We will comment on some specific
predictions which have particularly relevant consequences
for ν0ββ. However, due to the ambitious plans to improve
the measurement of δ, θ12 and θ23 by a range of comple-
mentary neutrino oscillation experiments, we will mainly
focus on the mixing angle and δ − θ23 correlations.
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Using the symmetry construction of Sec. II, each PMNS
matrix is a function of three continuous parameters and
therefore we find a large number of cases that agree to a 3σ
level with global fit data and we have in the order of 50
different predictions. For illustrative purposes we provide
an explicit example of one such prediction in Sec. IVA. We
group the remainder of our selected predictions into
categories according to the octant of the θ23: the lower
octant cases are discussed in Sec. IV B, upper octant in
Sec. IV C and finally cases that span both octants are
discussed in Sec. IV D.

A. An example

We utilize the group representations of Refs. [65] and
[66]. To construct Ue, let us first consider a Z2 group
element of A5 in the three-dimensional real representation

Z2 ¼
1

2

0
BB@

−1 ϕ −1
ϕ

ϕ 1
ϕ −1

−1
ϕ −1 −ϕ

1
CCA; ð16Þ

where ϕ ¼ ð1þ ffiffi
5

p Þ
2

is the golden ratio. A diagonalizing
matrix of Eq. (16) is

Ul ∼

0
B@

0.665 −0.555 − 1
2

−0.58 −0.025 − ϕ
2

0.461 0.832 − 1
2ϕ

1
CA; ð17Þ

where the degenerate eigenvalues of the matrix of Eq. (16)
are in the 12-plane. Therefore, U†

e takes the form

U†
e ∼

0
B@

cω eiγsω 0

−e−iγsω cω 0

0 0 1

1
CA

×

0
B@

0.665 −0.58 0.461

−0.555 −0.025 0.832

− 1
2

− ϕ
2

− 1
2ϕ

1
CA; ð18Þ

where cω ≡ cosðωÞ and sω ≡ sinðωÞ. Not all combinations
of Ω and RðθÞ produce predictions within 3σ of the global
fit data, however, one such combination that does is

Uν ¼

0
B@

1 0 0

0 i 0

0 0 i

1
CA

0
B@

1 0 0

0 cθ sθ
0 −sθ cθ

1
CA: ð19Þ

Combining Eqs. (18) and (19), we construct the PMNS
matrix and perform a random scan over the three continu-
ous parameters (θ, ω, γ) in the interval ½0; π�. The points of
this parameter space that agree to a 3σ level with global fit

data are retained and the phases are calculated. Throughout
this work, the Particle Data Group parametrization has been
applied to find the mixing angles and phases [67]. In Fig. 1,
we plot the three leptonic phases, θ12 and θ13 as a function
of θ23. This PMNS matrix requires 44.2° ≤ θ23 ≤ 53.3° and
the δ phase reaches a maximal value of 69° for large values
of θ23 (53°). A CP-conserving value of δ is possible for all
viable θ23’s and for the maximal θ23’s, −20° ≤ δ ≤ 20°.
From Fig. 1, there appears to be no preferred δ phase within
the viable parameter space. The values of the Majorana
phases range from α21 ∼�25° to α31 ∼�80°. In the case of
α31, small values (< 15°) are strongly preferred over the
whole range of θ23. However for θ23 > 49°, α31 can take
large values. The consequences of this prediction on
neutrinoless double beta (ν0ββ) decay would be interesting
to explore. The magnitudes of α21 and ðα31 − 2δÞ of this
prediction can be small and this results in little cancellation
between the mass terms of mee. This would imply the
prediction for mee can be close to the CP-conserving upper
boundary of the inverted ordering region, which experi-
ments hope to explore. Therefore, it would be feasible to
use ν0ββ decay to study this particular prediction.
As the 3σ range of θ13 is highly constrained compared

with the other mixing angles, there is little discernible
structure in the θ13 − θ23 correlation, however the θ12 − θ23
dependence has greater predictivity. For near maximal
values of θ23, θ12 is predicted to be at the very upper
boundary of its 3σ range (∼36°). For larger values of θ23
close to the upper 3σ boundary, the range of predicted θ12
increases (31.6°–35.9°). Although for most viable values
of θ23 there are a range of θ12 predictions, the density of
solutions clusters near the boundary of the viable region of
the δ − θ23 parameter space.

B. Lower octant predictions

The chosen lower octant predictions are presented in
Fig. 2 and it can be seen that the possible range of θ23
values differs between the various cases: lower octants
(LOs) 1–3 have viable predictions for the entire lower
octant (38.8°–45°) while LO 4 is somewhat more con-
strained, as θ23 spans only 3° (40°–43°). LO 5 is the most
highly constrained and therefore most easily testable, with
38° ≤ θ23 ≤ 38.8°. LOs 1–3 share the same δ − θ23 corre-
lation, which attains a maximal δ (85°) for a θ23 close to the
lower 3σ allowed region. The CP-conserving values of δ
require 40.6° ≤ θ23 ≤ 44.2°. In the case of LO 4, although
the δ − θ23 correlation structure is similar to that of LOs
1–3, the maximal value of δ is slightly greater reaching 90°
and solutions tend to cluster at these points. In contrast to
LOs 1–4, the δ value of LO 5 is close to zero, however it
reaches a maximum of 26°.
LOs 1–3 have a common θ12 − θ23 dependence: for

values of θ23 close to the lower 3σ boundary, all values of
θ12 are allowed. For a near maximal θ23, the θ12 prediction
becomes increasing constrained: for example for the

PREDICTIONS FOR LEPTONIC MIXING ANGLE … PHYSICAL REVIEW D 92, 116007 (2015)

116007-5



current best fit value of θ23 (42.3°) [48], only values of
33.5° ≤ θ12 ≤ 35.91° are predicted. In the case of LO 4, for
38.8° ≤ θ23 ≤ 42.3°, the predicted θ12 spans the 3σ range of
θ12. Similar to LOs 1–3, the range of predicted θ12 becomes
more constrained for a near maximal θ23 (smaller θ12 is
preferred). Using the θ12 − θ23 correlation as a means of
differentiating between LOs 1–3 and LO 4 would be
problematic in the regions θ23 ≤ 41°, as the predictions
are indistinguishable. As the viable parameter space of LO
5 is significantly smaller than that of the previous four
predictions, there is no discernible correlation between θ12
and θ23; in this regard its most discriminating feature is that
θ12 can only range between 31° − 33°.
The Majorana phases are the only observables that differ

amongst LOs 1–3. It is worth noting that LO 1 is the only
lower octant prediction of this sample that has a CP-
conserving value of α21. It would be an interesting future
study to investigate the effect that this would have on
ν0ββ decay and the feasibility of discriminating between
predictions.
In summary, there are several general features which are

shared amongst these cases; the most striking of these is the
prediction of nontrivial leptonic phases. Moreover, the δ
and α21 phases are bound between�90°. If δ is measured to
be maximally CP violating, as hinted at by T2K [68], the
only remaining viable prediction is LO 4. Some predictions
cannot be discriminated between by using δ and θ12 alone
and access to the Majorana phases is necessary. Moreover,
the ability to discriminate between LO 4 and LOs 1–3 is

highly dependent upon the value of θ23: in the scenario
of a maximal or near maximal θ23, this is possible. Of the
cases presented, LO 5 is the most easily testable, as its θ23
values are highly constrained and lie at the extreme lower
boundary of the 3σ range.

C. Upper octant predictions

Similar to the lower octant results, we have chosen three
cases [upper octants (UOs) 1–3], presented in Fig. 3, for
which the mixing angle and δ phase correlations are
indistinguishable and only the Majorana phases differ.
UOs 1–3 share the feature of viable predictions over the
entire upper octant (45°–53.3°). The θ23 allowed range UO
4 is slightly more constrained, with 46.3° ≤ θ23 ≤ 53.3°.
UO 5 is an analogous case to LO 5, where its θ23 prediction
span is small and occurs at the very upper limit of the 3σ
boundary, 51.2° ≤ θ23 ≤ 53.3°.
Maximal CP violation is possible in UOs 1–3 and UO 5,

however the δ − θ23 correlation structure differs between
cases. UOs 1–3 share the same pattern where the maximal δ
value (90°) occurs for large θ23 values and CP-conserving
values of δ are associated with 45.6° ≤ θ23 ≤ 48.4°. The δ
correlation of UO 5 differs significantly from UOs 1–3 as
CP-conserving values of δ are not predicted and maximal δ
favored. In the case of UO 4, the correlation structures are
particularly distinctive and unlike the previously discussed
cases, the maximal δ value (55°) is much smaller. A unique
aspect of LO 4 is that there are two distinct regions of θ23
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FIG. 1 (color online). Two-dimensional histograms showing the phases and mixing angles as a function of θ23 for predictions that
agree to a 3σ level with global fit data [48]. The color chart shows relative frequencies of solutions where red (dark blue) represents a
higher (lower) frequency.
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where CP-conserving values of δ can occur: 47.4° ≤ θ23 ≤
49.2° and 51° ≤ θ23 ≤ 52°.
In regards to the θ12 − θ23 correlation of UOs 1–3, all

regions of the 3σ range of θ12 are allowed for
49° ≤ θ23 ≤ 53.3°. Larger values of θ12 are favored for a
near maximal θ23. It is worth noting this dependence (large
θ12 associated with near maximal values of θ23) is similar to
the lower octant predictions LOs 1–3. For 49° ≤ θ23 ≤ 52°,
the θ12 predictions of UO 4 are indistinguishable from UOs
1–3. In spite of this, for certain θ23’s, these cases can be
differentiated. For example, θ23 > 52.6° UO 4 predicts
large valued θ12 (∼36°), whereas the θ12 of UOs 1–3 can
attain any value in the 3σ range. Moreover, at near maximal
values of θ23 (46°), UO 4 predicts smaller θ12 values (31.3°)
than UOs 1–3. Discrimination between UOs 1–3 and UO 5
is not possible using θ12 − θ23 correlations (as there is

complete overlap in the predictions) and therefore a
combination of θ23 and δ measurements in conjunction
with ν0ββ decay study would be required to disentangle
these predictions.
In summary, δ and α21 are bounded between �90°.

Moreover, the ability to discriminate between predictions is
often dependent upon the value of θ23 and in certain cases
predictions are only differentiable with knowledge of the
Majorana phases.

D. Predictions spanning both octants

We have chosen five representative cases that span both
the upper and lower octants of θ23. The predicted regions of
θ23 vary amongst these cases: both octants (BO) 1 has the
greatest viable range, which fully covers the 3σ region of
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FIG. 2 (color online). Two-dimensional histograms showing the phases and mixing angles as a function of θ23 for predictions that
agree to a 3σ level with global fit data [48]. The color chart shows relative frequencies of solutions where red (dark blue) represents a
higher (lower) frequency. Each prediction is labeled lower octant (LO) 1–5.
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θ23. BO 2 and BO 5 also have a wide range of θ23: 38.2° ≤
θ23 ≤ 49° and 38.2° ≤ θ23 ≤ 51° respectively. BO 3 and
BO 4 have the smallest viable range of θ23 with 44.3° ≤
θ23 ≤ 53.3° and 38.2° ≤ θ23 ≤ 45.9° respectively.
There is little structure in the δ − θ23 correlation of BO 1:

δ can attain any value in the range �90° and there is no
dependence on θ23. BO 2 has a similar correlation structure
to the lower octant predictions: the maximal δ value (73°) is
correlated to smaller θ23 values and CP-conserving δ spans
42° ≤ θ23 ≤ 48.2°. BO 3 and BO 4 have comparable δ −
θ23 dependence; the maximal δ, 69° and 61° respectively,
occurs at the extreme upper and lower 3σ limit of θ23. In
comparison with BO 1–4, BO 5 has a highly constrained δ
with a maximal value of 14° for 49° ≤ θ23 ≤ 50°. In the
scenario where δ is maximallyCP violating, the only viable
prediction of this set is BO 1. Interestingly, in spite of BO 1

lacking predictivity in regards to parameters δ, α31 and θ13,
its α21 and θ12 predictions attain very specific values
(α21 ¼ 0° and 34.8° ≤ θ12 ≤ 35.2°). BO 1 would be of
particular interest in ν0ββ decay studies as it has a single
α21 value and exceptionally narrow θ12 range.
The θ12 − θ23 dependence of BO 3 and BO 4 are similar:

for near maximal θ23, there is a very limited range of θ12
values (∼36°) and for θ23 close to the upper or lower 3σ
boundary, the possible θ12’s become less constrained. This
appears to be a common theme of many of the predictions:
near maximal θ23’s have very specific θ12 predictions. In
the case of BO 2, θ12 can attain any value in the 3σ range
for θ23 ≤ 43.5° and for larger θ23, smaller values of θ12 are
preferable. There is significant overlap in θ12 predictions
for BO 2 and BO 5 and only in the scenario θ23 ≥ 47° do
their predictions differ. A special feature of BO 5, akin to
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FIG. 3 (color online). Two-dimensional histograms showing the phases and mixing angles as a function of θ23 for predictions that
agree to a 3σ level with global fit data [48]. The color chart shows relative frequencies of solutions where red (dark blue) represents a
higher (lower) frequency. Each prediction is labeled upper octant (UO) 1–5.
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BO 1, is that certain observables are more constrained than
others; for instance predictions of θ13 and θ12 range widely,
whereas the leptonic phases are more highly constrained
(jδj ≤ 14°, jα21j ≤ 40°, jα31j ≤ 90°).
In summary, δ and α21 can only attain values �90°.

Furthermore, there are two examples (BO 1 and BO 5), in
which certain observables are highly unconstrained but in
balance other parameters can only attain very specific
values. Therefore in spite of a lack of predictivity in certain
observables, these cases still remain testable by upcoming
long- and medium baseline experiments.

V. CONCLUSIONS

In this article, we studied the correlations of leptonic
observables that result from a flavor symmetry, A5,

combined with gCP breaking into residual symmetries
Gν ¼ Z2 × CP and Ge ¼ Z2. This combination of
residual symmetries introduces three continuous param-
eters and, unsurprisingly, we obtain a wider range of
predictions than in studies that use only one input
parameter. The flavor symmetry studies that implement
one input parameter and are of low order such as A4

[28,34], S4 [28,35] and A5 [39–41] share common
predictions such as j sin δj ¼ 1, j sin α21j ¼ j sin α31j ¼ 0

and maximally CP-violating δ associated with maximal
θ23. We find that the addition of two continuous param-
eters allows for more possibilities in correlations and
predictions of nontrivial leptonic phases differing from 0,
π
2
, π and 3π

2
. Using a number of example cases we have

shown that certain predictions are indistinguishable using
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FIG. 4 (color online). Two-dimensional histograms showing the phases and mixing angles as a function of θ23 for predictions that
agree to a 3σ level with global fit data [48]. The color chart shows relative frequencies of solutions where red (dark blue) represents a
higher (lower) frequency. Each prediction is labeled both octants (BO) 1–5.
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oscillation parameters δ, θ12 and θ23 alone and therefore
input from ν0ββ decay experiments is necessary. We
find that, in general, the ability to discriminate
between predictions is improved for a near maximal θ23
and that even in specific cases in which there is no
predictivity for one parameter (e.g. BO 1 and BO 5),
other leptonic observables may be highly constrained
and may provide testable predictions. In spite of a
greater number of predictions, all of our cases share the
feature of δ and α21 phases being bounded by �90°, the
former of which is testable by long-baseline oscillation
experiments.
In conclusion, we find that relaxing the possible combi-

nations of low-energy residual symmetries permits a wider
range of predictions with more complex correlations
between leptonic observables which have the potential to
be tested at upcoming neutrino oscillation and ν0ββ
experiments.
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APPENDIX

In this appendix we will provide the form of the matrices
that we used to derive predictions in the lower, upper and
both octant results. The notation that will be used to denote
real rotations is

R12 ¼

0
B@

cθ sθ 0

−sθ cθ 0

0 0 1

1
CA; R13 ¼

0
B@

cθ 0 sθ
0 1 0

−sθ 0 cθ

1
CA and

R23 ¼

0
B@

1 0 0

0 cθ sθ
0 −sθ cθ

1
CA: ðA1Þ

In regards to the complex rotations they will be
written as

R12C ¼

0
B@

cω sωeiγ 0

−sωe−iγ cω 0

0 0 1

1
CA;

R13C ¼

0
B@

cω 0 sωeiγ

0 1 0

−sωe−iγ 0 cω

1
CA and

R23C ¼

0
B@

1 0 0

0 cω sωeiγ

0 −sωe−iγ cω

1
CA: ðA2Þ

The Z2 elements that give distinct results are

Z21 ¼ 1

2

0
BB@

ϕ −1 ϕ

−1 −ϕ − 1
ϕ

ϕ − 1
ϕ −1

1
CCA;

Z22 ¼ 1

2

0
BB@

−ϕ − 1
ϕ −1

− 1
ϕ −1 ϕ

−1 ϕ 1
ϕ

1
CCA;

Z23 ¼ 1

2

0
BB@

−1 −ϕ − 1
ϕ

−ϕ 1
ϕ 1

− 1
ϕ 1 −ϕ

1
CCA

Z24 ¼ 1

2

0
BB@

1
ϕ −1 −ϕ

−1 −ϕ 1
ϕ

−ϕ 1
ϕ −1

1
CCA;

Z25 ¼ 1

2

0
BB@

−ϕ − 1
ϕ 1

− 1
ϕ −1 −ϕ

1 −ϕ 1
ϕ

1
CCA;

Z26 ¼ 1

2

0
BB@

−1 ϕ 1
ϕ

ϕ 1
ϕ −1

1
ϕ 1 −ϕ

1
CCA;

Z27 ¼ 1

2

0
BB@

−1 ϕ −1
ϕ

ϕ 1
ϕ −1

−1
ϕ −1 −ϕ

1
CCA: ðA3Þ

The diagonalizing matrix of Z2i will be denoted by Ui for i
∈ 1…6. The permutations that have been applied to
account for the arbitrariness of ordering of the eigenvectors
will be denoted by p1…p6,
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p1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; p2 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

p3 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; p4 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA;

p5 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; p6 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA: ðA4Þ

1. Lower octant matrices

Result UPMNS

LO 1 p4R23CU1
†Ω12R12p2

LO 2 p2R13CU2
†Ω12R13p3

LO 3 p1R12CU3
†Ω12R23p4

LO 4 p2R13CU2
†Ω12R13p1

LO 5 p4R23CU1
†Ω12R13p3

2. Upper octant matrices

Result UPMNS

UO 1 p1R13CU2
†Ω12R13p1

UO 2 p1R13CU4
†Ω12R13p3

UO 3 p4R12CU3
†Ω12R23p4

UO 4 p3R23CU5
†Ω12R13p3

UO 5 p3R23CU1
†Ω12R12p2

3. Both octant matrices

Result UPMNS

BO 1 p1R23CU5
†Ω12R12p4

BO 2 p1R12CU6
†Ω13R12p4

BO 3 p4R23CU1
†Ω23R12p6

BO 4 p4R12CU7
†Ω23R23p1

BO 5 p3R23CU5
†Ω13R13p3
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