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Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of mπ ∼
450 MeV in three spatial volumes using nf ¼ 2þ 1 flavors of light quarks. At the quark masses employed
in this work, the deuteron binding energy is calculated to be Bd ¼ 14.4þ3.2

−2.6 MeV, while the dineutron is
bound by Bnn ¼ 12.5þ3.0

−5.0 MeV. Over the range of energies that are studied, the S-wave scattering phase
shifts calculated in the 1S0 and 3S1 − 3D1 channels are found to be similar to those in nature, and indicate
repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon
interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of
convergence of the expansion, allowing for constraints to be placed on the inverse scattering lengths and
effective ranges. The extracted phase shifts allow for matching to nuclear effective field theories, from
which low-energy counterterms are extracted and issues of convergence are investigated. As part of the
analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination
of the violation of the Gell-Mann–Okubo mass relation.
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I. INTRODUCTION

Calculating the interactions between nucleons and the
properties of multinucleon systems directly from quantum
chromodynamics (QCD) will be an important milestone
in the development of nuclear physics. While lattice QCD
(LQCD) calculations of simple hadronic systems are now
being performed at the physical light-quark masses and the
effects of quantum electrodynamics (QED) are beginning
to be included (see, e.g. Ref. [1]), such calculations have
not yet been presented for more complex systems such as
nuclei. However, remarkable progress has been made in the
ongoing efforts to calculate the lowest-lying energy levels
of the simplest nuclei and hypernuclei (with A ≤ 4) and the
nucleon-nucleon scattering S-matrix elements [2–22]. The
magnetic moments and polarizabilities of the light nuclei
have recently been calculated [23,24], and by determining
the short-range interaction between nucleons and the
electromagnetic field, the first LQCD calculation of the
radiative capture process np → dγ [25] was recently
performed and the experimentally measured cross section
was recovered within the uncertainties of the calculation
after extrapolation to the physical quark masses. These

calculations represent crucial steps toward verifying LQCD
as a useful technique with which to calculate the properties
of nuclear systems. However, it will take significant
computational resources to reduce the associated uncer-
tainties below those of experiment. Near term advances
in the field will come from calculations of quantities that
are challenging or impossible to access experimentally,
such as multinucleon forces, hyperon-nucleon interactions,
rare weak matrix elements and exotic nuclei, such as
hypernuclei and charmed nuclei, that are of modest
computational complexity. Furthermore, performing calcu-
lations specifically to match LQCD results to low-energy
effective field theories (EFTs) will provide a means to make
first predictions at the physical quark masses and to make
predictions of quantities beyond those calculated with
LQCD. Such calculations are now under way, using the
results of our previous works and those of Yamazaki et al.,
with the first efforts described, for example, in Ref. [26]
for hyperon-nucleon interactions and Ref. [27,28] for
nucleon-nucleon interactions and light nuclei.
In this work, we present the results of LQCD calcu-

lations of two nucleon systems performed at a pion mass
of mπ ∼ 450 MeV in three lattice volumes of spatial extent
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L ¼ 2.8 fm, 3.7 fm and 5.6 fm at a lattice spacing of
b ∼ 0.12 fm. As only one lattice spacing has been
employed, extrapolations of the results to the continuum
limit have not been performed, although the uncertainties
that we finally present encompass the expected effects of
these extrapolations. In Sec. II, we introduce the LQCD
methods that are used to determine correlation functions
and Sec. III reports the results of precision studies of the
single hadron systems. Section IV explores the 3S1 − 3D1

coupled-channel systems in detail, while the 1S0 channel is
discussed in Sec. V. In Sec. VI, these channels are further
investigated in the context of nucleon-nucleon effective
field theory (NNEFT) before the conclusions of the study
are presented in Sec. VII.

II. METHODOLOGY

A. Calculational details

LQCD calculations were performed on three ensembles
of nf ¼ 2þ 1 isotropic gauge-field configurations with
L ¼ 24, 32 and 48 lattice sites in each spatial direction,
T ¼ 64, 96, 96 sites in the temporal direction, respectively,
and with a lattice spacing of b ¼ 0.1167ð16Þ fm [29]. The
Lüscher-Weisz gauge action [30] was used with a clover-
improved quark action [31] with one level of stout smearing
(ρ ¼ 0.125) [32]. The clover coefficient was set equal to its
tree-level tadpole-improved value, a value that is consistent
with an independent numerical study of the nonperturbative
cSW in the Schrödinger functional scheme [33–35], reduc-
ing discretization errors from OðbÞ to Oðb2Þ. The L ¼ 24,
32 and 48 ensembles consist of 3.4 × 104, 2.2 × 104 and
1.5 × 104 hybrid Monte Carlo evolution trajectories,
respectively. Calculations were performed on gauge-field
configurations taken at uniform intervals from these tra-
jectories, see Table I. The strange-quark mass was tuned
to that of the physical strange quark, while the selected
light-quark mass gave rise to a pion of mass mπ ¼
449.9ð0.3Þð0.3Þð4.6Þ MeV and a kaon of mass
mK ¼ 595.9ð0.2Þð0.2Þð6.1Þ MeV. Many details of the
current study mirror those of our previous work at the
SU(3) symmetric point, which can be found in
Refs. [14,17]. In each run on a given configuration, 48
quark propagators were generated from uniformly distrib-
uted Gaussian-smeared sources on a cubic grid with an
origin randomly selected within the volume. The param-
eters of the Gaussian smearing are the same as those used in

Refs. [14,17]. Multiple runs were performed to increase
statistical precision and the total number of measurements
is recorded in Table I. Specifics of the ensembles and the
number of sources used in each ensemble can also be found
in Table I. Quark propagators were computed using the
multigrid algorithm [36] or using graphics processing units
[37,38] with a tolerance of 10−12 in double precision. In the
measurements performed on the L ¼ 24 and 32 ensembles,
the quark propagators, either unsmeared or smeared at the
sink using the same parameters as used at the source,
provided two sets of correlation functions for each combi-
nation of source and sink interpolating fields, labeled as
SP and SS, respectively. In contrast, for the measurements
performed on the L ¼ 48 ensemble only SP correlation
functions were produced. The propagators were contracted
into baryon blocks that were projected to a well-defined
momentum at the sink, that were then used to form the one
and two nucleon correlation functions.1 The blocks are of
the form

Bijk
N ðp; t; x0Þ ¼

X
x

eip·xSðf1Þ;i
0

i ðx; t; x0ÞSðf2Þ;j
0

j ðx; t; x0Þ

× Sðf3Þ;k
0

k ðx; t; x0ÞbðNÞ
i0j0k0 ; ð1Þ

where SðfÞ is a quark propagator of flavor f ¼ u, d, and
the indices are combined spin-color indices running over
i ¼ 1;…; NcNs, where Nc ¼ 3 is the number of colors and
Ns ¼ 4 is the number of spin components. The choice of
the fi and the tensor bðNÞ depend on the spin and flavor of
the nucleon under consideration, and the local interpolating
fields constructed in Ref. [39], restricted to those that
contain only upper-spin components (in the Dirac spinor
basis) are used. This choice results in the simplest inter-
polating fields that also have good overlap with the nucleon
ground states (from localized sources). Blocks are con-
structed for all lattice momenta jpj2 < 5 allowing for the
study of two nucleon systems with zero or nonzero total
momentum. In the production on the L ¼ 32 ensemble,

TABLE I. Parameters of the ensembles of gauge-field configurations and of the measurements used in this work. The lattices have
dimension L3 × T, a lattice spacing b and a bare quark mass bmq (in lattice units). Nsrc light-quark sources are used (as described in the
text) to perform measurements on Ncfg configurations in each ensemble.

Label L=b T=b β bml bms b [fm] L [fm] T [fm] mπL mπT Ncfg Nsrc

A 24 64 6.1 −0.2800 −0.2450 0.1167(16) 2.801(29) 7.469(77) 6.390 17.04 4407 1.16 × 106

B 32 96 6.1 −0.2800 −0.2450 0.1167(16) 3.734(38) 11.20(12) 8.514 25.54 4142 3.95 × 105

C 48 96 6.1 −0.2800 −0.2450 0.1167(16) 5.602(58) 11.20(12) 12.78 25.49 1047 6.8 × 104

1As such, the same Gaussian-smeared quark propagators were
used to generate the single-nucleon and two nucleon correlation
functions. We have employed a small number of different source
and sink structures, as described in Ref. [39], and have presented
optimal combinations for each hadron. The ground-state energies
extracted from the correlation functions for a given species of
hadron are consistent within uncertainties.
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correlation functions were produced for all of the spin states
associated with each nuclear species. However, only one
spin state per species was calculated on the L ¼ 24 and
L ¼ 48 ensembles.

B. Robust estimators: The mean with jacknife and
the Hodges-Lehmann estimator with bootstrap

The correlation functions are estimated from calculations
performed from many source locations on many gauge-
field configurations. On any given configuration, these
results are correlated and, because they become transla-
tionally invariant after averaging, they can be blocked
together to generate one representative correlation function
for each configuration. More generally, because of the
correlation between nearby configurations produced in a
Markov chain, the results obtained over multiple gauge-
field configurations are blocked together to produce one
representative correlation function from any particular
subsequence of the Markov chain. In this work, there
are a large number of independent representative correla-
tion functions which, by the central limit theorem, tend to
possess a Gaussian-distributed mean. As computational
resources are finite, only a finite number of calculations of
each correlation function can be performed. The underlying
distributions of the nuclear correlation functions are non-
Gaussian with extended tails, and therefore outliers are
typically present in any sample which lead to slow
convergence of the mean. This can then lead to significant
fluctuations in estimates of correlation functions when
resampling methods, such as bootstrap and jackknife, are
employed using the mean to estimate average values (for a
discussion of the “noise” associated with these and other
such calculations, see Refs. [40–42]). Dealing with outliers
of distributions is required in many areas beyond LQCD,
and there is extensive literature on robust estimators that
are resilient to the presence of outliers, such as the median
or the Hodges-Lehmann (HL) estimator [43]. The vacuum
expectation values of interest in quantum field theory are
defined by the mean value of a (generally non-Gaussian)
distribution. Nevertheless, with sufficient blocking, the
mean of the distribution will be Gaussian distributed, for
which the mean, median, mode and HL estimator coincide.
It therefore makes sense to consider such robust estimators
for large sets of blocked LQCD correlation functions.
While the median of a sample fxig is well known, the

HL estimator is less so. It is a robust and unbiased estimator
of the median of a sample, and is defined as [43]

HLðfxigÞ ¼ Median½fðxi þ xjÞ=2g�; ð2Þ

where the sample is summed over all 1 < i, j < N, where
N is the sample size. The uncertainty associated with the
HL estimator is derived from the median absolute deviation
(MAD), defined as

MADðfxigÞ ¼ Median½fjxi −Median½fxig�jg�: ð3Þ

For a Gaussian-distributed sample, 1σ ¼ 1.4826 MADs.
The median, HL estimator and other similar estimators
cannot be computed straightforwardly under jackknife,
and instead such analyses are performed with bootstrap
resampling.
In the present work, the correlation functions, and their

ratios, are analyzed using both the mean under jackknife
and HL under bootstrap, from ∼100 representative corre-
lation functions constructed by blocking the full set of
correlation functions. In almost all cases, the HL with
bootstrap gives rise to smaller statistical fluctuations over
the resampled ensembles and, consequently, to smaller
uncertainties in estimates of energies, as seen in our
previous investigation into robust estimators [44]. It is
found that outlying blocked correlation functions cause a
significant enlargement of the estimated variance of the
mean, while the robust HL estimator is insensitive
to them.

III. SINGLE MESONS AND BARYONS

Precision measurements of the single hadron masses,
their dispersion relations and their volume dependence are
essential for a complete analysis of multinucleon systems,
in particular for a complete quantification of the uncer-
tainties in binding energies and S-matrix elements. Single
hadron correlation functions for the π�, ρ�, K�, K�;�, the
octet baryons and the decuplet baryons were calculated in
each of the three lattice volumes at six different momenta
(in each volume), from which ground-state energies for
each momentum were extracted. The hadron energies were
extracted from plateaus in the effective mass plots (EMPs)
derived from linear combinations (in the L ¼ 24 and 32
ensembles) of the SP and SS correlation functions calcu-
lated at each lattice momentum. The EMPs associated with
the π� and K� are shown in Figs. 1 and 2, respectively,
while the EMPs for the octet baryons are shown in
Figs. 3, 4, 5 and 6.
It is clear from the EMPs that extended ground-state

plateaus exists for all hadrons at all momenta, and as such
relatively precise hadron masses and dispersion relations
can be determined. As only SP correlation functions were
calculated for the L ¼ 48 ensemble, the ground-state
plateaus set in at larger times for each hadron in this
ensemble than in the L ¼ 24 or L ¼ 32 ensembles. A
correlated χ2-minimization fit of the plateau region in
combinations of correlation function to a constant energy
was performed over a range of fit intervals to determine the
energy, its statistical uncertainty and the systematic uncer-
tainty due to the selection of the fitting range. The energies
of the pseudoscalar mesons and octet baryons are shown in
Tables II and III, respectively.
The energies determined at zero momentum are used

to extrapolate the hadron masses to infinite volume, and
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are combined with the other energies to determine their
dispersion relations. With the large values of mπL in the
ensembles of gauge configurations, it is sufficient to use
the leading-order (LO) finite-volume (FV) corrections to

the hadron masses to extrapolate from the volumes of the
calculations to infinite volume. The LO modifications to
the pseudoscalar masses, mM, and baryon masses, MB, are
given by
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FIG. 1 (color online). Cosh EMPs for the π� in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.
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FIG. 2 (color online). Cosh EMPs for the K� in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.
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FIG. 3 (color online). EMPs for the nucleon in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.
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FIG. 4 (color online). EMPs for the Λ in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.
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mðVÞ
M ðmπLÞ ¼ mð∞Þ

M þ cM
e−mπL

ðmπLÞ3=2
þ � � �

MðVÞ
B ðmπLÞ ¼ Mð∞Þ

B þ cB
e−mπL

mπL
þ � � � ; ð4Þ

where the forms are those of p-regime chiral perturbation
theory (χPT) and heavy-baryon χPT [45]. The infinite-
volume masses, mð∞Þ

M and Mð∞Þ
B , and the coefficients of the

LO volume dependence, cM and cB, are quantities deter-
mined by fits to the LQCD calculations, and will, in
general, be different for each hadron.
The zero-momentum energies of the pseudoscalar mes-

ons and their infinite-volume extrapolation are given in

Table II and shown in Fig. 7. The energies of both mesons
are found to be independent of the lattice volume within the
uncertainties of the calculations. Despite the larger number
of correlation functions in the L ¼ 24 ensemble, the
uncertainties in the meson masses are larger than those
extracted from the L ¼ 32 ensemble. The zero-momentum
energies of the octet baryons and their infinite-volume
extrapolation are given in Table III and shown in Fig. 8. As
with the mesons, there is no statistically significant volume
dependence observed for any of the octet-baryon masses.
Two-parameter χ2-minimization fits of the form given in
Eq. (4) were performed to the volume dependence of each
hadron to extract its infinite-volume mass. Because of the
negligible volume dependence in the LQCD results, limited

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
(l

.u
.)

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
( l

.u
.)

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
(l

.u
.)

FIG. 5 (color online). EMPs for the Σ in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.
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FIG. 6 (color online). EMPs for the Ξ in the L ¼ 24 (left panel), L ¼ 32 (center panel), L ¼ 48 (right panel) lattice volumes,
respectively. In ascending order, the momenta are P ¼ 2πn=L with jnj2 ¼ 0, 1, 2, 3, 4, 5.

TABLE II. The pion and kaon energies (l.u.) as a function of momentum (l.u.), jPj ¼ ð2πL Þjnj, calculated on each ensemble of gauge-
field configurations. The infinite-volume meson masses, determined by fitting expressions of the form in Eq. (4), are also given. The first
uncertainty associated with each extraction is statistical and the second is the fitting systematic. In the case of the extrapolated values, the
systematic uncertainty also contains the estimated uncertainty due to the extrapolation (which is small in both cases).

Meson Ensemble jnj ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2 jnj2 ¼ 3 jnj2 ¼ 4 jnj2 ¼ 5

π�
243 × 64 0.26626(36)(14) 0.37184(28)(34) 0.45341(30)(45) 0.5204(07)(13) 0.5812(10)(17) 0.6329(09)(12)
323 × 96 0.26607(23)(09) 0.33006(20)(14) 0.38330(21)(16) 0.43042(26)(28) 0.47156(43)(93) 0.5093(05)(12)
483 × 96 0.26607(17)(11) 0.29624(14)(05) 0.32365(13)(10) 0.34895(16)(10) 0.37221(22)(18) 0.39404(31)(35)

L ¼ ∞ 0.26606(14)(08)

K�
243 × 64 0.35239(30)(16) 0.43749(24)(25) 0.50810(22)(25) 0.56947(35)(50) 0.6224(07)(13) 0.67109(52)(55)
323 × 96 0.35248(18)(08) 0.40259(16)(17) 0.44725(17)(09) 0.48782(24)(49) 0.52357(45)(60) 0.55727(46)(88)
483 × 96 0.35236(16)(25) 0.37559(13)(06) 0.39744(13)(06) 0.41814(13)(06) 0.43760(17)(05) 0.45628(21)(09)

L ¼ ∞ 0.35240(11)(03)
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constraints can be placed on the cM;B coefficients. In
addition to the π�, K� and octet baryons, analogous
extrapolations were performed with the results obtained
for the ρ�, K�� and decuplet baryons, the combined results
of which are shown in Table IV (in both l.u. and MeV).
Deviations of the single hadron dispersion relations from

that of special relativity lead to modifications to Lüscher’s
quantization conditions (QCs) in two-body systems. To
address this, the dispersion relations have been precisely
determined, and the deviations from special relativity are
propagated through the extraction of S-matrix elements
using the QCs. In each of the ensembles, single hadron

correlation functions were calculated for each of the
hadrons of interest with momenta jpj ≤ ffiffiffi

5
p ð2π=LÞ, the

results of which are given in Tables II and III. Energy-
momentum relations that are fit to the results obtained for
each hadron, h, are of the form

E2
h ¼ M2

h þ v2hjpj2 þ ηhðjpj2Þ2; ð5Þ

where the hadron speed of light, vh, and the higher-order
deviation from special relativity, parametrized by ηh, are
determined by fits to the results of the LQCD calculations.
With this parametrization, the vh’s are consistent with unity

FIG. 7 (color online). The volume dependence of the πþ (left panel) and K� (right panel) masses. Energies (l.u.) in the L ¼ 24, 32 and
48 lattice volumes are shown as the blue, yellow and red points, respectively, while the results of fits to these results of the form given in
Eq. (4) are shown by the shaded regions with the inner (outer) band denoting the statistical (statistical and systematic combined in
quadrature) uncertainties.

TABLE III. The baryon energies (l.u.) as a function of momentum (l.u.), jPj ¼ ð2πL Þjnj, calculated on each ensemble of gauge-field
configurations. The infinite-volume masses, determined by fitting the expression in Eq. (4), are also given. The first uncertainty is
statistical and the second is the fitting systematic. In the case of the extrapolated values, the systematic uncertainty also contains the
estimated uncertainty due to the extrapolation (which is small in all cases).

Baryon Ensemble jnj ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2 jnj2 ¼ 3 jnj2 ¼ 4 jnj2 ¼ 5

N
243 × 64 0.7251(04)(11) 0.7699(10(13) 0.8108(10)(13) 0.8497(13)(21) 0.8944(16)(23) 0.9311(17)(23)
323 × 96 0.72546(47)(31) 0.75160(60)(47) 0.77657(75)(89) 0.80098(62)(81) 0.8238(07)(11) 0.8467(07)(10)
483 × 96 0.7245(10)(13) 0.7359(21)(34) 0.7471(23)(35) 0.7556(20)(36) 0.7661(21)(40) 0.7771(22)(42)

L ¼ ∞ 0.72524(46)(35)

Λ
243 × 64 0.77609(42)(66) 0.8165(14)(18) 0.8533(14)(21) 0.8918(23)(34) 0.9336(14)(22) 0.9709(12)(16)
323 × 96 0.77633(45)(48) 0.80059(60)(48) 0.82435(75)(51) 0.84687(78)(54) 0.8680(10(14) 0.8900(08)(10)
483 × 96 0.77650(94)(80) 0.7858(14)(20) 0.7963(14)(21) 0.8066(15)(23) 0.8166(16)(27) 0.8268(16)(29)

L ¼ ∞ 0.77638(42)(48)

Σ
243 × 64 0.79520(70)(65) 0.83608(73)(62) 0.87550(75)(87) 0.9147(07)(13) 0.9485(07)(10) 0.9855(10)(24)
323 × 96 0.79634(31)(49) 0.82033(60)(61) 0.84320(63)(75) 0.86502(71)(51) 0.88575(60)(57) 0.90755(65)(63)
483 × 96 0.7958(12)(13) 0.8050(14)(23) 0.8152(15)(24) 0.8253(16)(26) 0.8351(16)(28) 0.8451(17)(30)

L ¼ ∞ 0.79638(33)(54)

Ξ
243 × 64 0.83646(63)(49) 0.87594(60)(58) 0.91318(58)(54) 0.9487(06)(10) 0.9828(06)(11) 1.01668(60)(95)
323 × 96 0.83715(53)(58) 0.85886(49)(59) 0.88044(50)(57) 0.90201(51)(36) 0.92261(62)(89) 0.94276(66)(89)
483 × 96 0.83643(68)(72) 0.8460(11)(10) 0.8557(12)(11) 0.8652(12)(13) 0.8744(13)(14) 0.8837(14)(17)

L ¼ ∞ 0.83690(45)(50)
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and the ηh’s are consistent with zero (for all hadrons). There
is a Lorentz-breaking term that could be considered at this
order in a momentum expansion,

P
jp

4
j , but this is also

found to be consistent with zero. The energies of the π�,
K� and octet baryons as a function of momentum are
given in Tables II and III and shown in Figs. 9 and 10.
χ2-minimization fits to the energy-momentum dispersion
relation are performed to extract the speed of light for each
hadron, the results of which are shown in Table V. In the
low-energy regime relevant to the two nucleon systems, the
dispersion relation of special relativity is found to hold at
the ∼1% level.

A. The Gell-Mann–Okubo mass relation

Given the precise determinations of the single hadron
spectrum, it is important to test relations between baryon
masses that are predicted to hold in particular limits of
QCD. The Gell-Mann–Okubo mass relation [46,47] arises
from SU(3) flavor symmetry and its violation, quantified by

TGMO ¼ MΛ þ 1

3
MΣ −

2

3
MN −

2

3
MΞ; ð6Þ

results from SU(3) breaking transforming in the 27-plet
irreducible representation (irrep) of flavor SU(3) which can

FIG. 8 (color online). The volume dependence of theN, Λ, Σ and Ξmasses. Energies (l.u.) in the L ¼ 24, 32 and 48 lattice volumes are
shown as the blue, yellow and red points, respectively, while fits to these results are shown by the gray, shaded regions with the inner
(outer) band denoting the statistical (statistical and systematic combined in quadrature) uncertainties.

TABLE IV. The infinite-volume hadron masses obtained by extrapolating zero-momentum ground-state energies
with the volume dependence given in Eq. (4). The first and second uncertainties are the statistical and systematic,
respectively, while the third for values in units of MeV results from the uncertainty in the scale setting.

Hadron Mass (l.u.) Mass (MeV) Hadron Mass (l.u.) Mass (MeV)

π� 0.26614(15)(15) 449.9(0.3)(0.3)(4.6) K� 0.35241(12)(11) 595.9(0.2)(0.2)(6.1)
ρ� 0.5248(14)(15) 887.3(2.4)(2.5)(9.1) K�� 0.56923(89)(51) 962.4(1.5)(0.9)(9.9)
N 0.72524(46)(35) 1226(01)(01)(12) Λ 0.77638(42)(48) 1312(01)(01)(13)
Σ 0.79638(33)(54) 1346(01)(01)(14) Ξ 0.83690(45)(50) 1415(01)(01)(15)
Δ 0.8791(14)(17) 1486(02)(03)(15) Σ� 0.9211(17)(19) 1557(03)(03)(16)
Ξ� 0.9637(09)(17) 1629(02)(03)(17) Ω 1.0059(06)(12) 1700(01)(02)(17)
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only arise from multiple insertions of the light-quark mass
matrix or from nonanalytic meson-mass dependence
induced by loops in χPT. Furthermore, it has been shown
that TGMO vanishes in the large-Nc limit as 1=Nc [48]. In a
previous work [49], we performed the first LQCD deter-
mination of this quantity, after which more precise LQCD
determinations [50] were performed. In this work, by
far the most precise determination of TGMO was obtained
from the L ¼ 32 ensemble, where we find TGMO ¼
þ0.000546ð51Þð81Þ l:u: ¼ þ0.92ð09Þð14Þð01Þ MeV
[compared with TGMO¼þ0.00056ð19Þð38Þl:u:¼þ0.96ð33Þ

ð64Þð01ÞMeV and TGMO ¼ þ0.00104ð27Þð29Þ l:u: ¼
þ1.76ð46Þð49Þð02Þ MeV, from the L ¼ 24 and 48 ensem-
bles, respectively]. It is conventional to form the dimension-
less quantity δGMO ¼ TGMO=M0, where M0 is the centroid
of the octet-baryon masses. In the present calculations,
the centroid is found to be M0 ¼ 0.78658ð51Þð36Þ l:u: ¼
1329ð01Þð01Þð14Þ MeV, from which δGMO ¼
0.00069ð06Þð10Þ. This value is consistent with our previ-
ously published result close to this pion mass and is also
consistent with other subsequent determinations [50], but far
more precise. However, as the present calculations have been

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

(2 b/L)
2

n2

E
2

(l
.u

)2

L=48
L=32
L=24

0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

(2 b/L)
2

n2

E
K

2
(l

.u
)2

L=48
L=32
L=24

FIG. 9 (color online). Dispersion relations of the π�, K�. The results in the L ¼ 24, 32 and 48 lattice volumes are shown as the blue,
yellow and red points, respectively, while fits to these results are shown by the gray curves.
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performed at only one lattice spacing, there is a systematic
uncertainty associated with extrapolating to the continuum
that is not directly quantified, but which we have estimated
to be small. It is worth noting that the experimental value,
Texpt
GMO ¼ þ8.76ð08Þ MeV, is an order of magnitude larger

than the value we have determined at this heavier pion mass.

IV. THE 3S1 − 3D1 COUPLED CHANNELS
AND THE DEUTERON

The phenomenology of the 3S1 − 3D1 coupled J ¼ 1
channels in finite volumes has been explored recently using
the experimentally constrained phase shifts and mixing
angles in an effort to understand what might be expected in
future LQCD calculations [51]. One goal of that study was
to estimate the lattice volumes and identify the correlation
functions required to extract the phase shifts and mixing
parameter describing these channels in infinite volume. It
was found to be convenient in those FV studies [51] to
use the Blatt-Biedenharn [52] parametrization of the 2 × 2
S-matrix (below the inelastic threshold),

SðJ¼1Þ ¼
�
cos ϵ1 − sin ϵ1
sin ϵ1 cos ϵ1

��
e2iδ1α 0

0 e2iδ1β

�

×

�
cos ϵ1 sin ϵ1
− sin ϵ1 cos ϵ1

�
; ð7Þ

from which the QCs associated with these channels can be
determined. For the two nucleon system at rest in a cubic
volume, embedded in the even-parity T1 irrep of the cubic
group, the QC in the limit of vanishing δ1β, D-waves and
higher phase shifts becomes [51]

k�T1
cotδ1αðk�T1

Þ ¼ 4πcð0;0;0Þ00 ðk�T1
;LÞ; ð8Þ

where k�T1
is the magnitude of the momentum in the

center-of-momentum (CoM) frame, and the function
cð0;0;0Þ00 ðk�T1

;LÞ is proportional to the Lüscher Z00 function,
as given in Refs. [53,54]. The phase shift δ1α is evaluated at
k�T1

. The three jz substates are degenerate and their energies
are insensitive to the mixing parameter ϵ1.
In contrast, for the two nucleon system carrying one unit

of lattice momentum along the z axis, Ptot: ¼ 2π
L d with

d ¼ ð0; 0; 1Þ, the three substates are embedded into two
distinct even-parity irreps of the cubic group—the one-
dimensional A2 representation and the two-dimensional E

representation, containing the jz ¼ 0 and jz ¼ �1 states,
respectively. In the same limit as taken to derive Eq. (8), the
QCs for these two irreps are [51]

k�A2
cotδ1αðk�A2

Þ ¼ 4πcð0;0;1Þ00 ðk�A2
;LÞ

−
1ffiffiffi
5

p 4π

k�2A2

cð0;0;1Þ20 ðk�A2
;LÞsϵ1ðk�A2

Þ;

k�Ecotδ1αðk�EÞ ¼ 4πcð0;0;1Þ00 ðk�E;LÞ

þ 1

2
ffiffiffi
5

p 4π

k�2E
cð0;0;1Þ20 ðk�E;LÞsϵ1ðk�EÞ; ð9Þ

where

sϵ1ðk�Þ ¼
ffiffiffi
2

p
sin 2ϵ1ðk�Þ − sin2ϵ1ðk�Þ: ð10Þ

The difference in energy between the A2 and E FV
eigenstates provides a measure of ϵ1, but this is complicated
by the fact that they are evaluated at two slightly different
energies. This analysis can be extended to other lattice
momenta [51], but the QCs in Eqs. (8) and (9) are sufficient
for the present purposes.
Correlation functions for two nucleons in the T1, A2 and

E irreps are straightforwardly constructed from the nucleon
blocks we have described previously. In fact, multiple
correlation functions are constructed in each irrep. In the
L ¼ 24 and 48 ensembles, the spin projections were not
performed to permit construction of the A2 irrep, and so
only L ¼ 32 correlation functions can be used to con-
strain ϵ1.

A. The deuteron

In nature, the deuteron is the only bound state in the two
nucleon systems, residing in the 3S1 − 3D1 coupled chan-
nels, and it has a special position in nuclear physics. The
deuteron has always provided a benchmark when deriving
phenomenological interactions between nucleons, and it
will play a critical role in verifying LQCD as a viable
calculational tool. Correlation functions for two nucleons
in the even-parity T1 irrep of the cubic group were
constructed, from which, after a correlated subtraction of
twice the energy of a single nucleon, the EMPs shown in
Fig. 11 were derived.2 As with the single hadrons,

TABLE V. The speed of light of each hadron determined from
fits to the energy-momentum results.

Hadron vh Hadron vh

π� 1.0025(18)(08) K� 1.0038(20)(12)
N 1.010(16)(07) Λ 1.018(15)(01)
Σ 1.010(12)(03) Ξ 1.0102(61)(13)

2The single-nucleon correlation function, the square of which
is divided out of two nucleon correlation functions to yield a
plateau in the energy difference, has been temporally displaced,
in some instances, to enhance the plateau region in the difference.
Furthermore, due to the nature of the HL estimator, the first few
time slices in the difference correlation function have been
removed, leading to temporal displacements of the EMPs. The
EMPs defining energy differences in this work correspond to both
the one nucleon and two nucleon correlation functions being in
their respective ground states (as defined by plateaus in their
respective individual EMPs).
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correlated χ2-minimization fits of a constant to the plateau
regions were performed to estimate the deuteron binding
energy, Bd, and associated uncertainties. The deuteron
binding energies extracted from each ensemble are given
in Table VI, along with the values of e−κL, where κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
MNBd

p
is the binding momentum of the deuteron. As e−κL

is seen to change from ∼3% in the largest volume to ∼11%
in the smallest, an extrapolation in volume is desirable.
Inspired by the FV contributions to the binding of a

shallow bound state resulting from short-range interactions
[55–57], the extrapolation to infinite volume was per-
formed by fitting a function of the form

BdðLÞ ¼ Bð∞Þ
d þ c1

�
e−κ0L

L
þ

ffiffiffi
2

p e−
ffiffi
2

p
κ0L

L
þ 4

3
ffiffiffi
3

p e−
ffiffi
3

p
κ0L

L

�

þ � � � ð11Þ

to the results obtained in the three lattice volumes, where

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNB

ð∞Þ
d

q
(with Bð∞Þ

d the deuteron binding energy in
infinite volume) and c1 are the fit parameters. The ellipsis

denotes terms that are Oðe−2κ0LÞ and higher. A χ2-mini-
mization fit to the deuteron binding energies in Table VI

generates the region in c1 − Bð∞Þ
d parameter space shown in

Fig. 12, defined by χ2 → χ2min þ 1. The deuteron binding
energy found from extrapolating to infinite volume is

Bð∞Þ
d ¼ 14.4þð1.6Þð2.7Þð0.2Þð0.2Þ

−ð1.8Þð1.8Þð0.2Þð0.2Þ MeV: ð12Þ

The first uncertainty corresponds to the statistical uncer-
tainty, the second corresponds to the fitting systematic
uncertainty, the third is associated with scale setting and the
last uncertainty is introduced by the finite-volume extrapo-
lation in Eq. (11), and is estimated by considering the effect
of terms scaling as ∼e−2κ0L=L. Combining the errors in

Eq. (12) in quadrature leads to Bð∞Þ
d ¼ 14.4þ3.2

−2.6 MeV.

1. The mixing parameter, ϵ1
For a deuteron that is moving in the lattice volume, the

energy eigenvalues are sensitive to the mixing parameter ϵ1,
as expected from the QCs given in Eq. (9) for the specific
boost d ¼ ð0; 0; 1Þ. Explicitly evaluating the cdlm functions
that appear in Eq. (9) for the two irreps containing the
deuteron gives the QCs,

FIG. 11 (color online). EMPs for the energy difference between the deuteron and twice the nucleon in the L ¼ 24 (left panel), L ¼ 32
(center panel) and L ¼ 48 (right panel) ensembles, along with fits to the plateau regions. The extracted binding energies are given in
Table VI.

TABLE VI. The deuteron binding energies extracted from
plateaus in the EMPs shown in Fig. 11, along with the
infinite-volume extrapolated value. The size of the FV effects
is characterized by e−κL, shown in the last column. The first
uncertainty corresponds to the statistical uncertainty associated
with the fit, the second corresponds to the systematic uncertainty
associated with the selection of the fitting interval (determined by
varying this range). In the case of dimensionful quantities, the
third uncertainty is associated with scale setting. For the infinite-
volume values of the binding energy, the last uncertainty is
introduced by the finite-volume extrapolation in Eq. (11), and is
estimated by considering the effect of omitted terms scaling as
e−2κ0L=L.

Ensemble ΔE (l.u.) Bd (MeV) e−κL

243 × 64 −0.01157ð73Þð96Þ 19.6(1.2)(1.6)(0.2) 0.111
323 × 96 −0.01037ð89Þð96Þ 17.5(1.5)(1.6)(0.2) 0.063
483 × 96 −0.0078ð12Þð19Þ 13.3(2.0)(3.2)(0.2) 0.027

L ¼ ∞ −0.0085þð10Þð16Þð01Þ
−ð10Þð11Þð01Þ 14.4þð1.6Þð2.7Þð0.2Þð0.2Þ

−ð1.8Þð1.8Þð0.2Þð0.2Þ

FIG. 12 (color online). The region in c1 − Bð∞Þ
d parameter space

defined by χ2 → χ2min þ 1. The inner region is defined by the
statistical uncertainty, while the outer region is defined by the
statistical and systematic uncertainties combined in quadrature.
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k�A2
cotδ1αðiκA2

Þ þ κA2

¼ 2e−κA2L

L

�
1þ 2

�
1þ 3

κA2
L
þ 3

ðκA2
LÞ2

�
sϵ1ðiκA2

Þ
�
;

k�Ecotδ1αðiκEÞ þ κE

¼ 2e−κEL

L

�
1 −

�
1þ 3

κEL
þ 3

ðκELÞ2
�
sϵ1ðiκEÞ

�
; ð13Þ

where sϵ1ðk�Þ is defined in Eq. (10). For both irreps, the
functions k�cotδ and sϵ1 are evaluated at k

� ¼ iκ. Iteratively
solving these QCs in terms of the infinite-volume binding
momentum, κ0 (κA2

, κE → κ0 in the infinite-volume limit),
the spin-averaged binding energy of the A2 and E irreps is

B̄ð0;0;1Þ
d ¼ Bð∞Þ

d þ 4κ0
M

Z2
ψ

L
e−κ0L þ � � � ; ð14Þ

where the ellipsis denotes terms Oðe−
ffiffi
2

p
κ0LÞ and higher,

which is consistent, at this order, with the binding energy
extracted from the T 1 irrep for the deuteron at rest. In the
above expression, Z2

ψ is the residue of the deuteron pole.
The difference in energies is

δBð0;0;1Þ
d ¼ −

12κ0
M

Z2
ψ

L
e−κ0L

�
1þ 3

κ0L
þ 3

ðκ0LÞ2
�
sϵ1ðiκ0Þ

þ…: ð15Þ

Calculating the exponentially small difference between
the energies of these two states provides a direct measure
of ϵ1 evaluated at the deuteron pole. In order to extract a
meaningful constraint on ϵ1, the FV corrections must be
statistically different from zero, otherwise the coefficient of
the leading contribution to the energy difference vanishes.
In the present production, it has been only possible to

decompose the d ¼ ð0; 0; 1Þ boosted deuteron correlation

functions into the E (jz ¼ �1) and A2 (jz ¼ 0) irreps in
calculations performed with the L ¼ 32 ensemble. The
EMP associated with the difference in energies between
these irreps is shown in Fig. 13, and the energy difference
extracted from fitting the plateau region is consistent with
zero, δBð0;0;1Þ

d ðL ¼ 32Þ ¼ −0.4ð4.1Þð4.6Þ MeV. While this
energy difference is bounded in magnitude, the fact that the
FV contributions to the deuteron binding energy are
consistent with zero in this lattice volume means that no
useful bound can be placed upon ϵ1.

2. A compilation of deuteron binding
energies from LQCD

The current calculation of the deuteron binding energy
adds to a small number of previous calculations over a
range of pion masses above ∼300 MeV [11,14,15,21],3 as
shown in Fig. 14.4 The present result is consistent, within
uncertainties, with the results at mπ ∼ 300 MeV and mπ ∼
500 MeV from Refs. [15,21]. Further LQCD calculations
at lighter quark masses are required to quantify the
approach to the physical deuteron binding (for related
NNEFT work see Ref. [28]).

B. Scattering in the 3S1 − 3D1 coupled channels

To recover the S-matrix in the 3S1 − 3D1 coupled
channels, calculations must be performed that isolate the
phase shifts and mixing angle, δ1α, ϵ1 and δ1β, defined in
Eq. (7), from the FV observables accessible to LQCD
calculations. The formalism with which to perform this
analysis [51,58–60] is an extension of the seminal work of
Lüscher [53,54]. For vanishing total momentum, assuming
that the contribution from δ1β, D-waves and higher are
negligible, the energies of the T 1 irreps are insensitive to ϵ1,
as demonstrated in Eq. (8). Therefore, the shifts in energies
of the two nucleon states in the T 1 irrep for various total
momentum from the energy of two free nucleons can be
used to extract δ1α below the inelastic threshold.
Figure 15 show the effective-k�2 plots (Ek2Ps) associ-

ated with the first continuum T1 states in each ensemble,
with momentum near k� ¼ 2π=L. These show the values of
the interaction momentum k�2 extracted from the LQCD
correlation functions as a function of Euclidean time. As
with the EMPs, plateau behavior indicates the dominance
of a single state. Because of the E irrep of the cubic group

FIG. 13 (color online). EMP associated with the energy differ-
ence between the E (jz ¼ �1) and A2 (jz ¼ 0) deuteron states
with boost vector d ¼ ð0; 0; 1Þ in the L ¼ 32 ensemble, along
with fits to the plateau region. The energy difference depends
upon the mixing parameter ϵ1.

3The deuteron and dineutron binding energies at mπ ∼
800 MeV in the L ¼ 24 and L ¼ 32 ensembles presented in
Ref. [14] have been reproduced in Ref. [22], within uncertainties,
on the same gauge ensembles.

4The results of quenched calculations, and of calculations that
have not been extrapolated to infinite volume [2], have not been
shown. The results from Ref. [15,21] were obtained with a power-
law extrapolation to infinite volume. This is not the correct form
for a loosely bound state, and tends to lead to significantly smaller
uncertainties than from extrapolations performed with the known
exponential form.
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that is present in the k� ¼ 2π=L shell, the spectrum is
expected to have a predominantly D-wave state that is close
to [51]. The overlap of our sources and sinks onto this state
will be small, dictated by the small mixing between the
S-waves and D-waves. Analogous states are also present in
higher-k� shells and in boosted systems. For an arbitrary
two-body system, comprised of particles with masses m1

and m2, with zero CoM momentum, the interaction
momentum k�2 is defined through

δE� ¼ E� −m1 −m2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2 þm2

2

q
−m1 −m2; ð16Þ

where E� is the energy in the CoM frame, defined by
E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − jPtotj2

p
, where E is the total energy, and Ptot. is

the total momentum, of the system. Figure 16 shows the
Ek2Ps for states with momentum near k� ¼ 2

ffiffiffi
2

p
π=L,

while Fig. 17 shows the Ek2P for the system with d ¼
ð0; 0; 1Þ on the L ¼ 32 ensemble. Inserting the values of k�
extracted from the plateau regions of the Ek2Ps in Figs. 15
and 16 into the QC in Eq. (8) gives rise to the values of
k�cotδ1α and δ1α given in Table VII and shown in Fig. 18.
Additionally, the result of inserting the value of k� extracted
from the plateau in Fig. 17 into the QC for the A2 and E
irreps in Eq. (9) is shown in Table VII and Fig. 18. The
uncertainties in each of the extractions are relatively large,
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FIG. 14 (color online). The pion-mass dependence of the
deuteron binding energy calculated with LQCD. The NPLQCD
anisotropic-clover result is from Ref. [11], the Yamazaki et al.
results are from Refs. [15,21] and the NPLQCD isotropic-clover
results are from this work and Ref. [14]. The black disk
corresponds to the experimental binding energy.

FIG. 15 (color online). Ek2Ps for the lowest-lying continuum 3S1 − 3D1 NN states near k� ¼ 2π=L in the L ¼ 24 (left panel), L ¼ 32
(center panel) and L ¼ 48 (right panel) ensembles, along with fits to the plateau regions.

FIG. 16 (color online). Ek2Ps for the continuum 3S1 − 3D1 NN states near k� ¼ 2
ffiffiffi
2

p
π=L in the L ¼ 32 (left panel) and L ¼ 48 (right

panel) ensembles, along with fits to the plateau regions.

FIG. 17 (color online). Ek2Ps for the spin-averaged continuum
3S1 − 3D1 NN states with d ¼ ð0; 0; 1Þ near k� ¼ 0 in the L ¼ 32
ensemble, along with the fit to the plateau region.

KOSTAS ORGINOS et al. PHYSICAL REVIEW D 92, 114512 (2015)

114512-12



magnified by their close proximity to a singularity in the
kinematic functions cd00. Even subject to these issues, a zero
in the phase shift is visible near k� ∼mπ ∼ 450 MeV,
indicative of an attractive interaction with a repulsive core.
It is interesting to compare this phase shift, at a pion mass
of mπ ∼ 450 MeV, with that of nature, illustrated by the
dashed curve in Fig. 18. The phase shift resulting from a
partial-wave analysis of experimental data is consistent,
within uncertainties, with the phase shift calculated atmπ ∼
450 MeV over a large range of momenta. The zeros of the
phase shift occur at different momenta, but they are nearby.
Without results at smaller k�, a precise extraction of the
scattering parameters, such as the scattering length and
effective range, is not feasible, and additional calculations
are required in order to accomplish this. However, the

determination of the binding energy and the two continuum
states that lie below the threshold of the t-channel cut (set
by the pion mass, k� ¼ mπ=2) can be used to perform an
approximate determination of the inverse scattering length
and effective range. A linear fit was performed,
k�cotδ ¼ −1=aþ 1

2
rk�2, as shown in Fig. 19. The range

of linear fits straddle k�cotδ ¼ 0 at k� ¼ 0, and as such
allows both að3S1Þ ¼ �∞, and it is useful to consider the
constraints on 1=að3S1Þ rather than að3S1Þ. The correlated
constraints on 1=að3S1Þ and rð3S1Þ are shown in Fig. 19. The
inverse scattering length and effective range determined
from the fit region in Fig. 19 are

ðmπað
3S1ÞÞ−1 ¼ −0.04þð0.07Þð0.08Þ

−ð0.10Þð0.17Þ ;

mπrð
3S1Þ ¼ 7.8þð2.2Þð3.5Þ

−ð1.5Þð1.7Þ

ðað3S1ÞÞ−1 ¼ −0.09þð0.15Þð0.19Þ
−ð0.23Þð0.39Þ fm−1;

rð3S1Þ ¼ 3.4þð1.0Þð1.5Þ
−ð0.7Þð0.8Þ fm: ð17Þ

Further calculations in larger volumes (and hence at smaller
k�2) will be required to refine these extractions. There is a
potential self-consistency issue raised by the size of the
effective range that is within the uncertainties that are
reported. Lüscher’s method is valid only for the interaction
ranges R ≪ L=2, otherwise the exponentially small cor-
rections due to deformation of the interhadron forces
become large. Assuming the range of the interaction is
of similar size to the effective range (as expected for
“natural” interactions), this requirement is not met and
deviations from the assumed linear fitting function should
be entertained. Higher precision analyses will be required
to investigate this further.

TABLE VII. Scattering information in the 3S1 − 3D1 coupled
channels. Center dots indicate that the uncertainty extends across
a singularity of the Lüscher function, or that it is associated with
the bound state. The uncertainties in these quantities are highly
correlated, as can be seen from Fig. 18.

Ensemble
jPtotj
(l.u.) k�=mπ k�cotδ1α=mπ δ1α (degrees)

All 0 i0.294þð17Þð27Þ
−ð18Þð24Þ −0.294

þð17Þð27Þ
−ð18Þð24Þ ���

243×64 0 0.9754þð44Þð98Þ
−ð45Þð99Þ ��� 3.1(1.7)(3.7)

323×96 0 0.702þð10Þð23Þ
−ð10Þð24Þ 2.3þð1.0Þð5.7Þ

−ð0.55Þð0.89Þ 17(5)(11)

323×96 0 1.065þð07Þð16Þ
−ð08Þð17Þ −5.4þð1.4Þð2.1Þ

−ð2.9Þð29.5Þ −11.1ð3.8Þð8.5Þ
323×96 1 0.270þð26Þð29Þ

−ð40Þð51Þ þ0.35þð24Þð15Þ
−ð59Þð20Þ þ38

þð13Þð23Þ
−ð11Þð16Þ

483×96 0 0.426(03)(12) 0.45þð67Þð34Þ
−ð26Þð08Þ 44

þð21Þð07Þ
−ð21Þð08Þ

483×96 0 0.662(08)(29) 0.35þð0.14Þð3.0Þ
−ð0.09Þð0.21Þ 26

þð07Þð25Þ
−ð07Þð22Þ

FIG. 18 (color online). Scattering in the 3S1 − 3D1 coupled channels. The left panel shows k�cotδ1α=mπ as a function of k�2=m2
π , while

the right panel shows the phase shift as a function of momentum in MeV, assuming that δ1β and the D-wave and higher partial-wave
phase shifts vanish. The thick (thin) region of each result corresponds to the statistical uncertainty (statistical and systematic
uncertainties combined in quadrature). The black circle in the right panel corresponds to the known result from Levinson’s theorem,
while the dashed-gray curve corresponds to the phase shift extracted from the Nijmegen partial-wave analysis of experimental data [61].
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V. THE 1S0 CHANNEL AND THE DINEUTRON

The analysis of LQCD calculations in the 1S0 channel are
somewhat simpler than in the 3S1 − 3D1 coupled channels,
as scattering below the inelastic threshold is described by a
single phase shift, δð1S0Þ. In FV, the relation between energy
eigenvalues of the system at rest in the A1 cubic irrep and
δð1S0Þ are given by Eq. (8) with δ1α → δð1S0Þ and k�T1

→ k�A1
.

Unfortunately, the correlation functions in this channel
have larger fluctuations and excited state contamination
than those in the 3S1 − 3D1 coupled-channel system.
Consequently, the uncertainties associated with each
energy level are larger.

A. The dineutron

Unlike in nature, the dineutron is found to be bound at
heavier quark masses [14,15,17,19,21] by direct calcula-
tions of the ground-state energies of two nucleons in finite
lattice volumes.5 Plateaus identified with a negatively

shifted dineutron were found in all three ensembles, with
the associated EMPs shown in Fig. 20 and the extracted
energy shifts shown in Table VIII. Performing a volume
extrapolation using the form given in Eq. (11) leads to a
binding energy of6

Bð∞Þ
nn ¼ 12.5þð1.7Þð2.5Þð0.2Þð0.2Þ

−ð1.9Þð4.5Þð0.2Þð0.2Þ MeV: ð18Þ

Combining the errors in Eq. (18) in quadrature leads to

Bð∞Þ
nn ¼ 12.5þ3.0

−5.0 MeV. The c1 − Bð∞Þ
nn parameter space

defined by χ2 → χ2min þ 1 determined from an uncorrelated
fit to the dineutron binding energies in the three volumes is
shown in Fig. 21. This dineutron binding energy is
consistent with the binding energy of the deuteron within
uncertainties. The EMPs associated with the difference
between the deuteron and dineutron energies in each
ensemble are shown in Fig. 22, resulting in the energy
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FIG. 19 (color online). Scattering in the 3S1 − 3D1 coupled channels below the start of the t-channel cut, k�2 < m2
π=4, assuming that

δ1β and the D-wave and higher partial-wave phase shifts vanish. The left panel shows a solid region corresponding to linear fits
associated with the statistical uncertainty and the statistical and systematic uncertainties combined in quadrature. The right panel shows
the scattering parameters, 1=að3S1Þ and rð3S1Þ determined from fits to scattering results below the t-channel cut. The solid circle
corresponds to the experimental values.

FIG. 20 (color online). EMPs for the dineutron in the L ¼ 24 (left panel), L ¼ 32 (center panel) and L ¼ 48 (right panel) ensembles,
along with fits to the plateau regions. The extracted binding energies are given in Table VIII.

5The HAL QCD method appears not to give rise to a bound
deuteron or dineutron at these heavier pion masses, e.g. Ref. [16].

6Extrapolating with a form consistent with a scattering state,
which would display a volume dependence ofΔE ∼ 1=L3, results
in a poor goodness of fit.
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differences given in Table IX. No significant difference has
been extracted.

1. A compilation of dineutron binding
energies from LQCD

The current calculation of the dineutron binding energy
adds to a small number of previous calculations, a compi-
lation of which is shown in Fig. 23. There does not appear
to be a clear pattern emerging as to how the dineutron will
unbind as the pion mass is reduced. The results that have
been obtained in Refs. [15,21] have consistently smaller
uncertainties than those found in Ref. [11,14] and in the
present work. However, the results are consistent within the
uncertainties.

B. Scattering in the 1S0 channel

Correlation functions for two nucleons in the 1S0 state
were constructed in the A1 irrep of the cubic group. The
Ek2Ps associated with the states near the k� ¼ 2π=L and
k� ¼ 2

ffiffiffi
2

p
π=L noninteracting levels are shown in Figs. 24

and 25, respectively. For the lowest-lying “continuum”
state, plateaus were found in all three ensembles, however,
only the L ¼ 32 ensemble has correlation functions that
were sufficiently clean to extract the next higher level. A
plateau was also identified in the system with one unit of
total momentum, as shown in Fig. 26. The values of
kcotδð1S0Þ and the phase shift are given in Table X and
shown in Fig. 27. Many of the qualitative features of the
results for the scattering amplitude in this channel are
similar to those in the 3S1 − 3D1 coupled channels. A zero
of the phase shift near k ∼mπ ∼ 450 MeV is evident and
occurs quite close to the zero of the phase shift in nature.
However for k < 100 MeV, the 1S0 phase shift at mπ ∼
450 MeV and in nature become significantly different. In
Fig. 28, a linear fit is shown to the three results below the
start of the t-channel cut, with the extracted correlated
constraints on the scattering parameters also shown. The
inverse scattering length and the effective range determined
from the fit region in Fig. 28 are

ðmπað
1S0ÞÞ−1¼0.021þð28Þð32Þ

−ð36Þð63Þ ; mπrð
1S0Þ ¼6.7þð1.0Þð2.0Þ

−ð0.8Þð1.3Þ

ðað1S0ÞÞ−1¼0.05þð06Þð08Þ
−ð08Þð14Þ fm

−1; rð1S0Þ ¼2.96þð43Þð87Þ
−ð34Þð55Þ fm:

ð19Þ

TABLE VIII. The dineutron binding energies from fitting to the
EMPs shown in Fig. 20.

Ensemble ΔE (l.u.) Bnn (MeV) e−κL

243 × 64 −0.0142ð09Þð27Þ 24.1(1.5)(4.5) 0.088
323 × 96 −0.0109ð09Þð20Þ 18.4(1.5)(3.3) 0.058
483 × 96 −0.0070ð11Þð18Þ 11.8(1.9)(3.1) 0.033

L ¼ ∞ −0.0074þð10Þð15Þð01Þ
−ð11Þð27Þð01Þ 12.5þð1.7Þð2.5Þð0.2Þð0.2Þ

−ð1.9Þð4.5Þð0.2Þð0.2Þ

FIG. 21 (color online). The region in c1 − Bð∞Þ
nn parameter space

defined by χ2 → χ2min þ 1. The inner region is defined by the
statistical uncertainty, while the outer is defined by the statistical
and systematic uncertainties combined in quadrature.

FIG. 22 (color online). EMPs for the energy difference between the dineutron and the deuteron in the L ¼ 24 (left panel), L ¼ 32
(center panel) and L ¼ 48 (right panel) ensembles, along with fits to the plateau regions.

TABLE IX. Energy differences between the dineutron and the
deuteron from fitting to the EMPs shown in Fig. 22. All
differences are consistent with zero, as is their infinite-volume
extrapolation.

Ensemble Enn − Edeut (l.u.) Enn − Edeut (MeV)

243 × 64 þ0.0022ð16Þð28Þ þ3.7ð2.8Þð4.7Þð0.0Þ
323 × 96 −0.0014ð09Þð15Þ −2.4ð1.6Þð2.5Þ
483 × 96 þ0.0027ð04Þð31Þ þ4.6ð0.7Þð5.3Þ
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The allowed region of scattering parameters is shown in
Fig. 28 and is close to containing the experimentally
determined scattering length and effective range. Since
the quark masses are unphysical, the physical values need
not be contained in this region and it is interesting how
close the current results are to those in nature. As in the
3S1 − 3D1 coupled-channel system analyzed in the pre-
vious section, there is a potential self-consistency issue
raised by the region of the extracted effective range.

VI. OBSERVATIONS ABOUT
NUCLEON-NUCLEON EFFECTIVE

FIELD THEORY ANALYSES

A modern approach to low-energy nuclear physics rests
upon the chiral nuclear forces arising from a nontrivial
extension of χPT into the multinucleon sector (see, for
instance, Refs. [62–64]). Because of the small scales in the
two nucleon systems (γd ∼ 45 MeV and jγnnj ∼ 8 MeV),
the NNEFTs are more complicated than a simple expansion
in quark masses and momenta that defines χPT, and there
are additional dynamics that must be considered. Following

the initial developments by Weinberg [65–67], much effort
has gone into understanding the construction and behavior
of these theories.
NNEFTs provide a powerful means with which to

analyze the momentum and quark-mass dependences
of the phase shifts and it is illuminating to consider the
LQCD results presented in this work in their context. As is
appropriate, we use Kaplan-Savage-Wise (KSW) power
counting [68–70] in the 1S0 channel and Beane-Bedaque-
Savage–van Kolck (BBSvK) power counting [71], a variant
of Weinberg’s power counting [65,66], in the 3S1 − 3D1

coupled channels. There are a number of reasons to
undertake this investigation. The chiral decomposition of
nuclear forces automatically requires the introduction of
terms that are only distinguishable through variation of the
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FIG. 23 (color online). The pion-mass dependence of the
dineutron binding energy calculated with LQCD. The NPLQCD
anisotropic-clover result is from Ref. [11], the Yamazaki et al.
results are from Refs. [15,21] and the NPLQCD isotropic-clover
results are from this work and Ref. [14]. The black disk
corresponds to the location of the near-bound state at the physical
quark masses.

FIG. 24 (color online). Ek2Ps for the lowest-lying continuum 1S0 NN state near k� ¼ 2π=L in the L ¼ 24 (left panel), L ¼ 32 (center
panel) and L ¼ 48 (right panel) ensembles, along with fits to the plateau regions.

FIG. 25 (color online). Ek2P for the lowest-lying continuum
1S0 NN state near k� ¼ 2

ffiffiffi
2

p
π=L in the L ¼ 32 ensemble, along

with the fit to the plateau region.

FIG. 26 (color online). Ek2P for the continuum 1S0 NN states
with d ¼ ð0; 0; 1Þ near k� ¼ 0 in the L ¼ 32 ensemble, along
with the fit to the plateau region.
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quark masses. Comparison of LQCD calculations at
unphysical masses allows this previously unavailable “dial”
to be turned in the dual expansion that defines chiral
NNEFTs. Second, the full decomposition of the chiral NN
forces, and thereby precise predictions for nuclear observ-
ables, requires knowledge of the mass dependence dis-
cussed above and it is essential that such calculations be
performed to maximize the predictive power of NNEFTs.
Third, the current calculations enable an exploration of the
convergence of NNEFTs with pions included as explicit
degrees of freedom at relatively large pion masses.
The quality and kinematic coverage of scattering results

that have been presented is not yet sufficient to perform a
comprehensive analysis of NNEFT matching to LQCD.
Instead, we present a simplified discussion of the two
channels to highlight some of the important features and
questions that will need to be addressed in order to
accomplish a reliable determination of the chiral nuclear
forces from LQCD. Related discussions in the context of
pionless EFTs for multinucleon systems can be found in

Refs. [72,73] and implicitly in the presentation of the
effective range expansion above.

A. KSW analysis of the 1S0 channel

The KSW power counting [68–70] provides a rigorous
framework with which to perturbatively expand the two
nucleon scattering amplitude in the 1S0 channel in the
two small-expansion parameters, nominally p=ΛNN and
mπ=ΛNN . Here ΛNN ¼ 8πf2π=g2AMN is the natural scale of
validity of the NNEFT. At the physical point
ΛNN ∼ 289 MeV, while at a pion mass of 450 MeV it is
ΛNN ∼ 350 MeV. These scales should be compared with
the start of the t-channel cut from the next lightest meson,
mρ=2 ∼ 385 MeV at the physical point, and mρ=2 ∼
443 MeV at a pion mass of 450 MeV. This power counting
treats the zero-derivative two nucleon operator nonpertu-
batively, and was developed in order to correctly define a
theory that is finite and renormalization group invariant at
each order in the expansion. An analysis of nucleon-
nucleon (NN) interactions at the physical point has been
carried out to next-to-next-to-leading order (NNLO) in the
KSW expansion [68,69,74–76], and we have performed
the analogous analysis of the present LQCD results. The
leading order (LO), next-to-leading order (NLO) and
NNLO amplitudes in the 1S0 channel can be found in
Refs. [68,69,74,75], along with the relevant expansion of
the phase shift. At LO, there is only one fit parameter,
constrained by the location of the dineutron pole. At NLO,
there are nominally two additional fit parameters, but
requiring that the dineutron pole remains unchanged
reduces the number to one, ξ1, while the other, ξ2, can
be directly related to ξ1. Finally, at NNLO there are three
more parameters, but only one parameter, ξ4, is indepen-
dent for similar reasons as at NLO. Therefore, there are
only three fit parameters for a complete analysis at NNLO.

TABLE X. Scattering information in the 1S0 channel. The
uncertainties are highly correlated, as can be seen from Fig. 27.

Ensemble jPtotj
(l.u.)

k�=mπ k�cotδð1S0Þ=mπ δð1S0Þ (degrees)

All 0 i0.274þð19Þð26Þ
−ð20Þð44Þ−0.274

þð19Þð26Þ
−ð20Þð44Þ � � �

243 × 64 0 0.954þð08Þð18Þ
−ð08Þð19Þ 5.0þð2.0Þð10.0Þ

−ð1.1Þð1.8Þ 10.8þð3.0Þð6.5Þ
−ð3.0Þð6.7Þ

323 × 96 0 0.691þð09Þð16Þ
−ð09Þð16Þ 1.7þð0.5Þð1.1Þ

−ð0.3Þð0.5Þ 22.0þð4.2Þð7.0Þ
−ð4.2Þð7.2Þ

323 × 96 0 1.079þð05Þð10Þ
−ð05Þð10Þ −3.3þð0.4Þð0.7Þ

−ð0.6Þð1.5Þ −18.3ð2.6Þð5.2Þ
323 × 96 1 0.220þð28Þð32Þ

−ð32Þð42Þ 0.13þð10Þð14Þ
−ð08Þð08Þ 60

þð14Þð20Þ
−ð12Þð14Þ

483 × 96 0 0.453(11)(29) 0.89þð39Þð3.7Þ
−ð23Þð44Þ 27

þð07Þð18Þ
−ð07Þð20Þ

FIG. 27 (color online). Scattering in the 1S0 channel. The left panel shows k�cotδð1S0Þ=mπ as a function of k�2=m2
π , while the right

panel shows the phase shift as a function of momentum in MeV. The thick (thin) region of each result corresponds to the statistical
uncertainty (statistical and systematic uncertainties combined in quadrature). The black circle in the right panel corresponds to the
known bound-state result from Levinson’s theorem, while the dashed-gray curve corresponds to the phase shift extracted from the
Nijmegen partial-wave analysis of experimental data [61].
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Results of fitting the LO, NLO and NNLO phase shifts are
shown in Fig. 29. The phase shifts at all momenta are
utilized in the fits (a more complete analysis would
consider the effects of truncations).
Fitting the location of the dineutron bound state, the LO

fit is clearly inconsistent with the phase shifts at higher
energies, as is also seen in fits at the physical point. At NLO
the fit is quite reasonable at the energies near the zero of the
phase shift, but becomes somewhat deficient at lower
energies. The NNLO fit is found to move closer to the
LQCD results. It appears that the KSW expansion is
converging to the LQCD results, but fits beyond NNLO
are required to reproduce the LQCD results with an
acceptable goodness of fit. The values of ξ1;4 are both of
natural size, as can be seen in Fig. 29.

The resulting scattering parameters at NLO and NNLO
are

að
1S0Þ
NLO ¼ 2.62ð07Þð16Þ fm rð

1S0Þ
NLO ¼ 1.320ð18Þð38ÞÞ fm

að
1S0Þ
NNLO ¼ 2.99ð07Þð15Þ fm rð

1S0Þ
NNLO ¼ 1.611ð42Þð83ÞÞ fm;

ð20Þ

From the differences between orders, it is clear that the
systematic uncertainty introduced by the KSW expansion
exceeds the uncertainties of the LQCD calculations, and
orders beyond NNLO are required to render the “theory
error” (from truncating the KSW expansion) small com-
pared with the uncertainties of the calculation. As the KSW
expansion is a double expansion in both momentum and the
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FIG. 28 (color online). Scattering in the 1S0 channel below the start of the t-channel cut, k�2 < m2
π=4. The left panel shows the linear fit

with the darker and lighter shaded regions associated with the statistical uncertainty and the statistical and systematic uncertainties
combined in quadrature. The right panel shows the scattering parameters, 1=að1S0Þ and rð1S0Þ, determined from fits to scattering results
below the t-channel cut. The solid circle corresponds to the experimental values.

FIG. 29 (color online). The left panel shows the LQCD 1S0 scattering phase shift along with the KSW NNEFT fits at LO, NLO and
NNLO. At LO there is one parameter that is fit to recover the dineutron pole, giving the red-shaded region, at NLO there is one
additional fit parameter, giving the blue-shaded region, and at NNLO there is a further fit parameter, giving the green-shaded region. The
darker (lighter) shaded regions correspond to the statistical (statistical and systematic uncertainties combined in quadrature). The right
panel is a scatter plot of the central values of the extracted NNLO fit parameters, ξ1;4 over the 1σ range of the dineutron pole. The red-
(orange-) shaded region corresponds to the statistical (statistical and systematic uncertainties combined in quadrature).
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pion mass, the threshold scattering parameters have chiral
expansions order by order in the expansion. The values of
the scattering parameters extracted from fitting the KSW
expressions differ from those obtained by fitting a truncated
effective range expansion to the phase shifts at the lowest
two momenta and the dineutron pole, i.e. they do not lie in
the region presented in Fig. 28. This may indicate that the
KSW expansion should not be applied to the phase shifts
over the full range of momenta; indeed the largest two
momenta have k≳ ΛNN . However, removing these points
does not change the fit qualitatively due to the relative size
of the uncertainties. These results could also indicate that
the pion mass is simply too large, as it exceeds ΛNN .
However, it does appear that the expansion is converging,
albeit slowly, to the calculated phase shifts.
As the calculations have been performed at only one pion

mass (previous phase shift calculations at mπ ¼ 806 MeV
[14,17] are expected to be beyond the range of applicability
of the NNEFT), it is not possible to isolate the explicit
short-distance pion-mass dependence in ξ1;4, which both
receive contributions from pion-mass independent and
pion-mass dependent terms. Hence, a chiral extrapolation
to the physical point is not feasible from this work alone.
Calculations that are currently under way will provide
results at a lower pion mass, from which predictions at the
physical point will become possible.

B. BBSvK Analysis of the 3S1 − 3D1
Coupled Channel

BBSvK power counting [71] is similar to Weinberg’s
power counting [65,66], and is an appropriate scheme to
use in the case of the 3S1 − 3D1 coupled channels. A NN
interaction (two-particle irreducible) is derived using the
familiar rules of χPT and, due to the infrared behavior of
the two nucleon system, is iterated to all orders with the
Schrödinger equation to generate the bound-state pole(s)
and scattering amplitude(s). See Ref. [77] for a review.
At LO in Weinberg’s power counting, the NN inter-

actions are determined by momentum-independent and
quark-mass-independent two nucleon contact interactions
and by one-pion exchange (OPE). However, the short-
distance nature of the tensor force, resulting from OPE,
generates renormalization-scale dependence in the D-
waves that requires the presence of a counterterm at LO,
and BBSvK is the simplest power counting to remedy this
situation. At NLO in the counting, there are contributions
from pion-loop diagrams, from momentum-dependent two
nucleon contact interactions, and from insertions of the
light-quark mass matrix into momentum-independent two
nucleon contact interactions. With the parameters in the
meson sector, e.g. gA, fπ , fixed to the results of other LQCD
calculations at similar quark masses, there is one free
parameter at LO in BBSvK counting—the coefficient of the
momentum-independent two nucleon contact interaction.
This is common to both the S-waves and the D-waves.

At NLO, the expansion becomes more complicated with
different interactions in the S-waves and D-waves. Without
being able to separately resolve the δ1α and δ1β phase shifts,
only the common terms can be determined. To this end, we
have defined NLO� to be LO with the inclusion of the
leading momentum-dependent two nucleon contact inter-
action that is also common to both the S-waves and the
D-waves, but omitting other NLO contributions. NLO�
introduces a single additional parameter beyond LO.
The results of fitting the LO and NLO� parameters to the

results of our LQCD calculations are shown in Fig. 30.7

The LO fit to the deuteron binding energy leads to phase
shifts that significantly overestimate the LQCD results (this
is also seen in analyses at the physical point). However, by
including the contact-p2 interaction, relatively good agree-
ment is found in the NLO� fit to all the LQCD phase-shift
extractions, with the exception of the lowest energy point
(which we attribute to a downward statistical fluctuation
whose significance is likely to be reduced at higher orders
in the expansion).
The values of the scattering parameters resulting from

the fits are

að
3S1Þ
LO ¼ 1.94ð09Þð17Þ fm rð

3S1Þ
LO ¼ 0.674ð17Þð29ÞÞ fm

að
3S1Þ
NLO� ¼ 2.72ð22Þð27Þ fm rð

3S1Þ
NLO� ¼ 1.43ð12Þð13ÞÞ fm;

ð21Þ

FIG. 30 (color online). The 3S1 − 3D1 coupled-channel scatter-
ing phase shift, δ1α, along with BBSvK fits at LO and NLO�. At
LO there is one parameter that is fit to recover the deuteron pole,
giving the red-shaded region, while at NLO� there is one
additional fit parameter, giving the blue-shaded region. The
darker (lighter) shaded regions correspond to the statistical
(statistical and systematic uncertainties combined in quadrature).

7A square well with a radius of R ¼ 0.30 fm has been used to
regulate the interaction at short distances. Previous work [71]
shows that the observables have corrections that depend only on
positive powers of R (after refitting coefficients), as expected
from a Wilsonian renormalization group analysis in the limit
R → 0.
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which are consistent, within uncertainties, with those
obtained in the 1S0 channel with KSW counting. It is
interesting to note that the ratio of scattering length to
effective range is a=r ∼ 2, as was found to be the case at the
SU(3) symmetric point [14,17].
A feature of BBSvK counting is that predictions can be

made for the mixing parameter, ϵ1 and δ1β, or ϵ̄1 and δ̄ð3D1Þ

in the more familiar Stapp [78] parametrization of the
S-matrix. These are shown in Fig. 31, and it is important to
keep in mind that the coefficients determined from the
deuteron pole and S-wave phase shift contribute to both of
these quantities. While the D-wave phase shift is only
slightly modified by the NLO� interaction, ϵ̄1 is changed
dramatically. In this initial investigation, the range of the
square well interaction has not been varied and estimates of
contributions from higher orders have not been included. It
is clear that the theory error due to truncation of the BBSvK
expansion is large for ϵ̄1, but not for the D-wave phase shift.
In fact, this expansion of ϵ̄1 is found to be less convergent at
this pion mass than at the physical point [71].

VII. CONCLUSIONS

Recovering the experimentally known properties of the
two nucleon systems, such as the deuteron bound state, the
dineutron virtual-bound state and scattering observables,
from QCD represents a major challenge for lattice QCD
calculations. Once verified by comparison to known
experimental extractions, LQCD calculations hold the
promise of refining our knowledge of these systems beyond
what is possible experimentally, particularly in the neutron-
neutron system and more exotic processes involving hyper-
ons. LQCD calculations have steadily developed in recent
years and in the near future calculations of multinucleon
systems with physical quark masses will be available [79].
Eventually these calculations will also include the effects
of isospin breaking and QED. In this work, we report the
results of calculations of nucleon-nucleon interactions in

the 3S1 − 3D1 coupled channels and the 1S0 channel at a
pion mass ofmπ ∼ 450 MeV in three lattice volumes and at
a single lattice spacing. The lattice-spacing artifacts are
estimated to be small, entering at OðΛ2

QCDb
2Þ, and are

expected to modify the binding energies and phase shifts by
amounts that are small compared with the quoted statistical
and systematic uncertainties. Both the deuteron and the
dineutron are found to be bound at this pion mass,
consistent with expectations based upon previous calcu-
lations. The phase shifts in both channels are determined at
a few discrete momenta and, in both channels, a zero in the
phase shift is found to occur near the momentum at which a
zero is observed in nature. Calculations of increased
precision and kinematic coverage will further our under-
standing of the two nucleon systems at this set of quark
masses. Further calculations at other quark masses will
enable direct comparison with experimental extractions and
will elucidate important features of the chiral nuclear forces
that are not accessible by experiment alone.
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