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The two-dimensional U(1) gauge-Higgs model with a topological term is a simple example of a lattice
field theory where the complex action problem comes from the topological term. We show that the model
can be exactly rewritten in terms of dual variables, such that the dual partition sum has only real and
positive contributions. Using suitable algorithms the dual formulation allows for Monte Carlo simulations
at arbitrary values of the vacuum angle. We demonstrate the feasibility of the dual simulation and study the
continuum limit, as well as the phase diagram of the system.
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I. INTRODUCTORY REMARKS

Systems with a vacuum term have a complex action
problem that is similar to the one for systems with finite
chemical potential. For the latter case it was recently shown
that some lattice models can be rewritten exactly to new
degrees of freedom, so-called dual variables. In terms of the
dual variables, which are loops for matter fields and surfaces
for gauge fields, the partition function has only real and
positive contributions and Monte Carlo simulations are
possible. For examples relevant to this project, see [1–7].
For clarity we stress that in the strict sense the variant of

duality applied here is only the first half of the conventional
duality transformation, as will also become clear below. On
conventional duality transformations, there exists extensive
literature—see, e.g., the review [8].We remark that the second
step of the conventional duality transformation, i.e., satisfying
the constraints by introducing variables on the dual lattice, is
often not possible for the models considered in [1–7], which,
however, is irrelevant for a numerical simulation.
In these notes we apply the same dualization techniques

as in [1–7] to a simple system with a topological term, the
U(1) gauge-Higgs model in two dimensions. We show that
a dual representation with only real and positive contribu-
tions is possible for arbitrary values of the vacuum angle θ
and implement a suitable Monte Carlo algorithm. This
constitutes the first example of a complete solution of the
complex action problem coming from a topological term.
First results from the dual simulation of the U(1) gauge-
Higgs model with nonzero θ were presented in [5].
The two-dimensional U(1) gauge-Higgs model is not only

interesting as a test bed for the dual approach, but also
provides interesting physics. In its Higgs phase directly
related to the phenomenological Ginzburg-Landau model of
superconductivity [9] it exhibits well-localized multivortex
solutions with nontrivial integer topological charge [10–13].
On the lattice the model and its topological effects have been
studied in two [14,15] as well as in four dimensions [16,17].

Here we are going to demonstrate that the topological
features of the model in two dimensions can be further
explored with the new techniques which now allow for
simulations at arbitrary θ.

II. U(1) GAUGE HIGGS MODEL WITH A
TOPOLOGICAL TERM

A. Continuum formulation

The Euclidean continuum action for the two-dimensional
U(1) gauge Higgs model reads

S½A;ϕ� ¼
Z

d2x½ðDμðxÞϕðxÞÞ�DμðxÞϕðxÞ

þm2jϕðxÞj2 þ λjϕðxÞj4 þ β

4
FμνðxÞFμνðxÞ�: ð1Þ

Here DμðxÞ ¼ ∂μ þ iAμðxÞ denotes the usual covariant
derivative and FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ is the field
strength tensor for the U(1) gauge field AμðxÞ. The matter
fields are described by a complex scalar field ϕðxÞ.
The topological charge for U(1) gauge fields in two

dimensions is given by

Q½A� ¼ 1

4π

Z
d2xϵμνFμνðxÞ ¼

1

2π

Z
d2xF12ðxÞ: ð2Þ

The topological term is added with a vacuum angle θ to the
action and the partition function reads

Z ¼
Z

D½A�D½ϕ�e−S½A;ϕ�−iθQ½A�: ð3Þ

B. Lattice formulation

On the lattice the partition function is given by

Z ¼
Z

D½U�D½ϕ�e−SG½U�−SM ½U;ϕ�−iθQ½U�: ð4Þ
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For the gauge part we use the standard Wilson gauge
action,

SG½U� ¼ −
β

2

X
x

½Ux;p þ U�
x;p�; ð5Þ

where the sum runs over the sites x of a two-dimensional
Nt × Ns lattice with periodic boundary conditions. The
plaquette variable Ux;p is built from the U(1)-valued link
variables Ux;μ, μ ¼ 1, 2, and is given by Ux;p ¼
Ux;1Uxþ1̂;2U

�
xþ2̂;1

U�
x;2. The matter part of the action reads

SM½U;ϕ� ¼
X
x

�
κjϕxj2 þ λjϕxj4

−
X
μ

ðϕ�
xUx;μϕxþμ̂ þ ϕxU�

x;μϕ
�
xþμ̂Þ

�
; ð6Þ

with a mass parameter κ ¼ 4þm2.
We stress at this point that in the literature (see, e.g.,

[18]) a different nomenclature can be found, where
the couplings have a slightly different meaning (we add
primes to distinguish them from our couplings): κ0 is
the factor in front of the nearest neighbor terms, λ0 is
the factor of a shifted quartic term of the form ðjϕxj2 − 1Þ2,
and the quadratic term comes with a factor of 1. The
connection between the two conventions is given by the
transformations

λ ¼ λ0

κ02
; κ ¼ 1 − 2λ0

κ0
; ϕx ¼

1ffiffiffiffi
κ0

p ϕ0
x; ð7Þ

and by dropping an irrelevant term. In the convention [18]
the limit λ0 → ∞ freezes the radial mode to jϕ0

xj ¼ 1 and
one expects a Kosterlitz-Thouless transition when varying
κ0. In our convention this corresponds to following the line
λ ¼ ð1 − κ0κÞ=2κ02 for λ → ∞ (compare also the κ-λ phase
diagram in Sec. IVB below).
On the lattice the topological charge can be discretized

with, e.g., the “field-theoretical definition,”

Q½U� ¼ 1

i4π

X
x

½Ux;p − U�
x;p�; ð8Þ

which reproduces (2) in the continuum limit. For the naive
continuum limit this can be seen, by setting Ux;μ ¼ eiAx;μ

and noting that

Ux;p ¼ eiðAx;1þAxþ1̂;2−Axþ2̂;1−Ax;2Þ ¼ 1þ iF12ðxÞ þ � � � : ð9Þ

The measures D½U� and D½ϕ� in the lattice path integral are
defined in the usual compact way, i.e., as product measures
over all degrees of freedom on the lattice,

Z
D½U� ¼

Y
x;μ

Z
π

−π

dAx;μ

2π
;

Z
D½ϕ� ¼

Y
x

Z
C

dϕx

2π
:

ð10Þ

Putting things together we can write the partition sum as

Z ¼
Z

D½U�eη
P

x
Ux;pþη̄

P
x
U�

x;pZM½U�;

ZM½U� ¼
Z

D½ϕ�e−SM ½U;ϕ�; ð11Þ

where ZM½U� is the partition sum of the matter fields in the
gauge background. For a convenient notation of the terms
that combine the gauge action and the topological charge,
we defined

η≡ β

2
−

θ

4π
; η̄≡ β

2
þ θ

4π
: ð12Þ

It is obvious, that the conventional representation (11) of
the lattice model is not suitable for a Monte Carlo simu-
lation at θ ≠ 0, since then η ≠ η̄ and the Boltzmann factor is
complex. In the next subsection we show that this problem
is overcome by mapping the partition sum to dual variables.

C. Dual representation

By expanding the Boltzmann factors containing the
nearest neighbor terms in ZM½U� one can exactly map
the partition sum of the matter fields into a dual form [1–4],
where the new degrees of freedom for the matter fields are
loops dressed with the link variables Ux;μ. For the gauge
fields, one proceeds in a similar way [3,4], expanding the
Boltzmann factor, rearranging terms and integrating out the
link variables. A more detailed account of this exact
transformation of the partition function Z into its dual
form is provided in the Appendix.
In terms of the dual variables the partition function (11)

is given by

Z ¼
X

fl;l̄;p;p̄g

�Y
x;μ

1

ðjlx;μj þ l̄x;μÞ!l̄x;μ!
��Y

x

PðnxÞ
��Y

x

ηðjpxjþpxÞ=2þp̄x η̄ðjpxj−pxÞ=2þp̄x

ðjpxj þ p̄xÞ!p̄x!

�

×

�Y
x

δ

�X
μ

½lx;μ − lx−μ̂;μ�
�
δðpx − px−2̂ þ lx;1Þδðpx−1̂ − px þ lx;2Þ

�
: ð13Þ
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In the dual representation the partition function is a sum
over the set fl; l̄; p; p̄g of all configurations of the integer
valued dual variables

lx;μ; px ∈ Z; l̄x;μ; p̄x ∈ N0; ð14Þ

which are assigned to the links (lx;μ and l̄x;μ) or the
plaquettes (px and p̄x) of the lattice. For each configuration
there is a real and positive weight factor which consists of
the terms in the first line of (13), where we have introduced
the following abbreviations:

PðnxÞ≡
Z

∞

0

drrnxþ1e−κr
2−λr4 ;

nx ≡
X
μ

½jlx;μj þ jlx−μ̂;μj þ 2ðl̄x;μ þ l̄x−μ̂;μÞ�: ð15Þ

A subset of the dual variables, i.e., the lx;μ and the px, are
subject to constraints, which are collected in the second line
of (13). Here the δ denote Kronecker deltas, i.e.,
δðnÞ≡ δn;0. The constraints for the lx;μ are a discretized

version of ∇~lx ¼ 0 and, thus, imply the conservation of l
flux at every site x. The remaining constraints are asso-
ciated with the fluxes along the links of the lattice: Here the
flux at a link introduced by a nontrivial px has to be
compensated by an oppositely oriented flux from a neigh-
boring plaquette or by l flux from link variables lx;μ. The
combinations of all constraints gives rise to admissible
configurations that contribute to the partition sum, which
consist of closed loops of l flux which are filled with
occupied plaquettes such that at each link the total flux is
zero. These admissible configurations are a natural reduc-
tion of the admissible configurations that are discussed in
more detail for the four-dimensional case in [3,4].
We close this subsection with remarking that the weight

factors in the dual representation (13) are always real, but
become negative when either η < 0 or η̄ < 0. In practice
this is, however, an irrelevant region of the parameters since
we are interested in the limit β → ∞ where one approaches
the continuum limit (see below). Thus, we can restrict

ourselves to the parameter region β > θ=2π where both η
and η̄ are positive.

D. Observables and their dual representation

For the analysis here, we focus on studying the behavior
of various bulk observables (for a calculation of propa-
gators in the dual picture see, e.g., [1,2]). In particular, we
consider the following:
square of the absolute field and its susceptibility,

hjϕj2i≡ −1
NsNt

∂
∂κ lnZ; χϕ ≡ 1

NsNt

∂2

∂κ2 lnZ; ð16Þ

plaquette and plaquette susceptibility,

hReUpi≡ 1

NsNt

∂
∂β lnZ; χp ≡ 1

NsNt

∂2

∂β2 lnZ; ð17Þ

and topological charge density and topological charge
susceptibility,

hqi≡ −1
NsNt

∂
∂θ lnZ; χt ≡ −1

NsNt

∂2

∂θ2 lnZ: ð18Þ

The dual expressions of these observables can be
obtained by evaluating the derivatives of lnZ using the
dual representation of the partition function Z. We give two
examples for dual expressions of observables, the some-
what simpler field expectation value,

hjϕj2i ¼ −1
NsNt

∂
∂κ lnZ ¼ −1

NsNt

�X
x

∂PðnxÞ
∂κ

1

PðnxÞ
�

¼ 1

NsNt

�X
x

Pðnx þ 2Þ
PðnxÞ

�
; ð19Þ

and the slightly more involved expression for the topo-
logical charge susceptibility,

χt ¼
−1
NsNt

�
1

ð4πηÞ2
��jSj

2
þ S

2
þ S̄

��jSj
2

þ S
2
þ S̄ − 1

��
−

1

8π2ηη̄

��jSj
2

þ S
2
þ S̄

��jSj
2

−
S
2
þ S̄

��

þ 1

ð4πη̄Þ2
��jSj

2
−
S
2
þ S̄

��jSj
2

−
S
2
þ S̄ − 1

��
−
�

1

4πη̄

�jSj
2

−
S
2
þ S̄

�
−

1

4πη

�jSj
2

þ S
2
þ S̄

��
2
�
; ð20Þ

where we use the abbreviations jSj≡P
xjpxj, S ≡P

xpx and S̄ ≡P
xp̄x for various sums of the plaquette occupation

numbers px and p̄x. The expectation values on the right-hand sides of (19) and (20) are understood as expectation values in
the dual representation. In a similar way all bulk observables defined above can be obtained as weighted moments of the
dual variables.
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III. TESTS IN PURE GAUGE THEORY AND DUAL
MONTE CARLO UPDATES

A. Pure U(1) gauge theory: Semianalytical results
and continuum limit

If we neglect the matter fields (“quenched case”), the
model can be solved (semi) analytically; i.e., we obtain for
the partition function a simple and fast converging sum,
which can be evaluated efficiently to arbitrary precision.
For the pure gauge system with topological term the

partition function reduces to

Z ¼
X
fpg

�Y
x

X∞
p̄x¼0

ð ffiffiffiffiffi
ηη̄

p Þp̄xþjpxj

ðjpxj þ p̄xÞ!p̄x!

��Y
x

� ffiffiffi
η

η̄

r �
px
�

×

�Y
x

δðpx − px−2̂Þδðpx−1̂ − pxÞ
�
; ð21Þ

where the sums over the p̄x in the first parentheses are well
known and yield the modified Bessel functions InðxÞ. We,
thus, obtain for the partition sum the expression

Z ¼
X
fpg

�Y
x

Ijpxjð2
ffiffiffiffiffi
ηη̄

p Þ
� ffiffiffi

η

η̄

r �
px
�

×

�Y
x

δðpx − px−2̂Þδðpx−1̂ − pxÞ
�
: ð22Þ

In the quenched case we have no matter flux for saturating
the constraints at the links. Thus, the Kronecker deltas in
(22) force the plaquette occupation numbers px ∈ Z to
have the same value q at each lattice site such that all fluxes
along the links cancel. Hence, every configuration that
obeys all constraints can be labeled by a single integer q
and px ¼ q∀x. This simplifies the partition sum to

Z ¼
Xþ∞

q¼−∞

�
Ijqjð2

ffiffiffiffiffi
ηη̄

p Þ
� ffiffiffi

η

η̄

r �
q
�
NsNt

: ð23Þ

The modified Bessel functions In decay faster than expo-
nentially with the index n and, thus, the series (23)
converges rapidly. It is straightforward to evaluate it

FIG. 1 (color online). Plaquette expectation value hReUpi of the pure gauge theory versus the vacuum angle θ. We show the approach
to the continuum limit using β ¼ 0.1, 2.5, 10.0 and 40.0 at fixed β=NsNt ¼ 0.001. The plots nicely demonstrate how the observable
becomes 2π periodic in θ when approaching the continuum limit.
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numerically with MATHEMATICA and the results we show
below were obtained in this way.
Equation (23) nicely illustrates how the vacuum angle θ

influences the physics in our system. For θ < 0 we have
η > η̄ and, thus, the term ð ffiffiffiffiffiffiffi

η=η̄
p Þq enhances configurations

with q > 0. Configurations with qx ¼ q∀x correspond to
configurations of constant electric flux and via the term
ð ffiffiffiffiffiffiffi

η=η̄
p Þq the vacuum angle allows us to introduce such flux
in the system.
We can also use (23) for a first assessment of the

continuum limit. In particular, it is interesting to study
how well the field theoretical lattice definition of the
topological charge (8) can reproduce the expected 2π
periodicity of observables as a function of the vacuum
angle θ. This is not a priori clear, since the definition (8)
does not guarantee an integer valued topological charge—
this is expected only in the continuum limit. The continuum
limit is approached via

β → ∞Ns; Nt → ∞ with
β

NsNt
¼ const: ð24Þ

Dimensional analysis yields ½β� ¼ L2 which implies that
the continuum limit (24) corresponds to keeping a fixed
physical volume. One expects that in the fixed-volume
continuum limit observables become 2π periodic in θ.
We studied the θ dependence of various observables and

as an example in Fig. 1 we show the plaquette expectation
value as a function of θ on a sequence of lattices that
approach the continuum limit (β ¼ 0.1, 2.5, 10.0 and 40.0
at fixed β=NsNt ¼ 0.001). The results were obtained by
evaluating hReUpi ¼ ∂

∂β lnZ=NtNs for the pure gauge
partition sum as given in (23). The tests documented in
Fig. 1 show that indeed 2π periodicity is recovered and the
field theoretical definition (8) is well suited to study the
continuum limit of the model with the topological term.

B. Dual Monte Carlo simulation

Before we come to the presentation of the results for the
full model, let us discuss the Monte Carlo update strategy
used for the dual representation. In the dual representation
(13) the dynamical degrees of freedom are the integer
valued plaquette and matter flux variables, px, p̄x and lx;μ,
l̄x;μ. The dual variables p̄x and l̄x;μ are not subject to any
constraints and they can be updated independently in the
usual way with a local Monte Carlo update scheme. More
demanding are the variables px and lx;μ which have to obey
the constraints of conserved l flux at each site and a
vanishing of the combined p and l flux at each link of the
lattice.
Although it is possible to find a generalization of the

worm strategy [19] to Abelian gauge-Higgs models in
arbitrary dimensions [3,4], for the two-dimensional model
studied here we use a simpler local update for the dual

variables. The update strategy consists of two types of
updates:
(1) A local plaquette/link update: For a lattice site x, we

randomly choose Δx ¼ �1 and propose to change

px → p0
x ¼ px þ Δx; ð25Þ

lx;1 → l0x;1 − Δx; lxþ1̂;2 → l0
xþ1̂;2

− Δx;

lxþ2̂;1 → l0
xþ2̂;1

þ Δx; lx;2 → l0x;2 þ Δx: ð26Þ

The change is accepted with a Metropolis step.
(2) A global winding gauge update: A Δx ¼ �1 is

chosen randomly and we propose to change

px → p0
x ¼ px þ Δ ∀ x: ð27Þ

Again the change is accepted with a Metropolis step.
It is easy to see that these updates leave the constraints
intact and that this procedure is ergodic. To be precise, the
plaquette update alone is already ergodic, but mixing
sweeps of the local plaquette/link update with global
winding gauge updates considerably reduces the auto-
correlation of observables related to the topological charge.
For the results we show here, we typically use 5 × 104 such
combined sweeps for equilibration followed by 106 mea-
surements separated by five combined sweeps for decorre-
lation. The error bars we show are statistical errors
determined with a jackknife analysis.
The performance of the Monte Carlo updates (25), (26)

was studied for the four-dimensional case in great detail

FIG. 2 (color online). Plaquette expectation value hReUpi of
the full model versus the vacuum angle θ. We show data for a
large value of κ ¼ 10.0 at λ ¼ 1 Ns ¼ Nt ¼ 10. We compare the
numerical data from the Monte Carlo simulation to the results
from pure gauge theory discussed in the previous section.
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in [4], and qualitatively the performance behavior is the
same in the two-dimensional case, which is, however,
numerically considerably less demanding. As remarked,
the update (27) is not necessary for ergodicity, but helps for
decorrelating topological quantities since it corresponds to
changing the topological sector. Thus, the acceptance of
this update depends exponentially on the volume, which is,
however, not surprising, since the action for an additional
charge is extensive for the two-dimensional U(1) case and
the exponential volume dependence is physical (this is
different for SU(3) in four dimensions).

IV. NUMERICAL RESULTS
FOR THE FULL MODEL

A. Continuum limit and periodicity in the θ angle

Now we study the full model with matter fields. As a first
consistency check we discuss a simulation at large κ, i.e.,

large mass, where the matter fields become static and the
results are expected to approach the quenched results from
the last section (the quartic coupling λ is always set to λ ¼ 1
in this subsection). Figure 2 shows the plaquette expect-
ation value as a function of θ for κ ¼ 10.0, β ¼ 10.0 and
Ns ¼ Nt ¼ 10. It is obvious that, as expected, the numeri-
cal data from the dual simulation are indeed in very good
agreement with the curve obtained from explicitly sum-
ming the quenched partition function (23).
Now we switch to lighter matter fields to study the

continuum limit and to compare the results for three
different values of the mass parameter, κ ¼ 4.0, κ ¼ 5.0
and again the heavy mass value κ ¼ 10.0. As in the case of
pure gauge theory we consider the continuum limit for
β⟶∞ with β=NsNt fixed, and use β ¼ 1.6, 3.6, 6.4 and
10.0 at fixed β=NsNt ¼ 0.1. In Fig. 3 we show the results
for the plaquette expectation value as a function of θ. As
before in the quenched case also here we observe that, as

FIG. 3 (color online). Plaquette expectation value hReUpi of the full model versus θ for three different values of the mass parameter κ
at λ ¼ 1. We show the approach to the continuum limit using β ¼ 1.6, 3.6, 6.4 and 10.0 at fixed β=NsNt ¼ 0.1. The discontinuity in the
top left plot near θ ¼ �3π is due to the violation of β > θ=2π.
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we approach the continuum limit, the 2π periodicity of the
observable emerges as expected. It is remarkable that for
this pure gauge observable the dependence on the mass
parameter κ is only very weak and the behavior of the
plaquette in the full theory is nearly the same as for the pure
gauge case as long as we are in the symmetric phase.
Finally, in Fig. 4 we study the expectation value of the

topological charge density hqi as a function of θ, again
using the values κ ¼ 4.0, 5.0 and 10.0 and approaching the
continuum limit with the sequence β ¼ 1.6, 3.6, 6.4 and
10.0 at fixed β=NsNt ¼ 0.1. As before we observe the
emergence of 2π periodicity in the continuum limit.
Here we remark that the topological charge density hqi is

a variable that is odd in θ, while the plaquette hReUpi is an
even function. This can be seen from the fact that when
changing the link variables in the path integral according to
Ux;p → U�

x;p we have Q½U� → −Q½U�, while ReUp

remains unchanged [compare Eqs. (4) and (8)]. This leads
to a linearly rising behavior of hqi in the vicinity of θ ¼ 0.
This (anti) symmetry is clearly visible in all plots of Fig. 4,

while the expected 2π periodicity in θ is recovered only in
the continuum limit.
As already for the plaquette expectation value, also for

the topological charge density hqi we find that the results
are essentially independent of the mass parameter κ. This
indicates that the physics of the model related to the
vacuum angle θ is dominated by the behavior of the gauge
sector and the dynamics of the matter field plays only a sub-
leading role as long as we are in the symmetric phase
(cf. Sec. IV B). As we will see below, the behavior changes
considerably in the Higgs phase.

B. Phase diagram in the κ-λ plane

We now discuss the determination of the phase diagram
in the plane of the mass parameter κ and the quartic
coupling λ. In more than two dimensions one expects a true
phase transition line separating the symmetric from the
Higgs phase. In two dimensions one only finds smooth
behavior of the variables since spontaneous breaking of a
continuous symmetry is not possible in two dimensions due

FIG. 4 (color online). The topological charge density hqi versus the vacuum angle θ for three different values of the mass parameter κ
at λ ¼ 1. We show the approach to the continuum limit using β ¼ 1.6, 3.6, 6.4 and 10.0 at fixed β=NsNt ¼ 0.1. Again the discontinuity
in the top left plot near θ ¼ �3π is due to the violation of β > θ=2π.
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to the Mermin-Wagner-Coleman theorem. Second-order
derivatives of the free energy show an extremum but no
scaling with the volume.
An example is given in Fig. 5 where we show the field

expectation value hjϕj2i (lhs plot) and the corresponding
susceptibility χϕ (rhs) versus the mass parameter κ at λ ¼
0.1 and β ¼ 10.0 for different volumes. It is obvious that
the data for different volumes fall on top of each other and
volume scaling is absent.
Nevertheless, one expects physical properties to change

when crossing the line of the smooth transition and in order
to determine the location of this line in the κ-λ plane, i.e.,

the phase diagram, we identify the position of the peak in
higher derivatives for various values of the parameters. The
results are shown in Fig. 6. For the determination of the
transition line in Fig. 6 we used the maxima of χϕ as a
function of κ (plusses) and the maxima of ∂=∂κhReUpi as a
function of both, κ (crosses) and of λ (squares). We stress,
that at a crossover transition different higher-order deriv-
atives do not necessarily have to peak at the same position.
However, as is obvious from Fig. 6, we here find agreement
among all observables within error bars. We find a line of

FIG. 5 (color online). Expectation value of the square of the field modulus hjϕj2i and the corresponding susceptibility χϕ versus the
mass parameter κ at λ ¼ 0.1 and β ¼ 10.0 for different volumes. One can clearly see the changing behavior of the first derivative starting
at approximately κ ¼ 3.7, leading to a peak in the corresponding susceptibility. The observable is essentially independent of the volume
indicating a smooth transition.

FIG. 6 (color online). Phase diagram in the plane of couplings λ
and κ. We find two phases separated by a crossover line. The
phase boundary was determined from the maxima of χϕ as a
function of κ (plusses connected with a dotted line) and the
maxima of ∂=∂κhReUpi as a function of both, κ (crosses) and of λ
(squares).

FIG. 7 (color online). Variation of the peak in χϕ with θ at
λ ¼ 0.5, β ¼ 10.0 and Ns ¼ Nt ¼ 10. The vertical lines delimit
the range of κ values where the cross-over is found (as determined
from the maxima of χϕ) when varying θ between θ ¼ 0 (full red
line) to θ ¼ π (dashed blue line) and back to θ ¼ 2π.
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crossover points extending from κ ¼ 4.0 and λ ¼ 0 (which
corresponds to the free massless field) to κ ¼ 2.0 and λ ¼ 1
(the largest value of λ considered here). The data for Fig. 6
are for Ns ¼ Nt ¼ 10 and β ¼ 10.0, i.e., relatively close to
the continuum limit.
An interesting question is how strong the position of the

crossover line depends on the vacuum angle θ. In our study
we find that this dependence is only very weak. This is
illustrated in Fig. 7, where the peak of χjϕj2 is shown in high
resolution for four different values of θ ∈ ½0; 2π� at λ ¼ 0.5.
Starting at θ ¼ 0 the peak gets shifted towards slightly

larger values of the mass parameter (here from κ ≈ 2.84 to
κ ≈ 2.88) until θ ¼ π, after which, due to periodicity in θ,
the peak moves back to its position at θ ¼ 0 when we reach
θ ¼ 2π. The situation is similar for other values of the
coupling λ ∈ ½0; 1�. We conclude that the variation of θ
amounts to only a very small shift of the crossover line.

C. Characterization of the two phases

As a next step in our explorative study of using dual
variables in the U(1) gauge-Higgs model with topological

FIG. 8 (color online). Observables versus the mass parameter κ at λ ¼ 0.5, β ¼ 10.0 and θ ¼ 0 for different volumes. One can clearly
see the changing behavior of all observables at approximately κ ¼ 2.8 corresponding to the crossover position at λ ¼ 0.5 as mapped out
in the phase diagram in the previous section.
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term we attempt a characterization of the two phases - in
particular with respect to their dependence on the vacuum
angle θ. We remark again that the transition is smooth (it is
of the Kosterlitz-Thouless type) and no simple order
parameter exists. Nevertheless, for completeness, we start
with summarizing the characteristic behavior of all observ-
ables in the two phases for θ ¼ 0. The corresponding
results are presented in Fig. 8, where the six observables
discussed above are shown as a function of the mass
parameter κ for λ ¼ 0.5. In other words, we analyze
horizontal slices through the phase diagram Fig. 6 and
we compare the results for four different volumes. In all
observables a changing behavior can be seen near κ ¼ 2.8,
the value on the critical line for λ ¼ 0.5. The topological
charge is (within error bars) identically zero, as expected at
θ ¼ 0, but obviously the fluctuations are different in the
two phases, as can be seen by the change of the size of
the error bars and the increase of the fluctuations. The
observables do not depend on the lattice volume, except for
χtop which shows a small finite volume effect in the
symmetric phase for the smallest lattice size (see also
the discussion below). Let us notice at this point that the
behavior of the topological susceptibility versus κ for fixed
λ and β at θ ¼ 0 has been checked by simulating the model
with the standard Metropolis algorithm without dualization
of the variables. We found exact agreement.
At this point we remark that the topological susceptibil-

ity at θ ≠ 0 can also be negative, despite the fact that it is a
second derivative of lnZ. This can be seen as follows:
Instead of integrating in the path integral over the variables
Ux;μ, ϕx we can also integrate over the complex conjugate
variables U�

x;μ, ϕ�
x. Using the symmetry properties [com-

pare Eqs. (4)–(8)]
R
D½U�� ¼ R

D½U�, R D½ϕ�� ¼ R
D½ϕ�,

SG½U�� ¼ SG½U�, SM½U�;ϕ�� ¼ SM½U;ϕ� and Q½U�� ¼
−Q½U�, we find for the partition sum

Z ¼
Z

D½U�D½ϕ�e−SG½U�−SM ½U;ϕ�e−iθQ½U�

¼
Z

D½U�D½ϕ�e−SG½U�−SM ½U;ϕ� cosðθQ½U�Þ: ð28Þ

Evaluating the topological susceptibility as the second
derivative of lnZ with respect to θ [compare Eq. (18)]
we obtain

NsNtχt

¼ −
∂2

∂θ2 lnZ

¼ 1

Z

Z
D½U�D½ϕ�e−SG½U�−SM ½U;ϕ� cosðθQ½U�ÞQ½U�2

þ
�
1

Z

Z
D½U�D½ϕ�e−SG½U�−SM ½U;ϕ� sinðθQ½U�ÞQ½U�

�
2

:

ð29Þ

The right hand side has two contributions, with the second
term being the square of the first derivative and, thus,
positive. The first term, however, comes with cosðθQ½U�Þ,
i.e., the even part of expð−iθQ½U�Þ. This first term can be
negative and, thus, χt needs not be positive. The same, of
course, also holds for the dual expression of χt given
in (20).
In our analysis of the model with the dual variables

approach we find that the two phases can be characterized
by their response to the variation of the vacuum angle. As a
first illustration of this fact in Fig. 9 we show three-
dimensional plots of Q and χt as a function of κ and θ at
λ ¼ 0.5, i.e., when considered as a function of κ we again
inspect a horizontal slice through the phase diagram Fig. 6
and we expect to see changing behavior at κ ∼ 2.8. This is

FIG. 9 (color online). Topological charge density (lhs plot) and topological susceptibility (rhs) versus κ and θ at λ ¼ 0.5, β ¼ 10 and
Ns ¼ Nt ¼ 10.
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indeed what we observe: At large values of the mass
parameter κ, i.e., in the symmetric phase, we see oscillatory
behavior with θ in both observables, while in the crossover
region the observables are independent of θ within error
bars. The transition between the two types of behavior takes
place as expected near κ ∼ 2.8.
In Fig. 10 we now look at the volume dependence of χt at

θ ¼ 0 and θ ¼ π and compare the behavior for different
values of the mass parameter κ. The topological charge
density hqi has a negative slope at θ ¼ 0 and therefore χt is
negative on the lhs plot. We observe a strong dependence
on the mass parameter κ. The susceptibility essentially
vanishes in the broken phase and then starts to deviate from
0 for κ ≥ 2.5 . For all values of κ a saturation is reached on
lattice volumes betweenNs ¼ Nt ¼ 10 andNs ¼ Nt ¼ 12.
For θ ¼ π (rhs plot) the behavior is different: Here χt also
vanishes in the broken phase and then is positive for
κ ≥ 2.5. Most remarkably, χt does not seem to reach
saturation as a function of the volume, a fact that hints
at a possible phase transition.

D. The transition at θ ¼ π

In the previous section we found evidence that in the
symmetric phase there might be a transition at θ ¼ π. To
identify the transition we analyzed the θ-dependence of hqi
and χt for a point in the symmetric phase, in particular at
λ ¼ 0.5, κ ¼ 4.0with β ¼ 10.0. The results as a function of
θ for different volumes are shown in Fig. 11. It is obvious
that χt (rhs plot) has a maximum near θ ¼ π, and the height
of the peak at the maximum increases with the volume. A
detailed analysis shows, that the height of the maximum of
χt scales almost perfectly with the volume, which indicates
a first-order transition. This is reflected in the behavior of
hqi, which in the large volume limit develops a disconti-
nuity near θ ¼ π. The analysis was repeated at other points
in the symmetric phase with the same result and we
conclude, that in the symmetric phase the system has a
first-order phase transition as a function of θ.
The transition at θ ¼ π can be related to charge

conjugation, i.e., the discrete symmetry transformation

FIG. 10 (color online). Topological susceptibility versus the volume V ¼ Ns × Nt for different κ at λ ¼ 0.5 and β ¼ 10 at θ ¼ 0 (lhs)
and θ ¼ π (rhs).

FIG. 11 (color online). Topological charge and χt versus θ at κ ¼ 4.0, λ ¼ 0.5 and β ¼ 10.0 for different lattice volumes.
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Ux;μ→U�
x;μ∀x;μ and ϕx→ϕ�

x∀x. While the action is invari-
ant under this symmetry, the topological charge changes sign:
Q½U�→−Q½U�. However, at θ ¼ π the Boltzmann factor with
the topological charge is given by e−iπQ½U�¼ð−1ÞQ½U� which
is again symmetric under Q½U� → −Q½U� and, thus, under
charge conjugation. This discrete symmetry can be broken in
the symmetric phase of the model.
A careful inspection of Fig. 11 reveals that the transition

is not located at exactly θ ¼ π, but appears at a slightly
larger value of θ. This can be attributed to an effect of finite
lattice spacing. To better understand this behavior we
looked at the observables hqi, χt, also in the pure gauge
case where we can use the semianalytical results from
Sec. III A. The corresponding results for β ¼ 2.5 and for
β ¼ 10.0 on four different volumes are shown in Fig. 12.
For the value β ¼ 10.0 (plots in the bottom of Fig. 12) we
observe a behavior very similar to the one of Fig. 11.
However, at β ¼ 2.5, where we are further away from the
continuum limit, the transition is seen at an even larger
value of θ and indicates that the position θcrit ¼ π for the
transition is reached only in the continuum limit, i.e.,
for β → ∞.
Only in the continuum limit Q½U� becomes restricted to

integers, while away from the continuum limit Q½U� has a

distribution that is localized not exactly around integers, but
has its maxima at values shifted to slightly smaller numbers
than the integers of the continuum limit. For example in the
charge 1 sector one could find the maximum at QmaxðβÞ ¼
0.8 instead of the continuum limit valueQmaxð∞Þ ¼ 1. The
shift of the transition towards values of θ larger than π then
is explained by the condition that θcrit ×QmaxðβÞ ¼ π, such
that the symmetry Ux;μ → U�

x;μ emerges. This gives rise to
θcrit ¼ π=QmaxðβÞ, which explains θcrit > π for β < ∞.
We remark, that we also looked at other observables in

the pure gauge case, in particular hReUx;pi and χp. Also
there we find a first-order behavior at θ ¼ π.

V. SUMMARY AND DISCUSSION

In this exploratory study we explore strategies for using
dual variables in a simulation of a lattice field theory with a
topological term. We show for the case of the U(1) gauge-
Higgs system in two dimensions (scalar Schwinger model)
that a dual formulation can be found where the complex
action problem of the conventional representation is over-
come. The dual variables are loops for the matter fields and
surfaces for the gauge fields and the partition sum has only
real and positive contributions. We show that in terms of the
dual variables a Monte Carlo simulation is possible at finite

FIG. 12 (color online). hqi (lhs) and χt (rhs) in pure gauge theory as a function of θ. We show results at β ¼ 2.5 (top) and β ¼ 10.0
(bottom) and compare four different volumes.
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values of the vacuum angle θ. This constitutes the first
example of a theory with a vacuum angle where a
simulation could be performed with a complete solution
of the corresponding complex action problem.
Using the dual approach we show that for the plaquette

expectation value and for the topological charge hQi the
expected 2π periodicity emerges in a properly implemented
continuum limit. This was shown for the semianalytically
tractable case of pure gauge theory, as well as for the full
theory with matter fields. For the latter case we also found
that the behavior of the observables as a function of θ is
essentially independent of the mass parameter κ in the
symmetric phase. In the broken phase we find a quantitative
dependence on the mass parameter but no qualitative one,
i.e., observables acquire a constant shift on top of which
they show exactly the same periodic behavior as in the
unbroken phase. A clear distinction between the Higgs- and
the symmetric phase appears for θ ¼ π, where we identify a
first-order behavior of observables in the symmetric phase,
which is absent in the Higgs phase.
In [17] the same model was studied, however in four

dimensions with an external source. There it was found that
the Higgs phase splits into two regions, discriminated by
the kind of magnetic flux penetration. Therefore we
covered a large range of mass parameter values κ ∈
½−50; 4� for λ ¼ 0.5 to search for a hint of a phase change
in the broken phase. However, the only transition behavior
we saw, was the crossover from the symmetric to the Higgs
phase as discussed in Sec. IV B. The topological charge as
well as the topological susceptibility stay constant (within
error bars) throughout the broken phase.
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APPENDIX: DERIVATION OF THE DUAL
REPRESENTATION

In this appendix we provide a brief summary of the steps
leading to the dual representation (13) of the partition sum.
Initially the derivation as given for Abelian scalar and
gauge fields in four dimensions in [1–4], but the adaption of
the arguments to two dimensions and the topological term
is straightforward.
In (11) we have defined the partition sum ZM½U� of the

matter fields in a background configuration of lattice gauge
fieldsUx;μ. For ZM½U� the dual partition sum can be directly
taken over from [1–4],

ZM½U� ¼
X
fl;l̄g

�Y
x;μ

ðUx;μÞlx;μ
ðjlx;μj þ l̄x;νÞ!l̄x;μ!Þ

��Y
x

PðnxÞ
�

×

�Y
x

δ

�X
μ

ðlx;μ − lx−μ̂;μÞ
��

; ðA1Þ

with lx;μ ∈ Z, l̄x;μ ∈ N0 and PðnxÞ and nx as defined in
Eq. (15). In its dual form ZM½U� is a sum over loops of
conserved l flux and the loops are dressed with the link
variables via the terms ðUx;μÞlx;μ .
The full partition sum Z is obtained by integrating ZM½U�

over the gauge fields Ux;μ with the Boltzmann factor
e−SG½U�. The dressed loops in (A1) provide the additional
gauge field dependent factor

Q
x;μðUx;μÞlx;μ such that we

need to compute the integral

ZG½l� ¼
Z

D½U�
�Y

x;μ

ðUx;μÞlx;μ
�
e−SG½U�−iθQ½U�

¼
Z

D½U�
�Y

x;μ

ðUx;μÞlx;μ
��Y

x

eηUx;peη̄U
�
x;p

�
; ðA2Þ

with η and η̄ defined in (12). The dualization of the gauge
fields proceeds in a way equivalent to the matter fields: The
Boltzmann next step is to expand the exponentials at each
lattice site and for the two terms in the exponent separately,

ZG½l� ¼
Z

D½U�
�Y

x;μ

ðUx;μÞlx;μ
Y
x

X∞
nx¼0

ηnx

nx!
ðUx;1Uxþ1̂;2U

�
xþ2̂;1

U�
x;2Þnx

X∞
n̄x¼0

η̄n̄x

n̄x!
ðU�

x;1U
�
xþ1̂;2

Uxþ2̂;1Ux;2Þn̄x
�

¼
�Y

x

X∞
nx;n̄x¼0

��Y
x

ηnx

nx!
η̄n̄x

n̄x!

� Z
D½U�

�Y
x

ðUx;1Þnx−n̄x−nx−2̂þn̄x−2̂þlx;1ðUx;2Þn̄x−nx−n̄x−1̂þnx−1̂þlx;2

�

¼
X
fn;n̄g

�Y
x

ηnx

nx!
η̄n̄x

n̄x!

��Y
x

Z
π

−π

dAx;1

2π
eiAx;1ðnx−n̄x−nx−2̂þn̄x−2̂þlx;1Þ

Z
π

−π

dAx;2

2π
eiAx;2ðn̄x−nx−n̄x−1̂þnx−1̂þlx;2Þ

¼
X
fn;n̄g

�Y
x

ηnx

nx!
η̄n̄x

n̄x!

��Y
x

δðnx − n̄x − nx−2̂ þ n̄x−2̂ þ lx;1Þδðn̄x − nx − n̄x−1̂ þ nx−1̂ þ lx;2Þ
�
: ðA3Þ
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Upon defining new summation variables px ∈ Z and p̄x ∈ N0,

px ≡ nx − n̄x; jpxj þ 2p̄x ≡ nx þ n̄x; ðA4Þ

we get the partition function for the gauge fields in its final form,

ZG½l� ¼
X
fp;p̄g

�Y
x

ηðjpxjþpxÞ=2þp̄x η̄ðjpxj−pxÞ=2þp̄x

ðjpxj þ p̄xÞ!p̄x!

��Y
x

δðpx − px−2̂ þ lx;1Þδðpx−1̂ − px þ lx;2Þ
�
:

ðA5Þ

Combining this result with the matter part from (A1) completes the derivation of the dual representation and yields the
expression of Eq. (13).
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