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The model-independent parametrization for exclusive hadronic form factors commonly used for
semileptonic decays is generalized to allow for the inclusion of above-threshold resonant poles of known
mass and width. We discuss the interpretation of such poles, particularly with respect to the analytic
structure of the relevant two-point Green’s function in which they reside. Their presence has a remarkably
small effect on the parametrization, as we show explicitly for the case of D → πeþνe.
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I. INTRODUCTION

Studies of the analytic structure of Green’s functions in
quantum field theory (QFT) have a long and illustrious
history. Here we merely outline, in the briefest possible
description, one specific line of inquiry on two-point
Green’s functions, ultimately stretching back to QFT
fundamentals like the optical theorem and the Källén–
Lehmann spectral decomposition, and ending with a
practical yet rigorous parametrization for the form factors
of semileptonic decays of hadrons, in which a heavy quark
flavor (s; c; b) decays to a lighter one.
The starting point is the two-point Green’s function of

two currents, in our case a conjugate pair JJ† of weak-
interaction currents Jμ ≡ q̄ΓμQ, where Γμ is the V − A
weak interaction Lorentz structure (at least at leading
perturbative order) responsible for changing the heavy
quark flavor Q. This two-point function is analytic every-
where in the plane of complex momentum q2, except at
poles corresponding to resonances and cuts corresponding
to collections of particles going onto the mass shell. The
most important one is the so-called unitarity cut corre-
sponding to the production of the lightest pair of hadrons
(of flavor content Qq̄ plus its conjugate) from the currents,
since it has the lowest branch point on the real q2 axis. In
1963, Meiman [1] was the first to consider the conformal
mapping of the entire cut q2 plane to the unit disk in a
variable z, and to note the existence of a bound on the
coefficients of the powers of z for any function derived
from the two-point function. Some years later, Okubo [2–5]
applied the z-variable transformation to the two-point
function relevant to the semileptonic process Kl3, to obtain
bounds on certain moments of the form factors. In 1980,
Bourrely et al. [6] showed how to obtain bounds for the
form factors by using the evaluation of the two-point

function in a region where perturbative QCD is applicable.
Finally, in the mid-1990s, Boyd et al. [7–12] showed how
below-threshold poles—essential to properly treating the
analytic structure of the two-point function—can be incor-
porated into the z-expansion by means of a well-known
trick of complex analysis called Blaschke factors (the
analytic significance of which for heavy-hadron form
factors was first noted by Caprini [13,14]), and applied
the z-parametrization thus derived to a number of heavy-
quark semileptonic decays.
It is then natural to ask whether the above-threshold

poles, for which the corresponding resonances can decay to
on-shell pairs of mesons with the quantum numbers of JJ†,
can loosen or perhaps even fatally weaken these bounds
and the parametrization following from them. In fact, as to
be shown here, even the most extreme case of a prominent
resonance just barely above threshold does not significantly
damage the quality of the parametrization. As a formal
matter, only poles on the first Riemann sheet in q2 change
the analytic structure of the form factor, while the (optional)
inclusion of poles on other sheets (in particular, above-
threshold resonances) changes only the unitarity bound,
and therefore does not affect the analytic structure.
Nevertheless, we argue in this paper that the maximum
effect of such an above-threshold pole on the unitarity
bound is such that it can be treated as though it arises from a
first-sheet pole at the corresponding q2 location. In order to
support this conclusion rigorously, one must develop a
technology in which the above-threshold poles can be
treated solely according to their analytic structure within
the two-point function.
The contribution of this paper is to show that above-

threshold poles, corresponding to resonances of known mass
and width, can also be accommodated into the parametriza-
tion by using Blaschke factors. The essential mathematical
point is that, by virtue of possessing a finite width, the poles
lie off the unitarity cut and therefore can be treated as if
they reside inside the unit circle, where Blaschke factors are
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applicable. An important subtlety to be discussed below is
the sense in which resonant poles, which first appear on the
second Riemann sheet, can be handled in this way.
The essential phenomenological point is that, by virtue of
the widths being sufficiently small compared to the resonant
mass (which in turn lies above the heavy-quark hadronic
threshold), the poles lie barely inside the unit circle, and the
corresponding corrections from the Blaschke factors weaken
the bounds on coefficients of the semileptonic form factor
parametrization very little. As a specific example, one might
expect the D� resonance, which lies very close to the Dπ
threshold, to have a pronounced effect on Dþ;0 → π0;−lþνl
form factors, but we show below that the effect is only at the
level of 1 part in 10−3. The loosening of the bounds actually
becomes more prominent for lighter quarks; but even in the
case ofKl3, theK� pole is seen only to loosen the bounds by
a few percent.
This paper is organized as follows: In Sec. II we review

the current technology of the z-expansion. Section III
generalizes the expansion to the case of a pole lying above
the pair-production threshold of the two-point function but
slightly off the unitarity cut due to a finite imaginary part. In
Sec. IV we address the question of what sense in which an
observed resonance can be treated as such a pole contrib-
uting to the dispersion relation from which the expansion
is derived. Section V shows the effect of this approach in
two sample cases, the decays Dþ;0 → π−;0lþνl and
Kþ;0 → π0;−lþνl, and in Sec. VI we offer concluding
remarks.

II. REVIEW OF THE EXPANSION

We reprise here the key formulas relevant to the form
factor parametrization in a description almost identical to
that in Ref. [12], and incorporate minor modifications
relevant to the inclusion of above-threshold resonant poles.
Starting with the heavy-light (Q → q) vectorlike (V, A, or
V − A) quark transition current

Jμ ≡ Q̄Γμq; ð1Þ

the two-point momentum-space Green’s function Πμν
J is

defined, and separated into manifestly spin-1 (ΠT
J ) and

spin-0 (ΠL
J ) pieces, by

Πμν
J ðqÞ≡ i

Z
d4xeiqxh0jTJμðxÞJ†νð0Þj0i

¼ 1

q2
ðqμqν − q2gμνÞΠT

J ðq2Þ þ
qμqν

q2
ΠL

J ðq2Þ: ð2Þ

In QCD, the functionsΠL;T
J contain divergences of different

degrees and must undergo subtractions (one and two,
respectively) to appear in finite dispersion relations:

χLJ ðq2Þ≡ ∂ΠL
J

∂q2 ¼ 1

π

Z
∞

0

dt
ImΠL

J ðtÞ
ðt − q2Þ2 ;

χTJ ðq2Þ≡ 1

2

∂2ΠT
J

∂ðq2Þ2 ¼
1

π

Z
∞

0

dt
ImΠT

J ðtÞ
ðt − q2Þ3 : ð3Þ

Perturbative QCD (or more thoroughly, QCD sum rules)
may be used to compute the functions χðq2Þ at values of q2
far from the region where J can produce manifestly
nonperturbative effects like resonances. This condition
specifically reads ðmQ þmqÞΛQCD ≪ ðmQ þmqÞ2 − q2.
q2 ¼ 0 is sufficient for Q ¼ c; b, while Q ¼ s might
require a slightly negative value, say q2 ¼ −1 GeV2.
The functions ImΠJ are evaluated by inserting into the

dispersion relation a complete set of states X that couple the
current J to the vacuum, leading to

ImΠT;L
J ðq2Þ ¼ 1

2

X
X

ð2πÞ4δ4ðq − pXÞjh0jJjXij2: ð4Þ

This relation shares a common origin with the optical
theorem and the Källén–Lehmann spectral decomposition,
but it refers particularly to matrix elements of a specific
current J (in our case, the amplitudes for the weak
processes W� → X) rather than those of a single field or
a full transition operator. The dispersion relations Eqs. (3)
indicate the equality of the perturbatively evaluated func-
tion χðq2Þ with an integral over the production rate as a
function in momentum of the processes W� → X, which
includes phase space and other smooth functions. Since
each term in the sum is semipositive definite, one obtains a
strict inequality for each X, which may further be restricted
if one chooses to include other states in the sum. In our
case, we choose X to be the two-particle states consisting of
the lightest meson pair in which one of them contains a Q
quark (mass M) and the other a q̄ (mass m). For Dl3 (Kl3)
decays, X is Dπ (Kπ). Defining

t� ≡ ðM �mÞ2; ð5Þ

and choosing, for definiteness, the form factor FðtÞ to be
the one coupling to ΠT , one has

1

πχTðq2Þ
Z

∞

tþ
dt

WðtÞjFðtÞj2
ðt − q2Þ3 ≤ 1; ð6Þ

where WðtÞ is a simple, computable nonnegative function
(largely phase space factors). An analogous expression
holds for ΠL.
The complex-t plane contains a branch cut extending

from tþ → ∞. It is mapped to the unit disk in a variable z
(with the two sides of the cut forming the unit circle C)
using the conformal variable transformation

BENJAMÍN GRINSTEIN and RICHARD F. LEBED PHYSICAL REVIEW D 92, 116001 (2015)

116001-2



zðt; t0Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ¼ t0 − t
ð ffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p Þ2 ;

ð7Þ

where t0 is a parameter chosen later for convenience.
In particular, z is real for t ≤ tþ and a pure phase for t ≥ tþ.
In fact, the definition in Eq. (7) can be used in several
capacities since, as seen from its second form, multiplying
by zðt; t0Þ eliminates a simple pole at t ¼ t0. The bound
Eq. (6) on FðtÞ may then be rewritten as

1

π

Z
∞

tþ
dt

���� dzðt; t0Þdt

����jϕðt; t0ÞPðtÞFðtÞj2 ≤ 1; ð8Þ

where the weight function ϕðt; t0Þ is called an outer
function in complex analysis. It is given here by

ϕðt; t0Þ ¼ ~PðtÞ
�

WðtÞ
jdzðt; t0Þ=dtj χTðq2Þðt − q2Þ3

�
1=2

; ð9Þ

where the function ~PðtÞ is a product of factors zðt; tsÞ orffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; tsÞ

p
(and hence unimodular on the unit circle

jzðt; t0Þj ¼ 1) designed to remove kinematical singularities
at points t ¼ ts from the other factors in Eq. (9). The
functions ϕðt; t0Þ for any form factor of spin-0 and spin-1
meson and spin-1

2
baryon semileptonic decays are tabulated

in Ref. [12]. On the other hand, the function PðtÞ in Eq. (8)
is a product of Blaschke factors zðt; tpÞ (again unimodular
on the unit circle jzðt; t0Þj ¼ 1) that remove dynamical
singularities due to resonant poles in the two-point
function.
In total, the analyticity of the two-point function away

from the cut and all poles is most efficiently expressed by
isolating the factors that encode the nonanalytic behavior of
the form factor FðtÞ into the functions ϕðt; t0Þ and PðtÞ
and then transforming to the variable z ¼ zðt; t0Þ, so that
the dispersion relation inequality Eq. (6) or (8) becomes

1

2πi

I
C

dz
z
jϕðzÞPðzÞFðzÞj2 ≤ 1; ð10Þ

which in turn allows the expansion

FðtÞ ¼ 1

jPðtÞjϕðt; t0Þ
X∞
n¼0

anzðt; t0Þn; ð11Þ

with the bound of Eq. (10) now reading

X∞
n¼0

a2n ≤ 1: ð12Þ

All possible functional dependences of the form factor FðtÞ
consistent with Eqs. (3) are now incorporated into the

coefficients an of Eq. (11), which are highly constrained
by Eq. (12).
The strength of the parametrization Eq. (11) becomes

truly apparent when one notes that the kinematical variable
z typically assumes a small range for semileptonic decays,
so that the series converges quickly and can be truncated
after a small number of terms. To be specific, let us rewrite
Eq. (7) in terms of parent and daughter velocity 4-vectors
vμ ≡ pμ

M=M, v0μ ≡ pμ
m=m. A convenient commonly used

invariant is their dot product,

w≡ v · v0 ¼ γm ¼ Em

m
¼ M2 þm2 − t

2Mm
; ð13Þ

where γm is the relativistic dilation factor of the daughter m
in the rest frame of the parent M. In terms of w, Eq. (7)
becomes

zðt; t0Þ ¼ zðw;NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p
−

ffiffiffiffiffiffiffi
2N

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p þ ffiffiffiffiffiffiffi
2N

p ; ð14Þ

where N is a free parameter related to t0 by

N ¼ tþ − t0
tþ − t−

: ð15Þ

The kinematic limits for the semileptonic decay M →
mlνl are tmin ¼ m2

l, tmax ¼ t−, which correspond, respec-
tively, to

wmax ¼
1þ r2 − δ2

2r
;

wmin ¼ 1; ð16Þ

or

zmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rÞ2 − δ2

p
− 2

ffiffiffiffiffiffi
Nr

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rÞ2 − δ2

p
þ 2

ffiffiffiffiffiffi
Nr

p ;

zmin ¼ −
� ffiffiffiffi

N
p

− 1ffiffiffiffi
N

p þ 1

�
; ð17Þ

using the abbreviations r≡m=M, δ≡ml=M. The mini-
mum (optimized) truncation error is achieved when
zmin ¼ −zmax, which occurs when

Nopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rÞ2 − δ2

4r

r
; ð18Þ

or

t0 ¼ tþ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

t−
tþ

��
1 −

m2
l

tþ

�s �
: ð19Þ
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Evaluating at N ¼ Nopt, one finds

zmax ¼ −zmin ¼
½ð1þ rÞ2 − δ2�1=4 − ð4rÞ1=4
½ð1þ rÞ2 − δ2�1=4 þ ð4rÞ1=4 ; ð20Þ

While the Blaschke factors due to resonant poles at
t ¼ tp can be expressed as zðt; tpÞ, it is more convenient to
use the form used in previous works:

Pðz; zpÞ ¼
z − zp
1 − zzp

; ð21Þ

and zðt; tpÞ ¼ Pðz; zpÞ whenever tp < tþ (a subthreshold
pole) so that zp is real. However, the same technique works
just as well for any complex value for zp inside the unit
disk. In that case, the definition of Eq. (21) can be
generalized to

Pðz; zpÞ ¼
jzpj
zp

zp − z

1 − z�pz
; ð22Þ

which, assuming t0 < tþ, equals zðt; tpÞ times the phase of
tp − t0, the latter factor being irrelevant in the bound
Eq. (10). Note that Pð0; zpÞ ¼ jzpj (i.e., with this definition
Pð0; zpÞ is manifestly nonnegative), and that all zp with
jzpj ¼ 1 give PðzÞ ¼ 1. The usefulness of the Blaschke
factors for phenomenology is determined by how much
they degrade the bound Eq. (11) in the semileptonic region
(near z ¼ 0): Fewer poles with jzpj < 1 means a more
constrained allowed region for FðzÞ.

III. POLES ABOVE THRESHOLD

Consider a pole at the complex mass value MR − iΓ=2,
such that MR ≡M þmþ Δm > M þm ¼ ffiffiffiffiffi

tþ
p

and
Γ > 0. Specifically, let us define dimensionless mass
excess and width parameters:

μ≡ Δmffiffiffiffiffi
tþ

p ¼ MRffiffiffiffiffi
tþ

p − 1; ð23Þ

γ ≡ Γ
2

ffiffiffiffiffi
tþ

p : ð24Þ

It is furthermore advantageous to define the following
dimensionless variables:

a≡ μð2þ μÞ − γ2;

b≡ 2γð1þ μÞ;
c≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 þ γ2Þ½ð2þ μÞ2 þ γ2�

q
;

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

tþ
t0

r
¼ 2

ffiffiffiffiffiffi
Nr

p

1þ r
: ð25Þ

One expects both μ ≪ 1, indicating that the mass does not
lie far above threshold, and γ ≪ 1, indicating a narrow

width. The usual narrow-width approximation, Γ ≪ MR,
can be enhanced in this case to assume that the width is
sufficiently small so as to clearly separate the peak from
threshold, γ ≪ μ (Γ ≪ Δm). Likewise, one expects
b ≪ a≃ c ≪ 1, but generically β ¼ Oð1Þ. The specific
values for the case of D0 → π−eþνe, for which the D�þ
pole lies slightly above the D0πþ threshold, are presented
in Table I.1 Similar values hold for Dþ → π0eþνe and for
muon channels.
Regardless of the smallness of any parameters, one can

compute compact closed-form solutions for the position of
zp. One finds

zp ¼ −β2 þ cþ iβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ aÞp

β2 þ cþ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðc − aÞp ; ð26Þ

from which one obtains

jzpj2 ¼ 1 −
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc − aÞp

β2 þ cþ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc − aÞp ; ð27Þ

and

arg zp ¼ arg ½ð−β2 þ cÞ þ iβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ aÞ

p
�: ð28Þ

Using Eq. (28) with β2 > c (a resonance near threshold),
one has

arg zp ¼ π − tan−1
�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ aÞp
β2 − c

�
; ð29Þ

while for β2 < c (a resonance far above threshold),

arg zp ¼ tan−1
�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ aÞp
c − β2

�
: ð30Þ

Neglecting ml (δ), using N ¼ Nopt from Eq. (18), and
retaining only the lowest power in Γ (γ), one obtains

TABLE I. Parameter values for the decay D0 → π−eþνe.

r 7.484 × 10−2 μ 2.919 × 10−3

δ 2.740 × 10−4 γ 2.080 × 10−5

Nopt 1.964 a≃ c 5.846 × 10−3

zmax ¼ −zmin 0.1672 b 4.173 × 10−5

β 0.7135 zp −0.9762þ 0.2117i
jzpj 0.99924
arg zp 167.8°

1We use central values from [15]. Strictly speaking, only the
hadronic part of ΓD�þ should be included in these strong-
interaction dispersion relations; however, the hadronic branching
fraction of D�þ is 98.4� 0.7%, and therefore is taken to be 1.
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1 − jzpj →
Γ

2
ffiffiffiffiffiffiffiffi
Δm

p ðMmÞ1=4 ·
β2

β2 þ μð2þ μÞ ·
1þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ=2

p ;

ð31Þ

while the argument of the arctangent in Eqs. (29)–(30)
becomes

2
ffiffiffiffiffiffiffiffi
Δm

p

ðMmÞ1=4 ·
β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ=2

p
jβ2 − μð2þ μÞj ; ð32Þ

independent of the width to linear order. Additionally
taking the near-threshold resonance limit μ ≪ 1, the latter
two factors of Eq. (31) and the second factor of Eq. (32)
become unity:

1 − jzpj →
Γ

2
ffiffiffiffiffiffiffiffi
Δm

p ðMmÞ1=4 ; ð33Þ

and

arg zp → π − arctan

�
2

ffiffiffiffiffiffiffiffi
Δm

p

ðMmÞ1=4
�
: ð34Þ

The corresponding exact values of zp, jzpj, and arg zp for
D0 → π−eþνe also appear in Table I. The values obtained
from the approximate forms in Eqs. (33) and (34) agree
with the exact results of Eqs. (27) and (28) within 10−5

and 0.15°, respectively.
The naive effect of such an additional pole is to allow

jFðzÞj—and hence each of the coefficients an in Eqs. (11)–
(12)—to be larger by a factor of 1=jPðz; zpÞj, where z ∈
½−zmax; zmax� for the semileptonic decay. Noting that jzpj
lies very close to unity—much closer to unity than it does
to the allowed semileptonic values of z—one finds
1=jPðz; zpÞj to lie uniformly close to unity, meaning that
the presence of a pole with jzpj≃ 1 weakens the model-
independent form factor bounds very little. To give a simple
figure of merit, consider the value of 1=jPðz; zpÞj at the
center of the semileptonic range, z ¼ 0; as we have seen,
1=jPð0; zpÞj ¼ 1=jzpj. The exact value is given by Eq. (27):

1

jPð0; zpÞj
¼ 1

jzpj
¼

�
1 −

2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc − aÞp

β2 þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc − aÞp þ c

�−1=2
;

ð35Þ

while its approximate value (μ ≪ 1) is given by Eq. (33):

1

jPð0; zpÞj
→ 1þ Γ

2
ffiffiffiffiffiffiffiffi
Δm

p ðMmÞ1=4 : ð36Þ

Again, inasmuch as the pole represents a resonance with a
narrow width well separated from threshold, Γ ≪ Δm ≪
M þm, the correction term is quite small; in the case of

D0 → π−eþνe, the allowed ranges for the an are expanded
by less than 8 parts in 104. In summary, the parametrization
is exactly as before in Eq. (11), but the allowed range for
each an is slightly expanded beyond janj ≤ 1.
Of course, z ¼ 0 is just one point in the allowed range for

semileptonic decay. Since the poles of interest lie not far
above threshold, zp lies rather close to −1; therefore, from
Eq. (22), the largest correction to the an factors occurs at
z ¼ −zmax (t ¼ m2

l). In the case of D0 → π−eþνe, the
correction is still only about 1 part in 10−3. The effect of the
near-threshold pole is truly minimal.

IV. EXISTENCE AND NATURE OF
ABOVE-THRESHOLD POLES

In the previous section, we have shown that incorpo-
rating an above-threshold pole into the two-point function
that corresponds to a resonance is mathematically not
difficult. Here we discuss in detail issues related to the
question of whether such a treatment is appropriate to
physical resonances.
The most common approach treats an above-threshold

resonance, which is identified by a Lorentzian distribution
in energy identified with a Breit-Wigner distribution:

jMj2 ∝ 1

ðs −M2
RÞ2 þ sΓ2

; ð37Þ

as being associated with a Breit-Wigner pole at the valueffiffiffi
s

p ¼ MR − iΓ=2, assuming the narrow-width approxima-
tion Γ ≪ MR.

2 More generally, the width Γ need not be a
constant but can have an energy dependence, ΓðsÞ. In either
case, one anticipates the existence of a pole in the
amplitude M off the real-s axis.
Nevertheless, as was pointed out long ago [16], an

observable line shape arbitrarily close to an idealized Breit-
Wigner distribution can be simulated even in the absence of
a literal pole off the real-s axis. Inasmuch as most complex
energy values are experimentally inaccessible, the only
ways to unambiguously detect a literal pole (either meas-
uring at the pole location itself or measuring at points
surrounding it and using Cauchy’s theorem) are unavail-
able. So while the presence of a pole in the complex plane is
a natural way to interpret the appearance of a narrowly
peaked distribution along the real axis, its certainty is not
guaranteed [17]. One may model the amplitude along the
cut by incorporating an explicit Lorentzian function,
including a specific value of residue [18,19]. See also
[20], in which the resonance is incorporated into phase and
modulus information along the cut.
Even so, the assumption of a pole at a complex value of z

near the unit circle has been seen in the previous section to

2Here we use q2 ¼ s rather than t, to emphasize the pair-
production origin of the cut.
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loosen the bounds on semileptonic form factors very little.
Note particularly that the Blaschke factor Eq. (22) makes
reference only to the position of the pole and not its residue;
therefore, it must work equally well for a pole with residue
as large as is allowed by unitarity (which is explicitly built
into the dispersion relation) and a pole with vanishing
residue—which is, of course, no pole at all. Since, once
again, the effect of a complex-valued pole projected along
the real axis is to allow for a narrow peak of an arbitrary
physically allowed value of residue, one sees that including
the Blaschke factor in the two-point function is appropriate
for accommodating the effects of a Breit-Wigner line shape
along the real-axis cut, but does not actually commit one to
demanding the existence of a pole off the real axis.
Another interesting point regarding the above-threshold

pole is its appearance in the full Riemann surface for the
two-point function. The existence of a cut indicates the
existence of at least one additional Riemann sheet. For
example, a particle pair created in the Lth partial wave has
phase space proportional to k2Lþ1, where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − tþÞðs − t−Þ

4s

r
ð38Þ

is the center-of-momentum-frame value of the spatial
momentum of either particle. Since the discontinuity along
the cut is proportional to phase space, one thus obtains a
two-sheet Riemann surface, corresponding to the double
valuedness of the square root function. The number of
sheets doubles each time a distinct two-body threshold is
encountered.
The question then becomes, on what sheet do the

physical resonances live, and on what sheet or sheets were
the dispersion relation integrals obtained? The first ques-
tion was originally answered by Peierls [21], who argued
that a resonant pole must live on the unphysical (second)
Riemann sheet below the real axis, just on the other side of
the cut from the first sheet. Otherwise, the Schwarz
reflection principle would require a pole just below the
real axis on the first sheet to have a mirror pole just above
the real axis on the first sheet; and since the negative
imaginary value (−iΓ=2) of the former pole is necessary to
obtain an exponentially decaying state, the latter mirror
pole would correspond to an unphysical runaway state.
On the other hand, the contour bounding the dispersion

integral is easily seen to live entirely on the first sheet,
since its derivation uses the Schwarz reflection principle
to obtain a nonnegative contribution along the cut. So
then, one may ask, why worry about poles that are not
even encircled by the contour? The answer is simple
pragmatism: A pole that lies just below the cut on the
second sheet creates a Breit-Wigner projection along the
cut identical to the contribution that would be obtained
from an unphysical pole just above the cut on the first
sheet. While causality knows that the pole lies just below

the cut on the second sheet, the dispersion relation is
sensitive to the pole only through its projection along the
cut, and this contribution can be obtained from a pole at
MR � iΓ=2 on any sheet such that its projection along the
real axis agrees with data. One sees that treating the pole
as if it occurred in the fourth quadrant of the first sheet, as
done in Sec. III, leads to the appropriate projection along
the cut. In particular, the value of arg zp given in Eq. (29)
places it in the second quadrant of the complex-z plane,
but the value of arg zp symmetric about π lying in the third
quadrant of the complex-z plane is equally valid for the
analysis of Sec. III.
This point is worth emphasizing. The physical second-

sheet poles do not literally appear inside the unit circle
jzj ¼ 1. The first-sheet poles examined in Sec. III are
strictly unphysical. However, such an unphysical pole
near the unitarity cut, were it nevertheless to occur, would
create a Breit-Wigner line shape indistinguishable from
that created by a physical second-sheet pole equally near
the unitarity cut. The unphysical poles of Sec. III must not
be thought of as altering the analytic structure of the form
factor—in other words, of changing the shape of the form
factor FðzÞ through the z-dependence of the Blaschke
factor PðzÞ. Rather, they alter the unitarity bound
Eq. (12), by allowing the coefficients an to have larger
ranges in exchange for the benefit of completely ignoring
the effect of an above-threshold resonance, no matter how
prominent.
It is interesting to note that the leading-order perturbative

expansion of the two-point function χðq2Þ in the deep
Euclidean region contains logarithmic dependence (and
polylogarithmic dependence at higher perturbative order).
As is well known, these functions have Riemann surfaces
with an infinite number of sheets, in contrast to the two
sheets for a function with a half-integer power, such as
those previously discussed. Since the perturbative two-
point function can be considered as an inclusive sum over
all allowed exclusive channels, the mismatch between the
sheet counting can be construed as indicating the necessity
of including an arbitrarily large number of open channels in
order to achieve quark-hadron duality.

V. EXAMPLES

A. D semileptonic decays

The unflavored semileptonic decays of D mesons are
particularly interesting for this formalism. First, several
such modes (D → fπ; ρ;ω; η; η0g) have been observed,
each with an Oð10−3Þ branching fraction. Furthermore,
modes with both eþ and μþ have been seen. Since all of
these modes proceed through the Jμ ¼ q̄Γμc currents,
where q is a light quark and Γμ represents Lorentz
structure, they all serve to saturate the same small set
of dispersion relations, leading to stronger bounds on any
one of them.
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Second, the processes Dþ;0 → π0;−lþνl are remarkable
due to the closeness of the D� resonance to the crossed-
channel Dπ threshold in each case. Specifically [15],

mD�0 −mD0 −mπþ ¼ 5.86� 0.07 MeV;

mD�þ −mDþ −mπ0 ¼ 5.68� 0.08 MeV: ð39Þ

As we have seen, the smallness of these numbers
(combined with the small width ΓD�þ ¼ 83.4� 1.8 keV)
guarantees a minimal modification to the allowed range for
the semileptonic form factor coefficients an. Furthermore,
isospin symmetry relates the two processes3 (separately for
the I ¼ 1

2
and 3

2
channels, but with no resonance in the latter

channel). As seen in Ref. [12], the presence of separate
isospin-related channels increases the function ϕðzÞ in
Eq. (9) by a Clebsch-Gordan factor

ffiffiffiffiffi
nI

p
, where nI ¼ 3

2
for D → π. Noting that ϕðzÞ appears in the denominator of
the parametrization Eq. (11), one finds that the coefficient
bound of Eq. (12) effectively has its unity factor replaced
by 2

3
—a much more dramatic effect than that due to the

near-threshold D� pole.

B. K semileptonic decays

The Kl3 decays are interesting in this context, partly
because they were the ones originally studied by Okubo
[2–5], but also because they possess a prominent, fairly
narrow resonance K� (MR ¼ 891.66 MeV, Γ ¼ 50.8 MeV)
that lies significantly far above the threshold

ffiffiffiffiffi
tþ

p ¼
mK þmπ . It is worth pointing out that the Kl3 and Dl3
decays have the same form factor and isospin structure.
For definiteness, let us consider the specific mode
Kþ → π0eþνe, for which the numerical values of the key
parameters are presented in Table II, but the corresponding
values for the modes KL → π−eþνe, Kþ → π0μþνμ, and
KL → π−μþνμ are very similar. It should also be noted that
the decay τ → Kπντ is bounded by the same dispersion
relation, and indeed, can provide a tighter constraint [22].
The large distance of the resonant mass from threshold is

manifested in the angle of zp lying much further from π
radians, indeed, in the first quadrant of the complex-z
plane. One must use Eq. (30), since here β2 < c.
While Γ is not particularly large, it is much larger than

the D� width, and the threshold
ffiffiffiffiffi
tþ

p
is much smaller than

for Dl3 decays since ms ≪ mc. These effects combine to
give a much larger value of γ or b. Table II uses the exact
formulas Eqs. (26), (27), and (30); the approximations
Eqs. (31), (32), which drop subleading terms in γ or b,
give jzpj ¼ 0.94366 (< 0.2% smaller) and arg zp ¼ 84.0°
(< 0.2% larger).
Even so, jzpj does not lie far from the unit circle, and

therefore the typical weakening of the form factor bound

1=jPð0; zpÞj ¼ 1=jzpj as given by Eq. (35) is 1.0578. Since
zp lies in the first quadrant, from Eq. (22) one finds that the
largest correction to the an factors occurs at z ¼ z max
(t ¼ m2

l), and it equals 1.0581, i.e., uniformly less than 6%.
Even for the extreme case of Kl3 decays, where the above-
threshold pole lies far from threshold, the effect on the
parametrization coefficients is quite minimal.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have extended the utility of the model-
independent form factor parametrization for semileptonic
decays to explicitly incorporate the effects of above-thresh-
old resonant poles, such as D�þ in D0 → π−eþνe and K�þ
in Kþ → π0eþνe. Since such poles have a finite width, they
lie off the unitarity cut along the real axis in momentum-
transfer space, and therefore map into the interior of the unit
disk in the kinematic variable z. Inasmuch as the width of
such resonances is small compared to the other mass scales
in the system, the pole lies just inside the unit z circle, and
as we showed, consequently has a rather small effect on the
constraints on the form factor coefficients.
The recipe for calculating the amount of the relaxation of

the bounds due to the presence of an above-threshold pole
is easily obtained through the following steps: First,
compute the dimensionless resonance mass μ and width
γ factors directly from MR and Γ using Eqs. (23)–(24), and
from them the dimensionless parameters a, b, and c using
Eq. (25) as well as the dimensionless parameter β derived
from the threshold

ffiffiffiffiffi
tþ

p ¼ M þm and adjustable optimi-
zation parameter t0 (orN) from Eq. (18). The exact position
zp of the pole is then given by Eqs. (26)–(28). A simple
estimate for the amount of the relaxation of the bounds is
given by Eq. (35), but the full result is obtained by varying
the Blaschke function 1=jPðz; z0Þj of Eq. (22) over the
whole allowed semileptonic range for the variable z, as
given by Eq. (20).
The Blaschke pole factors present the tremendous benefit

of depending only upon the resonant mass and width, and
not upon its residue, a quantity that is usually much harder to
obtain experimentally. Such a result is all the more remark-
able because models for semileptonic form factors often
assume shapes given by pole dominance, introducing a
source of potentially unquantifiable uncertainties. If one uses
the techniques in this paper to accommodate above-threshold
resonances but still wishes to obtain tighter bounds on the

TABLE II. Parameter values for the decay Kþ → π0eþνe.

r 0.2734 μ 0.4184
δ 1.035 × 10−3 γ 4.040 × 10−2

Nopt 1.218 a, c 1.010, 1.017
zmax ¼ −zmin 4.919 × 10−2 b 0.1146
β 0.9062 zp 0.1006þ 0.9400i

jzpj 0.94535
arg zp 83.9°

3The D�0 width has only a measured upper bound of 2.1 MeV
[15], but isospin symmetry predicts it to be close to that of D�þ.
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semileptonic form factors by incorporating physics along
the cut, then only the much milder multihadron continuum
dependence of the cut function needs to be modeled.
Alternately, one may take a minimal (and completely
model-independent) approach by using only the deep-
Euclidean perturbative expression for the relevant two-point
function to bound the form factor integral and hence the
allowed parameters defining each form factor.
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