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We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction,
and the helicity and transversity moments. The pion momentum fraction is also presented. The computation
of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass.
The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass
fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers
by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute
significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the
nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in
the MS scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion

momentum fraction is found to be hxiπ�u−d ¼ 0.214ð15Þðþ12−9 Þ in the MS at 2 GeV.
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I. INTRODUCTION

The nucleon axial-vector coupling or nucleon axial
charge gA is experimentally a well-known quantity deter-
mined from the β-decay of the neutron. It is a key parameter
for understanding the chiral structure of the nucleon and a
quantity that has been studied extensively in chiral effective
theories [1,2]. A description of baryon properties in chiral
effective theory requires as an input gA, and thus its value at
the chiral limit and its dependence on the pion mass
constitute important information that lattice QCD can
provide. Its importance for phenomenology as well as
the fact that it is rather straightforward to compute in lattice
QCD have made it one of the most studied quantities within
different fermion discretization schemes [3–9]. In lattice
QCD, gA is determined directly from the zero momentum
transfer nucleon matrix element of the axial-vector current
without requiring any extrapolation from finite momentum
transfer calculations as, for example, is required for the
anomalous magnetic moment of the nucleon. In addition,
being an isovector quantity, it does not receive any
contributions from the coupling of the current to closed

quark loops, and thus one only needs to compute the
connected contribution with well-established lattice QCD
techniques. Therefore, gA has come to be regarded as a
prime benchmark quantity for the computation of lattice
QCD matrix elements. Postdiction of the value of gA within
lattice QCD is, therefore, regarded as an essential step
before the reliable prediction of other couplings and form
factors for which the same formalism is used.
Unlike gA, the nucleon scalar and tensor charges are not

well known. Limits on the value of the scalar and tensor
coupling constants arise from 0þ → 0þ nuclear decays and
the radiative pion decay π → eνγ, respectively. They have
become the focus of planned experiments to search for
physics beyond the familiar weak interactions of the
Standard Model sought in the decay of ultracold neutrons
[10]. The computation of the tensor charge is particularly
timely since new experiments using polarized 3He=Proton
at Jefferson lab aim at increasing the experimental accuracy
of its measurement by an order of magnitude [11]. In
addition, experiments at the LHC are expected to increase
the limits to contributions arising from tensor and scalar
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interactions by an order of magnitude making these
observables interesting probes of new physics originating
at the TeV scale. Computing the scalar charge will also
provide input for dark matter searches. Experiments, which
aim at a direct detection of dark matter, are based on
measuring the recoil energy of a nucleon hit by a dark
matter candidate. In many supersymmetric scenarios [12]
and in some Kaluza-Klein extensions of the standard model
[13,14], the dark matter nucleon interaction is mediated
through a Higgs boson. In such a case, the theoretical
expression of the spin-independent scattering amplitude at
zero momentum transfer involves the quark content of the
nucleon or the nucleon sigma-term, which is closely related
to the scalar charge. In fact, this contributes the largest
uncertainty on the nucleon dark matter cross section.
Therefore, computing the scalar gS and tensor gT charges
of the nucleon within lattice QCD will provide useful input
for the ongoing experimental searches for beyond the
standard model physics.
Another experimental frontier that provides information

on the quark and gluon structure of a hadron, is the
measurement of parton distribution functions (PDFs) in a
variety of high energy processes such as deep-inelastic
lepton scattering and Drell-Yan in hadron-hadron colli-
sions. PDFs give, to leading twist, the probability of finding
a specific parton in the hadron carrying certain momentum
and spin, in the infinite momentum frame. Their universal
nature relies on factorization theorems that allow differ-
ential cross sections to be written in terms of a convolution
of certain process-dependent coefficients that encode the
hard perturbative physics and process-independent PDFs
that describe the soft, nonperturbative physics at a factori-
zation energy scale μ [15,16]. Because these PDFs are
light-cone correlation functions, it is not straightforward to
calculate them directly in Euclidean space. Instead, one
calculates Mellin moments of the PDFs expressed in terms
of hadron matrix elements of local operators, which
through the operator product expansion are related to the
original light-cone correlation functions. Mellin moments
are measured or extracted from phenomenological analyses
in deep-inelastic scattering experiments, and thus they can
be directly compared to lattice results when converted to
the same energy scale μ.
In this work, we consider the three first moments that one

can construct, namely, the first moment of the spin-
independent (or unpolarized) q ¼ q↓ þ q↑, helicity (or
polarized) Δq ¼ q↓ − q↑, and transversity δq ¼ q⊤ þ q⊥
distributions, which are defined as follows:

hxiq ¼
Z

1

0

x½qðxÞ þ q̄ðxÞ�dx ð1Þ

hxiΔq ¼
Z

1

0

x½ΔqðxÞ − Δq̄ðxÞ�dx ð2Þ

hxiδq ¼
Z

1

0

x½δqðxÞ þ δq̄ðxÞ�dx; ð3Þ

where q↓ and q↑ correspond, respectively, to quarks with
helicity aligned and antialigned with that of a longitudinally
polarized target and q⊤ and q⊥ correspond to quarks with
spin aligned and antialigned with that of a transversely
polarized target. These moments, at leading twist, can
be extracted from the hadron matrix elements of one-
derivative vector, axial-vector, and tensor operators at zero
momentum transfer. Thus, they constitute the next level of
observables in terms of complexity that can be computed in
lattice QCD after the coupling constants that do
not involve derivative operators. The unpolarized and
polarized moments hxiq and hxiΔq of the nucleon are
measured experimentally, and thus lattice QCD provides a
postdiction, while a computation of the nucleon trans-
versity hxiδq provides a prediction. It is worth mentioning a
new approach proposed recently for measuring directly the
PDFs within lattice QCD [17,18], which is currently under
investigation [19,20].
In this paper, we extend the analysis of mesonmasses, the

muon anomalous magnetic moment g − 2, and the meson
decay constants considered in Ref. [21], to the nucleon
matrix elements for the three firstMellinmoments, while for
the pion we compute the momentum fraction. While the
present paper builds on the methodology developed in
Refs. [22–26], this work presents the first evaluation of
these six quantities directly at the physical value of the pion
mass. This is a substantial step forward since it avoids chiral
extrapolations, which are often difficult and can lead to
rather large systematic uncertainties.
The paper is organized as follows. In Sec. II we define

the nucleon and pion matrix elements, in Sec. III we explain
the lattice methodology, in Sec. IV we give the simulation
details, and in Sec. V we give our results. Section VI
summarizes our findings and gives our conclusions.

II. MATRIX ELEMENTS

A. Nucleon

We are interested in extracting the forward nucleon
matrix elements hNðpÞjOjNðpÞi, with p the nucleon initial
and final momentum. We consider the complete set of local
and one-derivative operators, yielding a nonzero result. The
local scalar, axial-vector, and tensor operators are

OSa ¼ q̄
τa

2
q; Oμ

Aa ¼ q̄γ5γμ
τa

2
q;

Oμν
Ta ¼ q̄σμν

τa

2
q: ð4Þ

We do not consider the vector operator ψðxÞγmuψðxÞ since
this yields the renormalization constant ZV , which we
calculate separately using our RI-MOM setup, as explained
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in Sec. V. If one instead uses the lattice conserved Noether
current, which we typically do in in our computation of the
nucleon electromagnetic form factors, the forward matrix
element trivially yields the electric charge.
The one-derivative vector, axial-vector, and tensor oper-

ators are given by

Oμν
Va ¼ q̄γfμD

↔νg τ
a

2
q;

Oμν
Aa ¼ q̄γfμD

↔νgγ5
τa

2
q;

Oμνρ
Ta ¼ q̄σ½μfν�D

↔ρg τ
a

2
q; ð5Þ

where q̄ ¼ ðū; d̄Þ,

D
↔

μ ¼
1

2
ð ~Dμ −D

←

μÞ; Dμ ¼
1

2
ð▽μ þ▽�

μÞ;

and ▽μ (▽�
μ) is the usual forward (backward) derivative

on the lattice. The curly (square) brackets represent a
symmetrization (antisymmetrization) over pairs of indices,
with the symmetrization accompanied by subtraction of
the trace.
In what follows, all expressions will be given in

Euclidean time. For example, the one-derivative vector
current that will be used in the computations of both
nucleon and pion momentum fractions, in Euclidean time
and setting μ ¼ ν ¼ 4, is given by

O44
Va ¼ q̄

3

4

�
γ4D

↔4 − 1

3

X3
k¼1

γkD
↔k

�
τa

2
q: ð6Þ

In this work, we consider the isovector quantities obtained
from Eqs. (4) and (5) by using the Pauli matrix τ3. We also
consider the isoscalar combination obtained by replacing τa

by unity. The individual up- and down-quark combinations
can be extracted form the isovector and isoscalar quantities
which are equivalent to replacing τa with the projectors
onto the up- or down-quarks. The isoscalar combination
and the up- and down-quark contributions receive discon-
nected contributions. Our high-statistics study using an
Nf ¼ 2þ 1þ 1 ensemble of twisted mass fermions with a
pion mass of 373 MeV has shown that the disconnected
contributions for the tensor isoscalar charge and the
isoscalar first moments are very small compared to the
connected [27,28]. In the same study, the disconnected
contributions to the isoscalar axial and scalar charge were
found to be about (7%–10%) of the connected. In this work,
we will only compute the connected contributions. The
disconnected contributions will need at least an order of
magnitude more statistics and will be presented in a follow-
up publication.
For zero momentum transfer, the nucleon matrix ele-

ments of the local operators in Eq. (4) can be decomposed
in the following form factors:

hNðp; s0ÞjOSjNðp; sÞi ¼ ūNðp; s0Þ
�
1

2
GSð0Þ

�
uNðp; sÞ; ð7Þ

hNðp;s0ÞjOμ
AjNðp;sÞi ¼ iūNðp; s0Þ

�
1

2
GAð0Þγμγ5

�
uNðp; sÞ;

ð8Þ

hNðp;s0ÞjOμν
T jNðp;sÞi ¼ ūNðp;s0Þ

�
1

2
AT10ð0Þσμν

�
uNðp;sÞ:

ð9Þ
Thus, the scalar matrix element at zero momentum transfer
yields the form factor GSð0Þ≡ gS, the local axial-vector
GAð0Þ≡ gA, and the local tensor matrix element yields
AT10ð0Þ≡ gT . In all these quantities, the operators are
either the isovector or isoscalar combinations or individual
up- or down-quark contributions. At nonzero momentum,
additional form factors arise in the decomposition of
Eqs. (8) and (9). Namely, the induced pseudoscalar
GpðQ2Þ appears as the second form factor in the decom-
position of the matrix element of the axial-vector, and the
form factors BT10ðQ2Þ and ~AT10ðQ2Þ appear in the decom-
position of the nucleon matrix element of the tensor
operator, where Q2 is the momentum transfer square in
Euclidean time. These cannot be extracted at zero momen-
tum transfer and will not be considered in this work.
The corresponding decomposition for the one-derivative

operators in Eq. (5) is given by

hNðp; s0ÞjOμν
V jNðp; sÞi

¼ ūNðp; s0Þ
�
1

2
A20ð0Þγfμpνg

�
uNðp; sÞ; ð10Þ

hNðp; s0ÞjOμν
A jNðp; sÞi

¼ iūNðp; s0Þ
�
1

2
~A20ð0Þγfμpνgγ5

�
uNðp; sÞ; ð11Þ

hNðp; s0ÞjOμνρ
T jNðp; sÞi

¼ iūNðp; s0Þ
�
1

2
AT20ð0Þσ½μfν�pρg

�
uNðp; sÞ: ð12Þ

The momentum fraction, helicity moment, and the
transversity moment are obtained from the above forward
matrix elements by hxiq ¼ Aq

20ð0Þ, hxiΔq ¼ ~Aq
20ð0Þ, and

hxiδq ¼ Aq
T20ð0Þ, respectively. Here we use the generic

symbol q to denote the quark combination, where q ¼
uþ d will denote the isoscalar combination, q ¼ u − d
will denote the isovector combination, and q ¼ u or q ¼ d
denotes the individual up- and down-quark contributions.
For instance, the isovector helicity moment will be denoted
as hxiΔu−Δd ¼ ~Au−d

20 ð0Þ. For uniformity in our notation, we
will also write gu−dA for the nucleon axial charge, despite the

NUCLEON AND PION STRUCTURE WITH LATTICE QCD … PHYSICAL REVIEW D 92, 114513 (2015)

114513-3



fact that the measured axial charge is understood to be an
isovector quantity.

B. Pion

The isovector momentum fraction of the pion hxiπ�u−d
can be extracted from the corresponding pion matrix
element of the one-derivative vector operator. Specifically,
we use the following operator, sometimes also denoted as
Ov2b,

O44ðxÞ ¼ 2

3
O44

V3ðxÞ ð13Þ

where O44
V3ðxÞ is given in Eq. (6). As in the case of the

nucleon, no external momentum is needed in our calcu-
lation, which is advantageous since an external momentum
increases the noise to signal ratio.

III. LATTICE METHODOLOGY

A. Correlation functions

In order to compute hadron matrix elements, we need to
calculate the appropriate three-point function. We first
present the setup for the nucleon matrix elements for
the special case q ¼ 0. The three-point function is then
given by

Gμ1;…;μn
3pt ðΓν;p; ts; tinsÞ
¼

X
xs;xins

e−iðxs−x0Þ·pΓν
βαhJαðxs; tsÞOμ1;…;μn

Γ ðxins; tinsÞ

× J̄βðx0; t0Þi; ð14Þ

where x0, xins, and xs are the source, insertion, and sink
coordinates, respectively. In order to cancel unknown
overlaps of the interpolating field with the nucleon state
as well as the time evolution in Euclidean time, we
construct ratios of the three-point function with the two-
point function, which is given by

G2ptð0; tsÞ ¼
X
xs

Γ4
βαhJαðxs; tsÞJ̄βðx0; t0Þi: ð15Þ

The projection matrices are

Γ4 ¼ 1

4
ð1þ γ4Þ; Γk ¼ Γ4iγ5γk: ð16Þ

We use the proton interpolating operators

JαðxÞ ¼ ϵabcuaαðxÞ½u⊤bðxÞCγ5dcðxÞ� ð17Þ

with a, b, and c denoting color components. We employ
Gaussian smeared quark fields [29,30] to increase the
overlap with the proton state and decrease overlap

with excited states. The smeared interpolating fields are
given by

qasmearðt;xÞ ¼
X
y

Fabðx; y;UðtÞÞqbðt; yÞ;

F ¼ ð1þ aGHÞNG;

Hðx; y;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−ι̂ þU†
i ðx − ι̂Þδx;yþι̂�: ð18Þ

We apply APE-smearing to the gauge fields Uμ entering
the hopping matrix H. The parameters for the Gaussian
smearing aG and NG are optimized using the nucleon
ground state [31] such as to give a root mean square
radius of about 0.5 fm. We use ðNG; aGÞ ¼ ð50; 4Þ
and ðNAPE; aAPEÞ ¼ ð50; 0.5Þ.
For the case of isovector quantities, the so-called dis-

connected contributions arising from the coupling of the
operators to a sea quark shown schematically in the lower
panel of Fig. 1 are zero in the isospin limit up to lattice
cutoff effects. Since we work with an automatic OðaÞ-
improved action, we expect cutoff effects to be small for
our action and lattice spacing. Thus, these correlators can
be calculated by evaluating the connected diagram of Fig. 1
(upper panel) for which we employ sequential inversions
through the sink [32]. For the case of isoscalar quantities,
the disconnected diagrams do not vanish and need to be
computed. The calculation of disconnected contributions
needs special techniques and at least an order of magnitude

FIG. 1 (color online). Connected (upper) and disconnected
(lower) contributions to nucleon three-point functions.

A. ABDEL-REHIM et al. PHYSICAL REVIEW D 92, 114513 (2015)

114513-4



more statistics than the connected ones [28]. In a high-
statistics analysis using Nf ¼ 2þ 1þ 1 twisted mass
fermions at pion mass of 373 MeV, we found that they
contribute about 7% to the isoscalar axial charge, while
they are negligible for the tensor charge, hxiq and hxiΔq
[27]. In this work, we restrict ourselves to the calculation of
the connected contributions.
For evaluation of the connected contribution, we take the

nucleon creation operator at a position x0 ¼ ðx0; t0Þ,
referred to as the source position, which is randomized
over gauge configurations to reduce autocorrelations, and
the annihilation operator at a later time ts, the sink position
xs. The current couples to a quark at an intermediate time
tins, the insertion time. In this calculation, we fix the sink
and source to momentum p ¼ 0, and thus the current
carries zero momentum. We employ the sequential inver-
sion method through the sink requiring one set of sequen-
tial inversions per choice of the sink time slice ts and sink
projector. Thus, within this approach, at a fixed sink-source
time separation, we obtain results for all insertion times as

well as for any operator Ofμ1���μng
Γ . We perform separate

inversions for the four projection matrices Γ4 and Γk given
in Eq. (16).
Using the two- and three-point functions of Eqs. (14) and

(15), we form the ratio

RðΓλ; ts; tinsÞ ¼
G3ptðΓλ; 0; ts; tinsÞ

G2ptð0; tsÞ
ð19Þ

where all time separations are given relative to the source
time t0. For large time separations, the two-point function
in the denominator cancels unknown overlaps of the
nucleon interpolating operators with the nucleon spinors
as well as the Euclidean time evolution, such that the
desired matrix element is isolated. However, in order to
identify when the large time limit sets in, one has to
carefully study the time dependence of the ratio since
excited states contamination can affect the value of the
ratio. For arbitrary times, the contributions from excited
states in the ratio are

RðΓλ; ts; tinsÞ

∝
P

n0;nhJjn0ihnjJ̄ihn0jOΓjnie−En0 ðts−tinsÞe−Enðtins−t0ÞP
njhJjnij2e−Enðts−t0Þ ;

ð20Þ

where jni is the nth eigenstate of the QCD Hamiltonian
with the quantum numbers of the nucleon and En is the
energy of the state in the rest frame of the nucleon.
Denoting with j0i ¼ jNi the nucleon ground state, with
j1i ¼ jN0i and j2i ¼ jN00i the first and second excited
states, and with Δ ¼ EN0 −mN and Δ0 ¼ EN00 − EN0 their
respective energy gaps, the ratio in Eq. (20) yields

RðΓλ; ts; tinsÞ

∝
MþRe−Δðts−tinsÞ þR†e−Δðtins−t0Þ þOðe−Δ0ðtins−t0ÞÞ

1þ jCj2e−Δðts−t0Þ þOðe−Δ0ðts−t0ÞÞ ;

ð21Þ

where M ¼ hNjOΓjNi is the desired matrix element,
C ¼ hJjN0i

hJjNi , and R ¼ ChN0jOΓjNi. If the exponential terms
are small compared toM and to unity, then we have what is
referred to as ground-state dominance, and the ratio yields
the desired ground state matrix element.
The computation of the pion momentum fraction is

carried out along the same lines as for the nucleon. To
extract the desired matrix element hπð0ÞjO44jπð0Þi, we
construct the ratio of the appropriate three-point function
with the pion two-point function with a source at t0 and a
sink at ts:

Rπðts; tinsÞ ¼
G44

3ptð0; ts; tinsÞ
Gπ

2ptðtsÞ
ð22Þ

with

G44
3ptð0; ts; tinsÞ ¼

X
y

hJπ�ðtsÞO44ðtins; yÞJ†π�ðt0Þi; ð23Þ

with JπþðxÞ ¼ d̄ðxÞγ5uðxÞ (Jπ−ðxÞ ¼ ūðxÞγ5dðxÞ) as the
interpolating field of πþ (π−). As in the case of the nucleon,
in the isovector combination up to lattice artifacts, the
disconnected contributions vanish and will thus be
dropped.
The pion two- and three-point correlators, unlike those

of the nucleon, are evaluated by using a stochastic time-
slice source [Z(2)-noise in both real and imaginary parts]
[33–35] for all color, spin, and spatial indices. This method,
which is particularly suited for the pion, was first applied to
moments of parton distribution functions in Ref. [36]. The
quark propagator SbβðyÞ is obtained by solving

X
y

Dab
αβðz; yÞSbβðyÞ ¼ ξðzÞaαδz0;t0 ðsource at t0Þ ð24Þ

for S. ξðzÞaα is a Zð2Þ random source satisfying

hξ�ðxÞaαξðyÞbβir ¼ δxyδabδαβ; hξðxÞaαξðyÞbβir ¼ 0; ð25Þ

where h·ir denotes the average over many random sources.
Using S, we can define a so-called sequential or generalized
propagator Σb

βðyÞ from [37]

X
y

Dab
αβðz; yÞΣb

βðyÞ ¼ γ5SaαðzÞδz0;ts ðsink at tsÞ: ð26Þ

This method represents a generalization of the one-end-
trick [38] to moments of parton distribution functions. Its
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clear advantage is an increased signal to noise ratio at
reduced computational costs at least when it is applied for
meson observables. With a point source, 24 inversions per
gauge configuration are needed: 12 (3 colors × 4 spins) for
the quark propagator and 12 for the generalized propagator.
With the stochastic source discussed above, only two
inversions are needed: one for the quark propagator and
another one for the generalized propagator. For a compari-
son of stochastic vs point sources, we refer to Ref. [36].
The stochastic method described above can be adapted to

work for other mesons. However, for moments of nucleon
parton distribution functions, we found no improvement in
the signal to noise ratio for a comparable computational
effort.
For hxiπ�u−d it is sufficient to fix ts − t0 ¼ T=2, where T is

the temporal extent of the lattice. As in the case of the
nucleon, the value of t0 is chosen randomly on every gauge
configuration in order to reduce autocorrelation.

B. Ensuring ground state dominance

To extract the nucleon matrix element from the ratio
defined in Eq. (19), one needs to make sure that the
contribution of the terms due to the excited states in the
numerator and denominator of Eq. (21), the so-called
contamination due to excited states, is negligible. We will
employ three methods to check for ground state dominance,
as described below.
In the first method, which we will refer to as the plateau

method, one probes the region for which Δðts − tinsÞ ≫ 1
and Δðtins − t0Þ ≫ 1 such that excited state contributions
are much smaller than the contribution of the ground state.
Within this time interval, the ratio becomes time indepen-
dent, and the time range where this happens is referred to as
the plateau region. Fitting the ratio

RðΓλ; ts; tinsÞ!
Δðtins−t0Þ≫1

Δðts−tinsÞ≫1
ΠðΓλÞ ð27Þ

over tins within this plateau region, one obtains the plateau
value, which is the desired matrix element M. To ensure
excited state suppression, one repeats this procedure for
multiple values of ts, checking that the plateau value does
not change. However, the statistical errors grow exponen-
tially with ts, which means that as the sink-source time
separation increases the signal is lost as compared to the
statistical noise making it difficult to detect any time
dependence. Increasing ts therefore requires a correspond-
ing increase in statistics if this check is to be useful [25].
The second approach is to use the summation method

proposed some time ago [39] and recently applied to the
study of the nucleon axial charge [40]. One sums the ratio
over the time of the insertion,

RsumðΓλÞ ¼
Xts−τ

tins¼t0þτ

RðΓλ; ts; tinsÞ; ð28Þ

with τ selected such that contact terms are not included, i.e.,
τ ¼ 1 for local operators and τ ¼ 2 for derivative operators.
The sum over the excited state contributions given in
Eq. (21) is a geometric series and can easily be summed
to yield

RsumðΓλÞ ∝ C0 þ ðts − t0ÞMþOðe−Δðts−t0ÞÞ ð29Þ

with C0 a constant independent of ts. The advantage over the
plateau method is that excited state contamination is
suppressed by a larger factor [Δðts − t0Þ as opposed to
Δðts − tinsÞ or Δðtins − t0Þ]. However, the extraction of M
requires a fit to two parameters, resulting in general in
larger statistical uncertainties. Nevertheless, this method
provides a good consistency check of our results.
A third approach to extract the desired matrix element is

to take into account in the fit the contribution of the first
excited state in Eq. (21). In this case, we simultaneously fit
the two- and three-point correlation functions obtained
from the lattice including the ground state and the first
excited state contributions. This is done by performing a
combined fit to all sink-source separations and to both
correlation functions with tins and ts as independent
variables. Like for the summation method, we exclude
the contact terms, i.e., for tins ∈ ½t0 þ 1; ts − 1� for the
scalar, axial, and tensor charges and tins ∈ ½t0 þ 2; ts − 2�
for the momentum fraction, polarized moment, and tras-
versity moment, which include a derivative. Wewill refer to
this method as the two-state fit method.
In this work, we consider agreement among the above

three methods yielding the same value for M as our
criterion that excited states are sufficiently damped out.
If one has ground state dominance, the nucleon matrix

elements of the scalar, axial, and tensor local operators at
zero momentum transfer and Euclidean time are related to
the ratio as follows:

ΠSðΓ4Þ ¼ gS
2

Πj
AðΓkÞ ¼ −iδjk

gA
2

Πij
T ðΓkÞ ¼ ϵijk

gT
2
: ð30Þ

The corresponding expressions for the vector, axial, and
tensor one-derivative operators are

Π44
V ðΓ4Þ ¼ − 3mN

4
hxiu�d

Πkk
V ðΓ4Þ ¼ mN

4
hxiu�d

Πj4
A ðΓkÞ ¼ −

i
2
δjkmNhxiΔu�Δd

Πμνρ
T ðΓkÞ ¼ iϵμνρk

mN

8
ð2δ4ρ − δ4μ − δ4νÞhxiδu�δd: ð31Þ
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Note that after symmetrization and subtraction of the trace
as indicated in Eq. (5), only one of the two expressions for
hxiu�d is independent.
For the case of the pion, we only present hxiπ�u−d. We

consider the largest sink-source separation possible on each
lattice, namely, ts − t0 ¼ T=2. This is possible for the pion
since its two point function has constant signal to noise
ratio independently of ts − t0. Therefore, we extract the
pion momentum fraction using the plateau method at this
single value of the sink-source separation,

Rπðts; tinsÞ!
Δðtins−t0Þ≫1

Δðts−tinsÞ≫1
Ππ; ð32Þ

where we use Δ to generically denote the energy gap
between the energy of the first excited state and the ground
state of the hadron of interest in its rest frame. Given ground
state dominance, the pion momentum fraction is at zero
momentum transfer and Eucledian time obtained from the
ratio via

Ππ ¼ mπ

2
hxiπ�u−d: ð33Þ

IV. SIMULATION DETAILS

We use the (maximally) twisted mass fermion (TMF)
formulation of lattice QCD [41], which is particularly
suited for hadron structure calculations since it provides
automatic OðaÞ improvement requiring no operator modi-
fication [42–45]. Twisted mass ensembles with two degen-
erate flavors of light sea quarks (Nf ¼ 2) as well as
ensembles including the strange and charm sea quarks
(Nf ¼ 2þ 1þ 1) are produced by the European Twisted
Mass Collaboration (ETMC) and technical details on the
simulations can be found in Refs. [46–48] and [49],
respectively. This work focuses on the analysis of gauge
configurations produced using two degenerate flavors of
twisted mass light sea quarks (Nf ¼ 2) including a clover
term. For the gauge action, we use the Iwasaki action. The
parameters of the four ensembles considered in this work
are given in Table I. More details on the choice of action
and the simulations are given in Refs. [21,50,51].
For the nucleon structure observables, we analyze the

ensemble with aμ ¼ 0.0009. We will refer to this ensemble
as the physical ensemble and speak in what follows of the
physical point. For the case of the pion momentum fraction,
we use all four ensembles of the TMF with a clover term.
Although the observables of interest in this work are

dimensionless and do not depend on the lattice spacing, it is
useful to study their dependence on the pion mass, which is
a dimensionful quantity. In Ref. [21], the lattice spacing for
the new Nf ¼ 2 ensembles with the clover term was
determined using gluonic quantities as well as the pion
and kaon decay constants. Another determination of the

lattice spacing mentioned in Ref. [21] is via the
nucleon mass.
The physical value of the nucleon mass was used as an

input for the determination of the lattice spacings in our
previous analysis of the Nf ¼ 2 [22,52] and Nf ¼ 2þ 1þ
1 [53] twisted mass ensembles. Each set ofNf ¼ 2þ 1þ 1
and Nf ¼ 2 ensembles involved three values of the lattice
spacing. Since those simulations involved larger than
physical light quark masses, a chiral extrapolation was
needed. We used the lowest-order heavy baryon chiral
perturbation theory expression, given by [54]

amN ¼ am0
N − 4ðc1=aÞðamπÞ2 − 3g2A

16πðafπÞ2
ðamπÞ3;

ð34Þ

which is well established within baryon chiral perturbation
theory. m0

N is the value of the nucleon mass in the chiral
limit, and −4c1 gives the σ-term written in units of the
lattice spacing. The fit was constrained to reproduce the
physical nucleon mass, by fixing the value of c1. Including
an a2-term in Eq. (34) had a negligible effect on the fit
showing that indeed cutoff effects are small [53] for lattice
spacings smaller than 0.1 fm. This justified the utilization
of continuum chiral perturbation theory to determine the
three lattice spacings for each Nf ¼ 2 or Nf ¼ 2þ 1þ 1
by simultaneously fitting each set of 17 Nf ¼ 2þ 1þ 1 or
11 Nf ¼ 2 ensembles. The values of the nucleon mass used
are taken from Ref. [53] for the Nf ¼ 2þ 1þ 1 ensembles
and from Ref. [22] for the Nf ¼ 2 ensembles. These values
of the lattice spacings are used to obtain the pion mass for
these ensembles.
For the physical ensemble using the values

amπ ¼ 0.06196ð9Þ amN ¼ 0.440ð4Þ; ð35Þ

and assuming that we are exactly at the physical point, we
find a ¼ 0.0925ð8Þ fm where the average nucleon mass
mN ¼ 0.939 GeV is used as an input. With this lattice
spacing, we find mπ ¼ 0.1323ð12Þ MeV, where the largest

TABLE I. Input parameters of our new lattice ensembles used
in this work. For each ensemble, we give the lattice size, the bare
quark mass (aμ), and the corresponding pion mass (mπ). These
ensembles use the TMF at one value of β with a clover term with
cSW ¼ 1.57551. The lattice spacing given in the table is deter-
mined using the nucleon mass as explained in the text.

β ¼ 2.1, a ¼ 0.093ð1Þ fm, r0=a ¼ 5.32ð5Þ
243 × 48, L ¼ 2.23 fm aμ 0.006 0.003

mπ (GeV) 0.338(9) 0.244(8)
323 × 64, L ¼ 2.97 fm aμ 0.006

mπ (GeV) 0.335(9)
483 × 96, L ¼ 4.46 fm aμ 0.0009

mπ (GeV) 0.1312(13)
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part of the error comes from the error on the lattice spacing.
This is about 5% less than the average physical pion mass.
Using the values of Eq. (35), we find for the ratio
mN=mπ� ¼ 7.10ð6Þ compared to the physical value of
0.939=0.138 ¼ 6.8, which again differs by less than 5%
from the physical value. In order to check what the effect of
a possible small mismatch in the pion mass would be on the
lattice spacing, we use the fit extracted from the Nf ¼
2þ 1þ 1 ensembles to interpolate to the physical value of
pion mass. This is done by making a combined fit of the 17
Nf ¼ 2þ 1þ 1 ensembles with their three lattice spacings
and the lattice spacing for the physical ensemble as well as
m0

N as fit parameters. The fit yields χ2=d:o:f ¼ 1.6 for
d:o:f ¼ 12, which is a reasonable value. We find a value of
a ¼ 0.093ð1Þ fm for the physical ensemble, consistent
with the determination using Eq. (35), while the lattice
spacings for the Nf ¼ 2þ 1þ 1 remain unchanged com-
pared to the values obtained when the physical ensemble
was not included. Using a ¼ 0.093ð1Þ, we find
mπ� ¼ 0.1312ð13Þ GeV, which is consistent with the value
extracted from Eq. (35). Excluding from the fit pion masses
larger than 300 MeV yields consistent results for the lattice
spacings of the Nf ¼ 2þ 1þ 1 ensembles, while it does
not change the value of the lattice spacing at the physical
point. We note that if we fit using the Nf ¼ 2 ensembles
[22,52] instead of the Nf ¼ 2þ 1þ 1 ensembles, the value
of a ¼ 0.093ð1Þ fm is unchanged. This indicates that the
mild interpolation is very robust. In Fig. 2, we show the

ratio of the nucleon to pion mass mN=mπ� , which is a
dimensionless observable determined purely from lattice
quantities. We note that the values of the lattice spacings
affect only the determination of the pion mass plotted as the
x axis. The curve shown in Fig. 2 is the fit to the ratio
performed on the 17 Nf ¼ 2þ 1þ 1 ensembles alone. The
resulting chiral fit using mπ < 500 MeV yields χ2=d:o:f ¼
1.4 and describes very well the data. In the figure, we also
include the values for the ratio for the Nf ¼ 2 ensembles,
which also fall on the same curve. This can be taken as an
indication that indeed strange and charm sea quark effects
are small for the nucleon sector. The consistency of our new
result is demonstrated in Fig. 2 by the fact that the ratio
mN=mπ� for our physical ensemble falls on the curve
determined from fitting theNf ¼ 2þ 1þ 1 alone. Figure 2
provides a nice demonstration of the negligible effect of
lattice artifacts on the mN=mπ� ratio.
We note that the value of the lattice spacing determined

from the nucleon mass analysis is fully consistent with the
one determined from gluonic quantities such as the one
related to the static quark-antiquark potential, r0, and the
ones related to the action density renormalized through the
gradient flow. It is, however, larger by about 1% as
compared to that extracted using fπ [21]. This was also
observed in our analysis of Nf ¼ 2 and Nf ¼ 2þ 1þ 1
TMF ensembles [55]. In Table II, we collect the lattice
spacings for all the TMF ensembles determined using the
nucleon mass and Eq. (34). We take as a systematic error
due to the chiral extrapolation the shift in the mean value
when discarding ensembles with pion mass greater than
300 MeV. For completeness, we also give the values of r0
determined from the nucleon mass in the same way as the
lattice spacings, although they are not needed in this work.
In what follows we use, for the physical ensemble, the

FIG. 2 (color online). The ratio of the nucleon mass to the pion
mass as a function of the pion mass squared. For determining the
pion mass squared, the scale is set using the nucleon mass at
the physical point as described in the text. The fit only used the
Nf ¼ 2þ 1þ 1 ensembles without a clover term (filled circles,
diamonds, and squares). The plot also shows the Nf ¼ 2 TMF
results (open circles, diamonds, and squares) and the Nf ¼ 2
ensemble with a clover term at the physical point (filled triangle).
For the latter action (Nf ¼ 2 with a clover term), we restrict our
analysis of nucleon observables to the ensemble simulated at a
physical value of the pion mass only.

TABLE II. The lattice spacing and value of the scale parameter,
r0 [56], for the Nf ¼ 2 and Nf ¼ 2þ 1þ 1 TMF ensembles as
well as for the new Nf ¼ 2 TMF ensembles with the clover term,
determined using the nucleon mass as explained in the text. The
first error is statistical. The second error is the difference in thevalue
when discarding ensembles with pion mass larger than 300 MeV.

Nf ¼ 2

β 3.9 4.05 4.2
a (fm) 0.088(2)(2) 0.071(2)(1) 0.056(2)(1)
r0 (fm) 0.458(10)(1) 0.467(12)(7) 0.465(13)(7)

Nf ¼ 2þ 1þ 1

β 1.90 1.95 2.1
a (fm) 0.094(1)(2) 0.082(1)(2) 0.065(1)(1)
r0 (fm) 0.501(7)(9) 0.492(6)(3) 0.499(6)(5)

Nf ¼ 2 with cSW ¼ 1.57551

β 2.1
a (fm) 0.093(1)(0)
r0 (fm) 0.493(5)(0)
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value a ¼ 0.093ð1Þ. The lattice spacings given in Table II
are used to convert the pion mass to physical units. No other
physical quantity presented in this work is affected by the
value of the lattice spacings.

V. RESULTS

For the nucleon observables, we analyze 96 gauge field
configurations with 16 randomly chosen positions for each
configuration yielding a total of 1536 measurements. For
the nucleon observables, we use three sink-source separa-
tions for both the plateau and the summation methods,
namely, ts=a ¼ 10, 12, and 14, corresponding to approx-
imately 0.9 fm, 1.1 fm, and 1.3 fm. For all separations, we
have 1536 measurements, by computing the required two-
and three-point correlation functions. The first results on
these quantities were presented in Refs. [57,58]. For the
pion, we use the largest possible time separation,
namely, T=2.

A. Renormalization

We determine the renormalization functions for the
lattice matrix elements nonperturbatively, in the
RI0-MOM scheme employing a momentum source [59].
For the computation of the renormalization functions of the
Nf ¼ 2þ 1þ 1 ensembles, we employed Nf ¼ 4 simu-
lations for at least three different values of the pion mass
taking the chiral limit. A similar analysis was performed for
the Nf ¼ 2 TMF ensembles as well as for our new Nf ¼ 2
TMF ensembles that include the clover term using the
ensembles with aμ ¼ 0.006, 0.003, and 0.0009, the latter
being at the physical pion point. In Refs. [60,61], we
carried out a perturbative subtraction of Oða2Þ terms that
subtracts the leading cutoff effects yielding only a very
weak dependence of the renormalization factors on ðapÞ2
for which the ðapÞ2 → 0 limit can be reliably taken. In this
work, we reduce even further the Oða2Þ contributions by
subtracting lattice artifacts computed perturbatively to one
loop and to all orders in the lattice spacing, Oðg2a∞Þ, so
that we eliminate a large part of the cutoff effects. In Fig. 3,
we show the results on the axial and tensor renormalization
functions after subtraction. As can be seen, lattice artifacts
are practically removed allowing a robust extrapolation to
ðapÞ2 ¼ 0. Due to the good quality of the plateaus after the
subtraction of theOðg2a∞Þ, any choice for the fit within the
nonperturbative region ðapÞ2 ∈ ð2 − 7Þ yields consistent
results. Details on this computation can be found
in Ref. [62].
Our previous chiral extrapolations have shown that for

all renormalization functions except ZP, the pion mass
dependence is very weak. For the physical ensemble, we
compute ZP for three pion masses corresponding to
aμ ¼ 0.006, 0.003, and 0.0009 and performed the pole
subtraction. Our value is given in Table III [62]. The
scheme and scale-dependent renormalization functions are

converted in the MS scheme at a scale of 2 GeV, using the
intermediate renormalization group invariant scheme.
We collect the values of all relevant renormalization

functions in Table III, converting the scale-dependent
renormalization function in the MS scheme at a scale
μ ¼ 2 GeV, which is applicable to all except ZA. The
systematic error is computed by varying the interval for the
continuum extrapolation ðapÞ2 → 0. The values of ZP for
the Nf ¼ 2þ 1þ 1 ensembles are taken from
Refs. [55,63] where the pole subtraction was performed,
while for the new ensembles with the clover term, we use
the result of this paper. The values given in Table III are
used to renormalize the lattice matrix elements studied in
this work. More details are reported in Ref. [62]. For the
Nf ¼ 2 TMF ensembles without the clover term, we do not
calculate the scalar charge and transversity, and therefore
the renormalization functions are not given.
The renormalization functions are given for the twisted

basis. Going from the twisted to the physical basis affects
only the renormalization function for the scalar charge,
which, in the twisted basis, is renormalized with ZP.
Furthermore, since disconnected contributions are
neglected, the isovector and isoscalar are renormalized
using the same renormalization functions. All our results on
the scalar and tensor charges and on the moments of PDFs
are given in the MS scheme at an energy scale of 2 GeV.

B. Nucleon scalar, axial, and tensor charges

Inwhat follows, wewill use the same format to present our
results for a given observable in four plots unless otherwise
mentioned. Our presentation is illustrated in Fig. 4. In the two
upper panels, we present the ratio of Eq. (19), as a function of
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FIG. 3 (color online). Results for the axial (upper) and tensor
(lower) renormalization functions versus the momentum square
in lattice units. The open (black) circles are the unsubtracted
results, while the filled triangles (magenta) show the data after
Oðg2a∞Þ-terms are subtracted. The filled (red) circle at ðapÞ2 ¼
0 is the value extracted by fitting to the plateau region [2-7] the
subtracted data.
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the insertion time (tins), shifted by half the sink-source
separation, i.e., tins − ts=2. This way, the midpoint time of
the ratio coincides for all sink-source separations at
tins−ts=2¼0. Inwhat follows, all times aremeasured relative
to t0, and thus we drop the reference to t0. In the third panel,
we show the summed ratio as a function of the sink time, as
obtained by Eq. (28), and in the bottom panel, we compare
results from the summationmethod and from the two-state fit
method with those obtained by the plateau method.
Let us first discuss the results for the scalar charge shown

in Fig. 4. In the two upper panels, we show the ratio for the
isoscalar and isovector scalar charges, for the three sink-
source separations considered. As explained in the previous
section, when the time separations Δtins ≫ 1 and
Δðts − tinsÞ ≫ 1, the ratio becomes time independent.
Fitting in the plateau region to a constant value, which
we refer to as the plateau value, we obtain gS, as in Eq. (27).
This is shown by the blue band in Fig. 4 for ts ¼ 14a. One
observes an increasing trend for the plateau value and a
clear curvature, especially for the isoscalar, indicating
dependence on excited states. Carrying out a two-state
fit yields the dashed lines. As in the case of the summation
method, the contact points tins ¼ t0 and tins ¼ ts are
omitted. The value for gS obtained by the two-state fit is
given by the dashed line that spans the entire x range of the
figure, with the red band indicating the statistical error,
while the result of the summation method is shown with the
solid line and gray band indicating the error. As can be
seen, within errors, the two-state fit is consistent with the
plateau fit but not with the value from the summation
method, which, however, carries a very large error indicat-
ing the need to increase statistics in order to have a better
assessment of the result of this method. In the third panel of
Fig. 4, we show the summed ratio for the scalar charge as a
function of the sink time, as obtained by Eq. (28), for the
isovector and the isoscalar cases. Fitting to a linear
dependence with respect to ts, one extracts the desired

matrix element from the slope [Eq. (29)], which is the result
shown by the gray band in the two upper graphs of Fig. 4.
The width of the bands is obtained by a jackknife
resampling of the summed ratio to obtain jackknife errors
for the slope,M, and intersection C0 of Eq. (29). The values
for gS from the summation method and those obtained by
the plateau method and the two-state fit method are shown
in the bottom panel of the figure. One clearly observes the
increasing trend of the plateau values with increasing ts=a
as well as the larger values of the summation method shown
by the asterisks. This study shows that both larger sink-
source time separations as well as larger statistics are needed
in order to obtain a meaningful convergence of all methods.
This corroborates our findings of our high-statistics analysis
of the Nf¼2þ1þ1 TMF ensemble with pion mass
373 MeV, referred to as the B55.32 ensemble, where we
showed that ts ∼ 1.5 fm is needed [57]. Our current statistics
do not allow us to use such a large sink-source separation for
the physical ensemble. We note that as a check of the
robustness of the two-state fit, we omit more points besides
the time slice of the source and the sink. In the case of the
scalar charge, taking the fit range tins∈½t0þ2;ts−2� and
tins∈ ½t0þ3;ts−3�, we obtain 2.18(34) and 2.22(33), respec-
tively, for the isovector case and 9.68(26) and 9.75(24) for
the isoscalar case, which are consistent with 2.16(34) and
9.62(27) extracted when just omitting the source and the
sink. Thus, for the scalar charge, the fluctuation of the central
value when changing the fit range is within the statistical
error and of the order of 2%.
In Fig. 5, we show results for the axial charge following

the same notation as that in Fig. 4. For the axial charge, one
observes a milder dependence on ts showing that excited
states contributions are suppressed for this observable.
Because of this weaker dependence, a two-state fit does
not yield a meaningful result for these values of ts=a, at
least within the statistical accuracy of 1536 measurements.
We therefore only show results for the plateau and

TABLE III. Renormalization functions for the ensembles used in this work. They are given in the twisted basis. They are the same in
the physical basis except for ZP, which renormalizes the scalar operator in the physical basis. The renormalization functions for the local
axial-vector, scalar, and tensor operators are given in columns 2, 3, and 4, respectively. The three last columns give the renormalization
functions for the derivative vector, axial vector, and tensoroperators. The first error is statistical, and the second error is systematic.

β ZA ZMS
P ZMS

T ZMS
DV ZMS

DA ZMS
DT

Nf ¼ 2

3.90 0.769(2)(1) 0.758(2)(4) 1.028(2)(6) 1.102(5)(7)
4.05 0.787(1)(1) 0.796(1)(3) 1.080(2)(11) 1.161(4)(13)
4.20 0.791(1)(1) 0.814(1)(3) 1.087(3)(12) 1.164(3)(6)

Nf ¼ 4

1.90 0.7474(6)(4) 0.529(7)(45) 0.7154(6)(6) 1.0268(26)(103) 1.1170(54)(223) 1.0965(90)(278)
1.95 0.7556(5)(85) 0.509(4)(37) 0.7483(6)(94) 1.0624(108)(33) 1.1555(36)(289) 1.1727(121)(73)
2.10 0.7744(7)(31) 0.516(2)(29) 0.7875(9)(15) 1.0991(29)(55) 1.1819(47)(147) 1.1822(59)(118)

Nf ¼ 2þ cSW

2.10 0.7910(4)(5) 0.5012(75)(258) 0.8551(2)(15) 1.1251(27)(17) 1.1357(20)(205) 1.1472(121)(48)
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summation methods. The values from the plateau method
do not vary as a function of ts and are in agreement with the
value extracted from the summation method, within the
large statistical uncertainties of the latter.

Our results for the tensor charge (gT) are shown in Fig. 6.
The dependence of gT on ts is similar to that observed in the
case of gA, and thus a two-state fit fails to accurately resolve
the excited states. Thus, we only compare the results
extracted using the summation and plateau methods in
the bottom panel. As can be seen, gT exhibits no depend-
ence on the sink-source separation within the current
statistical uncertainties, evident by the same values
extracted by fitting to the plateau for the three different
sink-source separations. The value extracted from the
summation method is in agreement but carries a much
larger error and thus does not provide a stringent check.

C. Nucleon momentum fraction, helicity, and
transversity moments

The momentum fraction is shown in Fig. 7 for
the connected isoscalar hxiuþd and isovector hxiu−d

FIG. 4 (color online). Results for the isovector and isoscalar
nucleon scalar charge: In the upper two panels is the ratio from
which gS is extracted as a function of tins − ts=2 for the isoscalar
(upper) and the isovector (lower). The blue bands spanning from
ðtins − ts=2Þ=a ¼ −4 to 4 are fits to the ratio for ts=a ¼ 14. The
dashed lines show the result of the two-state fit method. The
dashed (solid) line spanning the entire x range shows the value
obtained via the two-state (summation) method, with the band
indicating the corresponding statistical error. In the third panel,
the summed ratio is shown for the isovector (filled symbols) and
isoscalar (open symbols) cases. The line shows the result of a
linear fit, while the bands show the statistical error based on the
jackknife error of the fitted parameters. In the bottom panel, we
show the result for gS when using the plateau method with
ts=a ¼ 10, 12, and 14 (squares, circles, and rhombuses, respec-
tively), as well as when using the summation method denoted by
“sm” (asterisks) and the two-state fit “2-st.” (triangles).

FIG. 5 (color online). Results for the axial charge. The notation
is the same as that in Fig. 4.
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combinations. Both isoscalar and isovector channels
exhibit excited-state contributions, especially for the iso-
scalar channel. A two-state fit is performed using
tins ∈ ½t0 þ 2; ts − 2�, which, however, yields too large
errors to include in the plots (see Table IV). Using
tins ∈ ½t0 þ 3; ts − 3�, we find a value of 0.48(19) for the
isoscalar, which is consistent with the value given in
Table IV. For the isovector, both fit ranges yield consistent
results albeit with a large error that does not allow us to
access the sensitivity on the fit range. Furthermore, as can
be seen in the lowest panel of Fig. 7, a decreasing trend is
observed as the sink-source separation is increased from
10a to 14a, showing that elimination of excited-state
effects is responsible for reducing the value of this matrix
element. The summation method yields a value that is even
lower but with a large statistical uncertainty. Like for the
case of the scalar charge, a larger value of ts=a and

increased statistics will be needed to reach consistency
among the various methods with meaningful errors.
The helicity moment hxiΔu�Δd and transversity moment

hxiδu�δd are shown in Figs. 8 and 9. For both isoscalar
observables, a milder dependence on the sink-source
separation is observed. This is also true for the isovector
transversity moment. On the other hand, the isovector
helicity moment shows a decreasing trend similar to that
observed in the case of the isovector momentum fraction.
The value obtained using the summation method is con-
sistent in all cases with the plateau value when ts=a ¼ 14,
albeit with a large statistical uncertainty.
The nucleon results presented in Figs. 4–6 and Figs. 7–9

are summarized in Table V, where we give the values
obtained when using the plateau method and the summa-
tion method. Our results with sink-source time separation
12a, 14a, and the summation method agree within one to

FIG. 6 (color online). Results for the tensor charge. The
notation is the same as that in Fig. 4.

FIG. 7 (color online). Results for the momentum fraction. The
notation is the same as that in Fig. 4.
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two standard deviations. The errors exhibited by the
summation method, however, are still large, which is
explained by the fact that this method relies on a two
parameter fit, contrary to the plateau method which is a fit
to a constant. Nevertheless, within our current statistics, the
summation method can provide an additional check of
excited-state effects.
We observe that the scalar charge gS and momentum

fraction hxiu�d exhibit non-negligible excited state effects
when increasing the sink-source separation. For these
cases, we show in Table IV the results when employing
the two-state fit method. For both observables, the two-state
fit result agrees with the plateau method for ts=a ¼ 14.
In Table VI, we give our results for the isovector

quantities as determined from the plateau method using
ts ∼ 1.3 fm, as well as for the up- and down-quark con-
tributions neglecting disconnected diagrams. We note that

for the up- and down-quark contributions of these quan-
tities, we carry out the complete analysis with jackknife
resampling starting from three-point correlation functions
with only an up- or down-quark insertion. Alternatively,
one can form linear combinations of the final isovector and
isoscalar results of Table V, which will give consistent up-
and down-quark contributions within statistical errors.
Except for the scalar and the momentum fraction, the
results of Table VI are in agreement with the value obtained
using the summation method. For the scalar and the
momentum fraction, they are consistent with the result
extracted using the two-state fit albeit with large statistical
error especially for the momentum fraction. Since for the
scalar there are large differences still between the results at
different values of ts as well as from the value extracted
using the summation method, we do not include a single
value in the table.

FIG. 8 (color online). Results for the nucleon helicity moment.
The notation is the same as that in Fig. 4.

FIG. 9 (color online). Results for the transversity moment. The
notation is the same as that in Fig. 4.
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Our TMF results for the three isovector charges gu−dS ,
gu−dA , and gu−dT and moments hxiu−d, hxiΔu−Δd, and hxiδu−δd
are collected in Figs. 10 and 11. In the Appendix, we give
our updated results for our high-statistics analysis of the
B55.32 ensemble for several sink-source separations as
well as for one Nf ¼ 2þ 1þ 1 ensemble at a finer lattice
spacing [26]. These results use the new renormalization
functions given in Table III. For gu−dA , hxiu−d, and hxiΔu−Δd,
we include results using Nf ¼ 2 at three lattice spacings
and, for one mass, at two different volumes [22,23]. These
are given with the new renormalization functions in the

Appendix. These results show that cutoff effects are small
for lattice spacings smaller than 0.1 fm. Finite volume
effects are not visible within our statistical accuracy when
comparing results for two ensembles simulated at a pion
mass of about 300 MeV and Lmπ ¼ 3.3 and Lmπ ¼ 4.6.
For the physical ensemble, we show results for ts ¼ 12a≃
1.1 fm and ts ¼ 14a≃ 1.3 fm and from using the summa-
tion method. We expect hxiu−d to have moderate excited
states contamination as revealed by our high-statistics
investigation of hxiu−d for the Nf ¼ 2þ 1þ 1 ensemble
with mπ ¼ 373 MeV that showed that its value decreases

TABLE VI. Results for the nucleon axial and tensor charges
and first moments of parton distributions. In the first column, we
give the observable, in the second the isovector combination, and
in the third and fourth the u and d values neglecting disconnected
contributions.

Isovector Up Down

gA 1.242(57) 0.926(47) −0.315ð24Þ
gT 1.027(62) 0.791(53) −0.236ð33Þ
hxiq 0.208(24) 0.373(22) 0.166(13)
hxiΔq 0.229(30) 0.202(26) −0.027ð16Þ
hxiδq 0.306(29) 0.264(25) −0.045ð21Þ

FIG. 10 (color online). Isovector nucleon scalar charge gu−dS
(upper), axial charge gu−dA (middle), and tensor charge gu−dT
(lower) using the values of Table VI. TMF results are shown for i)
Nf ¼ 2, a ¼ 0.089 fm (open green squares), a ¼ 0.07 fm (open
blue diamonds), and a ¼ 0.056 fm (open magenta circles); ii)
Nf ¼ 2þ 1þ 1, a ¼ 0.082 fm (filled green squares), and
a ¼ 0.064 fm (filled blue diamonds); and iii) Nf ¼ 2 TMF
clover-improved a ¼ 0.093 fm (physical ensemble), ts=a ¼ 12
(filled red triangle), ts=a ¼ 14 (open red triangle), and the
summation method (open right triangle). The physical value is
shown with the black asterisk. For the scalar charge, we show
with the open yellow square the value when ts ∼ 1.5 fm.

TABLE IV. Results for the nucleon scalar charge and momen-
tum fraction when employing the two-state fit.

Moment Isovector Isoscalar

gS 2.16(34) 9.62(27)
hxiq 0.19(24) 0.50(20)

TABLE V. Results for the nucleon charges and first moments
computed with the physical ensemble. The first column denotes
the observable, with u − d indicating the isovector contribution
and uþ d the connected isoscalar. Results extracted using the
plateau method are given for ts=a ¼ 10, 12 and ts=a ¼ 14 in the
second, third, and fourth columns. The value extracted using
the summation method is given in the last column. The errors are
obtained using jackknife.

Plateau Summation
Moment 10a 12a 14a method

guþd
S

6.46(27) 7.84(48) 8.93(86) 14.0(2.2)
gu−dS 0.55(18) 1.18(34) 2.20(54) 5.0(1.4)
guþd
A

0.583(14) 0.597(23) 0.611(48) 0.637(92)
gu−dA 1.158(16) 1.162(30) 1.242(57) 1.28(12)
guþd
T 0.596(21) 0.598(31) 0.555(63) 0.57(12)
gu−dT 1.062(21) 1.058(35) 1.027(62) 0.99(13)
hxiuþd 0.645(13) 0.587(18) 0.540(28) 0.389(66)
hxiu−d 0.248(09) 0.218(15) 0.208(24) 0.116(54)
hxiΔuþΔd 0.161(12) 0.143(17) 0.175(30) 0.177(63)
hxiΔu−Δd 0.286(11) 0.270(16) 0.229(33) 0.159(62)
hxiδuþδd 0.195(15) 0.178(21) 0.212(36) 0.204(87)
hxiδu−δd 0.311(13) 0.261(19) 0.306(29) 0.245(65)
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with increasing ts [25]. Our current results at the physical
point with 1536 statistics have much larger errors as
compared to what was achieved in Ref. [25], but there is
a clear decreasing trend as we increase ts. For the scalar
charge, the excited-state contributions are large, as can be
seen both from the results obtained with the Nf¼2þ1þ1
ensemble with 373 MeV where a high-statistics analysis is
carried out but also for the physical ensemble where no
convergence is achieved with the current sink-source
separations and statistics. Although for gu−dA , hxiu−d, and
hxiΔu−Δd our results from the summation method are in
agreement with the experimental values, the errors are still
too large and must be reduced by a factor of at least 2 to
draw a safe conclusion. However, we stress that our value
for gu−dA from the plateau method using ts ∼ 1.3 fm agrees
with the experimental value. To our knowledge, this is the
first computation for which the value of the axial charge is
reproduced from the plateau method, without any chiral
extrapolation.

D. Pion momentum fraction

In this section, we present results on the isovector pion
momentum fraction. Three Nf ¼ 2 TMF ensembles with
the clover term are analyzed with heavier than physical
pion masses, two of which have a spatial lattice size of
2.23 fm and one has a spatial lattice size of 2.98 fm. A
fourth ensemble that includes the clover term is simulated
using the physical value of the pion mass and spatial lattice
extent of 4.46 fm. This is the ensemble used for the nucleon
observables, and the ensemble details can be found in
Table I. The number of measurements, which are well
separated in the number of hybrid Monte Carlo trajectories,
is given in Table VII.
In Fig. 12, we show the ratio Eq. (22) as a function of

tins=a for the physical ensemble. The black horizontal line
represents the value quoted in Table VII. The statistical
accuracy of the pion correlation functions allows for a more
careful assessment of systematic uncertainties in the
plateau fit as compared to the case of the nucleon.
Namely, we obtain the plateau value by performing con-
stant fits to the data with all possible fit ranges with degrees
of freedom larger than 5. For each of these fits, a weight
factor

w ¼
�
1 − 2jp − 0.5j

W

�
2
�
1 − 2jpmπ

− 0.5j
Wmπ

�
2

is computed, where p (pmπ
) is the p-value of the fit and W

(Wmπ
) the statistical error of the fit parameter (of mπ)

determined using 1500 bootstrap samples. The pion mass
itself is also determined for a large number of fit ranges.
The final result is determined as the weighted median over
all combinations of fit ranges. The 68.54% confidence
interval of the weighted distribution is quoted as the
systematic uncertainty.
For the twisted mass value aμ ¼ 0.006, we have two

spatial lattice sizes available, namely, L=a ¼ 24 and
L=a ¼ 32. Within errors, the result for hxiπ�u−d agrees

FIG. 11 (color online). Isovector nucleon momentum fraction
hxiq (upper), helicity hxiΔq (middle), and transversity hxiδq
(lower). The notation is the same as that in Fig. 10.

TABLE VII. Results for the renormalized hxiπ�u−d in MS at
2 GeV for the four TMF clover-improved ensembles considered
in this work. In the first column, we give the bare twisted quark
mass, and in the second column the spacial extent in lattice units.
In the fourth column, we provide the value of hxiπ�u−d of the pion
with its statistical and systematic uncertainty computed as
explained in the text. The last column gives the number of
measurements for each ensemble.

aμ L=a hxiπ�u−d in MS at 2 GeV Nmeas

0.006 24 0.249ð7Þðþ3−3Þ 210
0.006 32 0.259ð4Þðþ1−1Þ 240
0.003 24 0.219ð13Þðþ6−5Þ 276
0.0009 48 0.214ð15Þðþ12−9 Þ 309
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between these twoensembles.We show the hxiπ�u−d results for
L=a ¼ 24 and L=a ¼ 32 in Fig. 13 as a function of tins=a.
We compare our Nf ¼ 2 clover-improved results with

results obtained for Nf ¼ 2 twisted mass ensembles with-
out the clover term published in Ref. [36]. These ensembles
were simulated using β ¼ 3.90 with four values of the bare
quark mass: aμ ¼ 0.004, 0.0064, 0.0085, and 0.0100. The
lattice spacing for these ensembles is 0.089(1) fm, which is
similar to the clover-improved ensembles. For aμ ¼ 0.004,
we have again two spatial lattice extents L=a ¼ 24 and
L=a ¼ 32 available. As for the clover-improved ensembles,
the results for hxiπ�u−d agree between the two volumes.
From the comparison of the different available spatial

lattice sizes, we conclude that within the current statistical
uncertainties we cannot detect significant finite volume
effects for mπL ≤ 3.2 realized for the β ¼ 3.90,
aμ ¼ 0.004, L=a ¼ 24 ensemble. The physical ensemble
has slightly smaller mπL ¼ 2.97, and the clover ensemble
with aμ ¼ 0.003 has mπL ¼ 2.77. Therefore, we cannot
completely exclude finite size effects for these two ensem-
bles. All other ensembles havemπL > 3.2. Note that we are

currently generating a physical ensemble with L=a ¼ 64,
which will allow us to check for finite size effects. We
expect pion observables to be more sensitive to finite size
effects than nucleon observables; having a larger volume
will enable us to confirm this expectation.
The results for the renormalized isovector momentum

fraction of the pion hxiπ�u−d are summarized in Table VII.
The renormalization factors used are given in Table III at
2 GeV in the MS scheme. The results are also displayed in
Fig. 14 as a function of the squared pion mass. In Fig. 14,
one observes that there is agreement between the clover-
improved and non-clover improved ensembles within
errors. Note that systematic uncertainties are not displayed.
In Fig. 14, we compare with the latest phenomenological

value for hxiπ�u−d which can be found in Ref. [64] and reads

hxiπ�u−d ¼ 0.256ð13Þ:

Note that the result given in Ref. [64] is at μ ¼ 5.2 GeV
renormalization scale and we have translated it to μ ¼
2 GeV using three-loop perturbation theory. The phenom-
enological value is compatible with the value of
0.214ð15Þðþ12

−9 Þ computed for the physical ensemble.
The results presented here can be compared to Ref. [8],

where Nf ¼ 2 nonperturbatively clover-improved Wilson
fermions have been used, including two ensembles with
pion mass values around 150 MeV. Two values of the
lattice spacing are investigated, a ¼ 0.06 and a ¼ 0.07 fm,
respectivley. In that reference, a bending of the momentum
fraction values toward small pion mass values is observed,
while the agreement at mπ > 300 MeV to the results
presented here is reasonable.

FIG. 12 (color online). The ratio for hxiπ�u−d using the
aμ ¼ 0.0009 ensemble. We show the weighted median over
the different fit ranges as a solid black line, the statistical error as
the red band, and the systematic errors as the gray band.

FIG. 13 (color online). The ratio for hxiπ�u−d for aμ ¼ 0.006,
comparing results obtained for lattices of two sizes: L ¼ 24a (red
squares) and L ¼ 32a (blue circles).

FIG. 14 (color online). The renormalised momentum fraction
of the pion hxiπ�u−d as a function of the squared pion mass at
renormalization scale μ ¼ 2 GeV in the MS scheme. The results
of this work (red symbols) are shown together with previous
results obtained using Nf ¼ 2 ensembles (green symbols) [36]
compared to the phenomenological value (black star) from
Ref. [64]. Results at two values of the pion mass but different
lattice volumes are shown by the open squares (243 × 48) and
diamonds (323 × 64).
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E. Comparison of nucleon observables
with different fermion actions

In this section, we compare our results on nucleon
observables with other recent results obtained using sim-
ulations with similar parameters.
A number of lattice QCD collaborations are investigating

gA since, as emphasized already, this is considered a
benchmark quantity for lattice QCD. In Fig. 15, we show
results for Nf ¼ 2 [22] and Nf ¼ 2þ 1þ 1 [26] twisted
mass fermions obtained in previous analyses using simu-
lations with pion masses in the range of 450 to 210MeV for
various volumes always satisfying the condition Lmπ > 3.
For Nf ¼ 2 ensembles, three values of the lattice spacing
were analyzed, namely, a ¼ 0.089, 0.07, and 0.056 fm and,
at one pion mass of about 300 MeV, for two different
volumes. As already pointed out, the consistency among
these results indicates small cutoff and finite volume
effects. The Nf ¼ 2 values are consistent with the values
extracted using two Nf ¼ 2þ 1þ 1 ensembles with lattice
spacing a ¼ 0.082 fm and a ¼ 0.064 fm, showing that
there are no visible strange and charm sea quark effects on
these quantities at least to the accuracy we now have. This
allows a comparison with results using different fermion
discretization schemes even before the continuum extrapo-
lation is performed. In Fig. 15, we include results obtained
using clover-improved fermions from two collaborations.
In Ref. [65], results were obtained using Nf ¼ 2 clover
fermions with the smallest pion mass of 150 MeVand three
lattice spacings a ¼ 0.08, 0.07, and 0.06 fm as well as

several volumes. These results are in agreement with
ours. The LHPC analyzed Nf ¼ 2þ 1 tree-level clover-
improved Wilson fermions with 2-HEX stout smeared
gauge links provided by the BMW Collaboration using
the smallest pion mass of 149 MeV at one lattice spacing
a ¼ 0.116 fm [66]. These tend in general to have lower
values. This is particularly severe close to the physical pion
mass. LHPC also computed the axial charge in a mixed
action approach that uses DWF on staggered sea quarks by
LHPC [67] with a ¼ 0.124 fm where high accuracy results
were produced for heavier pion masses. These results are in
good agreement with ours. We note that both TMF and
clover-improved results are extracted using the plateau
method with a sink-source time separation of about 1 to
1.2 fm with the exception of our result for the physical
ensemble where we used time separations of up to 1.3 fm.
In addition, results at two pion masses using a hybrid action
with clover valence on Nf ¼ 2þ 1þ 1 staggered fermions
used a two-state fit [68] and are included here for
comparison. They tend to be higher than other results,
although they are compatible with our Nf ¼ 2þ 1þ 1
value at a pion mass of about 210 MeV, which albeit carries
a large error. The general conclusion is that the lattice
results for pion mass higher than about 300 MeV, which are
more accurate as compared to those at smaller pion masses,
are in agreement. This is an indication that lattice system-
atics are under control in this pion mass range. Results for
pion masses smaller than about 300 MeV, in general, have
larger statistical errors, and agreement among them is
harder to assess. They clearly indicate the need for more
precise values and a reliable assessment of systematic
uncertainties. This is particularly relevant for the results
close to the physical point where we observe a disagree-
ment between clover results from LHPC at a pion mass of
149 MeV and from Ref. [65] at a similar pion mass. This
discrepancy was claimed to be due to excited states, which
were shown to be suppressed with improved smearing in
Ref. [65]. This needs to be further investigated with a
dedicated precision calculation with a complete assessment
of systematic uncertainties. Other results using clover-
improved fermions not shown here are those by the CLS
Collaboration [40], which extracted their values from the
summation method. A complete set of the results on gA can
be found in Ref. [4]. The result of this work is shown with
the open triangle obtained for ts ¼ 1.3 fm. This value is in
agreement with the experimental value with, however,
admittedly a rather large error.
The calculation of the scalar and tensor charges has

received more attention recently due to their relevance for
searches of new scalar and tensor couplings beyond the
familiar weak interactions of the Standard Model in the
decay of ultracold neutrons. We compare our TMF results
in Fig. 16 with those obtained by three groups of which the
results on the nucleon axial charge were also included in
Fig. 15. The first set of results is from Ref. [65] using

FIG. 15 (color online). Results for the nucleon axial charge for
different fermion actions. Twisted mass fermion results are shown
with open green squares for Nf ¼ 2 ensembles [22], with filled
blue squares for Nf ¼ 2þ 1þ 1 [26], and with the open red
triangle for the physical ensemble using the plateau value at
ts=a ¼ 14 (see Table VI). Results are also shown using Nf ¼ 2
clover fermions (filled purple diamonds) [65]; Nf ¼ 2þ 1þ 1
staggered sea and clover valence quarks (filled light blue inverted
triangles) [68]; Nf ¼ 2þ 1 with domain wall fermions on a
staggered sea (filled yellow circles) [67]; and Nf ¼ 2þ 1 clover
(black x symbols) [66].
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Nf ¼ 2 clover fermions at three lattice spacings. The
second set is from the LHPC group which in Ref. [69]
used Nf ¼ 2þ 1 clover with 2-HEX stout smeared gauge
links at lattice spacings a ¼ 0.116 fm and a ¼ 0.09 fm,
Nf ¼ 2þ 1 DWF with a ¼ 0.084 fm, and a hybrid action
of DWF on staggered sea with a ¼ 0.124 fm. Both these
groups used the plateau method and sink-source time
separation within 1 to 1.2 fm. The third set of results is
from Ref. [68] at one lattice spacing for the scalar and from
Ref. [70] at three lattice spacings for the tensor obtained
using a hybrid action of DWF on Nf ¼ 2þ 1þ 1

staggered fermions and employing a two-state fit. For
the case of the scalar charge shown in the upper panel
of Fig. 16, we observe overall a good agreement among all
lattice results obtained with similar sink-source separation.
However, our high-statistics analysis using Nf ¼ 2þ1þ1
TMF at pion mass 373 MeV revealed excited states
contamination, which only becomes negligible when
ts ∼ 1.5 fm, increasing the value of gS. The value extracted
when ts ¼ 1.48 fm is shown in Fig. 16 by the open green
square. A similar analysis for the physical ensemble also
reveals large contributions from excited states for gu−dS .
Comparing results obtained for ts ∼ 1.1 and 1.3 fm, we
confirm an increasing value as we increase ts. However, the
statistical error is large despite the fact that we have 1536
measurements as compared to 1200 used for the ensemble
at mπ ¼ 373 MeV. This demonstrates that obtaining the
same accuracy at the physical point for ts ∼ 1.5 fm, which
may be needed to suppress excited states, requires more
than an order of magnitude increase in statistics.
Results on the isovector tensor charge are compared in

the lower panel of Fig 16. Our TMF results shown in
Fig. 10 show that excited-state contributions are less severe
for gu−dT and that the values at ts=a ¼ 12 and ts=a ¼ 14 are
consistent. Indeed our value at the physical point obtained
using ts ∼ 1.3 fm is in very good agreement with other
lattice results providing a prediction for this important
quantity directly at the physical point.
Recent lattice QCD results have also been obtained for

the isovector momentum fraction and helicity. A compari-
son of our results for hxiu−d and hxiΔu−Δd with other
collaborations is shown in Fig. 17. We only show results
extracted using the plateau method. Most of the analyses
employed a sink-source separation of 1 to 1.2 fm including
our TMF Nf ¼ 2 ensembles. As shown in Ref. [25] where
hxiu−d was computed using our Nf ¼ 2þ 1þ 1 ensemble
at pion mass of 373 MeV and high statistics, excited states
may not be negligible for this observable. Indeed, this is
confirmed by our current analysis for the physical ensemble
where there is a decreasing trend as ts increases. Our value
at the physical point is in agreement with the other lattice
values extracted close to the physical point. These are from
Ref. [72], which is an update of Ref. [73] for mπ ∼
160 MeV and from LHPC at mπ ∼ 150 MeV using Nf ¼
2þ 1 clover fermions with 2-HEX smeared gauge action
[66]. Our value at ts ∼ 1.3 fm is still larger than the
experimental value. We are currently performing a high-
statistics analysis for our physical ensemble using larger
values of ts to investigate contamination due to excited
states, which tend to decrease the value of hxiu−d. For larger
pion masses, we show results using Nf ¼ 2þ 1DWF from
the RBC-UKQCD collaborations [74], from LHPC [67]
using DWF on an Nf ¼ 2þ 1 staggered sea, and from the
QCDSF Collaboration using Nf ¼ 2 clover fermions [75].
Results from LHPC used perturbative renormalization
which could explain the fact that these are in general lower

FIG. 16 (color online). Isovector nucleon scalar charge gu−dS
(upper) and tensor charge gu−dT (lower) vs m2

π . TMF results are
shown for two ensembles of Nf ¼ 2þ 1þ 1 fermions (filled
green square for ts ∼ 1.15 fm, open green square for ts ∼ 1.5 fm,
and filled blue diamond) and for the physical ensemble (filled red
triangle for ts ∼ 1.1 fm and open red triangle for ts ∼ 1.3 fm).
Results are also shown using: clover fermions onNf ¼ 2þ 1þ 1
staggered sea from Refs. [68,71] for gu−dS and from Ref. [70] for
gu−dT (filled light blue downward triangles); Nf ¼ 2þ 1 clover
(black filled triangles and crosses); Nf ¼ 2þ 1 domain wall
fermions (open light blue circles) and hybrid (blue crosses) [69];
Nf ¼ 2 clover fermions for three values of the lattice spacing
(filled magenta, yellow, and light blue circles crosses) [65]. All
results were extracted using the plateau method except those from
Refs. [68,70], which used a two-state fit.
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than other lattice results. For the case of hxiΔu−Δd, the
situation is similar, and our value using the physical
ensemble is still larger than its experimental value. As
for the momentum fraction, there is a decreasing trend as ts
increases. In fact, the summation method yields a value that
is consistent with the experimental value as can be seen in
Fig. 11. However, the error is too large, and our goal in a
future analysis is to reduce it by a factor of 2 so as to
confirm agreement with the experimental value. Resolving
these discrepancies will give more confidence on our
prediction for the transversity moment.

VI. CONCLUSIONS

In this work, we present results on the pion momentum
fraction and key nucleon observables using lattice QCD
simulations at the physical value of the up- and down-
quarks. Our analysis of the isovector pion momentum
fraction uses Nf ¼ 2 ensembles with the clover term
simulated at three different values of the light quark mass.
We find a value of hxiπ�u−d ¼ 0.214ð15Þðþ12−9 Þ in the MS at
2 GeV at the physical point.
For the nucleon system, we compute the three local and

three one-derivative isovector and isoscalar matrix elements
at zero momentum transfer. In our calculation, we analyze
three sink-source time separations, which allows us to
investigate excited-state effects by observing the depend-
ence of the extracted nucleon matrix elements on this
separation. For all observables, we compare the plateau
method with the summation method. In some cases, the
sensitivity on the sink time ts is good enough so that a two-
state fit can also be applied as a third method to detect
excited-state contaminations. Employing these different
methods to ensure that contamination from excited states
is suppressed is crucial in obtaining reliable results.
However, for this study to be meaningful, one needs large
statistics in particular for large sink-source time separations
and for the summation method. For the pion momentum
fraction where statistical errors are smaller, one extracts the
relevant matrix element using the largest possible time
separation ensuring ground-state dominance. Our results
for the nucleon axial charge and isovector pion momentum
fraction are in agreementwith their experimental values, that
constitutes a very important conclusion of this study. Since
the tensor charge is found to behave similarly to the axial
charge as far as ground state dominance is concerned,we can
predict its value at the physical point to be gu−dT ¼ 1.027ð62Þ
in the MS scheme at 2 GeV. Assuming that disconnected
contributions remain as small at the physical point as were
found at a pion mass of 373MeVwhere they were shown to
be negligible [27,28], we can give a direct prediction for the
individual up- and down-quark tensor charges.We find guT ¼
0.791ð53Þ and gdT ¼ −0.236ð33Þ (see Table VI).
Thus, this first lattice study of nucleon and pion structure

at the physical values of the light quark masses is very
promising for future precision calculations of these key
quantities directly at the physical point. Ongoing plans
include an analysis with increased statistics for general
momentum transfer and new Nf ¼ 2þ 1þ 1 simulations
with their mass fixed to physical values, combined with
larger volumes and improved algorithms for noise reduction
such as multiple right-hand-side solvers. After reproduction
of benchmark quantities such as gA for the nucleon and the
pion, lattice QCD is in a position to turn to quantities more
difficult to obtain experimentally such as the scalar and
tensor charges gS and gT . Such charges are of high interest in
phenomenology and experiments since these enter in cou-
plings of protons to supersymmetric candidate particles.

FIG. 17 (color online). Isovector nucleon momentum fraction
hxiu−d and helicity hxiΔu−Δd. Twisted mass fermion results are
shown for Nf ¼ 2 ensembles (open green squares), for two Nf ¼
2þ 1þ 1 ensembles (blue filled square), and for the physical
ensemble with a clover term (open red triangle) taken from
Table VI. Also shown are results from RBC-UKQCD using Nf ¼
2þ 1 DWF (magenta right pointing triangle) [74], from LHPC
using DWF on Nf ¼ 2þ 1 staggered sea (blue crosses) [67], and
QCDSF/UKQCD using Nf ¼ 2 clover fermions (filled magenta
diamond) [75]. For hxiu−d, we also show results from LHPC
using an Nf ¼ 2þ 1 clover with 2-HEX smearing (filled
black triangles) [66] and an Nf ¼ 2 clover (open black circle)
[72]. All values are extracted using the plateau method and
ts ∼ ð1 − 1.2Þ fm, except our result at the physical point for
which ts ∼ 1.3 fm was used. The experimental value for hxiu−d is
taken from Ref. [76] and for hxiΔu−Δd from Ref. [77].
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Their precise determination can therefore be used to exclude
regions in dark matter searches and influence future exper-
imental setups for new physics searches.
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APPENDIX: UPDATE OF RESULTS FROM Nf ¼ 2
AND Nf ¼ 2þ 1þ 1 TMF ENSEMBLES WITH
PION MASSES LARGER THAN PHYSICAL

In this Appendix, we give the ETMC results for the
Nf ¼ 2 and the Nf ¼ 2þ 1þ 1 ensembles published in
Refs. [22,26], respectively. These results are updated
using the new renormalization functions given in
Table III. In Tables VIII and IX, we collect the results

TABLE IX. Updated results for the Nf ¼ 2þ 1þ 1 B55.32 ensemble for the nucleon first moments of parton distributions. For the
isoscalar combination, we give only the connected contribution.

Plateau method Summation Two-state

ts=a: 10 12 14 16 18 method fit

hxiq
Isovector 0.290(4) 0.270(3) 0.252(4) 0.233(9) 0.252(19) 0.223(9) 0.214(13)
Isoscalar 0.720(8) 0.677(5) 0.639(6) 0.607(11) 0.616(21) 0.554(15) 0.558(19)
Stat. 2429 4396 4396 2018 1200

hxiΔq
Isovector 0.328(3) 0.312(3) 0.297(3) 0.298(8) 0.270(8) 0.286(9)
Isoscalar 0.207(3) 0.198(2) 0.189(3) 0.193(8) 0.172(7) 0.184(7)
Stat. 2429 4396 4396 2018

hxiδq
Isovector 0.372(5) 0.349(4) 0.322(5) 0.316(12) 0.283(14) 0.284(17)
Isoscalar 0.254(4) 0.239(4) 0.219(6) 0.215(15) 0.178(14) 0.183(21)
Stat. 2278 4041 4041 1763

TABLE VIII. Updated results for the Nf ¼ 2þ 1þ 1 B55.32 ensemble for the nucleon charges and first moments of parton
distribution functions. For the isoscalar combination, we give only the connected contribution.

Plateau method Summation Two-state

ts=a: 10 12 14 16 18 method fit

gS
Isovector 1.08(3) 1.12(3) 1.16(4) 1.08(10) 1.46(20) 1.19(10) 1.23(10)
Isoscalar 5.07(4) 5.45(4) 5.74(6) 5.95(13) 6.33(28) 6.46(15) 6.81(23)
Stat. 2429 4396 4396 2018 1200

gA
Isovector 1.143(4) 1.152(5) 1.155(8) 1.174(20) 1.184(19)
Isoscalar 0.596(3) 0.591(4) 0.589(7) 0.605(16) 0.583(16)
Stat. 2429 4396 4396 2018

gT
Isovector 1.119(6) 1.087(7) 1.058(11) 1.080(30) 1.023(27) 1.053(21)
Isoscalar 0.680(5) 0.666(6) 0.660(9) 0.663(21) 0.624(22) 0.646(9)
Stat. 2278 4040 4040 1762
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for the B55.32 ensemble for which a high-statistics
analysis is carried out for several sink-source separations.
In Figs. 18 and 19, we show the ratios from which the
isovector and isoscalar connected charges and first
moments of PDFs are extracted. The ratios are computed
for a total of five sink-source time separations spanning a
time range of about 0.8 to 1.5 fm enabling us to apply the
summation method as check for excited states. This high-

statistics analysis allows us to perform a two-state fit for
all quantities except the axial charge where the excited-
state contamination is the mildest. As our final values, we
take the plateau value that is in agreement with the value
extracted from the summation method and two-state fit
when possible. Finally, in Tables X and XI, we give the
results for all our other ensembles where only one sink-
source separation was employed.

FIG. 18 (color online). The ratios from which the isovector charges (left) and the first moments of PDFs (right) are extracted as a
function of the insertion-source time separation for the B55.32 ensemble. The statistics used are given in Tables VIII and IX.
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FIG. 19 (color online). The ratios from which the isoscalar charges (left) and the first moments (right) are extracted as a function of the
insertion-source time separation for the B55.32 ensemble. Only connected contributions are included. The statistics used are given in
Tables VIII and IX.
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