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In this article we complete our formalism relating the finite-volume energy spectrum of a scalar quantum
field theory to the three-to-three scattering amplitude, M3. In previous work [Phys. Rev. D 90, 116003
(2014)], we found a quantization condition relating the spectrum to a nonstandard infinite-volume quantity,
denoted Kdf;3. Here we present the relation between Kdf;3 and M3. We then discuss briefly how our now
completed formalism can be practically implemented to extract M3 from the finite-volume energy
spectrum.
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I. INTRODUCTION

This work completes the formalism that was partially
developed in Ref. [1]. In that work we determined the
finite-volume spectrum of a relativistic scalar quantum field
theory by calculating an appropriate finite-volume corre-
lator to all orders in perturbation theory. All contributing
Feynman diagrams were decomposed into products of
finite- and infinite-volume quantities. Summing these
factored expressions gave a result for the correlator in
terms of finite-volume kinematic functions and infinite-
volume scattering quantities. The poles in the resulting
expression determine the energies of the finite-volume
states, and identifying their locations gave a relation
between the finite-volume spectrum and infinite-volume
scattering quantities.
The central drawback of the result of Ref. [1] is that it

depends on a nonstandard infinite-volume three-particle
quantity, a modified three-particle K matrix denoted Kdf;3.
For our formalism to be useful, it is necessary to relateKdf;3

to the physical three-particle scattering amplitudeM3. This
is what we achieve in the present work. This shows that, in
a relativistic context, the finite-volume spectrum of three
particles is determined by infinite-volume observables (up
to corrections falling faster than any power of 1=L, where L
is the linear extent of the finite volume). This result was
previously established using nonrelativistic effective field
theory [2].
To give a sense of what is involved in relating Kdf;3 to

M3, we recall from Ref. [1] the major differences between
the two quantities. Both are obtained by summing con-
tributions from diagrams with six external lines. However,
divergences that are present inM3 are removed from Kdf;3

(leading to the subscript “df” for “divergence free”). These

divergences are due to diagrams containing pairwise
scatterings, such as that shown in Fig. 1. They have nothing
to do with bound states but are instead a result of on-shell
three-particle intermediate states [3–6]. It is not surprising
that the finite-volume spectrum is related to a modified
quantity in which these divergences are removed. We stress
that the terms removed depend only on the on-shell two-to-
two scattering amplitude, M2. These can, thus, be sepa-
rately computed and added to the divergence-free quantity
to recover M3.
A second and more important difference between M3

and Kdf;3 concerns the pole prescription used to define
momentum integrals over products of propagators. In M3

the standard iϵ prescription is used, while Kdf;3 uses a

modified principal value prescription (denoted fPV). The
use of a nonstandard pole prescription is required in order
to remove the unitary threshold cusp in the two-particle
scattering amplitude, as was pointed out in Ref. [2]. As
described in detail in Ref. [1] and sketched in Fig. 2, such
cusps, if not removed, generate important finite-volume
effects when two-to-two scattering is considered as a
subprocess of three-to-three scattering. Our prescription

FIG. 1. Example of a singular contribution to the on-shell three-
to-three scattering amplitude. Dashed lines are on-shell, ampu-
tated, external propagators, while the solid line is a fully dressed
propagator. Filled circles represent two-to-two scattering ampli-
tudes. The momentum flowing along the internal (solid) line goes
on shell (leading to a divergent scattering amplitude) for
particular choices of external momenta corresponding to two
isolated two-to-two scattering events.
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avoids such cusps, but at the cost of introducing a
nonstandard infinite-volume quantity.
A third difference betweenM3 andKdf;3 is that the latter

is defined using an ultraviolet cutoff (the function Hð~kÞ
defined in Eqs. (A8)–(A10) of the Appendix) while M3,
being a physical quantity, is independent of the cutoff
function.
The final difference is thatKdf;3 involves contributions in

addition to the standard Feynman diagrams, which we
denote “decorations.” These make the definition of Kdf;3

very complicated, as explained in Ref. [1].
In this work, we relate these two quantities using an

indirect approach. By extending the methods of Ref. [1],
we obtain a relation between M3;L, which is a finite-
volume version of M3, and Kdf;3, Eq. (68) below. The
desired relation between M3 and Kdf;3 is then reached by
taking the infinite-volume limit. This approach avoids the
need to directly reference the very complicated definition of
Kdf;3. As a side benefit, we obtain some intuition about the
properties of Kdf;3 itself.
Combining the results of Ref. [1] with the present article

gives a complete relation between the finite-volume energy
spectrum and two-to-two and three-to-three scattering
amplitudes. The result relies on no assumptions concerning
the details of the underlying theory, no specific effective
field theory and no power-counting scheme. Further, the
relation is derived in fully relativistic field theory and, thus,
does not rely on a small momentum expansion. However,
as it stands, the formalism is limited in two important ways.
First, it can only describe systems of identical scalar
particles with a Z2 symmetry that prevents the coupling
of states containing even and odd numbers of particles. In
particular, no two-to-three scattering is included. Second,
there can be no two-particle resonances in the energy range
considered. If the center of mass (CM) energy of the three-
particle system is E�, then resonances must not appear
below two-particle CM energies of E� −m.1 We make this
restriction more precise in the paragraph following Eq. (7)

below. There is an additional, less restrictive condition,
namely that E� must lie above the single-particle pole
and below the five-particle production threshold
(m < E� < 5m). This is analogous to the restriction of
the two-particle quantization condition to energies below
the inelastic threshold.
Despite these restrictions, there are several physical

systems to which our formalism can be directly applied.
In the context of QCD, one must consider three-meson
systems with a quantum number that enforces the Z2

symmetry. For example, in the limit that isospin is an exact
symmetry, states with even and odd numbers of pions
decouple due to G parity. In this case one can project onto
states of definite I and I3 and effectively obtain a system of
three identical scalars. A simple example is the πþπþπþ
system with I ¼ I3 ¼ 3. For all choices of isospin, our
formalism is directly applicable up to the five pion thresh-
old. The resonances that are present in some channels, e.g.
the ρ if there is an I ¼ 1 two-particle subchannel, occur at
energies above the five pion threshold.2

Another application of our present formalism is to study
three kaon and three D meson systems, for which the
conservation of strangeness and charm in QCD prevents
coupling to other states.
Finally, we note that our formalism also applies for

constituent particles such as ultracold atoms and molecules.
Here a nonrelativistic description is usually expected to
work very well so that the relativistic machinery we employ
would appear to be overkill. However, in certain cases the
relativistic result can give interesting information even very
close to threshold. For example in a recent work, Ref. [7],
we have studied the threshold shift of two- and three-
particle states in λϕ4 theory. We expand the shift from
threshold in powers of inverse box length, i.e. powers of
1=L, and find that at 1=L6 the result differs from previous
nonrelativistic analysis [8]. This is also the order at which

(a) (b) (c)

FIG. 2. (a) Schematic plot of the s-wave two-to-two scattering amplitude,M2;s, as a function of two-particle CM energy, E�
2, showing

the well-known cusps at threshold (E�
2 ¼ 2m) in both real and imaginary parts. (b) Example of two-to-two scattering as a subprocess of

three-to-three scattering. Because total energy and momentum are fixed, the energy and momentum of the top two propagators varies

with the momentum of the bottom propagator. Thus, the sum over ~k has important finite-volume effects arising from the two-particle
unitary cusp. (c) In contrast to M2, K2 is a smooth function at threshold. Working with K2 in place of M2 resolves the issue of finite-
volume effects from threshold cusps.

1Since E� is the CM energy for three particles, E� −m is the
maximum possible energy for a two-particle subsystem.

2We caution that for sufficiently heavy pions, the ρ resonance
is pushed below the four particle threshold of the two-to-two
system and, thus, below the five-particle threshold in the three-to-
three system. In this case the rho mass, rather than the 5m
threshold, becomes the upper kinematic bound.
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three-body couplings first arise in the expansion. Thus, in
this context, three-particle and relativistic effects have the
same volume scaling and it is natural to include them
together.
Going beyond perturbative expansions, we also note that

our formalism allows for arbitrarily large two-particle
scattering lengths. In particular, our results can be used
to describe systems at unitarity, where the two-particle
scattering length diverges.3 In this vein an interesting study
has recently been published in Ref. [9]. Here the authors
consider a nonrelativistic three-particle system with two-
particle scattering at unitarity. They then analyze how a
shallow three-particle bound state would be shifted due to
finite-volume effects. Their result is a clear quantitative
prediction for the leading finite-volume shift, and repro-
ducing this with the present general formalism would be an
interesting and important check.
The remainder of this article is organized as follows. In

the following section, we recall the results of Ref. [1] that
are needed here. In Secs. III and IV we derive the
relationship between M3;L and Kdf;3. The former section
includes only two-particle Bethe-Salpeter kernels, while
the latter adds in three-particle kernels. In Sec. V we take an
appropriate infinite-volume limit of M3;L and obtain the
desired relation between M3 and Kdf;3. We then show, in
Sec. VI, how to invert this relationship so that Kdf;3 can be
obtained from M3. Section VII shows how the general
relation between these quantities simplifies in two approx-
imations studied in Ref. [1]. We conclude in Sec. VIII. We
include an Appendix which collects the definitions of key
quantities from Ref. [1].

II. FINITE-VOLUME CORRELATOR FROM
PREVIOUS WORK

In this section we summarize the relevant results from
Ref. [1], and rewrite them in a form useful for our
subsequent analysis. We also introduce the finite-volume
three-to-three scattering amplitude M3;L, the quantity that
plays a central role in our analysis.
We begin by reviewing the set-up for the calculation

presented in Ref. [1]. We work with a quantum field theory
containing a real scalar, ϕ, having physical mass m. The
theory is assumed to have a Z2 symmetry so that only even

powers of ϕ appear in the Lagrangian and, thus, even- and
odd-particle states have zero overlap. The derivation of
Ref. [1] also requires that the total center-of-mass (CM)
energy is such that only three-particle states can go on-
shell, and also such that there are no resonances in the two
particle subchannels of the three-particle states. The theory
is otherwise assumed to be completely general. In particu-
lar, it need not be renormalizable and can contain all
possible even-legged vertices with no assumptions about
relative coupling strengths.
This theory is then considered in a finite, cubic spatial

volume of extent L with periodic boundary conditions. The
time extent is taken infinite. In this geometry, only spatial
momenta whose components are integer multiples of 2π=L
can propagate. The volume extent L is also assumed to be
large enough that exponentially suppressed corrections of
the form e−mL can be neglected. Such terms are dropped
throughout the derivation. Power-law corrections propor-
tional to powers of 1=ðmLÞ are kept to all orders.
The analysis of Ref. [1] considers a finite-volume

correlator defined by

CLðE; ~PÞ≡
Z
L
d4xeiðEx0−~P·~xÞh0jTσðxÞσ†ð0Þj0i: ð1Þ

Here T indicates time-ordering while σðxÞ and σ†ðxÞ are
interpolating fields coupling to states with an odd number
of particles. The Fourier transform restricts the intermediate
states contributing to the correlator to have total energy E
and momentum ~P ∈ ð2π=LÞZ3. Thus, the energy in the

center of mass (CM) frame is E� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ~P2

p
. Our

analysis concerns the region m < E� < 5m, where only
three-particle states contribute. Note that, although we
work in Minkowski space, the finite-volume spectrum is
not affected by this choice. Our result is applicable even if
the energies are determined in some other way, for example
by using a Euclidean correlator as in a lattice QCD
calculation.
The finite-volume correlator, CL, has the skeleton

expansion shown in Fig. 3. This is explained in Ref. [1]
(where precise definitions of the kernels B2 and B3 can also
be found). Here we only note the essential features. Note
first that CL differs from its infinite-volume counterpart,
C∞, only in that spatial loop momenta are summed rather
than integrated. The key observation is then that replacing
sums with integrals leads to power-law finite-volume
corrections only when all particles in a cut can go on
shell. Since we have chosen m < E� < 5m, this can occur
only for three-particle cuts. For loops with cuts involving
five or more particles one makes only exponentially sup-
pressed errors when replacing sums with integrals. As we
neglect such corrections throughout, the Bethe-Salpeter
kernels (for which cuts contain either one or else five or
more particles) can be replaced by their infinite-volume
counterparts. The same holds true for the dressing functions

3The scattering length a and effective range r are defined via

p cot δðpÞ ¼ −
1

a
þ 1

2
rp2 þOðp4Þ;

where δ is the s-wave scattering phase shift and p is the
magnitude of three momentum for one particle in the two-particle
CM frame. Our formalism is only valid if p cot δðpÞ does not pass
through zero for a particular p value in the energy range
considered. In the context of the unitary limit, this requires
setting r and all higher order coefficients to zero before sending
a → ∞.
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of the propagators. Thus, the only impact of working in
finite volume is that the propagators contained within the
dashed rectangles in the figure have spatial momenta that
are summed.
The task accomplished in Ref. [1] is to factorize the

power-law finite-volume dependence contained in CL from
quantities defined in infinite volume. The end result is

CLðE; ~PÞ ¼ C∞ðE; ~PÞ þ iA0 1

1þ F3Kdf;3
F3A: ð2Þ

Here A0, A and Kdf;3 (as well as C∞) are infinite-volume

quantities, while F3 depends on L [as well as on E, ~P and
the two-particle scattering amplitude—see below]. The
result (2) is a matrix equation, in which A0 is a row vector,
Kdf;3 and F3 are matrices and A is a column vector. The
index space is a direct product of two-particle angular
momentum, parametrized by spherical harmonic indices l
and m, together with a discrete finite-volume momentum,
~k ∈ ð2π=LÞZ3. So, for example, Kdf;3 ¼ Kdf;3;k0l0m0;klm
where k0 and k are shorthand for discretized three-vectors.
As we will see below, C∞, A and A0 do not appear in the

main results of this paper and so we do not recapitulate their
definitions from Ref. [1]. As for Kdf;3, the main task of this
paper, as noted in the Introduction, is to come up with an
alternative to the very complicated and implicit definition
given in Ref. [1]. Thus, at this stage we only present the
definition of F3, which is

iF3 ≡ iF
2ωL3

�
1

3
þ 1

1 − iM2;LiG
iM2;LiF

�
: ð3Þ

Like F3, the quantities 1=ð2ωL3Þ, F, G, M2;L are all
matrices with indices k0l0m0; klm. The first three of these
quantities are known kinematic functions that depend on L
(as well as E, ~P, and m). They are defined in the Appendix.
The final quantity is the finite-volume, two-to-two

scattering amplitude, M2;L. This in turn can be expressed
(up to exponentially suppressed corrections) as

iM2;L ≡ 1

1 − iK2iF
iK2; ð4Þ

where K2 is a modified two-particle infinite-volume K
matrix introduced in Ref. [1]. The relation (4) is needed to
show the equivalence of the result (3) to the expressions for
F3 given in Ref. [1].
Since M2;L was barely used in Ref. [1], but plays an

important role here, we discuss its properties in some detail.
A useful, although imprecise, way of thinking about M2;L

is as the two-particle scattering amplitude in finite volume.
Recall that M2;L has indices k0l0m0; klm, with k and k0

short for ~k and ~k0, respectively. For a two-particle quantity
such as M2;L, the momenta ~k and ~k0 are those of the third,
spectator particle, which is unscattered. Thus, ~k ¼ ~k0, or, in
matrix notation, M2;L;k0l0m0;klm ∝ δk0k. The same holds
for K2 and F. Thus, the spectator momentum serves only
to determine the energy-momentum flowing through the
scattered pair, which is

P2 ¼ ðE − ωk; ~P − ~kÞ; with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
: ð5Þ

The energy of the two scattered particles in their CM frame
is, therefore,

E�
2;k ≡ ½P2

2�1=2 ¼ ½ðE − ωkÞ2 − ð~P − ~kÞ2�1=2; ð6Þ

while the magnitude of their momenta in this frame is

q�k ¼ ½E�2
2;k=4 −m2�1=2: ð7Þ

The only unconstrained degrees of freedom are the incom-
ing and outgoing directions of one of the particles in their
CM frame, which we denote â� and â0�, respectively.

FIG. 3. Skeleton expansion for the finite-volume correlator. Outermost blobs in all diagrams represent functions of momentum that are
determined by the interpolating operators σ and σ†. Insertions between these functions having four legs represent two-to-two Bethe-
Salpeter kernels, iB2, while insertions with six legs represent the analogous three-to-three kernels, iB3. Lines connecting kernels and
σ-functions represent fully-dressed propagators. As explained in the text, the kernels and dressed propagators can be replaced by their
infinite-volume counterparts (in which internal loop momenta are integrated). However, the spatial momenta flowing along the
propagators that are shown explicitly, and which lie within the dashed rectangles, are summed rather than integrated.
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We can now make precise the requirement mentioned
above, namely that the theory should not have any two-
particle resonances. The condition is that K2 should not
have poles in the range of allowed two particle energies.

This requirement is most stringent for ~k ¼ 0, since this
maximizes the energy in the two particle subsystem. Thus,
K2 should have no poles in the range of two particle CM
energies 0 ≤ E�

2;0 ≤ E� −m. Such poles would lead to
power law finite-volume effects when converting sums
to integrals in diagrams like that shown in Fig. 2(b), and
such effects are not accounted for in the derivation
of Ref. [1].
Returning to M2;L, it is useful to have a diagrammatic

definition in addition to the expression in terms of K2 and
F, Eq. (4). This is given in Fig. 4(a) and defines
M2;LðE�

2;k; â
0�; â�Þ. Note that the spectator particle is not

shown—it contributes an additional factor of δkk0 . What
appears in Fig. 4(a) is the same sum of two-to-two
connected Feynman diagrams as occurs in the infinite-
volume two-particle scattering amplitude (with external
propagators amputated and on shell) except that spatial
components of loop momenta are summed rather than
integrated. These sums can be replaced by integrals within
the Bethe-Salpeter kernels (making only exponentially
suppressed corrections), but not within the “boxed” loops.
We now encounter for the first time an issue that will

recur repeatedly in the following. This is that the external
momenta in quantities such as M2;L must be allowed to
differ from finite-volume momenta (which we refer to as
“not being in the finite-volume set”). By contrast, internal
momenta are in the finite-volume set. This distinction is
already present to some extent in Ref. [1], since when the
nonspectator pair are put on shell their directions â� and â0�

are maintained, but their magnitudes are changed to q�k, so
that they are no longer finite-volume momenta. Here we
extend this by allowing â� and â0� to be arbitrary. This
allows us to decompose the angular dependence in spheri-
cal harmonics and define the matrix form of M2;L used in
Eq. (3):

4πY�
l0m0 ðâ0�ÞM2;L;k0l0m0;klmYlmðâ�Þ
≡ δk0kM2;LðE�

2;k; â
0�; â�Þ: ð8Þ

Here and in the following there is an implicit sum over
repeated indices. Note that M2;L is not diagonal in its
angular-momentum indices, unlike its infinite-volume
counterpart, because rotation symmetry is broken by the
restriction of internal momenta to the finite-volume set.
In fact, we will need to consider more general external

momenta when we take the infinite-volume limit in Sec. V.
This is because we take this limit holding the total

momentum ~P, as well as the external momenta of indi-

vidual particles such as ~k, fixed. Thus, as L varies, ~P and ~k
are not, in general, finite-volume momenta. This in turn
implies that the total momentum flowing through the boxed

loops in Fig. 4(a), which is ~P − ~k, is not, in general, in the
finite-volume set. We define the extendedM2;L by keeping
the summed momentum in the set, i.e. of the form 2π~n=L,
while the other loop momentum is not in the set. Since the
Bethe-Salpeter kernels are symmetric under particle inter-
change, the choice of which momentum is summed is
irrelevant.
As noted above, the name “finite-volume scattering

amplitude” is an imperfect moniker for M2;L. For one
thing, there are no in- or out-states in finite volume, and for

(a)

(b)

FIG. 4. (a) The finite-volume two-to-two scattering amplitude, M2;L. We restrict attention to two-particle CM energies below four-
particle threshold, E�

2 < 4m. As a result, only two-particle states can go on-shell and, thus, only loops shown explicitly in the figure have
power-law finite-volume effects. The insertions between loops are two-to-two Bethe-Salpeter kernels, B2, evaluated in infinite-volume.
As explained in Ref. [1], summing these diagrams leads to the result given in Eq. (4). (b) The finite-volume three-to-three amplitude,
M3;L, defined as forM2;L but with six rather than four external legs. This contains both B2 and the three-to-three kernels, B3, which can
be evaluated in infinite volume. S indicates symmetrization. In both (a) and (b), dashed lines attached to the kernels indicate amputated,
on-shell propagators. Remaining notation as in Fig. 3.
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another, M2;L is purely real (with no unitary cut).
Nevertheless, we persist with the name because, as
described in Sec. V, if we take the infinite-volume limit
in an appropriate way, M2;L does go over to the infinite-
volume scattering amplitude M2.
In the following section we derive a result closely related

to Eq. (2) in which the left-hand side is replaced with a
quantity that we call the finite-volume three-to-three
scattering amplitude, and denote M3;L. In direct analogy
to M2;L, M3;L is defined as the sum of all on-shell,
amputated six-point diagrams evaluated in finite-volume,
as shown in Fig. 4(b). As for M2;L, the external momenta
are not, in general, constrained by the finite volume, while
some of the internal momenta are. The details are described
in the following section. The quantities on which M3;L

depends are simply the degrees of freedom for two copies
of three-particle phase space at fixed total energy and

momentum, i.e. the dependence isM3;Lð~k0; â0�; ~k; â�Þ. This
is closely related to the dependence of M2;LðE�

2;k; â
0�; â�Þ

except that now all three particles are involved in scattering,

so the partitioning into “spectators” (~k and ~k0) and “scatter-
ing pairs” (â0� and â�) is purely a choice of kinematic

variables. In particular, it is no longer true that ~k0 ¼ ~k, so
that the CM energies and momenta of the scattering pair are
different in the initial and final states. Nevertheless, one can
separately boost to the scattering-pair CM frames, and
define the directions of one of the pair as â� and â0� for
initial and final states, respectively. This completely fixes
the kinematic configuration.
A key observation is that the diagrams contributing to

M3;L, shown in Fig. 4(b), are closely related to those
building up CL, shown in Fig. 3. Indeed, if we first discard
the first diagram on the first line and the entire second line
of diagrams in the latter figure, and then, for each
remaining diagram, remove the σ and σ† blobs, amputate
and put on shell the six external propagators, we obtain
exactly the diagrams for M3;L. This observation allows us
to make substantial use of the work of Ref. [1].
As with M2;L, calling M3;L a scattering amplitude for

finite L is somewhat misleading, as it has no direct relation
to scattering. However, as we discuss in Sec. V, M3;L does
go over to the infinite-volume scattering amplitude M3

when L → ∞, as long as one takes the limit in the
appropriate way. Thus, if we can derive a relation between
M3;L and Kdf;3, then taking the L → ∞ limit gives the
desired relation between M3 and Kdf;3.

III. M3;L WITH B2 KERNELS ONLY

In this section and the next we determine the relation
betweenM3;L and Kdf;3. This section includes only the B2

kernels in the skeleton expansions, while the next com-
pletes the job by adding B3 kernels. This splitting mirrors
the breakup of the derivation given in Ref. [1].

The contributions containing only B2 kernels are those of
all but the first and last lines of Fig. 4(b). We find it
convenient to work first with an unsymmetrized sum of

these diagrams, which we label4 M3;L
ðu;uÞ½B2�ð~p; â0�; ~k; â�Þ.

This quantity is defined by requiring that ~p and ~k are the
momenta that are not scattered by the outermost B2

insertions. The superscript “u” indicates “unscattered,”
and “ðu; uÞ” means that this choice of coordinates is made
in both initial and final states. This is the same notation as
used in Ref. [1]. We decompose this function in harmonics
in our standard way

Mðu;uÞ½B2�
3;L ð~p; â0�; ~k; â�Þ
¼ 4πY�

l0m0 ðâ0�ÞMðu;uÞ½B2�
3;L;pl0m0;klmYlmðâ�Þ: ð9Þ

Note that Mðu;uÞ½B2�
3;L is defined for any ~p and ~k, but in this

equationweare restricting these to be finite-volumemomenta.

In Ref. [1], three-particle quantities similar to Mðu;uÞ½B2�
3;L

are needed only when ~P, ~p and ~k are finite-volume
momenta. This implies that all three momenta in internal
three-particle cuts in Fig. 4(b) can simultaneously be in the
finite-volume set. However, as noted in the previous
section, when we take the infinite-volume limit we must
consider general values of the external momenta. It is then
not possible that all internal momenta are in the finite-
volume set, and we must generalize the definition of

Mðu;uÞ½B2�
3;L . This is straightforward for the diagrams in the

top line of Fig. 4(b): we simply take the two momenta that
are being summed to be in the finite-volume set, implying
that the third is not. Since B3 is symmetric, it does not
matter which two momenta are chosen. In diagrams
involving a boxed two-particle loop, we proceed as for
M2;L, and choose (arbitrarily) one of the momenta to be in
the finite-volume set. For the remaining figures, such as
those in the third line of Fig. 4(b), one has a nontrivial
choice as to which of the loop momenta to sum. However,
in all cases, the derivation of Ref. [1] provides a natural
choice. The convention we use to define the extended

Mðu;uÞ½B2�
3;L is that the summed momenta always lie in the

finite-volume set. We emphasize that the details of this
choice are not relevant for our final result, since the
distinction completely vanishes in the infinite-volume limit.
To identify the desired expression forM3;L we begin by

introducing the relevant building blocks as presented in
Ref. [1]. The first of these is5

4For brevity we have chosen the outgoing momenta to be ~p
rather than ~k0. The definitions of â0� and â� are as forM3;L in the
previous section.

5In Ref. [1] we denoted this quantity [A] whereas here we drop
the brackets. Note that 1=ð2ωL3Þ commutes withK2 and F, while
K2 and F do not commute.
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A≡ iF
2ωL3

1

1 − iK2iF
¼ 1

1 − iFiK2

iF
2ωL3

: ð10Þ

This quantity is related to M2;L, given in Eq. (4), by

iM2;L ¼ iK2 þ ð2ωL3ÞiK2AiK2: ð11Þ

Thus,A contains the volume dependence ofM2;L, entering
through the factors of F.

The second building block from Ref. [1] is Kðn;u;uÞ
3;L , a

quantity defined in Fig. 5. This object is built from n ≥ 2
factors of K2, with adjacent insertions scattering different
pairs. It arises from sections of diagrams where B2 kernels
change at least once to a different pair of propagators. It
contains power-law finite-volume effects, due to the pres-
ence of sums over the spatial momenta in loops. Summing
over all possible numbers ofK2 factors leads to the quantity

Kðu;uÞ
3;L ≡X∞

n¼2

Kðn;u;uÞ
3;L : ð12Þ

Both Kðn;u;uÞ
3;L and Kðu;uÞ

3;L can be expressed as matrices in the

same fashion as Mðu;uÞ½B2�
3;L .

We can now state our result for the partial decomposition

of Mðu;uÞ½B2�
3;L :

iMðu;uÞ½B2�
3;L ¼ 1

1 − iK2iF

X∞
n¼0

ðiKðu;uÞ
3;L AÞniKðu;uÞ

3;L
1

1 − iFiK2

:

ð13Þ

This decomposition makes explicit all finite-volume
dependence arising from sum-integral differences (i.e.
factors of F) on chains in which scattering occurs on the
same pair of propagators. It is a partial decomposition,

however, because Kðu;uÞ
3;L still depends on L. One can

understand the result (13) qualitatively as follows: In order
to have a connected scattering diagram, there must be at

least one Kðu;uÞ
3;L present. This can be “decorated” with

chains of two-to-two scattering K matrices and F factors on

either the outside or between factors ofKðu;uÞ
3;L . Summing the

geometric series of two-to-two chains and then summing

over any number of Kðu;uÞ
3;L insertions leads to the

result shown.
If the external momenta are in the finite-volume set, then

a derivation of Eq. (13) can be given by a straightforward
application of the methods of Ref. [1]. We provide this
derivation first, and then comment (toward the end of
this section) on the generalization to arbitrary external
momenta.
The most direct path to a derivation of Eq. (13) is to start

from Eq. (193) of Ref. [1], which we reproduce here:

C½B2�
L ¼ C½B2�

∞ þ δC½B2�
∞

þ A0½B2�
�
−
2

3

iF
2ωL3

þA
X∞
n¼0

ðiKðu;uÞ
3;L AÞn

�
A½B2�:

ð14Þ

This is an expression for the finite-volume correlator
including only B2 kernels. Now, the main difference
between CL and M3;L is the presence of the “end caps”
σ and σ† in the former. When dressed by B2 kernels these
give the factors of A½B2� and A0½B2� in Eq. (14), which are
infinite-volume quantities. To obtain M3;L we can discard
these end cap factors by noting that the kinematic factor F,
which contains the finite-volume dependence arising from
a three-particle cut, amputates and puts on shell the
adjacent matrices. Thus, the factor between the outermost
F cuts in CL is precisely the amputated on-shell M3;L that
we are after, as long as the contribution contains two such
cuts. There are no such cuts in the first two terms on the
right-hand side of Eq. (14), since these are infinite-volume
quantities, and so they do not contribute toM3;L. The third
term also does not contribute since it contains only a
single F cut. We conclude that we need only keep the final
term, i.e.

A0½B2�
�
A
X∞
n¼0

ðiKðu;uÞ
3;L AÞn

�
A½B2�: ð15Þ

If we drop the external factors of A0½B2� and A½B2� and then
further multiply by an inverse of iF=ð2ωL3Þ on each side,
we are left with all amputated six-point diagrams. This
includes, however, disconnected diagrams (arising from the
diagrams on the second line of Fig. 3). Since these are not
contained in the definition ofM3;L they must be discarded.
This is effected by summing from n ¼ 1 rather than n ¼ 0.
In this way, and using the results in Eq. (10) for A, we
obtain Eq. (13).
In the remainder of this section we follow the method of

analysis used in Sec. IVD of Ref. [1], where the result (14)

for C½B2�
L is completely decomposed into finite- and infinite-

volume quantities. Here we apply the method to the result

(13) for Mðu;uÞ½B2�
3;L . In this case it turns out that we cannot

FIG. 5. Diagrammatic definition of Kðn;u;uÞ
3;L . Filled circles

indicate K matrices K2, of which there are n. Solid lines are
dressed propagators, the spatial momenta of which are summed
(while time components are integrated). Dashed lines indicate
amputated, on-shell propagators. Kinematic variables are defined

as for Mðu;uÞ½B2�
3;L .
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simply borrow results from Ref. [1], but need to introduce
two new quantities. Thus, we provide a more detailed
derivation.

The starting point is to use the result for Kðu;uÞ
3;L presented

in Eq. (215) of Ref. [1], namely

iKðu;uÞ
3;L ¼ iTiG½2ωL3�iK2 þ

�
1 iTiF

��
iKdf;3

�X∞
j¼0

×

��
0

1

�
iF

2ωL3

�
1 iTiF

��
iKdf;3

��
j

×
�

1

iF
2ωL3 iT2ωL3

�
; ð16Þ

where [Eqs. (212) and (213) of Ref. [1]]

iT ≡ 1

1 − iK2iG
iK2: ð17Þ

�
iKdf;3

�

≡
� iKðu;uÞ

df;3 iKðu;sÞ
df;3 þ iKðu;~sÞ

df;3

iKðs;uÞ
df;3 þ iKð~s;uÞ

df;3 iKðs;sÞ
df;3 þ iKðs;~sÞ

df;3 þ iKð~s;sÞ
df;3 þ iKð~s;~sÞ

df;3

�
:

ð18Þ
The result (16) separates finite-volume dependence—
contained in F and G—from the infinite-volume quantities
K2 and Kdf;3. All these quantities are matrices with our
usual klm indices. In Eq. (18), Kdf;3 appears in various
forms, with different superscripts, and it is convenient to
collect these into a second level of matrices as shown. The
differences between the forms of Kdf;3 are explained
thoroughly in Ref. [1], and here we give only an overview.

The simplest quantity to understand is Kðu;uÞ
df;3 . This is

given by Kðu;uÞ
3;L except for two changes: sums are replaced

by integrals, and singular terms are subtracted (along the
lines discussed in the Introduction) so that it is divergence-
free. The integrals use our nonstandard pole prescription,
and, in the case of multiple loops, must be ordered in the
manner described in Ref. [1]. Since loop momenta are

integrated, there are no subtleties defining Kðu;uÞ
df;3 for

arbitrary external momenta. We stress that Kðu;uÞ
df;3 is not a

physical quantity, because the symmetry between the three
external particles is violated by our choice of coordinates.
To define the other quantities appearing in Eq. (18) it is

necessary to change from the matrix form of Kðu;uÞ
df;3 , which

decomposes angular dependence into spherical harmonics,
into a form with explicit dependence on the external
momenta. This is achieved by

Kðu;uÞ
df;3 ð~p; â0�; ~k; â�Þ ¼ 4πY�

l0m0 ðâ0�ÞKðu;uÞ
df;3;pl0m0;klmYlmðâ�Þ:

ð19Þ

The other versions of Kdf;3 are then obtained by applying

coordinate changes to this new form of Kðu;uÞ
df;3 . We describe

this explicitly for the example of Kðu;sÞ
df;3 . Recall that, in the

initial state, ~k is the momentum of the particle chosen as
spectator (so that the first two-particle kernel B2 scatters the
other two particles) while â� is the direction of one of the
other two particles in their CM frame. In the original frame
the momentum of this second particle is called ~a—a

momentum that is fully determined given ~k and â� (along
with E and ~P). The third particle, thus, has momentum
~P − ~k − ~a in the original frame. A similar notation with
~k → ~p and ~a → ~a0 is used for the final state. As noted
above, the first superscript of Kdf;3 is related to the choice
of momentum variables for the final state, and the second to
the choice for the initial state. Focusing on the initial state,
quantities with superscripts “s” and “~s” are obtained by

choosing the spectator momentum to be ~a and ~P − ~k − ~a,
respectively. For example,

Kðu;sÞ
df;3 ð~p; â0�; ~k; â�Þ≡Kðu;uÞ

df;3 ð~p; â0�; ~a; k̂�Þ; ð20Þ

where k̂� is the direction of the particle with momentum ~k
after it is boosted to the CM frame containing it and the

particle with momentum ~P − ~k − ~a. Note that we could
equally well have used the direction of the particle with

momentum ~P − ~k − ~a after boosting in place of k̂� as the
final argument on the right-hand side of Eq. (20), since

Kðu;uÞ
df;3 is symmetric under this interchange. Independently

making analogous changes of variables in the final state we
obtain all the versions of Kdf;3. We stress that this argument

relies on Kðu;uÞ
df;3 being well defined for external momenta

which are not in the finite-volume set, since, even if ~k and ~P
are in this set, ~a is not.
The final step to obtain the matrix forms of Kdf;3

appearing in Eq. (18) is to decompose the angular depend-
ence in spherical harmonics. For example, the matrix form

of Kðu;sÞ
df;3 is obtained from the left-hand side of (20) in

exactly the same way as for Kðu;uÞ
df;3 [see Eq. (19)].

As is the case for Kðu;uÞ
df;3 , all the other forms of Kdf;3 are

separately unphysical. To obtain a physical quantity we
must symmetrize over the initial and final assignments of
momenta. In our matrix notation, this is achieved by

ð 1 1 Þ
�
iKdf;3

��
1

1

�
: ð21Þ
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Note that Eq. (16) does not contain the symmetrized
version of Kdf;3. A major part of the analysis in Ref. [1]

involves rewriting C½B2�
L in terms of the symmetric quantity,

and the same is true in the following.
To proceed, we substitute Eq. (16) into Eq. (13) and

organize the result in powers of Kdf;3. For example, the
contribution which is independent of Kdf;3 is given by
substituting

iKðu;uÞ
3;L ¼ iTiG½2ωL3�iK2 þOðKdf;3Þ; ð22Þ

[i.e. the first term in Eq. (16)] to find

iMðu;uÞ½B2�
3;L ≡ iDðu;uÞ

L þOðKdf;3Þ; ð23Þ

where

iDðu;uÞ
L ¼ 1

1 − iK2iF

X∞
n¼0

ðiTiG½2ωL3�iK2AÞniTiG

× ½2ωL3�iK2

1

1 − iFiK2

: ð24Þ

After some algebra using the definitions of A and T this
simplifies to

iDðu;uÞ
L ≡ 1

1 − iM2;LiG
iM2;LiGiM2;L½2ωL3�: ð25Þ

The superscript on Dðu;uÞ
L is a reminder that the external

momentum indices are those of the particles not scattered
by the outermost factors of M2;L.
Next we consider the term linear inKdf;3. To identify this

it is necessary to substitute the Kdf;3-independent and

OðKdf;3Þ terms from iKðu;uÞ
3;L . Summing all contributions

to the left and right of the single Kdf;3 insertion then gives
[see also Eq. (224) of Ref. [1]]

iMðu;uÞ½B2�
3;L ⊃ ðLðuÞ

L Þ
�
iKdf;3

��
RðuÞ

L

�
; ð26Þ

where

ðLðuÞ
L Þ≡ ð 1 0 Þ þ 1

1 − iM2;LiG
iM2;LiFð 1 1 Þ;

ð27Þ�
RðuÞ

L

�
≡

�
1

0

�
þ
�
1

1

�
iF

2ωL3

1

1 − iM2;LiG
iM2;Lð2ωL3Þ:

ð28Þ

These are the two new quantities that do not appear in
Ref. [1]. The superscripts again indicate a particular choice
of spectator momentum.
To see the all orders pattern, it is sufficient to work out

the OðK2
df;3Þ term. We find this to be

iMðu;uÞ½B2�
3;L ⊃ðLðuÞ

L ÞðiKdf;3Þ
�
ð iF3 Þþ

�
iρ
2ω

��
ðiKdf;3ÞðRðuÞ

L Þ;

ð29Þ

where we have introduced two new “second-level”
matrices,

ð iF3 Þ≡
�
1

1

�
iF3ð 1 1 Þ; ð30Þ

�
iρ
2ω

�
≡

�
1

1

�
iρ
2ω

	
2
3

− 1
3



: ð31Þ

The factor between the Kdf;3s in Eq. (29) is exactly the
same as that in the corresponding analysis in Ref. [1] [see
Eq. (230) of that work]. As in Ref. [1], the term containing
ρ is integrated, rather than summed, over spectator momen-
tum (with sums over angular momentum indices remain-
ing). More precisely, our notation means�
iKdf;3

��
iρ
2ω

�	
iKdf;3



≡
Z

d3s
ð2πÞ3

�
iKdf;3ð~p;~sÞ

��
1

1

�
×
iρð~sÞ
2ωs

	
2
3
−1

3


	
iKdf;3ð~s;~kÞ



;

ð32Þ

where ρð~kÞ is the phase-space factor defined in Eq. (A6),

and ~p and ~k on the right-hand side are finite-volume
momenta which match the “outside” indices on the left-
hand side. The second-level matrices involvingKdf;3 on the
right-hand side are the same as those defined in Eq. (18),
except here we replace the spectator momentum indices
with continuous momenta. We comment that the asym-

metric form in which ρð~kÞ appears here arises from our
convention for ordering the ~PV integrals, as is described in
detail in Ref. [1].
Extending to all orders inKdf;3, and rearranging the sum,

we deduce

iMðu;uÞ½B2�
3;L ¼ iDðu;uÞ

L þ ðLðuÞ
L Þ

�
iK½B2;ρ�

df;3

�
×
X∞
n¼0

�
ð iF3 Þ

�
iK½B2;ρ�

df;3

��
n
�
RðuÞ

L

�
; ð33Þ

which is the analog of Eq. (234) of Ref. [1]. Here the ρ-
dependent terms are summed into the new infinite-volume
quantity
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�
iK½B2;ρ�

df;3

�
≡X∞

n¼0

�
iKdf;3

���
iρ
2ω

��
iKdf;3

��
n
: ð34Þ

We refer to these ρ-dependent terms as “decorations.”
The result (33) has been derived assuming that the

external spectator momenta and the total momentum take
finite-volume values.6 We now argue that it holds for
arbitrary choices of these momenta, as long as the finite-
volume quantities F and G contained in F3 and M2;L are
extended to arbitrary external momenta in the very straight-
forward manner described in the Appendix. The derivation
of Eq. (33) relies on repeated replacements of momentum
sums over three particle cuts with momentum integrals plus
the difference, F.7 One must ensure that replacements are
done in an appropriate order (and that integrals are defined
with the ~PV prescription), as discussed in detail in Ref. [1].
But what matters here are the following observations. First,
the determination of which summands lead to a nontrivial
sum-integral difference (i.e. the three particle cuts) is
independent of the choice of external momenta. Second,
the difference function F maintains its form (given in the
Appendix) for arbitrary external momenta. Third, the sums
over spectator momentum indices, implicitly contained in
the multiplication of matrices in Eq. (33) (and which are, by
definition, over finite-volume momenta) correspond pre-
cisely to those loop momenta which should be summed
over finite-volume momenta, according to the diagram-

matic definition of Mðu;uÞ½B2�
3;L given at the beginning of this

section. In other words, the correct choice of which internal
momenta to keep in the finite-volume set is being made.
And, finally, the kinematic factor G (which contains no
momentum sums) extends to non-finite-volume momenta
in a very straightforward way, as described in the appendix.
Combining these observations, it is straightforward to see

that the expression forMðu;uÞ½B2�
3;L given above remains valid

for arbitrary external momenta, with one proviso. The
proviso is that the external momenta, which propagate into

the expression until there is a factor of G (either in Dðu;uÞ
L ,

LðuÞ
L , or RðuÞ

L ) or a factor of K½B2;ρ�
df;3 , are not in the finite-

volume set. Thus, the first matrix that appears on either end
of the expression has different indices from matrices in the
middle of the expression. In particular, the matrices on the
end have one index which is an external momentum while
the other is an (internal) finite-volume momentum.

Fortunately, these subtleties become irrelevant when one
takes the infinite-volume limit and sums become integrals.
The final step in the construction of the contribution of

M3;L from B2 kernels is to symmetrize over initial and final
momentum assignments. However, a complication arises

because Dðu;uÞ
L , LðuÞ

L and RðuÞ
L contain poles. When one

changes the assignment of momentum labels, the angular
dependence now sweeps over the poles. Since this implies
that the functions are not square integrable, one cannot
decompose into spherical harmonics. To avoid this tech-
nical problem one must first change from spherical har-
monic indices to an explicit dependence on angular
variables, and only then symmetrize. For almost all choices
of external momenta, one then avoids the singularity.
To make the symmetrization operator explicit, we first

convert to angular variables for Mðu;uÞ½B2�
3;L in the standard

way:

Mðu;uÞ½B2�
3;L ð~p; â0�; ~k; â�Þ
¼ 4πY�

l0m0 ðâ0�ÞMðu;uÞ½B2�
3;L;pl0m0;klmYlmðâ�Þ: ð35Þ

Note that, as discussed above at length, we can treat all the
external momenta as continuous variables, not constrained
to lie in the finite-volume set. We now define the quantities
with u replaced by s and ~s in exactly the same way as
discussed for Kdf;3 above—see Eq. (20) and surrounding
text. We stress that this is simply implementing the
interchange of the choice of spectator particle. Then we
have

M½B2�
3;L ð~p; â0�; ~k; â�Þ ¼

X
x¼u;s;~s

X
y¼u;s;~s

Mðx;yÞ½B2�
3;L ð~p; â0�; ~k; â�Þ

ð36Þ

≡ SfMðu;uÞ½B2�
3;L;p;l0;m0;k;l;mg: ð37Þ

The second line defines the action of the symmetrization
operator S, and applies to any “ðu; uÞ” quantity that can be
defined for general external momenta.
Applying S to both sides of Eq. (33) we find, after some

algebra, the final result of this section,

iM½B2�
3;L ð~p;â0�;~k;â�Þ¼ iDLð~p;â0�;~k;â�Þ

þS
��

1

3
þ 1

1− iM2;LiG
iM2;LiF

�
iK½B2;ρ�

df;3
1

1− iF3iK
½B2;ρ�
df;3

×

�
1

3
þ iF
2ωL3

1

1− iM2;LiG
iM2;Lð2ωL3Þ

��
: ð38Þ

Here DL is the symmetrized form of Dðu;uÞ
L ,

DLð~p; â0�; ~k; â�Þ ¼ SfDðu;uÞ
L g; ð39Þ

6The momenta of the scattered pair in the initial and final states
are not in the finite-volume set, due to the on-shell condition, as
discussed around Eq. (8). The direction vectors for these
momenta, â� and â0�, can be chosen arbitrarily.

7To see this most clearly, one should expand out the geometric
series contained in F3, M2;L and Dðu;uÞ

L , in which case Mðu;uÞ½B2�
3;L

is a sum of terms each of which consists of products of either F or
G alternating with factors of K2 and K½B2;ρ�

df;3 .
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and

iK½B2;ρ�
df;3 ≡ ð 1 1 Þ

�
iK½B2;ρ�

df;3

��
1

1

�
ð40Þ

equals the quantity of the same name appearing in Ref. [1].
Several comments are in order about the derivation of

Eq. (38). When symmetrizing over the row vector LðuÞ
L ,

defined in Eq. (27), the row vector (1 0) within it is
converted into (1 1).8 Since the final form (38) still contains
an external symmetrization operator, we can replace (1 0)
with (1 1) as long as we include a factor of 1=3. The row
vector (1 1) can now be factored out and applied to the

right. A similar discussion holds for RðuÞ
L , with the

symmetric column vector
	
1
1



factoring out at its left-hand

end. Together with the fact that the matrix form of F3,
Eq. (30), contains symmetric column and row vectors, this

implies that all entries of the matrix ðiK½B2;ρ�
df;3 Þ in Eq. (33) are

now sandwiched between symmetric vectors. This is why

the symmetric quantity K½B2;ρ�
df;3 of Eq. (40) appears in our

final result. One is then left with a geometric series of

powers of F3K
½B2;ρ�
df;3 which sums to the form shown

in Eq. (38).

We stress that K½B2;ρ�
df;3 , while symmetric under external

particle exchange, violates this symmetry internally. This is
because of the above-mentioned decorations involving the
matrix ρ, which contains the asymmetric row vector
ð2=3;−1=3Þ. Furthermore, our fPV pole prescription breaks

particle interchange symmetry. These facts make K½B2;ρ�
df;3 a

difficult quantity to interpret.
It is of course crucial that Eq. (38) contains the same

K½B2;ρ�
df;3 as appears in the analogous expression for C½B2�

L

given in Eq. (234) of Ref. [1]. We will see that this
continues to hold when B3 kernels are included. This means
that the same quantityKdf;3 that appears in the quantization
condition will appear in the relation to M3.

IV. M3;L WITH B2 AND B3 KERNELS

In this section we complete the decomposition of M3;L

by including all remaining diagrams, i.e. those with at least
one B3 kernel. This set is illustrated by the first and last
lines of Fig. 4(b). Although the final result is straightfor-
ward, with the form of Eq. (38) being preserved aside from
a new definition of Kdf;3, the derivation of this result is
quite involved. While we are able to partly reuse results
from Ref. [1], significant additional work is required. As in
the previous section, we derive the result first with finite-
volume external spectator and total momenta, and then note
that the result maintains its form if these momenta are
allowed to be general.
B3 kernels are symmetric functions of incoming and

outgoing momenta that are smooth in the energy range of
interest. They naturally divide diagrams contributing to
M3;L into segments within which finite-volume depend-
ence can arise, as illustrated in Fig. 6. These segments can
be treated separately, and are of three types. The first
connects the final state fields to the leftmost B3 kernel, and
appears on the left-hand end of all diagrams considered in
this section. The second type lies between two B3 kernels,
and can appear any number of times (including zero) in the
middle of the diagram. Finally, on the right-hand end there
is always a segment connecting the rightmost B3 to the
initial state. The second (“middle”) type of segment was
analyzed in Ref. [1], while the other two are new to
this work.
We first recall the expression for a middle segment. To

understand this we need the final result for finite-volume

correlator including only B2 kernels, C
½B2�
L . This is given by

Eq. (239) of [1]:

C½B2�
L ¼ C½B2;ρ�

∞ þ A0½B2;ρ�ZA½B2;ρ�; ð41Þ

with

Z ≡ 1

1 − iF3iK
½B2;ρ�
df;3

iF3: ð42Þ

This is obtained by performing manipulations analogous to
those of the previous section on the starting form, Eq. (14).

C½B2;ρ�
∞ is the infinite-volume version of CL with only B2

(a) (b) (c)

FIG. 6. Example of the decomposition of a contribution to M3;L in terms of segments separated by insertions of the three-to-three
kernel B3. As discussed in the text, the segments are of three types: (a) those connecting the final state to the leftmost kernel; (b) those
which lie between two B3 kernels; and (c) those connecting the rightmost kernel to the initial state. Segments of type (b) were analyzed
in Ref. [1], whereas those of type (a) and (c) are new to this work.

8Recall that our second-level matrix notation combines super-
scripts s and ~s into the lower entry; see, e.g., Eq. (18).
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kernels included, using the fPV prescription, and including
decorations due to ρ. It is defined in Sec. IVD of Ref. [1].
The second term in (41) contains the finite-volume
dependence, which is collected into Z. All infinite-volume
contributions between the σ at the left and the first finite-
volume cut F are contained in A0½B2;ρ�, while A½B2;ρ� contains
such contributions between the rightmost F and the σ†.
Following Ref. [1], we define “decoration operators” DC,
DA0 and DA such that [Eq. (241) of [1]]

C½B2;ρ�
∞ ≡ σD½B2;ρ�

C σ†; ð43Þ

A0½B2;ρ� ≡ σD½B2;ρ�
A0 ; ð44Þ

A½B2;ρ� ≡D½B2;ρ�
A σ†: ð45Þ

These are infinite-volume integral operators. The point of
these definitions is that the decoration operators do not

depend on the choice of functions at the ends. In C½B2�
L these

are σ and σ†, but if both are replaced by B3 then one obtains
a middle segment of M3;L. Thus, the latter can be written

…iB3M½B2;ρ�iB3…; where

M½B2;ρ� ¼ D½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A ; ð46Þ

which is Eq. (243) of [1].
We now turn to the end segments. We call the integral

operator appearing in the left-hand segment LðuÞ½B2;ρ�, and
the corresponding operator for the right-hand segment

RðuÞ½B2;ρ�. Using this notation, the contribution to Mðu;uÞ
3;L

containing one and two B3s is

iMðu;uÞ
3;L ⊃ LðuÞ½B2;ρ�iB3RðuÞ½B2;ρ�

þ LðuÞ½B2;ρ�iB3M½B2;ρ�iB3RðuÞ½B2;ρ�: ð47Þ

No ðu; uÞ superscripts are necessary for the middle segment
due to the symmetry of B3.
The result for RðuÞ½B2;ρ� can be obtained by reflection

from that for LðuÞ½B2;ρ�, so we focus on the latter. Our starting
point is a result that follows from Eq. (174) of [1] by the
same argument given above for obtaining Eq. (13) from
Eq. (14). We find

LðuÞ½B2;ρ�σ† ¼ 1

1 − iK2iF

X∞
n¼0

ðiKðu;uÞ
3;L AÞn

X∞
m¼0

Aðm;uÞ
L −

2

3
σ†:

ð48Þ

Note that we are acting LðuÞ½B2;ρ� on σ† rather than B3. This
is just a convenience, as it allows us to reuse notation from
Ref. [1]. The operator LðuÞ½B2;ρ� is the same for either choice.

The new quantity Aðm;uÞ
L is defined in Ref. [1], and

represents diagrams in which σ† is dressed with m factors
of K2, with the scattering pair switching between each
factor. All loops except that closest to the σ† involve sums
over spatial momenta and, thus, contain L dependence.
This is illustrated in Fig. 17(a) of [1]. The leading term is

Að0;uÞ
L ¼ σ† (which will ultimately become B3 in our case).

The last term on the right-hand side in Eq. (48) is needed
since the first term equals σ† at leading order, but we
require σ†=3 in the unsymmetrized end cap. In the con-

struction of Mðu;uÞ
3;L this will correspond to factors of B3

being multiplied by 1=3 whenever they are the outermost
insertions. This is the correct definition to recover a factor
of B3 without the 1=3 from such diagrams within the
symmetrized amplitude. Since B3 is itself symmetric, the
effect of symmetrization on such diagrams is multiplication
by 3, which cancels the 1=3 included here.
The form (48) is next rewritten using the results in

Eqs. (188), (191) and (192) in [1], leading after some
algebra to

LðuÞ½B2;ρ�σ† ¼ 1

1 − iK2iF

X∞
n¼0

ðiKðu;uÞ
3;L AÞnA½B2�

þ 1

3
σ† þ AðuÞ½B2� − A½B2�: ð49Þ

Here AðuÞ½B2� and A½B2� are infinite-volume quantities
involving any number of K2s connected to σ†. A½B2� is
the symmetrized version, which has already appeared in
Eqs. (14) and (15). Both quantities are defined in Ref. [1].9

The result (49) is the analog of Eq. (13) above when there is
a B3 on the right-hand end rather than an initial state.

Using the definitions of A and Mðu;uÞ½B2�
3;L , Eqs. (10) and

(13), respectively, we can rewrite our result for LðuÞ½B2;ρ� as

LðuÞ½B2;ρ�σ† ¼ iMðu;uÞ½B2�
3;L

iF
2ωL3

A½B2� þ 1

3
σ† þ AðuÞ½B2�

þ iK2iF
1 − iK2iF

A½B2�: ð50Þ

This allows us to reuse the work from the previous section,

which led to the result (33) for Mðu;uÞ½B2�
3;L . Substituting the

latter into Eq. (50), we encounter a new combination that
can be rewritten as follows

9In Ref. [1], AðuÞ denotes what we refer to here as AðuÞ½B2�. Note
that AðuÞ½B2� does not include an isolated factor of σ†, i.e. all terms
in AðuÞ½B2� have at least one insertion of K2. By contrast the
symmetrized version, A½B2� does start with an isolated σ†

[A½B2� ¼ σ† þOðK2Þ].
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�
RðuÞ

L

�
iF

2ωL3
A½B2� ¼

��
1

1

�
iF3 þ

�
2=3

−1=3

�
iρ
2ω

�
A½B2�

ð51Þ

¼
�
ð iF3 Þ þ

�
iρ
2ω

�
T
��

A½B2�
�
; ð52Þ

where �
iρ
2ω

�
T ≡

�
2=3

−1=3

�
iρ
2ω

ð 1 1 Þ; ð53Þ

and �
A½B2�

�
≡

�
σ†=3þ AðuÞ½B2�

2σ†=3þ AðsÞ½B2� þ Að~sÞ½B2�

�
: ð54Þ

Here we have split up the symmetric quantity A½B2� into a
column matrix, such that

A½B2� ¼ ð1 1Þ
	
A½B2�



: ð55Þ

Introducing the definition [equivalent to Eq. (237) of [1]]	
A½B2;ρ�



≡
	
A½B2�



þ
�
iK½B2;ρ�

df;3

��
iρ
2ω

�
T	

A½B2�


; ð56Þ

we find, after considerable algebra, that we can rewrite
(50) as

LðuÞ½B2;ρ�σ† ¼ ðLðuÞ
L Þ

X∞
n¼0

(�
iK½B2;ρ�

df;3

�
ð iF3 Þ

)
n

ðA½B2;ρ�Þ:

ð57Þ

Finally, defining asymmetric decoration operators by

�
DðuÞ½B2;ρ�

A

D½B2;ρ�
A −DðuÞ½B2;ρ�

A

�
σ† ≡

	
A½B2;ρ�



; ð58Þ

we can write a stand-alone expression for the integral
operator appearing in the left-hand segment

LðuÞ½B2;ρ� ¼
	
LðuÞ
L


X∞
n¼0

n	
iK½B2;ρ�

df;3



ð iF3 Þ

o
n

×

�
DðuÞ½B2;ρ�

A

D½B2;ρ�
A −DðuÞ½B2;ρ�

A

�
: ð59Þ

As for the middle segment, M½B2;ρ�, finite-volume depend-
ence enters through the factors of F3.
The corresponding expression for the right-hand

segment is

RðuÞ½B2;ρ� ¼
	
DðuÞ½B2;ρ�

A0 ; D½B2;ρ�
A0 −DðuÞ½B2;ρ�

A0



×
X∞
n¼0

n
ð iF3 Þ

	
iK½B2;ρ�

df;3


o
n
�
RðuÞ

L

�
; ð60Þ

where we have defined the mirrored decoration operators

σ
	
DðuÞ½B2;ρ�

A0 ; D½B2;ρ�
A0 −DðuÞ½B2;ρ�

A0



≡

	
A0½B2;ρ�



; ð61Þ

with

ðA0½B2;ρ� Þ ¼ ðA0½B2� Þ þ ðA0½B2� Þ
�

iρ
2ω

��
iK½B2;ρ�

df;3

�
; ð62Þ

where

ðA0½B2� Þ≡ ð σ=3þ A0ðuÞ; 2σ=3þ A0ðsÞ þ A0ð~sÞ Þ: ð63Þ

The quantities A0ðuÞ, A0ðsÞ and A0ð~sÞ are defined in [1].
We now have all the pieces needed to construct the

full unsymmetrized finite-volume scattering amplitude.
The result is

iMðu;uÞ
3;L ¼ iMðu;uÞ½B2�

3;L þ LðuÞ½B2;ρ�iB3

×
X∞
n¼0

fM½B2;ρ�iB3gnRðuÞ½B2;ρ�: ð64Þ

Reorganizing the sums, and introducing the quantity	
iK½B2 &B3�

df;3



≡

	
iK½B2;ρ�

df;3



þ
	
iB½B2;ρ�

3



; ð65Þ

where

�
iB½B2;ρ�

3

�
≡X∞

n¼0

�
DðuÞ½B2;ρ�

A

D½B2;ρ�
A −DðuÞ½B2;ρ�

A

��
iB3D

½B2;ρ�
C

�
n
iB3

×

�
D½B2;ρ�

A0 ; D½B2;ρ�
A0 −Dð ~uÞ½B2;ρ�

A0

�
; ð66Þ

we find

iMðu;uÞ
3;L ¼ iDðu;uÞ

L þ
	
LðuÞ
L


	
iK½B2 &B3�

df;3



×
X∞
n¼0

h
ð iF3 Þ

	
iK½B2 &B3�

df;3


i
n
	
RðuÞ

L



: ð67Þ

As claimed above, this has exactly the same form as the
result (33) from the previous section, but now the B3

contributions are contained within the modifiedKdf;3. As in
the previous section, this result remains valid when the
external momenta take arbitrary values instead of being
restricted to the finite-volume set. Indeed, the argument for
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this is unchanged, since the new features introduced by
factors of B3 only impact the infinite-volume quantities in
Eq. (67) for which the transition to arbitrary external
momenta is not problematic.
Symmetrizing proceeds as in the previous section, and

leads to the final form for the finite-volume scattering
amplitude10:

iM3;Lð~p; â0�; ~k; â�Þ ¼ iDLð~p; â0�; ~k; â�Þ

þ S
��

1

3
þ 1

1 − iM2;LiG
iM2;LiF

�
iKdf;3

1

1 − iF3iKdf;3

×

�
1

3
þ iF
2ωL3

1

1 − iM2;LiG
iM2;Lð2ωL3Þ

��
: ð68Þ

Here Kdf;3, given by

iKdf;3 ≡ ð 1 1 Þ
�
iK½B2 &B3�

df;3

��
1

1

�
; ð69Þ

is equal to the quantity of the same name appearing
in Eq. (251) of Ref. [1]. Thus, we have achieved our
objective—expressing M3;L in terms of the same inter-
mediate quantity Kdf;3 that appears in our quantization
condition.
The result (68) suggests an intuitive interpretation of

Kdf;3 as an effective local three-particle interaction. In
words, one can describe the second term on the right-hand
side of Eq. (68) as having any number of two-particle
interactions, jumping back and forth between scattering
pairs, followed by a three-particle interaction (given by
Kdf;3), followed by more two-to-two scattering (F3),
possibly another three-particle interaction, etc., and ending
with more two-to-two scattering. We note, however, that
separating the local part of the three-particle scattering

process involves some ambiguity, which here is manifested
by the presence of the cutoff function H, whose detailed
form is arbitrary.

V. INFINITE-VOLUME LIMIT

In this section we take the infinite-volume limit of
Eq. (68) and thereby derive a relation between M3, the
standard three-to-three scattering amplitude, and Kdf;3, the
infinite-volume quantity appearing in the quantization
condition.
As a warm-up, we consider first the infinite-volume limit

of the two-to-two finite-volume scattering amplitude,
whose form we recall is

M2;L ¼ 1

1þK2F
K2; ð70Þ

with F defined in Eqs. (A3)–(A5). M2;L, K2 and F are all
matrices with both spectator momentum and angular
momentum indices. The total energy and momentum is
ðE; ~PÞ, while we call the incoming and outgoing spectator

momenta ~k and ~p, respectively. As stressed repeatedly
above, these momenta are not constrained to lie in the
finite-volume set. We take L → ∞ holding these
momenta fixed.
The crucial question when taking the infinite-volume

limit is how to treat sums over finite-volume momenta. We
know that (suitably normalized) sums go over to integrals

1

L3

X
~p

⟶

Z
d3p
ð2πÞ3 ; ð71Þ

up to corrections which vanish as L → ∞. If the summand
is smooth the corrections vanish exponentially, while if
there are singularities the corrections fall as powers of L.
Keeping track of the latter was the main task in the analysis
of Ref. [1]. Here, by contrast, we do not care how the
corrections fall off, only that they vanish in the limit.
However a subtlety arises for summands containing sin-
gularities, because the corresponding integrals are only
well defined with a pole prescription. For any finite L, the
finite-volume momenta will avoid the singularities unless
the energy E is equal to that of three noninteracting
particles. But as L → ∞, these singularities become arbi-
trarily dense and the limit is ill defined. To take the limit we
must first introduce a pole prescription for the sum. The
natural choice is the iϵ prescription, since this is the choice
used in defining scattering amplitudes in infinite volume.
We also consider below what happens if we use the fPV
prescription.
This iϵ prescription works for sums in a straightforward

way. The procedure is as follows: (1) Replace all poles in
sums by poles with nonzero iϵ; (2) Send L → ∞ at fixed
iϵ—this limit is well defined with all sums becoming

10We note that there is a simple mnemonic that one can use to
obtain this result from that for the full finite-volume correlator
given in Eq. (2). This follows the procedure used to derive
Eq. (13) from the corresponding result for the finite-volume
correlator, Eq. (14). More precisely, identifying terms with at
least two insertions of F, discarding the end caps A0 and A,
multiplying each side by an inverse of iF=ð2ωL3Þ, discarding
disconnected diagrams, and then symmetrizing, one reaches the
final expression for the finite-volume three-to-three scattering
amplitude given in Eq. (68). This procedure cannot, however, be
rigorously justified, for two reasons. The first issue is that various
redefinitions of the infinite-volume quantities were required to
reach Eq. (2). This obscures which diagrams are contributing to
which quantities, and the only way we could resolve this
uncertainty was by starting at an earlier stage of the derivation,
Eq. (14), before such redefinitions have been made. The second
issue is that the quantity reached by amputating A, A0 as well as
the outermost iF=ð2ωL3Þ has ill-defined exchange symmetry. It
contains certain contributions which are symmetrized and others
which are not. It turns out that symmetrizing the result in the
manner described in the text removes this ambiguity, without
overcounting or neglecting terms.
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integrals; (3) Send ϵ → 0. In this limit the contribution of
each diagram in the skeleton expansion for M2;L [see
Fig. 4(a)] is converted into the corresponding contribution
for M2. Thus, M2;L → M2 when using this prescription,
and similarly M3;L → M3.
Focusing first on M2;L, we note that it contains two

types of finite-volume sums: those arising from matrix
multiplications over the index k and that contained in F.11

In this case (but not for M3;L below) the former sums are
trivial. This is because spectator momentum is conserved,
so all matrices are proportional to δk1k2 . Multiplying these
out leads12 to an overall δkp.
The nontrivial sum is that contained in F. Naively one

might say that since F contains a sum-integral difference
[see Eq. (A5)], F → 0 when L → ∞. After all, F is the
source of finite-volume corrections. However, as already
noted, this conclusion depends on the pole prescription
chosen to define the sum before the limit is evaluated. If we
choose the fPV prescription for the sum, then, indeed, F
vanishes in the limit13:

lim
L→∞

����
~PV
F ¼ 0; ð72Þ

Here we denote the choice of pole prescription by the
subscript. On the other hand, if we define the limit by
regulating the sum with an iϵ prescription, then it is Fiϵ of
Eq. (A5) that vanishes, so that

lim
L→∞

����
iϵ
F ¼ δk0kρl0m0;lmð~kÞ≡ ρ; ð73Þ

where ρl0m;lmð~kÞ is the phase space matrix given in
Eq. (A6). We stress that, in the following, ρ without an

argument is a matrix with full klm indices while ρð~kÞ has
only lm indices.
Using these results we can immediately determine the

infinite-volume limit of M2;L. If we use the fPV prescrip-
tion for the limit of sums, then

lim
L→∞

����
~PV
M2;L ¼ K2: ð74Þ

Above threshold, fPV is equivalent to the principal value
prescription. Thus, Eq. (74) reproduces the well-known
result that evaluating scattering diagrams using the PV
prescription in loops (i.e. dropping the imaginary part)
leads to the K matrix. This is not, however, the infinite-
volume limit that we desire. If we instead use the iϵ
prescription we obtain

lim
L→∞

����
iϵ
M2;L ¼ M2 ¼

1

1þK2ρ
K2: ð75Þ

Above threshold, this is indeed the standard relation
between M2 and K2, with ρ adding in the cuts needed
for unitarity. This provides a check that we are taking the
infinite-volume limit correctly. Below threshold (i.e. with
the spectator momentum chosen so that the scattering pair
are below threshold), this result provides an alternative
expression for K2 in terms of M2 analytically continued
below threshold:

K2
−1 ¼ M2

−1 − ρ: ð76Þ

Note that, although K2 and ρ depend on the cutoff function

Hð~kÞ, this dependence cancels in M2.
We now apply the same limiting procedure to our result

for M3;L, Eq. (68). To do so we need some new notation.

Since ~p and ~k become continuous variables, while angular-
momentum indices remain unchanged, we adopt a hybrid
notation for Kdf;3 and Dðu;uÞ, e.g.

K3;df;pl0m0;klm ¼ K3;df;l0m0;lmð~p; ~kÞ: ð77Þ

We stress here thatK3;df was already defined for arbitrary ~p

and ~k above so that Eq. (77) is only a relabeling. Similarly,
we make the continuous spectator momentum an argument
of M2, and drop the Kronecker delta from its definition:

lim
L→∞

jiϵM2;L;pl0m0;klm ¼ δpkM2;l0m0;lmð~pÞ: ð78Þ

This is similar to the notation for ρ in Eq. (73). Finally, for
M3 and its divergent part D, which, after symmetrization,
are functions of angular variables rather than spherical
harmonics [as discussed in Sec. III around Eq. (36)], we use

lim
L→∞

����
iϵ
M3;Lð~p; â0�; ~k; â�Þ≡M3ð~p; â0�; ~k; â�Þ; ð79Þ

and similarly for D.

11The matrix multiplications over the angular momentum
indices lm go over unchanged to the infinite-volume limit.

12There is a minor inconsistency between ourmatrix notation—
designed for summing over finite-volume momenta—and the
fact that we have generalized to arbitrary spectator momenta. In
particular, since the external momenta do not appear in the finite-
volume set, what does the δk1k2 mean? Working back through the
derivation, we find that it is simply a mnemonic for spectator-
momentum conservation, with no sums over intermediate specta-
tormomenta actually appearing. The same comment applies below
for all instances of this Kronecker delta.

13This is because the ρ term in Eq. (A4) is exactly what is
required to turn the integral with the iϵ prescription in Eq. (A5)
into an integral with the ~PV prescription. See Ref. [1] for further
discussion.
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Our task is now to evaluate the limit in

iM3ð~p; â0�; ~k; â�Þ

¼ lim
L→∞

����
iϵ
S
�
iDðu;uÞ

L

þ
�
1

3
þ 1

1 − iM2;LiG
iM2;LiF

�
iKdf;3

1

1 − iF3iKdf;3

×

�
1

3
þ iF
2ωL3

1

1 − iM2;LiG
iM2;Lð2ωL3Þ

��
: ð80Þ

We can interchange the symmetrization and the taking of
L → ∞ because the changes of variables involved in
symmetrization are independent of L. We, thus, begin by

determining the L → ∞ limit of Dðu;uÞ
L , given in Eq. (25).

To do so we replace M2;L with M2, and introduce an
infinite-volume version of G

G∞
l0m0;lmð~p; ~kÞ

≡
�
k�

q�p

�
l0 4πYl0m0 ðk̂�ÞHð~pÞHð~kÞY�

lmðp̂�Þ
2ωkpðE − ωk − ωp − ωkp þ iϵÞ

�
p�

q�k

�
l
:

ð81Þ

This differs from the matrix form of G, given in Eq. (A2),
simply by the removal of a factor of 1=ð2ωkL3Þ . This factor
either cancels the explicit ð2ωL3Þ in Dðu;uÞ

L , or converts
sums over internal spectator momentum indices into
integrals. For example the first two terms in the geometric

series obtained by expanding Dðu;uÞ
L have the following

limits:

lim
L→∞

����
iϵ
iM2iGiM2ð2ωL3Þ

¼ iM2ð~pÞiG∞ð~p; ~kÞiM2ð~kÞ; ð82Þ

lim
L→∞

����
iϵ
iM2iGiM2iGiM2ð2ωL3Þ

¼
Z
s

1

2ωs
iM2ð~pÞiG∞ð~p; ~sÞiM2ð~sÞiG∞ð~s; ~kÞiM2ð~kÞ;

ð83Þ

where angular momentum indices are implicit. Here we are
using

R
s≡

R
d3s=ð2πÞ3. Repeating for higher-order terms

we find that the infinite-volume form of Dðu;uÞ
L ,

lim
L→∞

jiϵDðu;uÞ
L;pl0m0;klm ≡Dðu;uÞ

l0m;lmð~p; ~kÞ; ð84Þ

satisfies the integral equation

iDðu;uÞð~p; ~kÞ ¼ iM2ð~pÞiG∞ð~p; ~kÞiM2ð~kÞ

þ
Z
s

1

2ωs
iM2ð~pÞiG∞ð~p; ~sÞiDðu;uÞð~s; ~kÞ:

ð85Þ
Symmetrizing following Eq. (37) leads to

Dð~p; â0�; ~k; â�Þ ¼ SfDðu;uÞð~p; ~kÞg: ð86Þ

This quantity contains all the physical divergences in M3,
i.e. divergences that occur above threshold for physical
external momenta. The difference

Mdf;3ð~p; â0�; ~k; â�Þ ¼ M3ð~p; â0�; ~k; â�Þ −Dð~p; â0�; ~k; â�Þ
ð87Þ

is free of such divergences, and can, if desired, be expanded
in spherical harmonics.
To determine the L → ∞ limit of the remainder ofM3;L

we need to evaluate

lim
L→∞

����
iϵ

��
1

3
þ 1

1 − iM2;LiG
iM2;LiF

�
iKdf;3

1

1 − iF3iKdf;3

×

�
1

3
þ iF
2ωL3

1

1 − iM2;LiG
iM2;Lð2ωL3Þ

��
; ð88Þ

where F3 is defined in Eq. (3). We first take the infinite-
volume limit of the central part of (88), i.e.

lim
L→∞

����
iϵ

�
iKdf;3

1

1 − iF3iKdf;3

�
pl0m;klm

≡ iT l0m0;lmð~p; ~kÞ:

ð89Þ
Rewriting F3 as

iF3 ¼
iF

2ωL3

�
1

3
þ iM2;LiF þ iDðu;uÞ

L
iF

2ωL3

�
; ð90Þ

we find that T is given by the solution to the integral
equation

iT ð~p; ~kÞ ¼ iKdf;3ð~p; ~kÞ

þ
Z
s

Z
r
iKdf;3ð~p; ~sÞ

iρð~sÞ
2ωs

Lðu;uÞð~s; ~rÞiT ð~r; ~kÞ;

ð91Þ

where

Lðu;uÞð~p; ~kÞ ¼
�
1

3
þ iM2ð~pÞiρð~pÞ

�
ð2πÞ3δ3ð~p − ~kÞ

þ iDðu;uÞð~p; ~kÞ iρð
~kÞ

2ωk
; ð92Þ
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and one must additionally enforce that T is symmetric
under particle interchange symmetry on its left-hand argu-

ment.14 The factors of ρð~kÞ arise from the infinite-volume
limit of F.15

What remains to be considered are the combinations at
the left- and right-hand ends of Eq. (88). These become
integral operators in the infinite-volume limit. Putting
everything together we find

iM3ð~p; â0�; ~k; â�Þ
¼ iDð~p; â0�; ~k; â�Þ

þ S
�Z

s

Z
r
Lðu;uÞð~p; ~sÞiT ð~s; ~rÞRðu;uÞð~r; ~kÞ

�
; ð93Þ

where Rðu;uÞ is the reflection of Lðu;uÞ:

Rðu;uÞð~p; ~kÞ ¼
�
1

3
þ iρð~pÞiM2ð~pÞ

�
ð2πÞ3δ3ð~p − ~kÞ

þ iρð~pÞ
2ωp

iDðu;uÞð~p; ~kÞ: ð94Þ

Eq. (93) is our final result. It shows that M3 can be
obtained from Kdf;3 by solving two integral equations (first
for Dðu;uÞ, which requires M2, and then for T ), applying
two integral operators to T , symmetrizing, and then adding
in the divergent part D. We note that all the integrals
appearing above have a finite range because all integrands
include the cutoff function H. This may be helpful when
making numerical approximations.

VI. EXPRESSING Kdf;3 IN TERMS OF M3

In this brief section we show how the result (93) can be
inverted so as to obtainKdf;3 givenM3 (andM2). This will
be useful if one has a model forM3 and wants to determine
the prediction for Kdf;3, which can then be inserted into the
quantization condition of Ref. [1] in order to predict the
finite-volume spectrum.
We begin by rewriting Eq. (93) in terms of symmetric

quantities:

iMdf;3ð~p; â0�; ~k; â�Þ

¼
Z
s

Z
b̂0�

Z
r

Z
b̂�
fð2πÞ3δ3ð~p − ~sÞ4πδ2ðâ0� − b̂0�Þ

þ ΔLð~p; â0�; ~s; b̂0�Þg
× iT ð~s; b̂0�; ~r; b̂�Þfð2πÞ3δ3ð~r − ~kÞ4πδ2ðb̂� − â�Þ
þ ΔRð~r; b̂�; ~k; â�Þg: ð95Þ

Here the angular averages and corresponding delta-
functions are defined byZ
b̂
≡ 1

4π

Z
dΩb̂; and

Z
b̂
4πδ2ðb̂ − âÞfðb̂Þ≡ fðâÞ:

ð96Þ

These angular averages arise from reexpressing the sums
over repeated lm indices as angular integrals. We have also
changed from spherical harmonic indices to explicit angu-
lar dependence for the quantity T , using our standard
normalization [see, e.g., Eq. (35)]. Finally, the quantity ΔR
is defined by

ð2πÞ3δ3ð~p − ~kÞ4πδ2ðâ0� − â�Þ þ ΔRð~p; â0�; ~k; â�Þ

≡ 1

3
SfRðu;uÞð~p; ~kÞg; ð97Þ

with ΔL defined analogously. Note that since Rðu;uÞ and
Lðu;uÞ are singular quantities (due to the delta functions and
the poles inDðu;uÞ) they must be symmetrized in the manner
described by Eq. (37). This is why we must change to
angular variables.
To obtain Eq. (95) from Eq. (93) we have, apart from the

change to angular variables, used the fact that T is
symmetric under independent particle exchange on both
its initial and final arguments. This allows us to symmetrize
Lðu;uÞ and Rðu;uÞ on both the outer and inner arguments,
which is what is done by the operation of S. To avoid over
counting we must include the factor of 1=3. We note that,
although ΔL and ΔR are complicated quantities, one can in
principle construct them given M2.
We now invert Eq. (95) in stages. The first step is to

construct Mdf;3 from M3 using Eq. (87). Next we invert
the factors on the left and right sides of T in (95). This is
done using kernels IL and IR that solve the integral
equations

ILð~p; â0�; ~k; â�Þ ¼ ð2πÞ3δð~p− ~kÞ4πδ2ðâ0� − â�Þ

−
Z
s

Z
b̂�
ILð~p; â0�;~s; b̂�ÞΔLð~s; b̂�; ~k; â�Þ;

ð98Þ

14One way to do this would be to symmetrize the matrix
appearing between Kdf;3 and T .

15One would expect the final result to involve integrals over
Lorentz-invariant three-body phase space, and indeed this is the
case. The implicit sum over angular momentum indices can
be rewritten as an angular integral in the scattering pair’s CM
frame. This integral, combined with that over the spectator
momentum, gives three-body phase space (extended to include
subthreshold particles) as long as one includes the Jacobian factor
ρð~kÞ=2ωk.
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IRð~p; â0�; ~k; â�Þ
¼ ð2πÞ3δð~p − ~kÞ4πδ2ðâ0� − â�Þ

−
Z
s

Z
b̂�
ΔRð~p; â0�; ~s; b̂�ÞIRð~r; b̂�; ~k; â�Þ: ð99Þ

One then finds that

4πY�
l0m0 ðâ0�ÞiT ð~p; ~kÞl0m0;lmYlmðâ�Þ

¼
Z
s

Z
b̂0�

Z
r

Z
b̂�
ILð~p; â0�; ~s; b̂0�ÞiMdf;3ð~s; b̂0�; ~r; b̂�Þ

× IRð~r; b̂�; ~k; â�Þ; ð100Þ

where we have used the fact that T is nonsingular to keep it
expressed with spherical harmonic indices.
Finally, we reconstruct Kdf;3 from T by rewriting

Eq. (91) as

iKdf;3ð~p; ~kÞ ¼ iT ð~p; ~kÞ −
Z
s

Z
r
iKdf;3ð~p; ~sÞ

×
iρð~sÞ
2ωs

Lðu;uÞð~s; ~rÞiT ð~r; ~kÞ; ð101Þ

and then solving for Kdf;3. This must be done with the
added condition that Kdf;3 is symmetric under particle
interchange symmetry.

VII. SIMPLIFYING CASES

In this section we describe two approximations in which
the relation betweenM3 and Kdf;3 simplifies substantially.
Such simplifications are likely to be the first step towards
using this formalism in practice. Both approximations were
discussed in Ref. [1].
We begin by considering the result in the approximation

that only the s-wave components of M2 and Kdf;3 are
nonzero—which we call the s-wave approximation. In this
case the quantities Kdf;3, Dðu;uÞ, T , L, R and M2 all are
nonzero only for l ¼ m ¼ 0, so the spherical harmonic
indices can be dropped. This implies that Eqs. (85), (91),
(92) and (94) retain their forms, except that now all
quantities are no longer matrices. In addition, G∞ becomes
the function

G∞ð~p; ~kÞ ¼ Hð~pÞHð~kÞ
2ωkpðE − ωk − ωp − ωkp þ iϵÞ : ð102Þ

The final equation (93) is replaced by

iM3ð~p; â0�; ~k; â�Þ

¼ S
�
iDðu;uÞ

3 ð~p; ~kÞ

þ
Z
s

Z
r
Lðu;uÞð~p; ~sÞiT ð~s; ~rÞRðu;uÞð~r; ~kÞ

�
; ð103Þ

where symmetrization is defined as before [Eq. (37)] except
that now the quantity being symmetrized has no depend-
ence on â0� and â�. Nevertheless, such dependence is
introduced by the symmetrization and, thus,M3 maintains
its dependence on the full set of kinematic variables (albeit
in a simplified form).
Next we consider the more restrictive approximation—

referred to in Ref. [1] as the isotropic approximation—in
which the s-wave approximation is extended by assuming

thatKdf;3ð~p; ~kÞ depends only on the total three-particle CM
energy E�,

Kdf;3ð~p; ~kÞ ⟶ Kiso
df;3ðE�Þ: ð104Þ

In this case, it is shown in Ref. [1] thatKiso
df;3 can be obtained

from the spectrum using a simple algebraic equation
[Eq. (38) of [1]]. The integral equations which determine
M3 are all at fixed E and ~P and, thus, at fixed E�. Thus,
Kiso

df;3 is simply a constant, which simplifies some of the
results.
We find that Dðu;uÞ is the same as in the s-wave

approximation, while L and R simplify to

Lð~pÞ ¼
��

1

3
þ iM2ð~pÞiρð~pÞ

�
þ
Z
s
iDðu;uÞð~p; ~sÞ iρð~sÞ

2ωs

�
;

ð105Þ

Rð~kÞ ¼
��

1

3
þ iρð~kÞiM2ð~kÞ

�
þ
Z
r

iρð~rÞ
2ωr

iDðu;uÞð~r; ~kÞ
�
:

ð106Þ

Introducing the new quantity

iF∞
3 ¼

Z
s

iρð~sÞ
2ωs

�
1

3
þ iM2ð~sÞiρð~sÞ

�
þ
Z
s

Z
r

�
iρð~sÞ
2ωs

iDðu;uÞð~s; ~rÞ iρð~rÞ
2ωr

�
; ð107Þ

the final result is

iM3ð~p; â0�; ~k; â�Þ

¼ S
�
iDðu;uÞ

3 ð~p; ~kÞ þ Lð~pÞiKiso
df;3

1

1 − iF∞
3 iK

iso
df;3

Rð~kÞ
�
:

ð108Þ
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Thus, in this approximation, the only integral equation that
needs to be solved is that for Dðu;uÞ. Apart from that, the
result for M3 is obtained simply by doing integrals, all of
which are over a finite range due to the cutoff function H.

VIII. CONCLUSIONS AND OUTLOOK

In this work we have derived a relation between the
nonstandard three-particle K matrix,Kdf;3, and the standard
three-to-three scattering amplitude, M3. This completes
the formalism relating the finite-volume three-particle
spectrum to scattering observables and removes the central
drawback of the formalism presented in Ref. [1].
Future work will be dedicated to providing nontrivial

checks of the formalism completed here, as well as
assessing its utility. Concerning the former aim, we are
currently completing a study of the three-particle quanti-
zation condition for ~P ¼ 0 and for energy close to three-
particle threshold, E ≈ 3m. Here we can compare our result
to those obtained using nonrelativistic quantum mechanics
[8,10], and using perturbation theory in a λϕ4 theory [7]. As
we describe in our upcoming work, we find nontrivial
agreement between our general result in this limit and the
results of the alternative analyses.
Concerning the utility of this framework, one important

focus will be on solving the integral equations relatingKdf;3

and M3. A possible direction that one might pursue
follows from the observation that, with total energy and
momentum fixed, the phase space for any number of
particles is compact. This means that smooth functions
which depend on this phase space, such as M2 in the case
of two-particles and Kdf;3 in the case of three, must be
expressible as an infinite series of generalized harmonics.
In the two-particle case this is the standard decomposition
in spherical harmonics, leading to the parametrization of
M2 in terms of an energy-dependent phase shift for each
partial wave. Identifying an analogous decomposition
for Kdf;3 would be a first step in providing a well-
motivated parametrization to extract this quantity from
the spectrum and would likely also simplify the procedure
for constructing M3.
Finally, we stress that the most important function of this

work is as a stepping stone to the formalism required to
describe more complicated and more physically interesting
systems. We, thus, aim in future work to remove the
restrictions listed in the Introduction and provide a formal
result for all possible three-hadron states. For example, to
accommodate nucleon channels we must incorporate non-
zero intrinsic spin into this analysis. This has been studied
thoroughly in the two-particle sector in Refs. [11–13]. We
expect the methods developed there will facilitate the
generalization to three-particles. A further necessary exten-
sion is to accommodate two-to-three transitions, as well as
transitions involving multiple two- and three-particle chan-
nels, possibly containing nonidentical and nondegenerate

particles. Although this will introduce many complicating
details to the analysis, we expected that much of the
technology developed here can be reapplied. Finally, we
hope to extend this work to apply to systems with two-body
bound states and resonances. This will require accommo-
dating new finite-volume effects arising from bound-state
and resonance poles.
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APPENDIX: DEFINITIONS

We collect here definitions from Ref. [1] that are not
given in the main text. The matrices appearing in F3,
Eq. (3) are

½2ωL3�k0l0m0;klm ≡ δk0kδl0lδm0m2ωkL3; ðA1Þ

Gpl0m0;klm ≡
�
k�

q�p

�
l0 4πYl0m0 ðk̂�ÞHð~pÞHð~kÞY�

lmðp̂�Þ
2ωkpðE − ωk − ωp − ωkpÞ

×

�
p�

q�k

�
l 1

2ωkL3
; ðA2Þ

Fk0l0m0;klm ≡ δk0kFl0m0;lmð~kÞ; ðA3Þ

Fl0m0;lmð~kÞ ¼ Fiϵ
l0m0;lmð~kÞ þ ρl0m0;lmð~kÞ; ðA4Þ

Fiϵ
l0m0;lmð~kÞ

¼ 1

2

�
1

L3

X
~p

−
Z

d3p
ð2πÞ3

�

×
4πYl0m0 ðp̂�ÞY�

lmðp̂�ÞHð~kÞHð~pÞHð~bkpÞ
2ωp2ωkpðE − ωk − ωp − ωkp þ iϵÞ

�
p�

q�k

�
lþl0

:

ðA5Þ

where the sum over ~p in F runs over all finite-volume

momenta. Here ~bkp ¼ ~P − ~k − ~p is the momentum of the

third particle, and ωkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2kp þm2

q
is its on shell energy.

The momentum ~p� is the result of boosting ~p to the frame
in which the nonspectator pair [which has four-momentum
P2, see Eq. (5)] is at rest. If all three particles are on shell,
then j~p�j≡ p� ¼ q�k, where q�k is given in Eq. (7). The

quantities ~k� and q�p are obtained similarly by interchanging

the roles of ~k and ~p. The matrix ρ is a phase-space factor for
the nonspectator pair, defined by
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ρl0m0;lmð~kÞ≡ δl0lδm0mHð~kÞ~ρðP2Þ; ðA6Þ

~ρðP2Þ≡ 1

16π
ffiffiffiffiffiffi
P2
2

p (
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
ð2mÞ2 < P2

2;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
j 0 < P2

2 ≤ ð2mÞ2:
ðA7Þ

Here, and in the definitions of G and F, H provides a
smooth ultraviolet cutoff. We require

Hð~kÞ ¼
�
0; P2

2 ≤ 0;

1; ð2mÞ2 < P2
2;

ðA8Þ

where the first condition removes unphysical boosts and
the second ensures that the cutoff does not change the
contributions from on-shell intermediate states. In the

intermediate region, 0 < P2
2 < ð2mÞ2, Hð~kÞ interpolates

smoothly between 0 and 1. An example of a function which
satisfies all requirements is

Hð~kÞ≡ JðP2
2=½4m2�Þ; ðA9Þ

with

JðxÞ≡

8>>><>>>:
0; x ≤ 0;

exp

�
− 1

x exp

�
− 1

1−x

��
; 0 < x ≤ 1;

1; 1 < x:

ðA10Þ

The definitions in Eqs. (A1)–(A7) are used in Ref. [1]

solely with the spectator momenta (~k, ~k0 and ~p) as well as

the total momentum (~P) all being finite-volume momenta.
As noted repeatedly in the main text, in this work we need
to consider the extension to the case that these momenta
are not in the finite-volume set. This presents no problems
for any of the above definitions—all extend smoothly to

general values of ~k, ~k0, ~p and ~P.
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