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In this manuscript the B → πτν̄τ decay is investigated in the context of the type II 2HDM extension of the
Standard Model. In particular, a prediction for the ratio of semileptonic branching fractions from l ¼ τ and
l ¼ e; μ is produced, and an exclusion based on the MSSM parameters tan β and mþ

H from a recent Belle
measurement is reported. An alternative variable to the ratio of branching fractions is discussed that could
result in increased sensitivity to rule out contributions from additional scalar mediators.
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I. INTRODUCTION

In recent measurements the B-Factory experiments
BABAR, Belle and LHCb have reported large disagree-
ments in semitauonic decays involving ratios of charmed
final states [1–4]. A recent average from Ref. [5] quantifies
the overall disagreement with the Standard Model (SM)
expectation at the 3.9σ level. This disagreement is an
interesting anomaly that deserves more experimental and
theoretical study, in particular due to the absence of any
clear new physics signal from the experiments at the energy
frontier of particle physics. An interesting alternative probe
to see similar effects is given with B → πτν̄τ: although
CKM suppressed, the B → πτν̄τ decay is less phase space
suppressed with respect to the transition involving light
leptons l ¼ e; μ as its charmed partner decays, resulting in
a high fraction of B → πτν̄τ over B → πlν̄l in the SM. In
this manuscript a prediction for the ratio

Rπ ¼
BðB → πτν̄τÞ
BðB → πlν̄lÞ

; ð1Þ

for the SM is given and its modifications in the context of
the type II two-Higgs doublet model (2HDM) are dis-
cussed. A first exclusion of the MSSM parameters tan β and
mHþ is carried out using recent limits on the B → πτν̄τ
branching fraction reported by the Belle experiment [6].
As will be shown, Eq. (1) can be predicted with a precision
of a few percent as many of the theoretical uncertainties
associated with the hadronic form factors cancel and no
dependence on the CKM matrix element jVubj remains.
Similar predictions have been discussed in Refs. [7–11].
Recent progress in the understanding of the B → π form
factor as well as the availability of first experimental results
give a strong motivation to revisit this topic.
This manuscript is organized as follows: Sec. II briefly

reviews the B → πτν̄τ decay in the SM and summarizes
the state-of-the-art knowledge of the B → π form factor.
Section III discusses the modifications of the decay rate in
the context of the type II two Higgs doublet model (2HDM)
interactions. In Sec. IV the prediction of the ratio of
branching fractions from B → πτν̄τ and B → πlν̄l is

discussed and the exclusion of the type II 2HDM parameter
space is presented. Section V discusses a more sensitive
variable relying on the reconstruction of the four-momentum
transfer squared and the manuscript concludes in Sec. VI
with a summary of the key results.

II. THE B → πτν̄τ DECAY IN THE SM

The effective SM Lagrangian describing the b → ulν̄l
1

transition is well known in the literature and given by

Leff ¼
−4GFffiffiffi

2
p VubðūγμPLbÞðν̄γμPLlÞ þ h:c: ð2Þ

with the projection operator PL ¼ ð1 − γ5Þ=2 and GF
Fermi’s constant. The B → πlν̄l decay amplitude depends
on one nonperturbative hadronic matrix element that can be
expressed using Lorentz invariance and the equation of
motion in terms of B → π form factors. The B → π
transition form factors fþ=0 are defined by

hπðpπÞjūγμPLbjBðpÞi¼fþðq2Þ
�
ðpþpπÞμ−

m2
B−m2

π

q2
qμ
�

þf0ðq2Þ
m2

B−m2
π

q2
qμ; ð3Þ

with q ¼ p − pπ denoting the four-momentum transfer
between the B-meson and the final-state pion of the semi-
leptonic decay. Further, mB denotes the B-meson mass and
mπ the pion mass. The differential decay rate as a function of
q2 with its full lepton mass dependence is given by

dΓðB→πlν̄lÞ
dq2

¼8j~pπj
3

G2
FjVubj2q2
256π3m2

B

�
1−

m2
l

q2

�
2

×

�
H2

0ðq2Þ
�
1þm2

l

2q2

�
þ3

2

m2
l

q2
H2

t ðq2Þ
�
; ð4Þ

1In this section l denotes any massive lepton unless stated
otherwise.
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with the Helicity amplitudesH0 andHt and j~pπj the absolute
three-momentum of the final state pion. The absolute
three-momentum is related to the four-momentum transfer
squared as

j~pπj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

B þm2
π − q2

2mB

�
2

−m2
π

s
: ð5Þ

Setting the lepton mass ml to zero, one recovers the
expression

dΓðB → πlν̄lÞ
dq2

¼ 8j~pπj
3

G2
FjVubj2q2
256π3m2

B
½H2

0ðq2Þ�; ð6Þ

that holds to be an excellent approximation for ml ¼ me or
ml ¼ mμ. The helicity amplitudes H0=t are related to the
form factors defined in Eq. (3) as

H0 ¼
2mBj~pπjffiffiffiffiffi

q2
p fþðq2Þ; ð7Þ

Ht ¼
m2

B −m2
πffiffiffiffiffi

q2
p f0ðq2Þ: ð8Þ

The form factors fþ=0 are functions of the four-momentum
transfer squared and need to be calculated with non-
perturbative methods.
Analyticity and unitarity impose strong constraints on

heavy meson decay form factors [12–16]. In the following
the form factors are parametrized using a series expansion
that involves a mapping of the variable q2 to the variable

zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð9Þ

with

t� ¼ ðmB �mπÞ2; t0 ¼ ðmB þmπÞð
ffiffiffiffiffiffiffi
mB

p
−

ffiffiffiffiffiffi
mπ

p Þ2:

In this expansion the form factors fþ and f0 are assumed to
be analytic in z except for a branch cut in ½tþ;∞Þ and poles
in ½t−; tþ�. Using Blaschke factors, these poles can be
removed, c.f. Ref. [13,17], and the form factors can be
expanded as2

fþðzÞ¼
1

1−q2=m2
B�

XNz−1

n¼0

bþj

�
zn−ð−1Þn−Nz

n
Nz

zNz

�
; ð10Þ

f0ðzÞ ¼
XNz−1

n¼0

b0jz
n; ð11Þ

with m�
B ¼ 5.325 GeV the B�-meson mass and Nz the

number of expansion parameters bþ=0
j . Equation (10) is

known as the Bourrely-Caprini-Lellouch (BCL) expansion
[16] in the literature.
Reference [18] recently reported (2þ 1)-flavor lattice

QCD calculations of the two form factors fþ and f0 in the
BCL expansion. In addition, Ref. [18] also carried out a
global analysis of the lattice QCD expansion parameters
and all suitable B → πlν̄l partial branching fractions with
the goal to extract jVubj. The post-fit expansion parameters
from the combined analysis represent the current best
knowledge of the B → π form factor, under the assumption
that no new physics is affecting the light lepton decays.
Both sets of expansion parameters are summarized in
Table I and Fig. 1 (left) shows the predicted differential
rates for B → πτν̄τ and B → πlν̄l using the expansion
parameters from the global analysis.

III. MODIFICATIONS IN THE TYPE II 2HDM

In the two-Higgs doublet model extension of the SM,
which describes the Higgs sector of the minimal super-
symmetric model at tree level, the B → πτν̄τ decay also can
be mediated by a H� Higgs boson. Such an additional
scalar mediator has drastic consequences. Because of the
spin-1 nature of theW� boson, the B → π transition occurs
predominantly as a P wave and is accordingly suppressed
by a factor j~pπj2 near the maximal four-momentum transfer
squared (where j~pπj ∼ 0). The B → π form factors reach
their maximal value at the maximal four-momentum trans-
fer and non-P-wave contributions from e.g. a scalar
Higgs boson would greatly affect the rate in this part of
phase space.
The contributions of the charged Higgs boson to B →

πτν̄τ decays can be incorporated into Eq. (4) by the
replacement [7,19],

TABLE I. The BCL expansion parameters of [18] are summa-
rized: “Lattice” shows the lattice only results and “Latticeþ Exp”
the result of simultaneously fitting the lattice information and all
suitable measured partial branching fractions of B → πlν̄l with
l ¼ e; μ. The full correlation information between the parameters
can be found in Tables XIV and XIX of Ref. [18].

Lattice bi0 bi1 bi2 bi3

fi¼þ 0.407(15) −0.65ð16Þ −0.5ð9Þ 0.4(1.3)
fi¼0 0.507(22) −1.77ð18Þ 1.3(8) 4(1)

Latticeþ Exp bi0 bi1 bi2 bi3
fi¼þ 0.419(13) −0.495ð54Þ −0.43ð13Þ 0.22(31)
fi¼0 0.510(19) −1.700ð82Þ 1.53(19) 4.52(83)

2This expression is recovered by starting with an expansion
PðzÞϕðzÞf ¼ P

nanz
n, with Pi the Blaschke factor and by setting

the outer functions ϕ to unity.
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HSM
t → H2HDM

t ≈HSM
t

�
1 −

tan2 β
m2

H�

q2

1 −mu=mb

�
; ð12Þ

where tan β is the ratio of the vacuum expectation values of
the two Higgs doublets and mH� is the mass of the charged
Higgs boson and HSM

t ¼ Ht, cf. Eq. (8). Further, mu=mb is
the ratio of the u- and b-quark masses at an arbitrary (but
common) mass scale. This factor leads to a negligible
modification and can in principle safely be ignored.
Equation (12) proofs sufficiently accurately to probe
charged Higgs bosons with a mass of more than about
15 GeV, which is the interesting region in this experiment
since mass scales below 15 GeV are excluded by b → sγ
measurements already [20] or other constraints [21,22].
Figure 1 (right) compares the SM differential rate with

two working points for tan β and mHþ . The rate is only
sensitive to their respective ratio, and for a value of
tan β=mHþ ¼ 0.3, the negative interference causes H2HDM

t

to be smaller than HSM
t , resulting in a lower B → πτν̄τ rate

than for the SM. For tan β=mHþ ¼ 0.4, the additional scalar
transition starts to dominate the matrix element, modifying
the differential decay rate strongly near the kinematic end
point. For larger values of tan β=mHþ , the 2HDM contri-
bution completely dominates the total and differential rate.

IV. PREDICTION FOR Rπ AND EXCLUSION
FOR tan β AND mþ

H

By integrating the differential rates Eqs. (4) and (6) over
the allowed kinematic range in q2, a prediction for Rπ can
be obtained,

Rπ ¼
ΓðB→πτν̄τÞ
ΓðB→πlν̄lÞ

¼
R q2max

m2
τ

dq2dΓðB→πτν̄τÞ=dq2R q2max
0 dq2dΓðB→πlν̄lÞ=dq2

; ð13Þ

with q2max ¼ m2
B þm2

π − 2mBmπ and the light lepton
masses can be set to zero. The CKM matrix element
jVubj, Fermi’s constant, as well as other constant terms
cancel in the ratio. Using the B → π BCL parameters from
the global analysis of Table I the following prediction for
the SM value is obtained:

RSM
π ¼ 0.641� 0.016: ð14Þ

The rates in the numerator and denominator are strongly
correlated (correlation ρ ¼ 0.94) if the integration is carried
out over the full kinematic range, resulting in the large
desired cancelation of nonperturbative uncertainties from
the form factors. This number can be compared to the
recently reported first measurement from Belle [6]3:

Rmeas
π ¼ 1.05� 0.51: ð15Þ

Although statistically limited, this ratio already has some
power to rule out several working points in tan β and mHþ

as many predict a very strong enhancement of Rπ . This can
be seen in Fig. 2 (left) from the predicted (dark grey) and
observed (light grey) Rπ values.
It is important to perform a proper exclusion in terms of

tan β and mHþ though the impact on the acceptance and
selection efficiencies should be studied. This can be done
for instance by reweighing the used SMMonte Carlo (MC)
samples to the probed MSSM working point with weights
such as

B l e, l e,

B
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FIG. 1 (color online). (left) The differential rate for B → πlν̄l with l ¼ e; μ and B → πτν̄τ in the SM with associated errors is shown.
As input for the form factors, the Latticeþ Exp values of Table I are used (right) The differential rate of B → πτν̄τ is shown for the SM
and two MSSM working points: tan β=mHþ ¼ 0.3 (H2HDM

t < HSM
t ) and tan β=mHþ ¼ 0.4 (H2HDM

t > HSM
t ).

3The reported value for the branching fraction of Ref. [6] was
divided by the current world average of the B0 → π−lþνl
branching fraction of ð1.45� 0.05Þ × 10−4 from Ref. [23].
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w ¼ ΓMC

Γðtan β; mHþÞ
dΓðtan β; mHþÞ=dq2

dΓMC=dq2
ð16Þ

where the first factor ensures that the branching fraction in
the simulation is unaltered and the quantities are ΓMC the
total rate in MC, Γðtan β; mHþÞ the total rate at a given
working point in tan β −mHþ , and dΓ=dq2 the correspond-
ing differential rates. In addition, the fraction of negative
and positive helicity τ leptons has to be corrected for since
e.g. subsequent leptons are either emitted preferentially
in the same or opposite direction as the τ direction. The
evolution of the helicity fraction as a function of tan β=mHþ

is briefly discussed in Appendix A.
Assuming that such effects are small with respect to the

current statistical precision, a first exclusion can be carried
out: Fig. 2 (right) shows the excluded region of tan β −mHþ

at 95% C.L. (dark grey) and 68% C.L. (light grey). A
comparison with the current bounds from B → τν̄τ can be
found in Appendix B.

V. OTHER OBSERVABLES WITH
INCREASED SENSITIVITY

An interesting alternative observable besides Rπ could be
the ratio of partially integrated and measured rates with a
lower cut on q2. This is motivated that in the type II 2HDM
for large values of tan β=mHþ , the constructive interference
is dominating the rate equation (4), and due to the absence
of the P-wave suppression, it strongly modifies the large q2

region. A fully differential analysis of course contains the
most power to probe and distinguish such a scenario with a
scalar mediator from the SM, but with the current small
experimental sensitivity a measurement that probes the
high q2 range in one bin already could lead to an improved

rejection of large tan β=mHþ ratios. For instance: the SM
prediction for a measurement in ½q2max=2; q2max� is

RSM
π ðq2min ¼ q2max=2Þ ¼

R q2max

q2min¼q2max=2
dq2dΓðB → πτν̄τÞ=dq2R q2max

q2min¼q2max=2
dq2dΓðB → πlν̄lÞ=dq2

¼ 1.012� 0.008; ð17Þ

and the ratio of branching fractions at, for example,
tan β=mHþ ¼ 0.4 results in a prediction about a factor of
2 larger for Rπðq2max=2Þ ¼ 2.09� 0.03. In comparison, the
fully inclusive rate ratio for the same tan β=mHþ working
point results in Rπ ¼ 1.01� 0.04 and shows a smaller
enhancement with respect to the SM value in Eq. (14). The
reduction in experimental sensitivity on Rπ due to only
analyzing half of the allowed phase space of course also has
to be taken into account: a rough estimate for the increase in
statistical error, assuming that background is distributed
uniformly in q2 and that the signal is SM like, is a factor of
about ≈

ffiffiffi
2

p
. These numbers imply an overall improved

sensitivity for a measurement in ½q2max=2; q2max� over the
fully inclusive Rπ value to exclude tan β=mHþ working
points. In addition, as pointed out already by Refs. [7,24],
the cancellation of the nonperturbative error further
improves, allowing for more precise predictions of the
ratio of partial rates.

VI. SUMMARY AND CONCLUSION

The B → πτν̄τ decay offers an interesting alternative
decay to probe the deviations observed in semitauonic
decays with charmed final states. In this manuscript a
prediction for the ratio of semitauonic and light lepton total
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FIG. 2. (left) The evolution of Rπ as a function of tan β=mHþ is shown (dark grey). The experimental 68% CI of Ref. [6] is shown (in
light grey) and MSSM parameter points that predict ratios larger than ≈0.48 can be excluded at 95% C.L. under the assumption that
efficiencies and acceptances are modified negligibly with respect to the current statistical precision. (right) The 68% (light grey) and
95% (grey) excluded MSSM parameter points in the tan β −mHþ plane.
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rates, Rπ, is presented using the state-of-the-art knowledge
of the B → π form factor. In the SM a value of Rπ ¼
0.641� 0.016 is found. The impact of the presence of
charged Higgs boson contributions in the context of the
type II 2HDM is discussed and a first preliminary exclusion
in tan β −mHþ using a recent Belle measurement is carried
out. In addition, the idea is presented to measure in future
measurements the high q2 region, as it has a higher
sensitivity to probe the MSSM parameter space in the
type II 2HDM model.
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APPENDIX A: HELICITY FRACTIONS
IN THE TYPE II 2HDM

In the SM the τ− polarization is about 35% positive and
65% negative. This relative fraction changes dramatically
in the type II 2HDM: in the range of tan β=mHþ ∈ ½0; 0.25�
the negative helicity fraction increases to almost 85%. This
has drastic consequences if the τ−-leptons are reconstructed
using e.g leptonic channels, τ− → l−ν̄τν̄l: the secondary

lepton spectrum in the B-meson rest frame will become
harder with respect to the SM spectrum as the lepton is
preferably emitted in the direction of the τ−-lepton altering
the acceptance and selection efficiencies. After this turning
point the positive helicity starts to dominate and at
tan β=mHþ ¼ 0.7 about 95% of the τ−-leptons have positive
helicity. If reconstructed again via τ− → l−ν̄τν̄l, the
secondary lepton spectrum now is softer than the SM
spectrum as the leptons preferably are emitted opposite to
the τ−-lepton direction. Figure 3 (left) shows the helicity
fractions as a function of tan β=mHþ for B → πτ−ν̄τ.

APPENDIX B: COMPARISON WITH B → τν̄τ

Figure 3 (right) compares the 95% exclusion limits of the
type II 2HDM parameter space from B → πτν̄τ with the
exclusion from B → τν̄τ: Both decays involve the same
quark lines and the existing measurements for B → τν̄τ
result in tighter constraints as the individual B → πτν̄τ
branching fraction. The two red regions is from B → τν̄τ
and the dark red region (dashed black boundary) is from
B → πτν̄τ. As input a world average of BðB → τν̄τÞ ¼
ð1.03� 0.20Þ × 10−4 was used, obtained from averaging
the latest Belle results [25,26] with the values reported from
BABAR [27]. Further, for jVubj and the B-meson decay
constant, the reported values of Ref. [18] and [28] were
used, respectively.
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FIG. 3 (color online). (left) The τ−-lepton positive (þ) and negative (−) helicity fractions as a function of tan β=mHþ for B → πτ−ν̄τ are
shown. (right) The 95% exclusion limit from Ref. [6] is compared with the exclusion limits from B → τν̄τ. As input, an averaged
branching fraction of BðB → τν̄τÞ ¼ ð1.03� 0.20Þ × 10−4 and jVubj ¼ ð3.72� 0.16Þ × 10−3 was used.
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