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A dark sector resembling the Standard Model, where the abundance of matter is explained by baryon and
lepton asymmetries and stable constituents bind to form atoms, is a theoretically appealing possibility. We
show that a minimal model with a hidden SU(2) gauge symmetry broken to U(1), with a Dirac fermion
doublet, suffices to realize this scenario. Supplemented with a dark Higgs doublet that gets no vacuum
expectation value, we readily achieve the dark matter asymmetry through leptogenesis. The model can
simultaneously have three portals to the Standard Model, through the Higgs, non-Abelian kinetic mixing,
and the heavy neutrino, with interesting phenomenology for direct and collider searches, as well as
cosmologically relevant dark matter self-interactions. Exotic bound states consisting of two fermions and a
doubly charged vector boson can exist in one phase of the theory.
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Dark matter (DM) from a hidden sector has been a
popular alternative to supersymmetric weakly interacting
massive particles in recent years [1,2]. A widely studied
example is dark atoms, where the DM consists of two
species with opposite charges under an unbroken Uð1Þh
hidden sector gauge symmetry [3–9]. This class of models
presents rich possibilities for direct detection [10–13], as
well as cosmological imprints [14–19]. If the hidden
photon has kinetic mixing with the normal photon, the
dark constituents acquire electric millicharges [20], leading
to further constraints and prospects for detection [21–23].
Simplified models of atomic dark matter are easy to

construct, consisting of just two fermions and the gauge
boson in the hidden sector, but such examples are neces-
sarily incomplete descriptions of the new physics required.
First, it is desirable for the DM to be asymmetric;
otherwise, the long-range Uð1Þh interaction would leave
too small a relic abundance unless the DM mass exceeds
∼400 GeV [24].1 Simplified models do not explain the
origin of the asymmetry. Second, the Uð1Þh gauge inter-
action leads to a Landau pole at high energies, so it would
be desirable to find a more UV-complete version of the
theory. Third, dark constituent millicharges greater than
∼10−7e (of interest for collider searches) require the atomic
constituents to be nearly equal in mass, which is a rather
ad hoc requirement in the simplified models. In this work
we present a model that is still relatively simple, but

addresses both of these issues, and makes a number of
interesting experimental predictions. It relies upon breaking
a non-Abelian (hence asymptotically free) gauge symmetry
SUð2Þh down to Uð1Þh to explain the origin of the massless
dark photon. The approximate equality of the dark con-
stituents, if desired, can be explained as a remnant of the
gauge symmetry.
There have been many proposals for mechanisms that link

the asymmetries of the hidden and visible sectors. In general,
they tend to be complicated. A notable exception is to use the
out-of-equilibrium decays of heavy neutrinos to generate
both asymmetries via leptogenesis and its analog in the
hidden sector [5,25–30]. We adopt this approach here.
The model presents opportunities for direct detection,

either through Higgs portal interactions or non-Abelian
gauge kinetic mixing. The latter can arise through a
dimension-5 operator involving the triplet Higgs field that
breaks the SUð2Þh gauge symmetry [31]. This results in
electric millicharges for the dark matter constituents, that
normally must be very small to avoid direct detection but can
be sizable if the dark constituents have equal mass, which is
a symmetry limit of the theory presented here. Moreover the
self-interactions of the dark atoms can be of the right
magnitude for addressing problems of small-scale structure
formation in standard noninteracting ΛCDM cosmology.
In the following we introduce the model (Sec. I) and then

estimate the dark matter and baryon asymmetries that can
arise in a generic scenario for leptogenesis (Sec. II). Limits
from direct searches are worked out in Sec. III. In Sec. IV
we consider the region of parameter space in which the
vector bosons are stable, leading to a markedly different
dark sector. In Sec. V we discuss constraints pertaining to
the ionization fraction, dark atom self-interactions, and
searches for millicharged particles. Conclusions are given
in Sec. VI.
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1For lower masses the DM self-interactions violate bounds

from structure formation. This argument assumes that the DM
remains ionized, which turns out to be valid for the gauge
coupling strength needed to get the right relic density from
thermal freeze-out.
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I. THE MODEL

The new-physics content of the model (summarized in
Table I) is a hidden SUð2Þh gauge boson Bμ with field
strength Ba

μν, a real scalar triplet ϕ that spontaneously
breaks SUð2Þh by getting a vacuum expectation value
(VEV), a scalar doublet η that does not get a VEV, two
Weyl fermion doublets ψα

i (with gauge index α and flavor
index i) and the heavy right-handed neutrinos Nj that also
interact in the usual way with the Standard Model neu-
trinos. An even number of fermion doublets is required to
avoid Witten’s global SU(2) anomaly [32]. They can be
combined into a Dirac doublet fermion Ψ ¼ ðψ1L;ψc

2RÞ
where the conjugate is defined as ψc

2R ¼ σ2τ2ðψ2LÞ�;
i.e., the epsilon tensor is applied both to the spin and to
the SUð2Þh gauge indices. Without loss of generality the
VEV of ϕ can be rotated to the third component,
hϕai ¼ ð0; 0; σÞ.
The relevant terms in the Lagrangian are

L ¼ −
1

4
Ba
μνB

μν
a þ 1

2
ðDμϕÞ2 −

1

Λ
ϕaBa

μνYμν ð1Þ

þ Ψ̄ðiD −mψ ÞΨ − Ψ̄ðy1 þ iy2γ5Þð~ϕ · ~τÞΨ
− jDμηj2 − VðH;ϕ; ηÞ
− ðψ̄ i

LηÞyijψPRNj þ H:c:; ð2Þ

where the covariant derivative is Dμϕ
a ¼ ∂μϕ

a −
gϵabcBb

μϕ
c or DμΨ ¼ ð∂μ − iðg=2Þ~Bμ · ~τÞΨ, g is the

SUð2Þh gauge coupling, and Yμν is the Standard Model
(SM) hypercharge gauge field strength. In the Yukawa
interactions with the sterile neutrino we use the Weyl
fermion notation since the analogy to leptogenesis via
neutrino physics is more clear in this way.
The triplet scalar VEV breaks SUð2Þh to Uð1Þh, medi-

ated by the massless gauge boson Bμ
3, while B

�� ¼ ðB1 �
iB2Þ= ffiffiffi

2
p

obtain mass mB ¼ gσ. The upper and lower
components Ψ1;2 of the fermion doublet are also charged
under the Uð1Þh (with half the charge of B��). Their
masses are split by the Yukawa interaction,
m1;2 ¼ ððmψ � y1σÞ2 þ ðy2σÞ2Þ1=2. We used the freedom
to perform a chiral rotation on Ψ so that mψ is real (has no
γ5 component).

In Sec. II D we discuss the decay of the scalars through
η → ψν via the dimension-5 operator

ψ̄ i;Lηy
ij
ψM−1

j yjkν PRðHTL̄T
k Þ þ H:c:; ð3Þ

where Mj is the heavy neutrino mass (in a basis where its
mass matrix is diagonal), yν is the neutrino Yukawa matrix,
H is the SM Higgs doublet, and Lk are the lepton doublets.
We will initially consider the case where decays Ψ1 →

BþþΨ2 are not kinematically allowed. They would lead to a
dark sector consisting of stable Bþþ vector bosons and Ψ−

2

fermions. (The alternative case in which these decays are
allowed is considered in Sec. IV.) This leaves two species of
stable dark matter, the Dirac fermions Ψ1 ¼ ðψ1

1L;ψ
2c
2RÞT

andΨ2 ¼ ðψ2
1L;ψ

1c
2RÞT with charges�1 under the unbroken

Uð1Þh. The long-range force mediated by the dark photon
B3 ≡ γ0 causes the symmetric component of the DM
densities to be at least partially depleted by annihilations
and the asymmetric components of Ψ1;2 to bind into dark
atoms. The efficiency of these processes depends upon the
gauge coupling g and the dark atom mass mH, as we will
discuss in Sec. V.
For simplicity we impose a softly broken U(1) symmetry

under which ψ i → eiθψ i, η → eiθη, which forbids the
interactions ðψ̄ i ~ηÞNj, with ~η ¼ τ2η

�. The symmetry is
broken by the Dirac mass term, which takes the form

−mψðψ̄2c
2Rψ

1
1L þ ψ̄1c

2Rψ
2
1LÞ þ H:c: ð4Þ

If the symmetry were exact, then the subsequent decays
η → ψ mediated by Ni would completely erase any
produced DM asymmetry. However the chirality flips
induced by the mass term prevent this erasure, as we will
explain in more detail in Sec. II. There is an unbroken
discrete Z2 remnant of this symmetry, where ψ i → −ψ i and
η → −η, that ensures the stability of the dark matter.
The potential V is assumed to give rise to the VEVof ϕ

and it generically also includes the Higgs portal coupling
1
2
λhϕjHj2ϕ2. Once ϕ gets its VEV, the non-Abelian kinetic

mixing operator can be written as

TABLE I. New particle content in the model, showing the
Lorentz, hidden SU(2) and hidden U(1) [after breaking of
SUð2Þh → Uð1Þh] quantum numbers.

Particle VEV B0;þþ;−− ϕa → ð0; 0; σ þ ϕÞ ηþ;− Ψþ;−
1 Ψþ;−

2
Nj

Spin 1 0 0 1
2

1
2

1
2

SUð2Þh 3 3 2 2 2 1
Uð1Þh 0;þ2;−2 0 þ1;−1 þ1;−1 þ1;−1 0

FIG. 1. Loop contribution to the non-Abelian kinetic mixing
operator.
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−
1

2
sin ~ϵB3

μνYμν; ð5Þ

where sin ~ϵ ¼ 2σ=Λ. It could arise from integrating out a
heavy vectorlike fermion χ that carries hypercharge and
transforms as a doublet under SUð2Þh. The interaction
yχ χ̄ϕaσaχ leads to the diagram in Fig. 1, implying
Λ−1 ∼ gg1yχ=mχ , where g1 is the hypercharge coupling.
The kinetic mixing gives rise to electric millicharges�~ϵg≡
�ϵe for the fermions Ψ1;2. This or alternatively the Higgs
portal interaction allows for direct detection of the dark
atoms, as we discuss in Sec. III.

II. ORIGIN OF DARK MATTER ASYMMETRY

Our setup allows for heavy neutrinos to decay in a CP-
violating manner into an excess of dark matter versus its
antiparticles in close analogy to leptogenesis. The structure
of Yukawa couplings is similar to that of neutrinos except
that we have only two light fermionic DM species Ψ1;2 as
compared to the three light neutrinos. The dark Higgs
doublet η does not have a VEV, so it also gets an
asymmetry, which will be determined by those in Ψi.
The asymmetry in the decay of the jth heavy neutrino

into ψ�
i η versus ψ iη

� (recall that ψ i denotes the Weyl
doublet states) is given by

ϵjiψ ¼ ΓðNj → ψ�
i ηÞ − ΓðNj → ψ iη

�Þ
ΓðNi → anyÞ

¼ 1

8π

X
k≠j

�
Im½ðy†ψyψ Þkjyikψ yij�ψ �
ðy†ψyψ þ y†νyνÞjj

gðM2
k=M

2
jÞ

þ Im½ðy†νyνÞkjyikψ yij�ψ �
ðy†ψyψ þ y†νyνÞjj

g0ðM2
k=M

2
jÞ
�
; ð6Þ

where gðxÞ ¼ ffiffiffi
x

p ½1=ð1 − xÞ þ 1 − ð1þ xÞ lnð1þ 1=xÞ�
and g0ðxÞ ¼ ffiffiffi

x
p

=ð1 − xÞ. This differs from the standard
leptogenesis expression because the denominator must take
into account decays of Nj both into neutrinos and dark
matter, and there is a mixed term of order y2νy2ψ from the
self-energy correction of Nj by the SM Yukawa interaction.
For definiteness, we will focus on decay of the lightest

heavy neutrinoN1. In the simplest scenario of leptogenesis,
where M1 ≪ M2;3 and the reheat temperature is in
between, M1 < Trh < M2;3, this is the only relevant decay
since the heavier neutrinos are not present. In this case the
functions in Eq. (6) can be approximated as g ≅ −3=2

ffiffiffi
x

p
and g0 ≅ −1=

ffiffiffi
x

p
with x ¼ ðM2=M1Þ2 ≫ 1.

Initially, we can expect independent asymmetries Y1;2 for
ψ1 and ψ2, where Yi ¼ ðnψ i

− nψ̄ i
Þ=s is the dark matter to

entropy ratio, since ϵ11ψ ≠ ϵ12ψ . However the Dirac mass term
takes the form ψT

1σ2τ2ψ2, which implies that mass effects
will cause the asymmetries of ψ1 and ψ2 to become equal
and opposite. This projects the net asymmetry of the

fermions onto the difference between the initial ones,
Yψ ¼ Y1 − Y2, at temperatures where the helicity-flipping
interactions due to mψ come into equilibrium.
On the other hand, the η boson gets a different asym-

metry, proportional to ϵ11ψ þ ϵ12ψ . Eventually it will decay
into ψ i. For simplicity, we consider the case ϵ11ψ ∼ −ϵ12ψ .
Then not only does the initial asymmetry in η tend to be
small, but so also is its contribution to the final asymmetry
in ψ i, and we can estimate the net asymmetry in ψ from N1

decays as

ϵψ1 ∼ ϵ11ψ − ϵ12ψ ∼ 2ϵ11ψ : ð7Þ

The sign difference is in contrast to the CP asymmetries
for decays into neutrinos, ϵν1 ¼

P
iϵ

1i
ν familiar from

leptogenesis.

A. Dark matter asymmetry estimate

The initial asymmetries depend upon an efficiency factor
κψ that quantifies the amount of washout (see for example
[33] for a review). The contribution from N1 decay is

Yψ ¼ 45

π4
ϵψ1κψ
g�

; ð8Þ

where κψ ≅ minð0.25ðm�= ~mψ1Þ1.1; 1Þ with ~mψ1 ¼
2ðy†ψyψÞ11v2=M1, m� ¼ 10−3 eV and v ¼ 174 GeV. The
Higgs VEV v has no direct physical relevance for the dark
matter abundance, but ~mψ1=m� gives ΓðN1 → ψηð�ÞÞ=
HðM1Þ (the ratio of the partial decay width to the
Hubble rate), just like ~mν1=m� does for the decays into
νh. The dark sphalerons associated to the SUð2Þh gauge
interactions have the same effect as (an increase in) the
Dirac mass term for Ψ and therefore do not require
additional consideration for the dark asymmetry.
If there is no hierarchical structure to the couplings yijψ

and their phases are large, we can estimate ðy†ψyψ Þkj ∼
ð~y†ψ ~yψ Þkj or its imaginary part by some average value ȳ2ψ .

Further defining ȳ2ν ¼ ðy†νyνÞ11 and assuming that the terms
of order y2ν in the numerator of (6) can be estimated as ȳ2ν,
we find that the CP asymmetry for ψ is of order

ϵψ1 ∼
2ȳ2ψ
8π

ffiffiffi
x

p
�
1þ 3

2
r

1þ r

�
; ð9Þ

where we define r ¼ ȳ2ψ=ȳ2ν, and assume that ϵ12ψ ∼ −ϵ11ψ in
(8). It is evident that Eq. (9) has only mild dependence upon
r. Combining with the efficiency factor κψ (where we
approximate the exponent 1.1 by 1) leads to the estimate2

2This is valid for parameters such that κψ < 1; hence, ~m≳ 4m�.
Using Eq. (13) this implies ȳ2 ≳ 10−7ðM1=1010 GeVÞ. We will
assume that this restriction holds in the following.
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Yψ ≅ 1.4 × 10−12
�

M1

1010 GeV

��
10

x1=2

�
ð10Þ

ignoring r dependence.

B. Baryon asymmetry estimate

We wish to explain the baryon asymmetry simultane-
ously with that of dark matter. Analogously to (8), it is
given by

YB ¼ 28

79
·
45

π4
ϵν;1κν
g�

; ð11Þ

where the prefactor 28=79 is due to redistribution of the
initial lepton asymmetry into baryons via sphaleron inter-
actions. TheCP asymmetry ϵν;1 is defined as ϵν;1 ¼

P
iϵν;1i

in the usual way for leptogenesis. Similarly to our estimate
in (9), we expect the well-known Davidson-Ibarra (DI)
bound [34] to be modified by a function of r ¼ ȳ2ψ=ȳ2ν,

jϵν;1j ≤
3

16π

M1

v2
Δm2

atm

mν3

�
1þ 2

3
r

1þ r

�

≅ 10−6
�

M1

1010 GeV

�
≡ 10−6M10; ð12Þ

where Δm2
atm ¼ m2

ν3 −m2
ν2 , which we assume to be

≅ m2
ν3 ≅ ð0.05 eVÞ2. Again the dependence upon r is

mild, and we will ignore the effect of the DM Yukawa
coupling on leptogenesis in the visible sector. To
estimate the efficiency factor κν ≅ 0.25ðm�= ~mνÞ, with
~mν ¼ ðy†νyνÞ11v2=M1, we use the Casas-Ibarra parametri-
zation of yν,

ðy†νyνÞ11 ≅ U1im
1=2
νi R†

ik
Mk

v2
Rkjm

1=2
νj U†

j1

≅ 10−6M10 ð13Þ

[the same result as Eq. (12)], where U is the Pontecorvo-
Maki-Nakagawa-Sakata matrix and R is an arbitrary SU(3)
transformation. We assumed that R†

ikMkRkj ∼M1 since we
take the heavy neutrino masses to be of the same order, and
jU12j2mν2 þ jU13j2mν3 ¼ 0.003 eV (takingmν1 to be much
less than the solar neutrino mass splitting). This gives κν ≅
1=12 and

YB ≅ 1.4 × 10−10M10ϵDI ð14Þ

where we have introduced a parameter ϵDI to quantify how
much ϵν;1 falls below the DI bound, i.e., ϵDI is jϵν;1j over its
maximum value. Equating YB to its measured value, we
find ϵDIM10 ¼ 0.7.

C. DM to baryon constraint

We can combine the above results to get a constraint
on the model parameters from the known ratio of
baryon and dark matter energy densities, ΩB=ΩDM ¼
mpYB=ðmHYψ Þ ¼ 0.18. Here mH ¼ m1 þm2, the mass
of the dark atom (neglecting its binding energy). Then we
find mH=mp ¼ 166ϵDIðx=10Þ1=2. We can eliminate ϵDI
using Eq. (14) and M1 using (13) to obtain

mH

mp
¼ 560ϵDI

�
x1=2

10

�
¼ 360

M10

�
x1=2

10

�
: ð15Þ

Equation (15) reveals part of our motivation for the
choice M1 ∼ 1010 GeV: it gives dark atom masses in a
range that is interesting for direct detection and consistent
with our prejudice for the new physics scale to not be far
below the weak scale. It is interesting that the same
mass scale is also consistent with the observed baryon
asymmetry for generic choices of the neutrino CP
asymmetry, ϵDI ≲ 1.
Notably absent from our estimates is any explicit

dependence upon the Yukawa couplings ȳ2ψ and ȳ2ν. This
is because of the cancellation between the CP asymmetry ϵ
and the efficiency factor κ, which only occurs for couplings
such that κ < 1. We verified this condition for κν ¼ 0.08. It
is also satisfied by κψ so long as ȳ2ψ ≳ ȳ2ν=12. We will make
this technical assumption to keep the analysis simple. For
smaller values of ȳ2ψ , there would be a suppression of Yψ

and the need for correspondingly larger values of mH.
As an example, we take ϵDI ¼ 0.65, ȳ2ψ ¼ ȳ2ν ¼ 10−6,

mH≅83GeV, M1¼1010GeV, M2¼
ffiffiffi
x

p
M1¼2×1011GeV.

Larger or smaller values of mH can be obtained by
adjusting M2=M2

1, using Eq. (15).

D. Decay of dark scalars

An interesting feature of our model is that the seesaw
mechanism produces the new dimension-5 operator (3) that
allows the dark scalars η to decay [29]. When the SMHiggs
takes its vacuum expectation value, this allows the η to
decay directly into νψ . The decay rate is of order

Γ ∼
ȳ2ψ ȳ2νmηv2

8πM2
1

ð16Þ

∼ 3 × 10−3 s−1 ×

�
mη

150 GeV

�
; ð17Þ

where for the numerical estimate of Γ we used the
exemplary values specified at the end of the previous
section (ignoring the mass of ψ in the phase space integral).
Such decays must occur sufficiently early so that the

decay products are fully thermalized before they can distort
the cosmic microwave background. Reference [35]
shows that this occurs if the lifetime is below ∼1012 s.
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Equation (16) implies that our model easily satisfies
this bound.

III. DIRECT DETECTION

There are two portals through which our dark atoms to
interact with nuclei. The kinetic mixing allows for photon
exchange, which has been discussed in Refs. [21,22]. The
ensuing constraints on the electric millicharge ϵ are
weakened for atoms compared to ions because of the
screening of electric charge. In the special case wherem1 ¼
m2 this screening is perfect, and the interaction becomes
magnetic dipole, further weakening the limits [17]. Here we
extend results of Ref. [17] for the m1 ¼ m2 case to higher
DM masses.
In addition, there is the Higgs portal induced by mixing

of h and ϕ3 through the operator 1
2
λhϕjHj2jϕj2. ϕ3 interacts

with the dark atom constituents through the operator

Ψ̄ðy1 þ iy2γ5Þð~ϕ · ~τÞΨ that splits the Ψ1;2 masses.

A. Kinetic mixing portal

1. Unequal-mass constituents

As discussed in Ref. [21], the mutual screening of the
electric charges of the Ψ1 and Ψ2 constituents results in a
scattering matrix element where the 1=q2 of the photon
propagator is canceled by q2 in the form factor for the
charge density. The cross section for scattering of dark
atoms on a proton is

σp ¼ 4π
α2ϵ2μ2n
α4g

�
1

m2
1

−
1

m2
2

�
2

¼ 4π
α2ϵ2μ2n
α4gm4

H
f0ðRÞ; ð18Þ

where μn is the reduced mass of the dark atom and nucleon
system and f0ðRÞ ¼ ð1þ 1=RÞ4ðR2 − 1Þ2. Here we have
generalized the result of Ref. [21] where the approximation
of large Rwas made. The expression (18) is valid if R is not
too close to 1. The question of “how close?” is dis-
cussed below.
For R ≠ 1, the resulting upper limits on ϵ is illustrated in

Fig. 2(a) showing the most constraining limit from the LUX
[36], CRESST-II [37] or CDMSlite [38] experiments, at
any given dark atom mass mH. In Sec. V we will see that
the requirement of sufficiently small ionization fraction in
the dark sector leads to the constraint

αg ≥ αion ≡ 5 × 10−3
�
mH

GeV

�
1=2

f−1=42 ðRÞ; ð19Þ

where

f2ðRÞ ¼ Rþ 2þ R−1: ð20Þ

The solid curves are derived for the parameter choice which
saturates this bound, αg ¼ α ion, and R ranging from 2 to
10, while the dashed ones assume a fixed value of
αg ¼ 0.06. This value satisfies the constraint αg > αion
over the entire range of R and mH shown on the plots. (The
unusual sensitivity of the solid curves to light DMmasses is
due to the decrease of αg ¼ αion with mH, and consequent
increase in the dark Bohr radius, leading to larger cross
sections.) The nominal constraints from the experiments
are weakened by factors of ðA=ZÞ2 ¼ 5.9, 5.2 and 4,
respectively, to account for the coupling to protons
only. For CRESST this corresponds to collisions with
the oxygen atoms that dominate the sensitivity to low-
mass dark matter. The strongest constraints occur for
mH ≅ 1–10 GeV, in the range ϵ≲ 10−10–10−8. For

10-10

10-9

10-8

10-7

 1  10  100
mH (GeV)

10
8
6

R=2

∋

4

CRESST-II
CDMSlite LUX

10-2

10-1

100

101

102

 1  10  100
mH (GeV)

LUX

CRESST-II

F~

C
D

M
Slite

SuperCDMS

FIG. 2 (color online). Left: CRESST-II, CDMSlite and LUX limits on millicharge ϵ of dark atom constituents, with constituent mass
ratios m2=m1 ¼ R ¼ 2; 4;…; 10 as indicated, for photon-mediated scattering of dark atoms on protons. For clarity, only the most
constraining limit is shown for any DM atom mass mH. Gauge coupling is set to αg ¼ αion, Eq. (19) for solid curves, and fixed at

αg ¼ 0.06 for light dashed curves. Right: Corresponding limits on ~F ¼ y1θj1 −m2
h=m

2
ϕjFψ ð0Þ from Higgs portal scattering, where θ is

the ϕ-Higgs mixing angle.
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conventional Abelian kinetic mixing, such small values of ϵ
could be difficult to achieve since the loop diagram that
generates it is not suppressed by any large mass scales,
since in this case the kinetic mixing operator is marginal.
However for non-Abelian kinetic mixing, ϵ is suppressed
by the mass mχ of the heavy particle in the loop, as well as
its Yukawa coupling yχ . For example if the couplings
described below Eq. (5) are yχ ¼ 0.1, g1 ¼ g, R ¼ 10, αg ¼
αion and σ ¼ 30 GeV, we require mχ ≳ 3 × 1011 GeV to
satisfy the LUX bound on 10 GeV dark atoms.

2. Equal-mass constituents

For R ≅ 1, there is perfect screening of charge because of
the complete overlap of the wave functions of the two
constituents, and the magnetic dipole interaction that we
have neglected in (18) becomes important. This case
was considered in detail in Ref. [21]. The magnetic
scattering is inelastic because of the hyperfine transition
of the dark atom, requiring energy δE ¼ 1

6
α4gmH, and hence

a minimum DM velocity of vmin ¼ q=ð2μNÞ þ δE=q >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δE=μN

p
for momentum transfer q and dark atom-nucleus

reduced mass μN . There is a q- and v-dependent form factor
F ¼ ðq0=qÞ2ðv2 − v2minÞ=v20 that is of order unity for typical
values v ∼ v0 and q ∼ q0, as along as v0 ≳ vmin. The cross
section on protons is of order

σp;0 ≡ 64πϵ2α2μ2nv20
m2

Hq
2
0

ð21Þ

in that case, where μn is the proton-atom reduced mass.
More quantitatively, the actual cross section for a given

scattering event is σp ¼ σp;0Fðq; vÞ and the detection rate
is proportional to

R ∝ Z2

Z
Emax

Emin

dER

Z
vesc

vmin

d3~v
v

fð~vÞσp ð22Þ

∝ Z2σp;0IF; ð23Þ

with

Emin ¼
1

2
mHv2min;

Emax ¼ p2
max=ð2mNÞ;

pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2nðvesc þ v0Þ2 − 2δEμN

q
þ μNðvesc þ v0Þ;

fð~vÞ ∝ e−ð~vþ~veÞ2=v20 − e−v
2
esc=v20 ; ð24Þ

IF ≡
Z

Emax

Emin

dER

Z
vesc

vmin

d3~v
v

fð~vÞFðq; vÞ: ð25Þ

Here ~ve is Earth’s speed relative to the DM halo, v0 ≈
220 km s−1 is the mean DM velocity, vesc ≈ 450 km s−1 is

the approximate escape velocity of the DM halo (we see no
significant variation in the results for values in the range
400–500 km s−1), and Eesc is the maximum recoil energy
from a DM particle with the escape velocity.
We compare the rate for our model to that of generic DM

scattering with a constant cross section σn, for which the
corresponding expressions are

R ∝ A2σnI0; ð26Þ

I0 ≡
Z

Eð0Þ
max

Emin

dER

Z
vesc

vmin

d3~v
v

fð~vÞ; ð27Þ

where Eð0Þ
max ¼ Emax evaluated at δE ¼ 0. Therefore the

magnetic inelastic cross section (21) is bounded from above
as

σp;0 <
A2I0
Z2IF

σn;lim; ð28Þ

where σn;lim is the experimental upper limit on the cross
section for a generic DM model. Notice that the arbitrary
quantity ðv0=q0Þ2 appears in the same way on both sides of
(28) and hence can be divided out.
Although the gauge coupling αg does not appear in (21),

the mass splitting δE ¼ α4gmH=6 depends upon it. For
definiteness, we have chosen the value αg ¼ αion in Eq. (19)
from the requirement of sufficiently small dark ionization
fraction. This fixes δE as a function of mH.
We plot the ensuing limits on ϵ in Fig. 3, using results

from the LUX [36], SuperCDMS [39], CRESST-II [37],
and CDMSlite [38] experiments. The mass dependence of
αg ¼ αion changes the shape of the exclusion curves relative
to those on the cross section itself, since the mass splitting
δE rises rapidly with mH, nullifying the signal for
mH ≳ 100 GeV.

3. Transition from R ¼ 1 to R > 1

We have noted that inelastic magnetic transitions domi-
nate for equal constituent masses, R ¼ 1, while elastic
charge-charge interactions dominate when R > 1. One may
wonder how sharp the transition is between the two
regimes; how small must R − 1 be for inelastic transitions
to dominate? We have calculated the ratio of the two cross
sections as a function of R for a particular value of mH ¼
10 GeV as an example, taking the mass splitting δE as
described above. The result is graphed in Fig. 4, which
shows that only for R < 1.0001 do the inelastic transitions
dominate. Hence the most natural situation corresponding
to this case is that where R ¼ 1 exactly. There are two
limits in our model that give R ¼ 1: either y1 ¼ 0, or
mψ ¼ 0. The latter is a point of enhanced SU(2) flavor
symmetry for the two chiral (doublet) fermions.
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B. Higgs portal

The interaction of dark atoms with the Higgs through
ϕ3 −H mixing also undergoes screening because of the
coupling τ3 which has opposite sign for Ψ1 and Ψ2. At low
energies, the dark atoms can be described by a Dirac field
H whose coupling to the virtual ϕ3 or h carrying momen-
tum q is given by the amplitude

y1ūHuHFψðqÞ: ð29Þ

We have neglected the y2 contribution that is suppressed by
the dark matter velocity. By matching onto the scattering
amplitudes in the high-energy theory, we infer that

FψðqÞ ¼
1

mH

�
m2

ð1þ 1
4
q2a22Þ2

−
m1

ð1þ 1
4
q2a21Þ2

�
ð30Þ

with ai ¼ ðαgmiÞ−1. Thus the coupling vanishes in the limit
R ¼ 1 (m1 ¼ m2). If θ is the h − ϕ3 mixing angle, then the
amplitude for scattering of dark atoms on nucleons is

M ¼ y1ūHðp3ÞuHðp1Þ · ūnðp4Þunðp2Þ
�
ynmn

v

�

× cθsθ

�
1

m2
h

−
1

m2
ϕ

�
Fψ ðqÞ; ð31Þ

where ðynmn=vÞ with yn ≅ 0.3 [40] is the coupling of the
Higgs to nucleons.
If αg is not too small, we can take the q ¼ 0 limit of the

form factor. In this case the cross section for dark atom-
nucleon scattering is

σn ≅
1

πv2
½y1ynmnμnHθFψð0Þ�2ðm−2

ϕ −m−2
h Þ2 ð32Þ

in terms of the H-nucleon reduced mass and taking θ ≪ 1.
The LUX upper limit on the dimensionless combination
~F ¼ y1θj1 −m2

h=m
2
ϕjFψð0Þ is plotted in Fig. 2. The

Yukawa coupling y1 is related to the mass splitting in
the dark sector since m2

2 −m2
1 ¼ y21σ

2. Moreover it is
straightforward to show that Fψð0Þ ¼ ðm2

2 −m2
1Þ=m2

H. If
mϕ < mh, then ~F ≅ y31θðm2

hσ
2Þ=ðm2

ϕm
2
HÞ. We expect

mϕ ∼ σ, similarly to mh ∼ v in the visible sector, and θ ≲
0.01 to satisfy LEP constraints [41] on mixing of a light
scalar with the Higgs. The largest dark atom mass range for
saturating the LUX bound shown in Fig. 2 with jy1j≲ 1
is mH ≲ 70 GeV.

IV. STABLE VECTOR BOSONS

Up to now we have assumed that the Ψ1 −Ψ2 mass
splitting is sufficiently small to prohibit the decay
Ψ−

2 → B−−Ψþ
1 , corresponding to the condition
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FIG. 3 (color online). Direct detection constraints on kinetic mixing parameter ϵ versus dark atom mass mH for case of equal-mass
constituents m1 ¼ m2 ¼ mH=2, when interaction is magnetic inelastic. Hyperfine mass splitting is chosen as a function of mH as
described in text. Solid and dashed curves refer to choice of αg as in Fig. 2. Left: Low-mass region; right: larger-mass region.
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FIG. 4 (color online). Ratio of the magnetic inelastic and elastic
cross section for scattering of dark atoms on protons as a function
of the constituent mass ratio R (its deviation from unity), for dark
atom mass mH ¼ 10 GeV and mass splitting described in
Sec. III A 2.
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jy1j <
m1 þm2

4mψ
g: ð33Þ

However this need not be the case, and the model is also
compatible with a universe where charge neutrality in the
dark sector is achieved by having two Ψþ

1 particles for
every B−−. This leads to a very different kind of dark atom
that is reminiscent of the H2 molecule, except that the two
“protons” are bound together by a single charge −2
“electron.” We will refer to these variant dark atoms as
H2. In the absence of fine-tuning, the stable vector boson is
typically lighter than Ψ1, prompting us to define the ratio

R2 ¼
m1

mB
≥ 1 ð34Þ

in analogy to R ¼ m2=m1 for H atoms.3

A. Bound states

To verify the existence of the three-body H2 bound
states, we make some Ansätze for its wave function and use
the variational method to prove that the energy is mini-
mized at a negative value. We consider trial wave functions
where the positions of the three particles are given by

~xψ ¼ �~Δ=2; ~xB ¼ ~r; ð35Þ

i.e., we work in the center-of-mass frame of the two Ψ1

particles, with ~Δ being their relative separation. In analogy
to the H2 molecule, it could be expected that the wave
function for Δ is approximately that of a 3D harmonic
oscillator, e−Δ

2=b2 for some scale b. For simplicity we take
the wave function for r to be hydrogenlike, e−r=a for some
other scale a. We consider three possible states, an s wave
and two p waves,

ψH2;sð~r; ~ΔÞ ¼ Nse−Δ
2=b2−r=a;

ψH2;p1ð~r; ~ΔÞ ¼ Np1rze−Δ
2=b2−r=a;

ψH2;p2ð~r; ~ΔÞ ¼ Np2Δze−Δ
2=b2−r=a; ð36Þ

where rz ðΔzÞ is the z component of ~r ( ~Δ).
It is convenient to work in the analog of atomic units by

rescaling to dimensionless coordinates r ¼ r0=ðαgmBÞ,
Δ ¼ Δ0=ðαgmBÞ. Then the Hamiltonian can be written as
H ¼ ðα2gmBÞH0, where the dimensionless H0 is

H0 ¼ −
1

R2

∇2
Δ0 −

1

2
∇2

r0 þ
1

Δ0 −
X
�

2

j~r0 � ~Δ0=2j
: ð37Þ

By minimizing the expectation values E ¼ hψH2
jHjψH2

i
with respect to a; b and varying over a range of R2 values,
we find that bound states (having E < 0) exist for all three
trial wave functions, but ΨH2;p1 is always more weakly
bound than the other two. Moreover the s wave has lower
energy than p2 only for R2 ≲ 40; for R2 > 40 the p2 state
is lower, as shown in Fig. 5. Taking as an example the
values m1 ¼ 60 GeV, R2 ¼ 10, αg ¼ 3 × 10−2, the three-
constituent atoms have binding energies of approxi-
mately E ≈ −15 MeV.

B. Direct detection

Dark H2 atoms interact similarly with nucleons relative
to our treatment forH atoms in Sec. III, but there are some
qualitative differences, due to the more complicated wave
function. In particular, there is no longer any special case
like R ¼ 1 for H atoms in which the electric millicharge
clouds of the constituents give exactly canceling contribu-
tions to the total charge density. This can be seen by
computing the form factor, which is the Fourier transform
of the charge density

ρðxÞ ¼
Z

d3Δd3rjΨð~r; ~ΔÞj2

×

�X
�
δð~x� ~Δ=2Þ − 2δð~x − ~rÞ

�
: ð38Þ

Using ψH2;s from Eq. (36), the form factor is

FðqÞ ¼ 2

�
−e−b2q2=32 þ 1

ð1þ a2q2=4Þ2
�

≅ q2
�
b2

16
− a2

�
; ð39Þ

where the approximation is for low momentum transfer q.
In computing the cross section for scattering on protons,

the factor of q2 in the form factor cancels the 1=q2 of the
propagator like before, giving

σp ¼ 16πα2ϵ2μ2n

�
a2 −

b2

16

�
2

ð40Þ

at low momentum transfer. (The normalization can be
deduced by considering the limits a ¼ 0; b → ∞ or vice
versa where the usual Feynman rules for the amplitude with
no form factor apply.) The direct detection limits from LUX
[36], CRESST-II [37] and CDMSlite [38] through the
kinetic mixing portal are shown for various values of R2 in
Fig. 6, assuming αg saturates the constraint (51) from
ionization of H2 atoms that we will derive in the next

3To get the opposite situation where mB > m1, we need
ðgσÞ2 > ðmψ − y1σÞ2 þ ðy2σÞ2. This requires not only y2 to be
small, but also an accidental cancellation between mψ and y1σ.
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section. (We also show the constraints for the fixed value of
αg ¼ 0.01 as dashed curves.) Unlike with the dark atoms,
the form factor never vanishes for any value of R2 (since b
is always < 4a).
For the Higgs portal, we follow the procedure in Sec. III.

The amplitude and cross section are

M ¼ ūH2
ðp3ÞuH2

ðp1Þ · ūnðp4Þunðp2Þ
�
ynmn

v

�

×

�
cθsθ
m2

h

−
cθsθ
m2

ϕ

�
ðy1FψðqÞ þ gFBðqÞÞ; ð41Þ

σn ≅
1

πv2
½ðy1Fψ ð0Þ þ gFBð0ÞÞynmnμnθ�2

× ðm−2
ϕ −m−2

h Þ2: ð42Þ

We have again made the approximation θ ≪ 1 and assumed
a small momentum transfer. μn is the H2-nucleon reduced

mass, and yn ≅ 0.3 is the Higgs coupling to nucleons
(modulo mn=v). The form factors are given by

Fψ ðqÞ ¼
2mΨ

mH2

e−b
2q2=32;

FBðqÞ ¼
mB

2mH2

1

ð1þ 1
4
a2q2Þ2 : ð43Þ

Redefining ~F ¼ ðy1Fψ ð0Þ þ gFBð0ÞÞθj1 −m2
h=m

2
ϕj, the

constraint on ~F from the LUX, CRESST-II and CDMSlite
experiments takes the same form as was previously shown in
Fig. 2 (right), where mH is reinterpreted as mH2

.

C. Neutron star constraints

Tight constraints exist on the cross section for asym-
metric bosonic dark matter scattering on nucleons from the
existence of long-lived neutron stars [42,43]. If the rate of
dark matter accretion is large enough, it can collapse to
form a black hole that would consume the progenitor, on
time scales shorter than the ages of neutron stars observed
in globular clusters. In our model it is important that we
have only one kind of stable bosonic dark matter constitu-
ent carrying dark Uð1Þh charge. In the case ofH atoms with
only fermionic constituents, the would-be scalar constitu-
ents decayed early in the cosmological history, leaving no
asymmetric scalars. For H2 atoms, on the other hand, the
vector bosons are mostly bound inside of atoms that resist
collapse because of the degeneracy pressure of their
fermionic constituents. The ionized fraction also resists
collapse because of dark Coulomb repulsion. In contrast, in
a model containing two species of bosons carrying different
Uð1Þh charges, nothing would prevent the collapse of the
combined bosonic fluid.
In more detail, we first note that the dark atoms remain

bound once they start to accumulate in the neutron star.
From Fig. 5, the binding energy is given by
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FIG. 5 (color online). Left: Energy obtained from variational method as a function of R2 for the trial wave functions for H2 bound
states ψH2;s and ψH2;p2. Right: Corresponding values of the parameters a; b (shown in dimensionless combinations with αgmB) that
determine the spatial distributions of the wave functions, for the s wave.
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FIG. 6 (color online). Direct detection constraints on kinetic
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Eb ≈ 2α2gmB ¼ 2α2gmH2

1þ 2R2

: ð44Þ

Using the dark ionization constraint (51), we find that
Eb > 130 eV even for the extreme parameter choices
mH2

¼ 1 GeV, R2 ¼ 100, which is higher than the temper-
ature of the star, of order 100 eV [44]. Moreover fermions
within a neutron star are supported by their degeneracy
pressure, given by

p ¼ ð3π2Þ2=3
5mψ

n5=3ψ ; ð45Þ

where n is the number density. A larger fermion mass
decreases the pressure, and therefore the dark atoms will
tend to remain bound.
As for any ionized bosons that accumulate within the

neutron star, their repulsive self-interaction greatly weakens
the bounds on scattering with nucleons by preventing their
collapse into a black hole. Reference [45] finds that a
repulsive scattering cross section exceeding 10−50 cm2 is
sufficient to avoid neutron star constraints formB < 1 TeV.
In our case the cross section corresponding to dark
Rutherford scattering is infrared divergent, but if we make
it finite by multiplying dσ=dΩ by ð1 − cos θÞ2 (thus taking
into account only scatterings with significant momentum
transfer), it is of order α2g=m2

B ≳ 10−34 cm2, where we used
(51) and mB ≲ 100 GeV. This satisfies the requirements of
[45] by many orders of magnitude.

V. OTHER CONSTRAINTS

Dark atoms, dark matter with millicharges, and models
with asymmetric dark bosons are subject to further con-
straints from cosmological, astrophysical and laboratory
probes. Here we discuss those coming from dark recombi-
nation, self-interactions of the dark matter and accumu-
lation in neutron stars, and searches for millicharged
particles.

A. Dark ions

If the constituents of the hidden sector fail to combine
into atoms, they can scatter very strongly with each other
through the dark Coulomb interaction, contradicting the
normally assumed properties of collisionless cold dark
matter. From fitting to results of Ref. [4], one finds that the
ionization fraction can be estimated as [14,21,23]

Xe ≅
�
1þ 1010f2ðRÞξ−1α4g

GeV2

m2
H

�−1
; ð46Þ

where f2ðRÞ ¼ Rþ 2þ 1=R [introduced in Eq. (20)] and ξ
is the ratio of dark sector to SM sector temperatures.
In [4] it was argued that observations of the bullet cluster

rule out Xe ≳ 0.1, leading to the conservative lower limit

αg > αion (19) that we already incorporated in our analysis
of direct detection constraints. Reference [14] estimates
that there is a factor of 10 uncertainty in (46). We note that
this leads to only a factor of 1.8 uncertainty in the
expression for αion.
The ratio between temperatures can be found using the

relation [14]

ξ ¼
�
g0�S;SMg

dec
�S;D

gdec�S;SMg
0
�S;D

�1=3

; ð47Þ

with g�S;SM and g�S;D denoting the number of degrees of
freedom in the visible and dark sectors, and the superscripts
0, dec indicating the respective values today and at the time
the two sectors decouple kinetically. The temperature at
which this decoupling occurs is therefore relevant. We find
that mixed Compton scattering with one dark and one SM
photons is the most important process for maintaining
kinetic equilibrium. It goes out of equilibrium when
H ¼ nγhσvi, leading to the estimate

1.66g�
T2

mPl
∼ g�T3

8π

3

ϵ2α2

m2
H
: ð48Þ

Thus mixed Compton scattering keeps the two sectors at
the same temperature until

Tdec ¼
3 × 10−6 eV

ϵ2

�
mH

GeV

�
: ð49Þ

The lowest value of Tdec is obtained by saturating the
direct detection limits on ϵ as a function ofmH, as shown in
Figs. 2 and 3. In the case of R ¼ 1 (equal mass dark atom
constituents), this can be much lower than the dark
recombination temperature Trec, so that in fact
Tdec ¼ Trec, since Compton scattering is no longer efficient
on neutral atoms. For R > 1 on the other hand, the
constraints on ϵ are sufficiently strong that the decoupling
temperature is limited to Tdec > 300 TeV.
As long as Tdec ≫ 1 TeV, all particles are relativistic

except for the heavy neutrinos. We therefore use the values
g0�S;SM ¼ 3.94 [15], gDec�S;SM ¼ 106.75, g0�S;D ¼ 2, and
gDec�S;D ¼ 18. The resulting temperature ratio is ξ ≈ 0.71.
At the other extreme, decoupling occurs after electrons
have frozen out. This corresponds to gDec�S;SM ¼ 7.25,
gDec�S;DM ¼ 2, and ξ ≈ 0.81. Even at the two extremes,
therefore, the difference is minimal and is further mitigated
by the fact that ξ is raised to the 1=4 power in calculating
αion. We therefore adopt the value ξ ¼ 0.71 in Eq. (19) so
that αion remains a reasonable lower limit for αg.
There are certain cases that can lead to a lower temper-

ature ratio, with the smallest being that in which all dark
content apart from the dark photon has frozen out prior to
the freeze-out of the top quark, with decoupling occurring
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some time between these; in this case the dark temperature
could be as low as 0.3. These cases, however, are
unrepresentative and only apply to a narrow range of
values of ϵ. Even in the extreme case of ξ ≈ 0.3, the
estimate on αion would only differ by a factor of ≈0.8,
which is smaller than the error due to the uncertainty in the
ionization fraction.

1. H2 ionization

For the case where Ψ2 can decay to Ψ1 and the vector
boson B, to make a rough estimate of the ionization
fraction, we assume that recombination will typically
happen in two steps: in the first, unbound Ψ1’s combine
with the free B’s to make a Ψ − B ion, while in the second
these ions bind with a secondΨ1. The first step is similar to
hydrogen atom recombination with the substitution αg →
2αg due to B having charge 2. In the second step, the
potential at long range is like that for hydrogen atom
recombination. Equation (46) then becomes

Xe1 ≅
�
1þ ξ−116 × 1010α4g

GeV
m1mB

�
−1
;

Xe2 ≅
�
1þ ξ−11010α4g

GeV
m1ðmB þm1Þ

�
−1
;

Xe;tot ¼ Xe1 þ Xe2 ≅ Xe2: ð50Þ

The constraint on the ionization fraction (Xe;tot ≲ 0.1)
from [4] is therefore

αg ≳ ξ1=44 × 10−3
�
mH2

GeV

�
1=2

f−1=43 ðR2Þ; ð51Þ

where f3ðR2Þ ¼ ðR2 þ 1=2Þ2=ðR2 þ R2
2Þ.

B. Self-interactions

Although standard cold dark matter is considered to be
noninteracting with itself, there has been interest in variant
theories where dark matter has an elastic self-scattering
cross section of order 1 b per GeV of DM mass. This has
been motivated by persistent discrepancies between pre-
dictions of N-body simulations and observed properties of
dark matter halos. While simulations tend to predict cuspy
density profiles for galaxies, there is some observational
evidence for cored profiles, especially in dwarf spheroidals.
Simulations also tend to predict too many high-mass
satellite galaxies accompanying Milky-Way-like progeni-
tors compared to observations. For a review of these
problems and their possible resolutions, see Ref. [46]. A
number of studies have been done indicating that the small-
scale structure problems can be alleviated by invoking dark
matter elastic scattering with σ=m ∼ 1 b=GeV. Dark atoms
can naturally accommodate such large cross sections since
they can have a significant geometric size.

The elastic scattering of dark atoms on each other has
been studied very quantitatively, thanks to the fact that the
problem can be mapped onto that of normal atom scattering
with appropriate rescalings of parameters [16]. A useful
rough estimate is that the scattering cross section
goes as σ ≅ 100a020 ≅ 100α−2g f22ðRÞm−2

H . A cosmologically
interesting level of self-scattering requires σ=mH ∼
1.1 b=GeV ≅ 2800 GeV−3 [47] in order to address the
structure formation problems of cold dark matter. This
corresponds to a gauge coupling of

αg ¼ 0.2f2ðRÞðmH=GeVÞ−3=2: ð52Þ

The criterion (52) can be compatible with the ionization
constraint (19) if mH is sufficiently small:

mH ≲ 14 GeV

�
fðRÞ
4

�
5=8

ð53Þ

obtained from eliminating αg from the two relations. Very
large values of R would be unnatural in our model, since it
would require a fine-tuned cancellation between two
contributions to m2

1 ¼ ðmψ − y1σÞ2 þ ðy2σÞ2, as well as
a small value of y2. An accidental cancellation at the level
of R ¼ 10 would allow for mH as large as 28 GeV.

1. H2 self-interactions

In the H2 phase of the theory, the size of the atom is
determined by the length scale a that describes the vector
boson part of the wave function, rather than the character-
istic distance b between the fermions, even though b ∼ 2a.
This is because the expectation values are hri ¼ 1.5a,
hΔ=si ¼ 0.4b. Therefore in parallel to theH atom case, we
can estimate the elastic cross section for atom-atom
scattering as σ ≅ 100a2 ≅ 100α−2g m−2

H2
R2
2f

2
4ðR2Þ, where

f4ðRÞ ¼ 1þ ð2R2Þ−1.
The gauge coupling corresponding to the desired scat-

tering cross section of σ=mH2
¼ 1.1 b=GeV is therefore

αg ¼ 0.19R2f4ðR2Þ
�
mH2

GeV

�
−3=2

: ð54Þ

When combined with the constraint (51) on the ionization
fraction, the result is

mH2
≲ 6.9 GeVR2f4f

−1=4
3 ; ð55Þ

which is similar to the expression found for theH case. The
primary difference here is that large values of R2 can be
obtained without fine-tuning of model parameters, allowing
for a larger natural range of masses consistent with both
the ionization fraction and self-interaction constraints.
(Notice that f3;4 → 1 as R2 becomes large.) Even with a
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moderate hierarchy R2 ¼ 10, we can reach masses as large
as mH2

∼ 70 GeV.

C. Laboratory millicharge searches

Pair production of Ψ̄iΨi is possible in accelerator experi-
ments from the coupling of the photon to the dark matter
millicharge. The resulting constraints on ϵ are quite weak in
the mass range relevant for our model, mH ∼ 1–100 GeV,
as we show in Fig. 7. The existing constraints are taken
from tables in Ref. [48] for the ASP and trident production
limits, the E613 beam dump limit [49], ALEPH limits on
the Z decay width [50] and a recent CMS search for
particles of charge 1=3 or 2=3 [51]. We also show the reach
of a new proposed experiment for LHC (dashed curve)
[52]. These constraints are considerably weaker than that
coming from direct detection, Fig. 3, which is replotted as
the dashed curve in Fig. 7. Only at low (mH ≲ 4 GeV) or
high (mH < 100 GeV) masses, outside the sensitivity of
direct detection, do they become dominant.
Possibly more significant constraints on millicharged

particles arise from searches for exotic isotopes, bound
states of normal nuclei with the charged DM constituents.
Very stringent limits on the concentration of heavy isotopes
of hydrogen or oxygen from sea water have been derived;
for example Ref. [53] obtains an upper bound of 10−28 for
the concentration of anomalously heavy H. These experi-
ments assume integer-charged ions, but a recent experiment
geared toward millicharged particles with ϵ > 10−5 set a
limit of 10−14 on the abundance per nucleon. Naively such
results would seem to rule out almost any values of ϵ≳
10−3 such that the binding energy Eb ≅ 1

2
ðαϵÞ2mp (for

anomalous H) exceeds kT at room temperature, since we
expect some fraction of ψ particles to remain ionized and
thus be able to contaminate normal matter.

However to translate these limits on abundances into
bounds on ϵ requires many considerations, including the
expected flux of ψ particles, their capture cross section on
the elements in question, the shielding of the Earth and the
Galaxy from charged particles by magnetic fields, expul-
sion of charged particles by supernova winds, the process
of purification of the samples studied, and the question of
whether they apply to noninteger charged isotopes [21]. A
recent study of these issues was presented in Ref. [54]. Here
we take the view that there may be room for evading the
anomalous isotope searches, but this question should be
revisited if positive evidence for millicharges is found.

VI. CONCLUSION

In this work we have tried to strike a balance between
simplicity and realism in the construction of an atomic dark
matter model. Our non-Abelian construction is sufficiently
rich to explain a unified origin of the massless dark photon
and charged [under the hidden Uð1Þh interaction] DM
constituents Ψi as a consequence of symmetry breaking
SUð2Þh → Uð1Þh by a scalar triplet VEV in the dark sector.
With the addition of a dark Higgs doublet, we have the
necessary ingredients to explain the Ψi asymmetry through
leptogenesis, simultaneously with the baryon asymmetry.
Electric millicharges ofΨi, while not a necessary ingredient,
can arise naturally through heavy states carrying both electric
and Uð1Þh charge. Higgs portal interactions are also optional
but are allowed by a dimension-4 interaction of Ψi with the
dark Higgs triplet and its mixing with the SM Higgs.
The model is mainly testable by direct detection. For

sufficiently light or heavy constituents, the DM could also
be discovered in an experiment proposed for LHC to probe
millicharged particles. It can accommodate strong DM self-
interactions as suggested by problems of ΛCDM simula-
tions to correctly predict the small-scale structure of
galaxies, if the dark atoms are not too heavy. Because of
the requirement αg ≳ α ion, needed to make the ionization
fraction in the dark sector sufficiently small, the symmetric
component of the dark matter is highly suppressed due to
annihilations into dark photons, making any indirect
signals too weak to be detected.
Our model has a number of features that distinguish it

from simplified atomic dark matter models. For example in
the latter, the ratio R of the masses of the atomic
constituents (which plays an important role) can be
arbitrarily large, whereas here it is naturally of order 1
and requires fine-tuning to be much greater.
If the new Yukawa coupling y1 exceeds the gauge

coupling g, the stable dark matter particles can be the
lighter fermion Ψ1 and the doubly charged [under Uð1Þh]
vector boson B−−, leading to novel three-body BΨΨ bound
states, where the mass ratio of the constituents m1=mB
could be large without tuning of parameters (other than the
usual hierarchy problem of light bosons). The properties of
these unusual atoms for direct detection, as well as for DM

1 10 100
mψ (GeV)
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0.1

ε

ASP

E613

Trident production

1410.6816

CMS

direct detection

ALEPH

FIG. 7 (color online). Solid curves: Existing collider constraints
on millicharge versus mass; dashed curve: expected reach of
experiment proposed in Ref. [52]. Dotted curves: Our direct
detection limits from Fig. 3, depending on choice of αg ¼ 0.06
(upper curve) or αg ¼ αion (lower).
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self-interactions, are qualitatively similar to those of the
more conventional two-constituent atoms. This demon-
strates a loophole for strong neutron star constraints on
asymmetric bosonic dark matter, since the dark Coulomb
repulsion prevents Bose condensation in this model.
For future work, these models suggest a potential novel

signal for direct detection, due to the possible simultaneous
presence of both dark atoms and a subdominant component
of ionized or symmetric constituents. This would allow for
the detection of both types of dark matter, typically having
similar but distinct masses and interaction cross sections.
Our analysis of leptogenesis as a common origin of the

visible and hidden asymmetries is approximate, and it
might also be interesting to undertake a more refined
treatment for future studies.
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