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For field theories with a topological charge Q, it is often of interest to measure the topological
susceptibility χt ¼ ðhQ2i − hQi2Þ=V. If we manage to perform a Monte Carlo simulation whereQ changes
frequently, χt can be evaluated directly. However, for local update algorithms and fine lattices, the
autocorrelation time with respect to Q tends to be extremely long, which invalidates the direct approach.
Nevertheless, the measurement of χt is still feasible, even when the entire Markov chain is topologically
frozen. We test a method for this purpose, based on the correlation of the topological charge density, as
suggested by Aoki, Fukaya, Hashimoto and Onogi. Our studies in nonlinear σ-models and in two-
dimensional Abelian gauge theory yield accurate results for χt, which confirm that the method is applicable.
We also obtain promising results in four-dimensional SU(2) Yang-Mills theory, which suggest the
applicability of this method in QCD.
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I. MOTIVATION

We are going to address the functional integral formu-
lation of quantum physics in Euclidean space with periodic
boundary conditions. For a number of models of interest,
the configurations occur in distinct topological sectors,
each one characterized by a topological charge Q ∈ Z.
Examples are two-dimensional Abelian gauge theory
and four-dimensional Yang-Mills theories. In these cases
also fermions may be present, so this class includes the
Schwinger model and QCD. Further examples are the
OðNÞ models (nonlinear σ-models) in N − 1 dimensions,
and all two-dimensional CPðN − 1Þ models.
We deal with the case where parity symmetry holds,

which implies the expectation value hQi ¼ 0. Then the
topological susceptibility is given by

χt ¼
Z

ddxhqð0ÞqðxÞi ¼ hQ2i
Vcont

; ð1:1Þ

where q is the topological charge density [Q ¼ R
ddxqðxÞ],

and Vcont is the volume. This quantity is often of interest;
for instance χt of quenched QCD is relevant for the Witten-
Veneziano relation [1]. Clearly, χt can only be determined
on the nonperturbative level. Hence lattice simulations are
the appropriate method for this purpose. [Actually the

lattice definitions of q and Q are slightly ambiguous (see
e.g. Refs. [2] for comparative studies); we will specify later
the formulations that we use].
Here we consider the one-dimensional O(2) model

(quantum rotor), the two-dimensional O(3) model
(Heisenberg model), as well as two-dimensional U(1),
and four-dimensional SU(2) gauge theories. In our
Monte Carlo study of nonlinear σ-models, we apply a
cluster algorithm [3], which performs nonlocal update
steps. Hence it frequently changes the topological sector,
so it provides precise results for χt by direct measurements.
In most other models of quantum field theory, especially

in almost all models with fermions or gauge fields, such
an efficient algorithm is not known. There one resorts to
local update algorithms, such as the heatbath algorithm,
which we used in our gauge theory simulations. In that
case, the Markov chain tends to get stuck in one topological
sector, in particular as one approaches the continuum limit.
That may well happen in lattice QCD with light dynamical
quarks and a lattice spacing below 0.05 fm [4].
In light of these prospects for the near future, indirect

methods to measure χt are of interest. Here we test
systematically the Aoki-Fukaya-Hashimoto-Onogi (AFHO)
method [5], which evaluates χt based on the density
correlations hq0qxijQj, measured at fixed jQj. Hence this
quantity enables the determination of χt even from a Markov
chain that is entirely confined to a single topological sector.
An alternative concept with the same motivation was

sketched in Ref. [6]. For a recent study with a related
*Corresponding author.

wolbi@nucleares.unam.mx

PHYSICAL REVIEW D 92, 114510 (2015)

1550-7998=2015=92(11)=114510(13) 114510-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.114510
http://dx.doi.org/10.1103/PhysRevD.92.114510
http://dx.doi.org/10.1103/PhysRevD.92.114510
http://dx.doi.org/10.1103/PhysRevD.92.114510


approach, see Ref. [7]. The procedure of Ref. [8] is more
general, but it contains yet another option to determine χt
from topologically restricted measurements.
Here we are going to demonstrate in a variety of models

that the AFHO method works. For suitable settings, it
provided χt values which are correct to two or three digits.
We will also discuss the practical limitations of this
approach.

II. TOPOLOGICAL CHARGE DENSITY
CORRELATION

The AFHO method was derived in Ref. [5], inspired by
related considerations by Brower, Chandrasekharan,
Negele and Wiese [8]. It deals with the long-distance
correlation of the topological charge density qx at fixed jQj.
The topological susceptibility χt can be evaluated from the
(approximate) relation

limx→∞hq0qxijQj ≈ − 1

V2

�
hQ2i −Q2 þ Vc4

2hQ2i
�

¼ −
χt
V
þ 1

V2

�
Q2 − c4

2χt

�
; ð2:1Þ

where V is the volume in lattice units. The term

c4 ¼
1

V
ð3hQ2i2 − hQ4iÞ ð2:2Þ

is the kurtosis, which measures the deviation from a
Gaussian distribution of the topological charges. It tends
to be tiny (see e.g. Ref. [9] for quenched QCD results),
and in the one-dimensional O(2) model it vanishes exactly
in the continuum and infinite volume [10]. In the current
context its contribution can be ignored, as we will see in the
following.
Equation (2.1) consists of the leading terms of an

expansion in 1=hQ2i, and therefore hQ2i ¼ Vχt should
be large. Since χt is expected to stabilize in the large-
volume limit, Eq. (2.1) holds up to subleading finite-size
effects. Moreover, its derivation assumes the ratio jQj=hQ2i
to be small, and hence it is favorable to apply this method in
sectors of small jQj.
With these assumptions, Eq. (2.1) shows that the

correlation of the topological charge density in a fixed
sector is not expected to vanish over long distances.
Instead it is expected to attain a plateau, which depends
on jQj: it is slightly negative for Q ¼ 0 (obviously, a
fluctuation of q0 has to be compensated elsewhere), but it
rises for increasing Q2.
The AFHO method has been tested previously in the

two-flavor Schwinger model with light chiral fermions
[11]. The numerically measured correlations hq0qxi0 sug-
gest that a conclusive evaluation of χt requires large
statistics: on a 16 × 16 lattice it requires Oð105Þ configu-
rations. Variants of this method were already applied in

two-flavor QCD, though with a different density [12], and
recently also in QCD with 2þ 1 flavors, with a reduction to
subvolumes [13]. For a precise test, the nonlinear σ-models
are perfectly suited, since the method can be probed with
high statistics, and the results for χt can be compared with
reliable direct measurements. In order to probe the potential
of this approach further, we add investigations in two-
dimensional Abelian and four-dimensional non-Abelian
gauge theories. Synopses of this study were anticipated
in proceeding contributions [14].

III. RESULTS FOR THE ONE-DIMENSIONAL
O(2) MODEL

We start with the one-dimensional O(2) model, or one-
dimensional XY model, which describes a quantum-
mechanical particle moving freely on the circle S1, with
periodic boundary conditions in Euclidean time x. In
continuous time, a trajectory can be described by an angle
φðxÞ, with φð0Þ ¼ φðLcontÞ. On the lattice we deal with
angles φx, x ¼ 1…L and φLþ1 ¼ φ1.

1 We introduce the
nearest site difference

Δφx ¼ ðφxþ1 − φxÞmod 2π ∈ ð−π; π�; ð3:1Þ

i.e. the modulo function is defined such that jΔφxj is
minimized.
This is one of the simplest models with a topological

charge, which is given by

Q ¼ 1

2π

Z
Lcont

0

dxφ0ðxÞ ðcontinuumÞ;

Q ¼ 1

2π

XL
x¼1

Δφx ðlatticeÞ; ð3:2Þ

where qðxÞ ¼ φ0ðxÞ=ð2πÞ is the topological charge density
in the continuum, and qx ¼ Δφx=ð2πÞ is its geometrically
defined counterpart on the lattice.
The continuum action reads Scont½φ� ¼ βcont

2R Lcont
0 dxφ0ðxÞ2. In the Appendix we show that relation
(2.1) without the kurtosis term,

hqð0ÞqðxÞijQj ¼ − χt
V
þQ2

V2
; ð3:3Þ

is exact in this case, and independent of the separation x.
In our numerical study, we consider three lattice actions:

the standard action, the Manton action [15] and the
constraint action [16],

1All lattice quantities will be given in lattice units.
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Sstandard½φ� ¼ β
XL
x¼1

ð1 − cosΔφxÞ;

SManton½φ� ¼
β

2

XL
x¼1

Δφ2
x;

Sconstraint½φ� ¼
�
0 Δφx < δ ∀ x;

þ∞ otherwise:
ð3:4Þ

The parameter β (or βcont) corresponds here to the moment
of inertia, and in the last case δ is the constraint angle.
In the thermodynamic limit, L → ∞, the correlation

length ξ ¼ 1=ðE1 − E0Þ (i.e. the inverse energy gap) and χt
are known analytically [10,16], as we summarize in
Table I.2 The product ξχt is a scaling quantity, i.e. a
dimensionless term composed of observables. In the
continuum it amounts to

ξχtjcontinuum ¼ 1

2π2
: ð3:5Þ

This value is attained for the lattice actions in the limit
β → ∞ and δ → 0, respectively, which reveals a facet of
universality even in one dimension. The corresponding
scaling behavior is discussed in Refs. [10,16,18]. In
particular, the Manton action scales excellently, since it
is classically perfect.
Figure 1 shows examples for numerically measured

correlations hq0qxijQj, using these actions at L ¼ 100.
We see in all cases that the numerical data are in excellent
agreement with the predicted plateau values. These pla-
teaux are accurately visible, so the AFHO method does
indeed enable a precise numerical determination of χt.
To demonstrate this explicitly, we consider the range

L ¼ 150…400, and jQj ¼ 0, 1, 2, which leads to the results
for χt in Fig. 2. For the Manton action we obtain precise
agreement with the theoretical χt value in all cases. For the

standard action we observe small deviations up to a few per
mille, which are suppressed for jQj ≤ 1, and for jQj ¼ 2
they are reduced as L increases.
These tiny lattice artifacts are revealed due to extremely

large statistics: for each parameter set, at least 5 × 109

measurements have been performed with a cluster algorithm.

TABLE I. Closed expressions for the correlation length ξ and
the topological susceptibility χt in the one-dimensional O(2)
model at infinite size, in the continuum and for three lattice
actions.

Action ξ χt

Continuum 2βcont
1

4π2βcont

Standard

�
ln

R
π

−π dφexpð−βð1−cosφÞÞR
π

−π dφexpð−βð1−cosφÞÞcosφ

�−1
1
4π2

R
π

−π dφφ
2 expð−βð1−cosφÞÞR

π

−π dφexpð−βð1−cosφÞÞ

Manton

�
ln

R
π

−π dφ expð−βφ2=2ÞR
π

−π dφ expð−βφ2=2Þ cosφ

�−1
1
4π2

R
π

−π dφφ
2 expð−βφ2=2ÞR

π

−π dφ expð−βφ2=2ÞÞ

Constraint ½lnðδ= sinðδÞÞ�−1 δ2

12π2
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FIG. 1 (color online). The topological charge density correla-
tion in the one-dimensional O(2) model over a distance of x
lattice spacings, at L ¼ 100. The first two plots refer to the
standard action and the Manton action at β ¼ 2, with ξ ¼ 2.779,
hQ2i ¼ 1.936, and ξ ¼ 4.000, hQ2i ¼ 1.266, respectively.
The plot below is obtained with the constraint action at δ ¼ 1,
L ¼ 100, ξ ¼ 5.793, hQ2i ¼ 0.844. For comparison, we include
in all cases horizontal lines for the prediction based on Eq. (3.3),
where we insert the directly measured values of χt.

2For the continuum action, Ref. [17] discusses the spin
correlation function, and its restriction to a single topological
sector.

MEASURING THE TOPOLOGICAL SUSCEPTIBILITY IN A … PHYSICAL REVIEW D 92, 114510 (2015)

114510-3



This yields very precise results, and illustrates the conver-
gence towards the theoretical χt value for increasing hQ2i (or
equivalently L).

IV. RESULTS FOR THE TWO-DIMENSIONAL
O(3) MODEL

We proceed to field theory, and first to the two-dimen-
sional O(3) model (or Heisenberg model), with periodic
boundary conditions. In its lattice formulation a classical
spin variable of unit length is attached to each lattice site
x, ~ex ∈ S2.
Regarding the topological charge, we consider sets of

three neighboring spins. In our case the lattice consists of
quadratic plaquettes, and each plaquette is divided into two

triangles (the cutting diagonal has an alternating orientation
between nearest neighbor plaquettes). Each of these tri-
angles carries such a set of spins ~e1, ~e2, ~e3. They are
connected on the sphere S2 by the arcs of minimal length to
form a spherical triangle. Its oriented area A is given by [16]

x ¼ 1þ ~e1 · ~e2 þ ~e2 · ~e3 þ ~e1 · ~e3;

y ¼ ~e1 · ð~e2 × ~e3Þ;
φ ¼ argðxþ iyÞmod 2π;

Að~e1; ~e2; ~e3Þ ¼ 2φ; ð4:1Þ

where the modulo function is defined as in Eq. (3.1).
In each plaquette, the normalized sum of these two oriented
spherical triangles (the total solid angle), qx ¼
Að~ex; ~exþ1̂; ~exþ2̂; ~exþ1̂þ2̂Þ=ð4πÞ, is the topological charge
density.
If we sum over all plaquettes, and thus over all triangles,

we obtain the geometrically defined topological charge

Q ¼
X
x

qx ¼
1

4π

X
x

Að~ex; ~exþ1̂; ~exþ2̂; ~exþ1̂þ2̂Þ ∈ Z: ð4:2Þ

This definition, which was advocated in Ref. [19], has the
virtue of providing integer Q values for all configurations
(except for a subset of measure zero), just like Eq. (3.2).
It counts how many times (and with which orientation)
these triangles cover the sphere.
The standard lattice action reads

Sstandard½~e� ¼ β
X
x;μ

ð1 − ~ex · ~exþμ̂Þ; ð4:3Þ

where μ runs from 1 to 2, μ̂ is the unit vector in the μ
direction, and β > 0.
Figure 3 shows the topological charge density correla-

tion hq0qxi at β ¼ 1, measured in the sectors jQj ¼ 0; 1; 2,
on L × L lattices of size L ¼ 12 and L ¼ 16. The mea-
surements are carried out parallel to the axes, and the
spin separation proceeds in steps of two lattice units, due
to the alternating triangularization in the definition of qx.
The horizontal lines are the expected plateau values
according to Eq. (3.3). Again we inserted the directly
measured values of χt ¼ hQ2i=V; they are very precise,
thanks to the use of a cluster algorithm, which provided a
statistics of Oð107Þ well thermalized and decorrelated
measurements.3
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FIG. 2 (color online). The topological susceptibility χt in the
one-dimensional O(2) model for the standard and Manton action
at β ¼ 4, where ξ ¼ 6.8 and 8.0, respectively. We show the
theoretical value at L ¼ ∞, the directly measured value (at
L ¼ 400), and the values obtained from the AFHO method in
the range L ¼ 150…400, in the sectors jQj ¼ 0, 1, 2. For the
standard action, there are per-mille-level deviations from the
predicted value, in particular for jQj ¼ 2, which are suppressed
for increasing L. For the Manton action all results coincide to an
impressive precision, even down to L ¼ 150.

3This model is sometimes considered topologically ill, because
χtξ

2, which is supposed to be the scaling term, diverges
logarithmically in the continuum limit. In the integral represen-
tation of Eq. (1.1), this effect emerges at distance x ¼ 0; at finite
distances, the topological charge density correlation is a con-
trolled quantity [16]. Here we determine χt with different methods
at fixed ξ, so this defect does not affect our study.
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The plots clearly confirm the qualitatively expected
picture. We further confirm that the condition of a large
separation is quite harmless: for the separation of four
lattice spacings, the plateau value is already well attained.
For a quantitative analysis, we perform individual fits of

the data to a constant in one sector (skipping two…six
points at the boundaries); each fit yields a value of the
topological susceptibility χt. In addition we consider
combined fits in two or three sectors. These results are
confronted with the directly measured values in Fig. 4.
As theory predicts, the lowest jQj sectors are most reliable.
In fact, the evaluation of χt based on hq0qxijQj is successful
to an accuracy of a few percent in these cases. However,
Fig. 3 also shows that the application of this method is
getting difficult when L increases: then the values of
hq0qxijQj become tiny, and thus hard to distinguish from
zero, and from each other.
This is a case of strong coupling; β ¼ 1 leads to a

correlation length of ξ≃ 1.3 (at large L). Hence the
volumes that we used can be considered large, but the
lattice is coarse. In order to probe the AFHO method closer
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FIG. 3 (color online). The topological charge density correlation in the two-dimensional O(3) model, with the standard lattice action at
β ¼ 1. We show data measured on L × L lattices, L ¼ 12 and 16, in the sectors jQj ¼ 0, 1, 2. They are compared to lines for the values
according to Eq. (3.3), with the directly measured susceptibility χt.

 0.01

 0.015

 0.02

 0.025

 0.03

 0  1  2

χ t

|Q|

2d O(3) model,  Standard action, β = 1

direct result at L=12
L=12, one sector

sectors 0 and 1, and 0 to 2
direct result at L=16

L=16, one sector
sectors 0 and 1, and 0 to 2

FIG. 4 (color online). The topological susceptibility in the two-
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the topological charge density correlation in sector jQj, or
combined fits in several sectors. This is compared to the direct
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FIG. 5 (color online). Plots analogous to Fig. 3, now for the constraint action at δ ¼ 0.55π, which corresponds to ξ≃ 3.6, and with
lattice sizes L ¼ 16 and L ¼ 32.
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to the continuum limit, we now proceed to a different
setting. We move to the constraint action, which is defined
in analogy to Eq. (3.4), i.e. the action is zero if all angles
between neighboring spins are less than δ, and infinite
otherwise [16]. We set the constraint angle to δ ¼ 0.55π,
which corresponds to a correlation length of ξ≃ 3.6.
Accordingly, we now consider larger square lattices, with
L ¼ 16 and L ¼ 32. Figure 5 shows the topological charge
correlations in this case, and Fig. 6 displays the fit results.
These plots show again that the condition of a larger

separation jxj is not a practical problem. However, despite

the statistics of Oð107Þ measurements, the AFHO method
does run into trouble in reproducing the directly measured
χt values beyond one digit. This is mostly a consequence of
the larger volumes involved; they suppress the signal,
which is relevant to extract χt in this indirect manner.
Let us finally take a large step to a numerical experiment

very close to the continuum limit: it is performed with the
standard lattice action at β ¼ 1.5, on square lattices with
L ¼ 16…128; at large L, this corresponds to ξ≃ 9.5.
Figure 7 shows the results for χt up to L ¼ 84, based on
the topological charge correlations in the sectors jQj ¼ 0,
1, 2, and by direct measurement. As L increases, the latter
converges well at L ≥ 32. The results by the AFHOmethod
move towards the directly measured value, and get close to
it at L ¼ 40. Here the range L ≈ 40…60 is optimal for its
application. As we increase L further, we face again the
problem that the tiny signal, which matters for χt, gets lost
in the statistical noise. For jQj ¼ 1, 2 this happens already
at L ≥ 64; only at Q ¼ 0 the method still leads to useful
results up to L ¼ 84. [For completeness we add that at
L ¼ 128 we obtained χt ¼ 0.0019ð8Þ, which is still com-
patible with the directly measured value 0.002292(9), but it
has an error of 42%.]

V. RESULTS FOR TWO-DIMENSIONAL ABELIAN
GAUGE THEORY

We proceed to two-dimensional U(1) gauge theory with
the plaquette action, i.e. Wilson’s standard lattice formu-
lation [20]. We simulate it with the heatbath algorithm on
periodic L × L lattices, with a variety of L and β values,
which keep hQ2i in the range of 0.7 to 10.4. In each case,
the statistics involves 107 configurations. For the topologi-
cal charge density qx we also applied the straight plaquette
regularization of the field strength tensor in terms of
noncompact link variables Ax;μ,

qx ¼ Fx;12 ¼
1

2π
½ðAx;1 þ Axþ1̂;2 − Axþ2̂;1 − Ax;2Þmod 2π�;

ð5:1Þ

still with the modulo function as defined in Eq. (3.1). As in
Sec. IV, its correlation was measured parallel to one of
the axes.
Thanks to a generous separation of the measurements,

the direct evaluation of χt is very precise, although the
updates are local.
Figure 8 gives three examples which illustrate that also

here the data for the topological charge density match the
predicted plateaux well, so that the determination of χt by
the AFHO method is possible. In addition we see again the
difficulty setting in as the volume increases.
Figure 9 provides an overview over the results in the

range L ¼ 6…20 and β ¼ 1…5. In the extreme cases, the
plaquette values amount to hPi ¼ 0.4464 (β ¼ 1) and
0.8934 (β ¼ 5); for the rest we refer to the caption of Fig. 8.
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FIG. 6 (color online). The topological susceptibility in the two-
dimensional O(3) model on 16 × 16 and 32 × 32 lattices, with the
constraint action at δ ¼ 0.55π, where ξ≃ 3.6. We display results
from fits to the topological charge density correlation in sector
jQj, or combined fits in several sectors. Comparison to the direct
measurement shows that the AFHO method is less successful
than in the examples of Fig. 4, since larger volumes are involved.
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FIG. 7 (color online). The topological susceptibility χt for the
standard action at β ¼ 1.5, on L × L lattices with L ¼ 16…84
(with ξ≃ 9.5 at large L). The directly measured values stabilize
for L ≥ 32 (its errors are too small to be visible in this plot), and
the AFHO results approximate it well in the regime L ¼ 40…84.
For smaller L, this method suffers from significant finite-size
effects, and for larger L the signal for the determination of χt is
too small for a good numerical resolution.
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In this case, we apply the AFHO method as a combined
fit to the data in the topological sectors with Q ¼ 0 and
jQj ¼ 1. This might be the optimal application, which
includes a large number of data points, but avoids the less
reliable topological sectors. In all the cases shown in Fig. 9,
these AFHO results for χt agree with the directly measured

values, within errors on the percent level, e.g. at L ¼ 16
we obtain χt ¼ 0.0196ð6Þ ðβ ¼ 2Þ; 0.0110ð3Þ ðβ ¼ 3Þ;
0.0075ð2Þ ðβ ¼ 4Þ.
In contrast to the previous sections, we are now dealing

with a local update algorithm, which is the situation that
motivates this project. As an illustrative example, we add a
measurement of the integrated autocorrelation time τint (for
the definition, see e.g. Ref. [21]) with respect to Q. It is
expressed in the number of sweeps (updates of each link
variable), in a fixed volume with L ¼ 16. Figure 10 shows
that τint increases rapidly as we approach the continuum
limit. This confirms that, for the heatbath algorithm, the
problem of “topological freezing” becomes severe indeed,
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FIG. 8 (color online). The topological charge density correla-
tion in two-dimensional U(1) gauge theory on L × L lattices, over
a distance of x lattice spacings. We show the first three plateau
values (horizontal lines, based on direct measurements of χt),
and the corresponding data for β ¼ 2, L ¼ 12, with a plaquette
value of hPi ¼ 0.6978 and hQ2i ¼ 2.79; β ¼ 3, L ¼ 16, hPi¼
0.8100, hQ2i¼2.83, and β¼4, L¼20, hPi¼0.8635,
hQ2i ¼ 3.02.
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FIG. 9 (color online). The topological susceptibility χt for two-
dimensional U(1) gauge theory, on L × L lattices. The horizontal
lines are the directly measured values (errors and differences for
various L are invisible on this scale). The symbols are the AFHO
values obtained by a combined fit in the sectors jQj ≤ 1.
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FIG. 10. The integrated autocorrelation time τint in two-
dimensional U(1) gauge theory, with respect to the topological
charge Q. We consider β ¼ 1…5 on a 16 × 16 lattice, and
measure τint based on 107 sweeps, after thermalization. As β
is getting large, we observe an exponential increase of τint
(measured in the number of sweeps).
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once we attain plaquette values of hPi ≳ 0.9. (The results in
Figs. 8 and 9 were obtained by separating the measure-
ments by a number of sweeps, which clearly exceeds τint).

VI. RESULTS FOR FOUR-DIMENSIONAL
SU(2) YANG-MILLS THEORY

Finally we study four-dimensional SU(2) Yang-Mills
theory, which is in many respects close to QCD, but
computationally cheaper. Therefore, tests in SU(2) Yang-
Mills theory are ideal for hints about the practical appli-
cability of the AFHO method to QCD. As usual, the lattice
gauge field is represented in terms of compact link
variables Ux;μ ∈ SUð2Þ [20].
Following Ref. [22], we determine the topological

charge density qx, and the topological charge Q ¼P
xqx, by an improved field-theoretic definition,

qx½U� ¼ 1

16π2
X
μνρσ

ϵμνρσ
X

□¼1;2;3

c□
□

4
Fð□×□Þ
x;μν ½U�Fð□×□Þ

x;ρσ ½U�;

ð6:1Þ

where Fð□×□Þ
x;μν denotes the dimensionless lattice field

strength tensor, clover averaged over square-shaped
Wilson loops of size □ ×□, and c1 ¼ 1.5, c2 ¼−0.6, c3 ¼ 0.1.
We apply Eq. (6.1), after performing a number Ncool of

cooling sweeps with the intention to suppress UV fluctua-
tions in the gauge configurations, while preserving the
topological structure. A cooling sweep amounts to a local
minimization of the action, i.e. a successive minimization
with respect to each gauge link. For this minimization we
also use an improved version of the lattice Yang-Mills
action,

S½U� ¼ β

16

X
x

X
μν

X
□¼1;2;3

c□
□

4
Trð1 −Wð□×□Þ

x;μν ½U�Þ; ð6:2Þ

where β ¼ 1=ð4g2Þ, and Wð□×□Þ
x;μν is a clover-averaged loop

of size □ ×□. Choosing an appropriate sweep number
Ncool is a subtle and somewhat ambiguous task, which will
be discussed below.
The lattice action used for the generation of gauge

configurations is the standard plaquette action, which is
obtained from Eq. (6.2) by setting c1 ¼ 1, c2 ¼ c3 ¼ 0.

As in Sec. V, the simulations were performed with a
heatbath algorithm [20], now at β ¼ 2.5. This corresponds
to the lattice spacing a ≈ 0.073 fm, when the scale is set by
identifying the Sommer parameter r0 with 0.46 fm [23].
That value of a is in the range of lattice spacings 0.05 fm ≤
a ≤ 0.15 fm typically used in contemporary QCD simu-
lations. We generated about 4000 configurations in each
of three volumes, V ¼ 144, 164, 184. This is also a typical
statistics in QCD simulations.

TABLE II. Number of configurations for three volumes V, in
each topological sector 0 ≤ jQj ≤ 4. The topological charge has
been assigned after performing Ncool ¼ 10 cooling sweeps.

V Q ¼ 0 jQj ¼ 1 jQj ¼ 2 jQj ¼ 3 jQj ¼ 4

144 1023 1591 893 350 103
164 722 1371 942 574 248
184 622 1079 898 616 402
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FIG. 11 (color online). The correlation hq0qxijQj as a function
of the on-axis separation jxj, after Ncool ¼ 10 cooling sweeps, for
the lattice volumes V ¼ 144, 164, 184. Fits of the right-hand side
of Eq. (3.3) with respect to χt are indicated by the horizontal
solid lines.
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Assigning a topological charge Q to each configuration
leads to the statistics given in Table II for the sectors
jQj ≤ 4. We proceed by computing the correlation function
of the topological charge density hq0qxijQj in all these
sectors Q and volumes V.
The normalization factor on the right-hand side of

Eq. (2.1) is given by the inverse volume. As we have
observed in the previous sections, the correspondingly
suppressed signal in a large volume is often the bottleneck
in the application of the AFHO method. In order to

compensate this suppression, which is worrisome in a
four-dimensional volume, we now determine hq0qxi by
measuring all-to-all correlations in each configuration,
thus taking advantage of the discrete translational and
rotational invariance.
In a second step we fit to these lattice results the right-

hand side of Eq. (3.3), i.e. Eq. (2.1) with c4 ¼ 0, with
respect to χt, at sufficiently large separations x, where
hq0qxijQj exhibits a plateau. Figure 11 illustrates the
determination of χt after Ncool ¼ 10 cooling sweeps, in
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FIG. 12 (color online). The correlation hq0qxijQj as a function of the on-axis separation jxj for different numbers of cooling sweeps,
Ncool ¼ 5; 10; 20, and lattice volumes V ¼ 144 and 184.
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the three lattice volumes under consideration. Clearly the
correlation function hq0qxijQj is different for each topo-
logical sector jQj. These differences are more pronounced
for smaller volumes V and larger topological charges Q,
which shows that the splitting according to Eqs. (2.1)
and (3.3) can indeed be resolved from our data. Hence the
statistics, drastically amplified by the all-to-all correlations,
is indeed sufficient to reveal the relevant signal.
In particular, for V ¼ 144 the maximally available on-

axis separations jxj ¼ 6, 7, 8 are at the borderline which
allows us to observe plateaux of hq0qxijQj. For V ¼ 164

plateaux are visible in the range jxj ¼ 7, 8, 9 and in V ¼
184 even five points, 7 ≤ jxj ≤ 11, are consistent with a
plateau.
Since the signal, i.e. the differences between the plateau

values, increases for smaller volumes, a promising strategy
might be to use anisotropic volumes. For example the
volumes of a 144 and a 123 × 24 lattice are similar (i.e. both
should exhibit a similar signal quality), but the latter allows
to study larger separations (on axis up to jxj ¼ 12, though
not with the entire statistics of all-to-all correlations).
In Fig. 12 we show determinations of χt and compare

different numbers of cooling sweeps, Ncool ¼ 5; 10; 20, in
the volumes V ¼ 144 and 184. For a small number, such as
Ncool ¼ 5, the correlation function hq0qxijQj is rather noisy.
This is a consequence of strong UV fluctuations, which are
manifest in the topological charge density qx, and which are
not filtered out sufficiently at small Ncool. For a large
number of cooling sweeps, like Ncool ¼ 20, statistical
errors are significantly smaller, but the correlation function
hq0qxijQj exhibits plateaux only at larger separations jxj.
This effect becomes plausible when considering the

structure of the states contributing to hq0qxijQj. This
correlation function is the Fourier transform of an analo-
gous correlation function, summed over all topological
sectors at a finite vacuum angle θ (for a detailed discussion,
see Ref. [17]). The plateau values arise due to the non-
vanishing vacuum expectation value hqxi at θ ≠ 0.
Deviations from these plateaux are predominantly caused
by low-lying excitations, which correspond to glueballs in
Yang-Mills theory. Due to the glueball size, the overlap
with qxjΩi (where jΩi is the vacuum state) increases when
using extensive cooling (then qx is an extended operator
resembling a low-lying glueball), compared to little or no
cooling (then qx is a highly local operator). Consequently,
cooling enhances the contribution of excitations to the
correlation function hq0qxijQj and, hence, causes stronger
deviations from the plateaux.
In practice one should decide for an optimal compro-

mise, i.e. an intermediate number of cooling sweeps. Such a
compromise can be read off for instance from plots
showing the dependence of the topological susceptibility
χt (obtained by the AFHO method at fixed jQj), or the
correlation function hq0qxijQ at a specific separation jxj ≈
L=2 on Ncool. Such plots are shown in Fig. 13 for L ¼ 18

and fixed topological charge jQj ¼ 0, 1, 2. As expected, the
statistical errors are quite large for small Ncool ≲ 5. In an
intermediate region, 5≲ Ncool ≲ 15, there are stable pla-
teaux of both hq0qxijQj and χt with comparably small
statistical errors. The rather long plateaux indicate that
cooling is a numerically stable procedure, not destroying
topological excitations nor introducing any unwanted non-
locality effects. At large Ncool ≳ 15 there is a slight trend
towards lower χt, in particular for Q ¼ 0, which could be a
first sign of contamination by excited states. An optimal
choice for Ncool is somewhere inside the plateaux region,
such as Ncool ¼ 8 or Ncool ¼ 10, as we have used in the
examples in Fig. 11 and Table III.
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FIG. 13 (color online). The correlation hq0qxijQj at jxj ¼
L=2 ¼ 9, and the topological susceptibility χt, as a function of
the number of cooling sweeps Ncool in the volume V ¼ 184.

TABLE III. Results for the topological susceptibility χt × 105

extracted from fits to a single sector jQj, or combined fits to
several sectors (0 ≤ jQj ≤ 2 for V ¼ 164, 0 ≤ jQj ≤ 3 for
V ¼ 184). A corresponding study without topology fixing [22]
obtained χt × 105 ¼ 7.0ð9Þ.
V Ncool Q ¼ 0 jQj ¼ 1 jQj ¼ 2 jQj ¼ 3 Combined

164
8 6.1(9) 5.5(9) 7.1(8) 6.3(6)
10 7.4(10) 5.4(7) 6.5(9) 6.3(5)

184
8 7.1(14) 5.8(10) 7.4(12) 9.2(19) 7.3(6)
10 6.2(10) 5.9(10) 6.6(9) 8.7(11) 7.0(5)
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Numerical results for the larger volumes, V ¼ 164 and
184, and moderate cooling, Ncool ¼ 8 or 10, where a
reasonably accurate determination of χt seems possible,
are summarized in Table III. Fits have been restricted to
sectors Q fulfilling jQj=ðχtVÞ < 0.5, which involves the
small expansion parameter in the derivation of Eq. (2.1)
[5,17]. The resulting values for the topological susceptibil-
ity agree within the errors with a previous straight deter-
mination (without topology fixing), which arrived at
χt ¼ 7.0ð9Þ × 10−5 [22].
We also investigated the magnitude of ordinary finite-

volume effects (not related to topology fixing). We did this
by computing and comparing χt at unfixed topology using
χt ¼ hQ2i=V. For the three volumes used throughout this
section, and Ncool ¼ 10, we obtain for χtðVÞ

χtð144Þ ¼ 7.02ð1Þ × 10−5;
χtð164Þ ¼ 6.97ð2Þ × 10−5;
χtð184Þ ¼ 7.01ð3Þ × 10−5:

These values agree within the statistical errors. Moreover,
both the differences as well as the statistical errors are
significantly smaller (by more than a factor of 10) than the
uncertainties associated with our χt determinations using the
AFHO method, as listed in Table III. Therefore, in our study
ordinary finite-volume effects can safely be neglected.
The similarity of four-dimensional SU(2) Yang-Mills

theory and QCD suggests that an application of the AFHO
method to QCD will also allow for a determination of the
topological susceptibility up to about 10%, based on
Oð1000Þ configurations for each of the topological sectors
with small jQj. We plan to explore this scenario in the near
future.

VII. CONCLUSIONS

We have investigated the AFHO method [5] for the
evaluation of the topological susceptibility χt based on the
correlation of the topological charge density. Amazingly,
this method allows—in principle—for a measurement of χt
even within a fixed topological sector, and low jQj’s are
most promising.
We have seen that the method as such works; in some

cases it provided results, which are correct to two or three
digits. Hence situations do exist, where the approximations
in the derivation of formula (3.3) [in particular including
order Oð1=V2Þ incompletely, and neglecting all terms of
Oð1=V3Þ] can be justified, as we could confirm on the
nonperturbative level.
This approximation neglects the kurtosis term in relation

(2.1), and all higher terms. They are suppressed by the
inverse volume. Moreover, it is a generic property that
topological charges are approximately Gauss distributed,
such that jc4j is small. As a peculiar case, it vanishes in the

continuum one-dimensional O(2) model, and in that case
there are no higher corrections either (cf. the Appendix).
Regarding the limitations of the applicability range, we

note that—for most models studied here—the theoretical
condition of measuring the correlation “at large separation”
turned out not to be worrisome in practice; only in Sec. VI
did this issue have some relevance. However, the AFHO
method generally runs into trouble when the volume V
increases. Then the signal in hq0qxijQj is suppressed by a
factor 1=V, and the separation between the predicted
plateaux by 1=V2. If we want the correlation length to
be clearly larger than the lattice spacing (so that lattice
artifacts are under control), we need a sizable lattice to keep
the finite-size effects under control as well. With these
conflicting requirements, even in our two-dimensional test
models, and despite a statistics of 107 measurements, this
method led to results with rather large statistical errors.
Thus we observe that the AFHO method, which is based

on topologically restricted measurements, is plagued by
unusually persistent finite-size effects. In usual settings,
the latter are exponentially suppressed, i.e. they are
∝ expð−constL=ξÞ, and quite small if L=ξ≳ 4. However,
topologically restricted numerical measurements are very
sensitive to finite-size effects: we recall that relation (2.1) is a
truncated polynomial expansion in 1=V, but we can also
refer directly to the large ratios L=ξ, which were used all
over this study; e.g. in the upper plot of Fig. 2 it amounts to
L=ξ > 22, which usually makes finite-size effects negli-
gible, but here they are significant. This property calls for a
larger size L. In turn, that causes problems in extracting the
subtle effect, which is relevant for the indirect determination
of χt.
That issue might be the bottleneck for the prospects to

apply the AFHO method in four dimensions, and it has
inspired the approach of restriction to subvolumes [13].
However, our study in Sec. VI shows that the suppression
of the wanted signal by the inverse volume can be
successfully compensated if we enhance the statistics by
means of all-to-all correlation measurements. We have seen
in four-dimensional SU(2) Yang-Mills theory that this
procedure does provide sufficient precision for hq0qxi,
even for a moderate number of Oð1000Þ configurations in
one topological sector. Due to this observation, the AFHO
method in its original form appears quite promising in
QCD. We are going to test if it enables also there the
evaluation of χt in an unconventional way, to an accuracy of
about 10%.

ACKNOWLEDGMENTS

Lilian Prado has worked on this project at an early stage.
We also thank Christopher Czaban and Philippe de Forcrand
for interesting discussions. This work was supported in part
by the Mexican Consejo Nacional de Ciencia y Tecnología
(CONACYT) through project 155905/10, by DGAPA-
UNAM, Grant No. IN107915, and by the Helmholtz

MEASURING THE TOPOLOGICAL SUSCEPTIBILITY IN A … PHYSICAL REVIEW D 92, 114510 (2015)

114510-11



International Center for FAIR within the framework of the
LOEWE program launched by the State of Hesse. A. D. and
M.W. acknowledge support by the Emmy Noether
Programme of the DFG (German Research Foundation),
Grant No. WA 3000/1-1, and C. P. H. acknowledges support
through the project Redes Temáticas de Colaboración
Académica 2013, UCOL-CA-56. Calculations on the
LOEWE-CSC and on the FUCHS-CSC high-performance
computer of the Frankfurt University were conducted for this
project. We would like to thank HPC-Hessen, funded by the
State Ministry of Higher Education, Research and the Arts,
for programming advice.

APPENDIX: TOPOLOGICAL CHARGE DENSITY
CORRELATION IN THE CONTINUUM

ONE-DIMENSIONAL O(2) MODEL

The key quantity of this work is the correlation function
of the topological charge density. In this appendix we
compute it analytically for the one-dimensional O(2)
model, formulated in continuous Euclidean time x, with
periodicity length L. For this purpose, it is useful to include
a θ term in the action,

S½φ� ¼ βcont
2

Z
Lcont

0

dxφ0ðxÞ2 − iθQ½φ�: ðA1Þ

In the canonical formulation of quantum mechanics, the
corresponding Hamilton operator, its energy eigenfunctions
and eigenvalues read [10]

Ĥ ¼ 1

2βcont

�
p̂ − θ

2π

�
2

;

hφjni ¼ 1ffiffiffiffiffiffi
2π

p einφ;

En ¼
1

2βcont

�
n − θ

2π

�
2

; ðA2Þ

where p̂ ¼ −i ∂
∂φ and n ∈ Z. The operator for the topo-

logical charge density is given by

q̂ ¼ 1

2π
½Ĥ; φ̂� ¼ 1

2πβcont

�
− ∂
∂φþ i

θ

2π

�
: ðA3Þ

This operator is anti-Hermitian (due to the Euclidean time
derivative of the Hermitian operator φ̂), with the matrix
elements

hmjq̂jni ¼ 1

ð2πÞ2βcont

Z
π

−π
dφe−imφ

�
− ∂
∂φþ i

θ

2π

�
einφ

¼ iðθ − 2πnÞ
ð2πÞ2βcont

δmn:

Hence the expectation value

hqðxÞi ¼ 1

ZðθÞ
i

ð2πÞ2βcont
X
n∈Z

ðθ − 2πnÞe−EnLcont ;

with ZðθÞ ¼
X
n∈Z

e−EnLcont

is imaginary in general (of course it vanishes at θ ¼ 0).
Therefore the corresponding correlation function is in

general negative,4

hqð0ÞqðxÞi ¼ 1

ZðθÞ
X
m;n∈Z

hmjq̂jnihnjq̂jmie−Enx−EmðLcont−xÞ

¼ −
1

ZðθÞ
1

ð2πÞ4β2cont
X
n∈Z

ðθ − 2πnÞ2e−EnLcont :

ðA4Þ
It is remarkable that this correlation is independent of x, if
x=Lcont∉Z (this condition allows us to insert a unit factorP

njnihnj between the endpoints).
The vacuum angle θ enables also the computation of the

topologically restricted partition function,

ZQ ¼ 1

2π

Z
π

−π
dθZðθÞe−iQθ ¼ 1

2
ffiffiffiffiffiffi
πα

p e−Q2=ð4αÞ;

α ¼ L
8π2βcont

;

and correlation function,

hqð0ÞqðxÞiQ ¼ 1

2πZQ

Z
π

−π
dθZðθÞhqð0ÞqðxÞie−iQθ

¼ −
1

ð2πÞ5β2contZQ

Z
∞

−∞
dθθ2e−αθ2−iθQ

¼ 1

32π4β2contα

�
−1þQ2

2α

�
: ðA5Þ

Finally we insert α and χt ¼ αLcont=2 (cf. Table I) to arrive at

hqð0ÞqðxÞiQ ¼ − χt
Lcont

þ Q2

L2
cont

: ðA6Þ

Also the topologically restricted correlation function is
constant in x, which explains that the data in Sec. III attain
the plateau values immediately.
Moreover, we see that Eq. (3.3) is exact in this specific

case, which is consistent with the fact that the kurtosis
vanishes [10]. Therefore, in our numerical study presented
in Sec. III, the actual issues are lattice artifacts and the
visibility of the predicted plateau values in numerical
simulation data; both are generally relevant questions.

4In field-theoretic models, the correlation of the topological
charge density over a large distance is known to be negative as
well [24].
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