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We investigate Yang-Lee zeros of grand partition functions as truncated fugacity polynomials of which
coefficients are given by the canonical partition functions ZðT; V;NÞ up to N ≤ Nmax. Such a partition
function can be inevitably obtained from the net-baryon number multiplicity distribution in relativistic
heavy ion collisions, where the number of the event beyond Nmax has insufficient statistics, as well as from
canonical approaches in lattice QCD. We use a chiral random matrix model as a solvable model for chiral
phase transition in QCD and show that the closest edge of the distribution to the real chemical potential axis
is stable against cutting the tail of the multiplicity distribution. A similar behavior is also found in lattice
QCD at finite temperature for the Roberge-Weiss transition. In contrast, such a stability is found to be
absent in the Skellam distribution which does not have a phase transition. We compare the number of Nmax

to obtain the stable Yang-Lee zeros with those of critical higher-order cumulants.
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I. INTRODUCTION

Phase transition in quantum chromodynamics (QCD) is
one of the central subjects in high-energy nuclear physics
both theoretically and experimentally. First principle lattice
QCD (LQCD) calculations have shown that the transition
from quark-gluon plasma (QGP) to hadronic matter is of
the crossover type at physical quark masses [1] in which
order parameters and thermodynamic quantities change
smoothly as functions of temperature. At finite baryon
density, one expects that the nature of the transition can
change. Unfortunately, little is known about the state of
matter at high baryon density from LQCD calculations
because of the difficulty in numerical simulation at finite
baryon chemical potential μ [2,3]. Various approximation
methods applied so far seem to work only when μ < T or a
small volume or heavy quark mass region. Nevertheless,
effective models which implement relevant symmetries in
QCD and large Nc studies have shown that rich phase
structure exists in high density [4,5]. In particular, if there
is a first-order phase transition at T ¼ 0 and large μ, there
must be a critical point (CP) at which the first-order phase
transition line terminates and the transition becomes second
order. The existence of CP is supported by many chiral
effective models [6], but its location depends on the detail
of the models [7].
Stimulated by these theoretical results, the first beam

energy scan program at the Relativistic Heavy Ion Collider

(RHIC) has been carried out in search of the CP [8,9]. Since
lower colliding energies leave the incident nucleons in the
central region, one expects to explore higher baryon density
regions at lower energies. There are a number of observ-
ables which might have the potential to indicate the
transition from QGP to hadronic matter. Among them,
event-by-event fluctuations of conserved charges are inti-
mately connected to critical behavior associated with the
phase transition [10–13]. Measurements of the net-proton
number fluctuations as a proxy of the net-baryon one [14]
and net-electric charges have been presented for Auþ Au
collisions at various energies from

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 to 200 GeV
[15–17]. Given the fact that the multiplicity of different
particle species is well described by statistical models
[18–20], one may regard event-by-event fluctuations of
conserved charges as those of the grand canonical ensem-
bles at chemical freeze-out temperature T and baryonic
chemical potential μ. Through systematic analyses of the
location of ðT; μÞ corresponding to each colliding systems
[20], one can map experimental measurements for property
of the matter on the T − μ plane. Furthermore, recent
LQCD results at physical quark masses indicate that the
crossover region coincides with the chemical freeze-out at
least for μ < T [21,22]. One may look for remnant of the
chiral criticality in the crossover region, originating from
the second-order phase transition in the vanishing quark
mass [23–25].
Property of the transition can be characterized by

behavior of fluctuations of conserved charges as well as
an order parameter and its fluctuations [26,27]. In the case*kmorita@yukawa.kyoto‑u.ac.jp
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of the chiral phase transition in QCD, the chiral order
parameter or quark-antiquark condensate hq̄qi couples to
quarks carrying the baryon number and the electric charge.
Thus, the second-order chiral phase transition in the chiral
limit at finite temperature is characterized by not only
divergent fluctuation of the order parameter but also higher-
order cumulants of the net-baryon number and the net-
electric charge [28]. The divergence of the conserved
charge fluctuations is governed by the critical exponent
of the specific heat α which depends on the universality
class QCD belongs to. Although it is not completely
determined yet [29,30], recent simulations [31] indicate
Oð4Þ in the three dimensions, as conjectured by Pisarski
and Wilczek [32]. In this case, the first divergent cumulant
appears at the sixth order. At finite but small quark masses,
the divergence is replaced by sign change, owing to the
property of the universal Oð4Þ scaling function [24,33]. At
nonzero net-baryon number density, the divergence at the
2nth-order cumulants in the chiral limit appears at the
nth-order cumulants. The tricritical point in the chiral limit
becomes the CP, where the second-order cumulants diverge
[26,34,35]. The chemical freeze-out line may locate at
lower temperature than the chiral phase boundary [36] such
that measured fluctuations might not reflect those at the
phase transition [37]. Nevertheless, the existence of the CP
is accompanied by the anomalous behavior of the cumu-
lants such as negative third- and fourth-order cumulants
around the CP [38–40] and may lead to nonmonotonic
behavior of the higher-order cumulants as functions offfiffiffiffiffiffiffiffi
sNN

p
. Indeed, the measured net-proton number cumulants

in [16] seem to follow this expectation, although this is still
inconclusive due to uncertainty.
The measurement of the cumulants is based on event-

by-event multiplicity distribution. Once the fluctuations are
regarded as those of the grand canonical ensemble, the
multiplicity distribution can be identified with unnormal-
ized probability distribution.
While the cumulants are expressed by central moments

of the probability distribution, it is convenient for theo-
retical studies to compute them by differentiating the
thermodynamic pressure with respect to chemical poten-
tials. Recently, one of the authors (K. M.) investigated the
probability distribution of the net-baryon number in models
with phase transitions [25,41,42]. It turns out that sufficient
information on the tail in the probability distribution is
responsible for the critical behavior of the higher-order
cumulants and that the remnant of the Oð4Þ criticality can
be characterized by a narrower tail than the corresponding
reference distribution. In the probability distribution, such
information on the phase transition is encoded in the N
dependence of the canonical partition function ZðT; V; NÞ.
Since the grand partition function is more straightfor-

ward in relativistic quantum field theories where the
number of particles are not definite, computations of
the canonical partition function are not generally easy. In

Ref. [43], Hasenfratz and Toussaint proposed that the
canonical partition function, ZðT; V; NÞ, is calculated
through the Fourier transformation of the grand canonical
partition function,ZðT; V; μÞ, evaluated at pure imaginary μ.
The difficulty associated with the complex fermion deter-
minant is replaced by the highly oscillating integral which
requires extraordinary numerical precision [41,44,45].
Nevertheless, the probability distribution gives further

insights into the property of the system including phase
transitions.
In Ref. [46], one of the authors (A. N.) pointed out that

one can extract the fugacity parameter λ ¼ eμ=T at the
chemical freeze-out and construct ZðT; V; NÞ for the net-
baryon number without any assumption on the property of
equilibrium PðNÞ. Furthermore, once ZðT; V; NÞ is known,
one can obtain the grand partition function ZðT; V; μÞ as a
series of fugacity. This enables us to apply Yang-Lee theory
for the phase transition [47,48] (for recent reviews, see,
e.g., [49,50]), in which zeros of the partition function give
information on the thermodynamic property of the system.
The zeros of the partition function are distributed on a line
in the complex plane of an external parameter and their
density grows up with the system volume, then they finally
coalesce into the line in the thermodynamic limit. This
property leads us, in principle, to obtain the location and
order of the phase transition from the distribution of the
zeros. Even in the absence of the phase transition, the zeros
accumulated on the edge of the distribution exhibit singular
behavior. This singularity, known as Yang-Lee edge sin-
gularity [51,52], can be regarded as a CP in the complex
plane and influences the thermodynamics on the real
axis [53].
In both experiments and the canonical approach in

LQCD, ZðT; V; NÞ at large N requires such high statistics
that obtained information is limited to some finite N; thus,
one has to truncate the fugacity polynomial there in
reconstructing the grand partition function (see [54,55]
for recent LQCD calculations). It is not a priori clear
whether one can obtain the correct information on the phase
transition from such a truncated partition function. The
purpose of this paper is to clarify this point. We employ a
solvable model for the chiral phase transition in QCD.
We present the Yang-Lee zeros in a chiral random matrix
model, both for the exact grand partition function and for
the reconstructed one as a truncated fugacity series with the
canonical partition function being the coefficients. We
discuss effects of the truncation on the distribution of
the Yang-Lee zeros and compare it with the spurious zeros
of the Skellam partition function, originated from the
truncation.
In the next section, we briefly summarize the general

relation among the probability distribution, partition
functions, and Yang-Lee zeros. A chiral random matrix
model and its Yang-Lee zeros are presented in Sec. III. We
demonstrate differences of the truncation effects on the
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Yang-Lee zeros between the models with and without
phase transition in Sec. IV. Implications for heavy ion
experiments are discussed in Sec. V. Section VI is devoted
to concluding remarks. Detailed expressions for partition
functions in the chiral random matrix model are given in
Appendix A.

II. GENERAL FRAMEWORK

We start from the experimentally measured data of net-
baryon number multiplicity distribution PðNÞ, where N is
the net-baryon number. In real experiments one measures
the net-proton number ΔNp ¼ Np − Np̄. In principle, one
can reconstruct PðNÞ from PðΔNpÞ, PðNpÞ, and PðNp̄Þ
[56]. In this study we entirely assume the isospin invariance
and regard PðΔNpÞ as a proxy of PðNÞ. The shape of the
distribution depends on the colliding energies, centrality,
etc. The net-baryon number can take any value as long as it
can be packed within the system volume. Owing to limited
statistics, however, we do not observe such states that have
too large N far from its mean valueM. Thus, we define the
possible minimum and maximum of Nmin and Nmax as

PðN < NminÞ ¼ 0

PðN > NmaxÞ ¼ 0: ð1Þ

In thermal equilibrium, probability distribution of the
net-baryon number in the grand canonical ensemble reads,
for the fugacity factor λ ¼ eμ=T,

PðT; V; N; μÞ ¼ ZðT; V; NÞλN
ZðT; V; μÞ ; ð2Þ

where ZðT; V; μÞ is the grand partition function,

ZðT; V; μÞ ¼ Tr½e−ðĤ−μN̂Þ=T �; ð3Þ

and ZðT; V; NÞ is the canonical partition function,

ZðT; V; NÞ ¼ Tr½e−Ĥ=TδN̂;N �: ð4Þ

Assuming the measured multiplicity distribution is the
equilibrium one, one finds N dependence of PðNÞ comes
from ZðT; V; NÞλN . Using the charge-conjugate symmetry
ZðT; V;−NÞ ¼ ZðT; V; NÞ, one can determine λ from
PðNÞ and obtain the canonical partition function [46]

ZðT; V; NÞ ¼ PðNÞλ−N: ð5Þ

Because of the limited range of N (1), the canonical
partition function (4) can be obtained for N ∈
½maxð0; NminÞ; Nmax�. For the energy scan range in RHIC
experiments, Nmin < 0, i.e., there are a few events in which
more antiprotons are observed than protons, except forffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV where Nmin ¼ 1 [16]. Note that we need

onlyN ≥ 0 thanks to the charge conjugate symmetry. Thus,
in most cases, one can extract the canonical partition
function for −Nmax ≤ N ≤ Nmax.
This limitation in N also applies to theoretical

approaches such as model studies [25,41,42] and lattice
simulations [54,55]. In the former, the canonical partition
functions have been calculated using a projection formula,

ZðT; V; NÞ ¼ 1

2πi

I
dλ

ZðT; V; λÞ
λNþ1

; ð6Þ

where integration contour C in the complex λ plane can be
arbitrary, but it is convenient to take the unit circle λ ¼ eiθ.
Then the formula becomes

ZðT; V; NÞ ¼ 1

2π

Z
π

−π
dθ cosðNθÞZðT; V; θÞ; ð7Þ

where θ is related to an imaginary chemical potential
−iμ=T. In Refs. [25,41,42], the thermodynamic potential
Ω ¼ −pV in Landau theory [41] and in a chiral quark-
meson model [25,42] was used through ZðT; V; θÞ ¼
e−ΩðT;θÞ=T . Owing to the rapid oscillation in large N, it
turned out that the numerical integration in double pre-
cision works up to PðNÞ≃ 10−12.
In lattice QCD simulations, two approaches can provide

the canonical partition functions, i.e., (i) the fugacity
expansion of the fermion determinant [57] and (ii) the
Hasenfratz and Toussaint method [43]. In the fugacity
expansion, we must diagonalize a matrix whose rank is
proportional to the lattice spacial volume. This requires
large computational resources and currently one cannot
go to simulations on large lattices. In the method (ii), as N
increases, more accuracy is needed, and consequently N
cannot become very large.
Once the canonical partition function ZðT; V; NÞ is

obtained, one can also construct a truncated grand canoni-
cal partition function as a series in λ:

ZtrðT; V; λ;NmaxÞ ¼
XNmax

N¼−Nmax

ZðT; V; NÞλN: ð8Þ

Owing to the truncation of the series at N ¼ −Nmax and
Nmax, this partition function is an approximation of the
exact partition function which could be obtained if one
takes Nmax ¼ N� with N� being the number of net-baryon
fulfilling the system volume [47]. For lattice QCD at finite
temperature with N3

s × Nt lattice, N� ¼ 2N3
s [57].1 Thus,

one needs to establish the relations of physical quantities
obtained from the truncated partition function (8) with
those from the exact partition function. As seen in the

1In Ref. [57], N� was derived for the quark fugacity series as
N�

q ¼ 2NcN3
s .
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summation running from −Nmax, relativistic partition
functions contain negative powers of λ. The suppression
of a high-N contribution to Z cannot be realized by a small
λ. One needs to know the large-N behavior in ZðT; V; NÞ.
Similar studies on higher-order cumulants of the net-

baryon number have been carried out in Ref. [42], in
which sufficiently large Nmax depending on the order of the
cumulants is shown to be necessary to obtain a correct
value of the cumulants. In this paper, we focus on Yang-Lee
zeros for the baryon chemical potential.
The zeros of the partition function in a complex chemical

potential plane can be obtained by solving an equation,

ZðT; V; μÞ ¼ 0; ð9Þ

for complex μ. Owing to the negative powers of the
fugacity, the equation is a polynomial one in λ with order
2N�. For the truncated partition function Ztr, one needs to
solve

ZtrðT; V; μ;NmaxÞ ¼ 0; ð10Þ

of which the order of the polynomial is 2Nmax.
In the exact case, the roots have both real and imaginary

parts whose distribution in the complex chemical potential
plane is expected to form a line that crosses the real axis
at the transition point in the thermodynamic limit. The
behavior of the distribution depends on the nature of the
phase transition. In Ref. [58], the behavior of the Yang-Lee
zeros around the CP was studied by using a chiral random
matrix model. The singularity associated with the CP
appears as a branch point in the complex μ plane, and
its property is shown to be connected with the universality.
In lattice QCD, the phase transition between the different
ZðNcÞ sector in the deconfined phase, the Roberge-Weiss
phase transition, has been recently analyzed from the
viewpoint of the Yang-Lee zeros [55]. In this work, we
use a chiral random matrix model similar to that used in
Ref. [58] but with an extension to periodic property in the
imaginary chemical potential as it is necessary to have an
integer net-baryon number.
The partition function is written as a polynomial in

λ ¼ eμ=T . Since a complex root λ1 is accompanied with its
conjugate λ̄1 and the charge conjugate symmetry implies
1=λ1 and 1=λ̄1 are also roots, only the roots located in the
first quadrant of the complex μ plane are independent. In
practice, it is convenient to use a Joukowski transformation
ω ¼ λþ 1=λð¼ 2 cosh βμÞ and reorganize the series in
terms of ω to reduce the number of roots that need to
be located. Using a property of the Chebychev polynomial
Tnðcosh xÞ ¼ coshðnxÞ, one finds

λN þ 1

λN
¼ 2 coshðβμNÞ ¼ 2TNðcosh βμÞ ¼ 2TNðω=2Þ:

ð11Þ

Then Eq. (8) reduces to a series expression containing
only positive powers. After expanding the Chebychev
polynomial by Eq. (A7), one finds

ZtrðT; V;ω;NmaxÞ ¼ ZðT; V; N ¼ 0Þ þ
XNmax

n¼1

nZðT; V; nÞ

×
X½n=2�
k¼0

ð−1Þk ðn − k − 1Þ!
k!ðn − 2kÞ! ω

n−2k:

ð12Þ

This formula could be also useful to compare a relativistic
system with nonrelativistic ones. The roots of ω space are
easily converted into those in the λ and μ plane as

μ

T
¼ �cosh−1

ω

2
: ð13Þ

Taking both signs, one can finds all the roots in the complex
μ and λ plane.

III. CHIRAL RANDOM MATRIX MODEL

In this section, we introduce a chiral random matrix
model which is an effective model for the spontaneous
chiral symmetry breaking in QCD. Since this model is
analytically solvable in the chiral and thermodynamic
limit [59] and the analytic expression for the partition
function in finite volume is known [58], we find this
model to be the most suitable one for the present purpose.
An apparent shortcoming of the model as applied to the
net-baryon number probability distribution is its lack of
periodicity in the imaginary chemical potential, which is
a consequence of Uð1ÞB symmetry. Thus, we first extend
the model to exhibit the appropriate periodicity and the
phase structure in the imaginary baryon chemical
potential.
In QCD, the partition function has a periodicity 2π=Nc

in the imaginary quark chemical potential θq ¼ θ=3, thus
2π in the imaginary baryon chemical potential. LQCD
simulations have shown that there is no phase transition in
the imaginary baryon chemical potential at temperatures
below the chiral crossover temperature, and thermody-
namic quantities smoothly behave as ∼ cos θ [60–62]. This
fact combined with Eq. (7) implies that the phase transition
at large baryon number density is encoded in higher Fourier
coefficients of the smoothly oscillating function.

A. Partition function and thermodynamics

We start with a partition function of the chiral random
matrix model with Ns sites given in [59]

ZRM ¼
Z

DX exp

�
−
Ns

σ2
TrXX†

�
detNfðDþmÞ; ð14Þ
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where σ denotes the variance of the random matrix X
which has Ns × Ns dimension and D is the 2Ns × 2Ns
matrix approximating the Dirac operator. At T ¼ μ ¼
m ¼ 0, σ is the only dimensionful parameter. We use it
as a unit of mass in the model and put σ ¼ 1 in the
expressions below.
The Dirac operator takes the form

D ¼
�

0 iX þ iC

iX† þ iC 0

�
: ð15Þ

The matrix C describes the effect of temperature and
chemical potential. In Ref. [59], it was chosen as

Ck ¼ aπT þ bμ
iNc

ð16Þ

for one half of the eigenvalues and

Ck ¼ −aπT þ bμ
iNc

ð17Þ

for the other half,2 with a and b being the dimensionless
parameters.
The linear ansatz for the matrix C (16)–(17) accounts

for the fact that these are the two smallest Matsubara
frequencies �πT. This model does not have any thermal
distribution which gives the fugacity factor eμ=T nor any
periodicity in the imaginary chemical potential since it
appears as a result of summation over the Matsubara
frequencies. In order to make the partition function
periodic, we perform the following replacement,

b
Nc

μþ iπaT ¼ πaT

�
iþ b

aπNc

μ

T

�
ð18Þ

→ πaT

�
iþ b

aπNc
2 sinh

μ

2T

�
; ð19Þ

which gives a periodicity 2πT in μI to the partition
function. Compared to the original linear ansatz, this
replacement does not change anything at μ ¼ 0 but alters
the phase structure at μ > 2T.
The phase structure of the model is easily evaluated by

taking Ns → ∞ limit. Introducing an auxiliary Nf × Nf

complex matrix field ϕ and performing the Gaussian
integration with respect to X, one obtains the partition
function [63]

ZRM ¼
Z

Dϕ exp½−NsΩðϕÞ�; ð20Þ

where ΩðϕÞ stands for the effective potential. Then the
partition function can be determined by the minimum of
the potential, which is evaluated at the saddle point ϕ0 of
the integrand,

∂ΩðϕÞ
∂ϕ

����
ϕ¼ϕ0

¼ 0; ð21Þ

and

lim
Ns→∞

1

Ns
lnZRM ¼ −min

ϕ
ΩðϕÞ: ð22Þ

The saddle point ϕ0 is related to the chiral condensate
through

hψ̄ψi ¼ 1

NfV4

∂ lnZRM

∂m ; ð23Þ

¼ 1

NfV4

Ns

σ
2ReTrϕ0; ð24Þ

where the four-dimensional volume V4 corresponds to Ns
such that Ns represents the typical number of the instanton
(or anti-instanton) in V4. For realm, one expects ϕ0 is a real
matrix proportional to the unit matrix. Therefore, the saddle
point can be obtained by solving (21) for the potential

ΩðϕÞ=Nf ¼ ϕ2 −
1

2
ln

��
ðϕþmÞ2 − ~T2

�
A sinh

μ

2T
þ i

�
2
�

×

�
ðϕþmÞ2 − ~T2

�
A sinh

μ

2T
− i

�
2
�	

;

ð25Þ

where

~T ≡ πaT ð26Þ

and

A≡ 2b
aπNc

: ð27Þ

In the chiral limit m ¼ 0, one finds that ϕ0 ¼ 1 at
T ¼ μ ¼ 0 and a second-order phase transition occurs at
T ¼ 1=ðπaÞ and μ ¼ 0, where ϕ0 continuously approaches
zero. Thus, ϕ0 can be regarded as an order parameter of the
chiral phase transition.
The parameters in the model—σ, a, and b—are deter-

mined as follows. The only dimensionful parameter σ is
estimated to be σ ∼ 100 MeV through Eq. (24) by putting
hψ̄ψi ∼ 2 fm−3 at T ¼ μ ¼ 0. Since Tc ¼ 1=ðπaÞ at μ ¼ 0,
putting Tc ¼ 160 MeV yields a ¼ 0.2. The remaining
parameter b connects the model to the density scale.

2Note that μ is the chemical potential of the baryon number;
thus, μ=Nc stands for that of the quark number.
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With the linear ansatz for C (16)–(17), one finds the
first-order phase transition at T ¼ 0 and bμ=Nc ¼ 0.528.
We follow the choice of Ref. [59] and put b ¼ 0.13,
corresponding to the first-order transition point at
μc ≃ 1200 MeV, though we do not have the same phase
diagram as Ref. [59] owing to the implementation of the
periodicity (16)–(17).
Figure 1 shows the phase diagram of the modified

random matrix model (25) in the chiral limit and in the
presence of a small explicit symmetry breaking, m ¼ 0.05,
respectively. In the chiral limit, the second-order line
continues with decreasing temperature down to T > T3

and μ < μ3, where T3 ≃ 0.731Tc and μ3 ≃ 4.504 is the
location of the tricritical point (TCP). Below T3, there is
the first-order phase transition line. At finite quark mass,
the second-order line is replaced by smooth crossover and
TCP becomes CP with slightly decreased temperature
and increased chemical potential, TCP ¼ 0.675Tc and
μCP ¼ 4.72, respectively. While these structures are the

same as those in Refs. [58,59], the apparent singularity at
T ¼ 0 in the periodic parametrization significantly modi-
fies the phase boundary at low temperature. We stress that
our purpose in this paper is to explore the property of
partition function zeros rather than determining the phase
structure.
With the parameter set for a, b, and σ, we find that

this form also gives reasonable thermodynamic quantities
at the imaginary chemical potential.3 Figure 2 displays
the behavior of the order parameter ϕ0 in the imaginary
baryonic chemical potential θ ¼ μI=T. One sees that our
parametrization (19) gives the correct periodicity 2π and
the expected temperature dependence such as a larger
amplitude at higher temperature below Tc [64,65].
Owing to the lack of a Zð3Þ sector such as the Polyakov
loop background, this model does not exhibit the Roberge-
Weiss phase transition [66] at high T.
At finite Ns, the partition function can be expressed

as [58]

ZRM ¼
XNs=2

k1;k2¼0

�
Ns=2

k1

��
Ns=2

k2

�
ðNs − k1 − k2Þ!

× 1F1ðk1 þ k2 − Ns; 1;−m2NsÞð−Ns
~T2Þk1þk2

×

�
iþ A sinh

μ

2T

�
2k1

�
i − A sinh

μ

2T

�
2k2

; ð28Þ

where an irrelevant constant factor is ignored and

1F1ða; b; xÞ denotes the confluent hypergeometric func-
tion. One may directly obtain zeros of this partition
function, but one needs to expand Z in a series of the
fugacity λ to examine the effects of tails in the probability
distribution function. We put the details in Appendix A and
write down only the result for the canonical partition
function, for δ≡ jk1 − k2j,

ZðT;Ns; NÞ ¼
XNs=2

k1;k2¼0

�
Ns=2

k1

��
Ns=2

k2

�
ðNs − k1 − k2Þ!1F1ðk1 þ k2 − Ns; 1;−m2NsÞð−Ns

~T2A2=4Þk1þk2

×

8<
:

Pk1þk2
k3¼0



k1þk2
k3

�h
2ð2−A2Þ

A2

i
k1þk2−k3



k3

k3−N
2

�
k1 ¼ k2

δ
P

δ
k3¼0



− 16

A2

�
k3 ðδþk3−1Þ!

ðδ−k3Þ!ð2k3Þ!
Pk1þk2−k3

k4¼0



k1þk2−k3

k4

�h
2ð2−A2Þ

A2

i
k1þk2−k3−k4



k4

k4−N
2

�
k1 ≠ k2:

ð29Þ

B. Phase boundary and Yang-Lee zeros

We compute the Yang-Lee zeros for the truncated
partition function (12) with the canonical partition function
of the chiral random matrix model (29). Taking Nmax ¼ Ns
in Eq. (12), one recovers the exact grand partition function
(28). The computation of the zeros requires special care
with the numerical digits as cautioned in the literature
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FIG. 1 (color online). Phase diagram of the chiral random
matrix model with periodicity in the imaginary baryonic chemical
potential.

3Note that in Refs. [58,59] the coefficients in the temperature
and chemical potential are absorbed into T and μ. While the
qualitative phase structure does not depend on the parameters in
the linear ansatz, it does so when one employs the periodic
parametrization (19).
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[46,67]. We perform the calculations in 50–300 digits
utilizing the FMLIB package [68] in FORTRAN 90.
Figure 3 shows the distribution of the Yang-Lee zero of

the periodic chiral random matrix model in the complex ω
plane for m ¼ 0 and at T=Tc ¼ 0.99. The distribution of
the zeros is symmetric with respect to the horizontal axis
because the partition function is an even-order polynomial
of ω and the root has its complex conjugate. The solid line
in Fig. 3 stands for the Stokes boundary, which can be
regarded as an extension of the phase boundary to a
complex chemical potential plane. In the thermodynamic
limit Ns → ∞, it satisfies

Re

�∂2ΩðϕÞ
∂ϕ2

����
ϕ¼ϕ0

�
> 0; ð30Þ

ReΩðϕ ¼ ϕ0;1Þ ¼ ReΩðϕ ¼ ϕ0;2Þ; ð31Þ

where the first condition ensures the well-defined partition
function at the saddle point of the integrand in Eq. (20) and
the second condition denotes the continuity of the real part
of the pressure at the boundary [58]. ϕ0;1 and ϕ0;2 stand for
two out of five solutions of the gap equation ∂Ω=∂ϕ ¼ 0
and give the minimum of ReΩ in both sides of the
boundary, respectively. The density of the zeros increases
with Ns and turns into the cut which constitutes the Stokes
boundary in the thermodynamic limit. This is clearly seen
in Fig. 3. There are two branch points located on the real
axis. Since ω ¼ λþ 1=λ > 0 for real μ, the one at Reω ¼
ωc ¼ 3.4 > 0 corresponds to the second-order phase tran-
sition point in real μ, while the other one, Reω ¼ −634.4,
is located on the line Imμ=T ¼ π. The Stokes boundary
exhibits a closed curve, reflecting the periodicity in
imaginary μ and existence of the phase boundary at the
real μ axis and Imμ=T ¼ π.
The phase structure can be more intuitively understood

by going to the complex μ plane. Figure 4 (left) displays the
distribution of the same Yang-Lee zeros as in Fig. 3, but the
zeros in Reμ < 0 are omitted since their locations are trivial
according to the charge conjugate symmetry μ → −μ. The
branching point on the horizontal axis indicates the second-
order phase transition point. The Stokes boundary extends
to both direction in imaginary μ and ends up at the other
branch point. Note that the branch points at Imμ=T ¼ −π
and π are essentially the same because of the periodicity.
We refer to [69,70] for behavior of the order parameter in
complex μ plane and related topics. The zeros distribute
along the boundary and becomes more dense for large Ns,
but distance to the real axis is not so close for these values
ofNs. The behavior of the density of the zeros is related to a
property of the thermodynamic potential which can be
described by an analogy to electrostatics [58]. In this case,
ReΩ can be regarded as the electrostatic potential on the
Reμ=T − Imμ=T plane and the normal component of the
electric field E ¼ −∇ðReΩÞ to the Stokes boundary has a
discontinuity proportional to the density of the zeros. We
confirmed that in this model these discontinuities at large
Reμ, where the zeros are dense, are much larger than those
at small μ, as expected. Although the density of the zeros
far from the branching point is a model-dependent feature
dependent on the shape of the Stokes boundary, it is
governed by the universality near the branch point on
the real axis, as pointed out in Ref. [58].
The effects of the finite but small quark mass can be

seen in the right panel of Fig. 4 where the distribution of
Yang-Lee zeros for m ¼ 0.05 at the same temperature is
displayed. Because of the explicit chiral symmetry break-
ing, the phase transition becomes a crossover such that the
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FIG. 3 (color online). Yang-Lee zeros of the periodic random
matrix model in the complex ω plane for m ¼ 0 at T=Tc ¼ 0.99.
Open symbols stand for the zeros in differentNs and the solid line
indicates the Stokes boundary. The branch point is denoted by
closed circles.
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FIG. 2 (color online). Behavior of the order parameter ϕ0 of a
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branch point on the real axis moves above it. As a result,
there are two branch points of which are complex conjugate
each other. The same thing occurs also to the branch point
at Imμ=T ¼ �π. Here we emphasize that these complex
singularities are, albeit unphysical, indicating the existence
of a chiral phase transition in the chiral limit. These are also
known as Yang-Lee edge singularities [52]. The critical
point at finite density (See Fig. 1) is realized by the
coalescence of the branch points close to the real μ axis
when the temperature is decreased [53]. As seen in Fig. 4
(right), the Yang-Lee zeros are fairly on the boundary line
and exhibit expected behaviors.

IV. YANG-LEE ZEROS FROM TRUNCATED
PARTITION FUNCTIONS

As described in Sec. II, the connection of net-baryon
number multiplicity distribution (2) with the reconstructed
grand partition function (8) could potentially enable us to
extract the Yang-Lee zeros from experimental data. Since
the results presented in the previous section correspond to
Nmax ¼ N�, i.e., no information on the exact partition
function is lost, we need to evaluate whether one can
obtain the correct distribution of the Yang-Lee zeros when
the fugacity expansion is truncated. Furthermore, even if
one starts from a partition function which does not exhibit
any phase transition, such as an ideal Boltzmann gas, the
truncation produces the zeros of the partition function
because it is a polynomial of order Nmax. In this section we
investigate in detail the effects of the truncation on the
distribution of the Yang-Lee zeros.

A. Random matrix model

Figures 5 and 6 display the distribution of the Yang-Lee
zeros from the truncated partition function of the periodic

chiral random matrix model for various Nmax and
m ¼ 0.05.4 Hereafter, we set Ns ¼ 60. We confirm the
following results do not depend on the specific choice of
Ns. We plot only the first quadrant in the complex μ plane
according to the symmetry structure of the distribution.
The left panel in Fig. 5 shows the case of T ¼ Tc, at

which the transition is of the crossover type, as seen in the
branch point at ðReμ=T; Imμ=TÞ≃ ð3; π=4Þ. For Nmax ¼
60 ¼ Ns, the zeros are located on the Stokes boundary
(dashed line). Reducing Nmax by one, i.e., removing
ZðN ¼ 60Þ from the series, one sees a drastic change in
the distribution. The distribution of the zeros at large Reμ
and Imμ splits into the two lines, but the rest of the zeros
remain unchanged. Further reduction of Nmax substantially
modifies the distribution such that the splitting occurs
closer to the edge that is closer to the real μ axis.
Nevertheless, up to Nmax ¼ 21, the edge of the distribution
which is the closest Yang-Lee zero to the real μ axis
remains the same. Beyond Nmax ¼ 20, the distribution no
longer holds the information on the exact Yang-Lee zeros;
thus, the apparent relation to the phase boundary is lost.
The behavior with respect to changing Nmax does not

depend on temperature or corresponding phase transition.
In the right panel of Fig. 5, we plot the result of the same
analysis for T ¼ TCP ¼ 0.675Tc, where the branch point
appears on the real axis, indicating the critical point.
Reflecting the location of the branch point, the edge of
the distribution also becomes closer to the real axis
compared to the crossover case. The edge is stable against
decreasing Nmax down to Nmax ¼ 19, then it starts to
deviate slowly when decreased further. This is also true
in the case of the first-order phase transition (T ¼ 0.6Tc)
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FIG. 4 (color online). Yang-Lee zeros of the periodic random matrix model in complex μ plane. The left panel corresponds to the case
of Fig. 3. Right panel shows the case with a finite but small quark mass, m ¼ 0.05 at the same temperature.

4Note that Tc is defined for m ¼ 0. Thus, it is slightly lower
than the chiral crossover temperature for m ¼ 0.05.
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depicted in Fig. 6. The branch point is hidden in the
unphysical Riemann sheets [70], and the edge is very close
to the real axis.
We also note that there is always a zero at Imμ=T ¼ π

when Nmax is odd. These zeros look special since they
correspond to the negative real axis in the complex λ and ω
plane. However, this is a mathematical consequence
because in this case the truncated partition function (12)
is an odd-order polynomial; thus, it has at least one real
root. As seen in Figs. 5 and 6, it becomes the edge of one of
the lines bifurcating from the exact Yang-Lee zeros.
These results indicate the stability of the edge does not

depend on the detail of the phase structure, although the
location of the edge seems to be connected with the shape
of the Stokes boundary which is model dependent through
the μ dependence of the partition function. In particular, the

present results are obtained by employing the periodicity
(19) in the random matrix model which does not correctly
take into account degrees of freedom with baryon charges
[59]. We note that this modification causes unphysical
behavior in thermodynamics, such as negative ZðT; V;NÞ
at some small N at low T, which presumably reflects the
unusual curvature of the phase boundary in Fig. 1.
Therefore, we note that the shape of the distribution itself
might not be relevant for realistic situations. Nevertheless,
below we shall see that the stability of the edge is specific to
the case with a phase transition.

B. Lattice QCD

Figure 7 displays the distribution of the Yang-Lee zeros
above Tc calculated in the lattice QCD simulation via
the canonical method [54]. While calculations in the
confinement phase are still numerically difficult such that
we do not see clear indications of a phase transition at low
T, the Roberge-Weiss (RW) transition [66] provides us a
well-defined phase transition in the high-temperature
quark-gluon plasma phase at an imaginary chemical
potential. In this figure, the data are calculated on 83 × 4
lattices and β ¼ 1.89which corresponds to T=Tc ≃ 1.94. A
more detailed analysis in lattice QCD with different lattice
setups can be found in Ref. [55]. Since quark mass is heavy,
the calculation is not relevant for the chiral phase transition.
The RW transition is regarded as a transition from one Zð3Þ
sector to another one when single quarks can be excited
because of deconfinement and are known to exhibit a first-
order phase transition at Imμq=T ¼ �π=3. In terms of the
baryon chemical potential, the transition lines reduce to
Imμ=T ¼ �π, which is shown as a dotted line in Fig. 7. A
brief explanation of the Roberge-Weiss phase boundary can
be found in Appendix B. Since it is hard to compute ZðNÞ
near N ¼ N�, the canonical approach in lattice QCD lacks
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FIG. 5 (color online). Distribution of the Yang-Lee zeros from the truncated partition function of the periodic chiral random matrix
model for m ¼ 0.05. Left and right panels stand for T ¼ Tc and T ¼ TCP, respectively.
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the large-N contribution when one constructs the truncated
partition function (12). One sees that in Fig. 7 the behavior
of the distribution of the Yang-Lee zeros against changing
Nmax is similar to that of the random matrix model, despite
the completely different origin of the phase transition.
Therefore, we expect the similar splitting behavior of the
distribution also appearing in Refs. [46,55] is also due to
the truncation effect. Indeed, the Ns and Nmax dependence
of the Yang-Lee zero shown in Ref. [55] agrees with the
truncation effects discussed here. We expect that the
bifurcation of the zero starts at large Reμ by improving
the fugacity expansion, but one needs to take Nmax ¼ N� to
completely produce the Yang-Lee zero along the transition
line. In the RW transition where the transition point occurs
at Imμ=T ¼ �π, the edge of the distribution is the closest
zero to the imaginary axis. One sees that this point is also
stable against changing Nmax. This fact suggests that the
stability of the edge is not specific to the random matrix
model or chiral phase transition but might be a general
property of the distribution when the partition function is
truncated.

C. Skellam distribution

Finally, we examine a model without phase transition in
order to check whether the stability of the edge is specific to
the phase transition. We employ the Skellam distribution
[71] for which the probability distribution of the net-baryon
number N is given by

PSðNÞ ¼
�
NB

NB̄

�
N=2

INð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NBNB̄

p Þe−ðNBþNB̄Þ; ð32Þ

where NB and NB̄ denote the thermal averages of the
numbers of baryons and antibaryons, respectively. The

mean M and variance σ2 of the distribution are given by
M ¼ NB − NB̄ and σ2 ¼ NB þ NB̄, respectively. For
NB ¼ NB̄, the distribution becomes symmetric and the
argument of the modified Bessel function INðxÞ is reduced
to 2NB ¼ σ2. This distribution can be derived from the
noninteracting Boltzmann gas [18]; thus, the canonical and
grand canonical partition functions read

ZðNÞ ¼ INðσ2Þ ð33Þ

ZðλÞ ¼ exp

�
σ2

2

�
λþ 1

λ

��
; ð34Þ

where the temperature and volume dependence is encoded
in σ2. Obviously the grand partition function (34) does not
have any roots; thus, no phase transition exists. When one
constructs the truncated grand partition function (8) from
the canonical partition function (33), however, there exist
complex roots. Consequently, one might see these spurious
zeros even if the system does not have any phase transition
when one constructs the partition function through the
fugacity expansion.
Here we investigate such spurious zeros from the

Skellam partition function (33) such that it has the same
variance with the random matrix model at Ns ¼ 60,
T ¼ Tc, and m ¼ 0.05 for which the distribution of the
Yang-Lee zeros is displayed in Fig. 5. Since the information
on the phase transition is encoded in the tail of the
probability distribution PðNÞ, the Skellam distribution
with the same variance serves as a useful reference
distribution [25]. The probability distribution of the random
matrix model and corresponding Skellam distribution are
shown in Fig. 8 (left). Both distributions almost agree for
small N, according to the same σ2, but the deviation
appears in the tail of the distribution with tiny probability.
Figure 8 (right) shows the distribution of zeros of the

truncated partition function for the Skellam distribution
with σ2 ¼ 0.365. Except for a splitting of the distribution
for Nmax ≥ 70 which is similar to those in the random
matrix model, the distributions consist almost parallel lines
moving to large real μ direction as Nmax increases. This
behavior reflects the fact that all the zeros go away to
infinity as Nmax → ∞ since the exact grand partition
function does not have roots. Remarkably, the edges of
the distributions also move together with the rest of the
zeros, in contrast to the random matrix model and lattice
QCD. Furthermore, one notes that the distributions for
Nmax ≤ 20 in the random matrix model, shown in Fig. 5,
resemble those from the Skellam distribution. This obser-
vation indicates that the stability of the edge against Nmax
is a consequence of the existence of the phase transition,
and information on the phase transition is lost with too
small Nmax.
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FIG. 7 (color online). Distribution of Yang-Lee zeros for a
lattice QCD data [54].
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V. DISCUSSION

A. Comparison with Nmax for cumulants

In the previous section, we have shown that the edge of
the distribution of the Yang-Lee zeros remains unchanged
when the tail part of the canonical partition function is
missing. In practice, this property gives implications for
necessary statistics in heavy ion studies of the net-baryon
number fluctuations and in lattice QCD calculations. Since
the sufficient Nmax to see the stable edge depends on the
system volume, here we compare it with the corresponding

NðiÞ
max for the ith-order cumulants. We consider only even-

order ones for the net-baryon number at μ ¼ 0 since we are

looking at ZðT; V; NÞ rather than PðNÞ which becomes
asymmetric with respect to N at μ > 0. Thus, the first
central moment δN ¼ N − hNi ¼ N. The second-, fourth-,
and sixth-order cumulants cn ðn ¼ 2; 4; 6Þ read

c2 ¼ hðδNÞ2i; ð35Þ

c4 ¼ hðδNÞ4i − 3hðδNÞ2i2; ð36Þ

c6 ¼ hðδNÞ6i − 15hðδNÞ4ihðδNÞ2i þ 30hðδNÞ2i3: ð37Þ

The property of the higher-order cumulants of the net-
baryon number probability distribution for changing Nmax
was studied in Ref. [42] by using a chiral quark-meson
model. For sufficiently large volume, it was shown that

NðiÞ
max for the cumulants approximately scales with

ffiffiffiffi
V

p
.

We summarize the values of each Nmax in Table I. The
calculations are done for T ¼ Tc and m ¼ 0.05 in the
random matrix model. Owing to the narrow ZðNÞ, even
the sixth-order cumulant for Ns ¼ 100 only requires

Nð6Þ
max ¼ 7, i.e, −7 ≤ N ≤ 7 to reconstruct it from

ZðT; V; NÞ, while the edge of the Yang-Lee zeros demands

Nmax ¼ 21. The small Nð6Þ
max implies the system volume is
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FIG. 8 (color online). Left: PðNÞ for the random matrix model at T ¼ Tc and m ¼ 0.05, and the corresponding Skellam distribution.
Right: Distribution of Lee-Yang zeros for a truncated Skellam partition function.
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FIG. 9 (color online). Distribution of the zeros for the Skellam
partition function for σ2 ¼ 14.89.

TABLE I. Nmax necessary for reconstructing the ith-order
cumulants and edge of the Yang-Lee zeros from ZðNÞ in the
random matrix model at T ¼ Tc and m ¼ 0.05.

Ns Nð2Þ
max Nð4Þ

max Nð6Þ
max

Nmax

60 3 4 6 21
80 3 5 6 26
100 4 5 7 30
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not large enough to exhibit the
ffiffiffiffi
V

p
scaling regime of the

cumulants. This can be understood from the small value of
σ2 in the random matrix model calculations. The rapid
decay of PðNÞ gives a rather weak dependence of Nmax for
the higher-order cumulants. For a sufficiently large volume,
one expects that PðNÞ resembles Gaussian near the peak,
while the probability distribution (Fig. 8) has a sharp peak.
Thus, we cannot assess the value of Nmax needed in a
realistic situation relevant for heavy ion collisions.
Moreover, the baryon number carried in this model is
not a physical one, as mentioned above. All we can say is
that one may need more statistics than with higher-order
cumulants.

B. Skellam distribution for large volume

In the fluctuation measurements at RHIC, the observed
PðNÞ can be well described by the Skellam distribution
and the deviation from the Skellam distribution existing in
the tail results in higher-order cumulants different from the
Skellam case. The obtained variance reaches σ2 ∼ 10
[16,72] at the most central bin. Thus, it is instructive to
give a reference for the distribution of the spurious Yang-
Lee zeros based on the Skellam distribution. Here we pick
up the data for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV at the most central bin,
which gives σ2 ¼ 14.89 and M ¼ 14.41 with the available
bin from N ¼ 0 to N ¼ 34.5 As mentioned in Sec. II, one
can construct ZðNÞ from −34 ≤ N ≤ 34 according to
charge conjugation symmetry [46]. In the Skellam distri-

bution for σ2 ¼ 14.89, we find that NðiÞ
max ¼ 13, 20 and 26

for the second-, fourth-, and sixth-order cumulants, respec-

tively. Note that these NðiÞ
max apply to the cumulants at

μ ¼ 0. The data do not have enough statistics for the sixth-
order cumulant at freeze-out μ.
We plot the distribution of the Yang-Lee zeros for the

constructed Skellam distribution with σ2 ¼ 14.89 in Fig. 9.
The basic feature is the same as the small σ2 case (Fig. 8).
The line of zeros moves toward infinity as Nmax increases.
One sees that some zeros below N ¼ 30 appear on the
imaginary μ axis, which corresponds to the unit circle in the
complex fugacity plane. This means that for a large volume
case, the zeros can appear on the imaginary axis when the
tail of the ZðNÞ is not provided. In the Skellam distribution,
these zeros can be obtained directly by looking at the
truncated partition function on the imaginary μ axis, for
λ ¼ eiθ,

Ztr
SkellamðθÞ ¼ 2

XNmax

N¼−Nmax

INðσ2Þ cosNθ; ð38Þ

which converges into Eq. (34) with oscillations giving
zeros on imaginary μ.

VI. CONCLUDING REMARKS

In this paper, we present analyses of partition function
zeros which can be obtained from a truncated series of the
fugacity expansion. By solving an extended chiral random
matrix model which has a periodicity in the imaginary
chemical potential, we compare the exact location of the
Yang-Lee zeros and those obtained from the truncated
series. We find that the edge of the distribution of the zeros
is insensitive to the truncation of higher-order terms in the
fugacity expansion to some degree. We find a similar
behavior in lattice QCD at high temperature in the context
of the Roberge-Weiss phase transition. This observation
indicates that those higher-order terms may have limited
influences in the search of the location of the phase
boundary in lattice QCD calculations and heavy ion
experiments. Although the distribution of zeros exists in
systems without phase transition, due to the truncation, the
zeros closest to the real μ axis are stable against truncation
if the system has a phase transition or crossover. The
spurious zeros in the Skellam distribution move toward
infinity against the truncation. Therefore, one can distin-
guish whether or not the distribution is related to the phase
transition by looking at the stability of the edge of the
distribution against the truncation.
Although the information on the Stokes boundary is lost

in the case of too small Nmax, we expect that it does not
mean that all the relevant information on the phase
transition gets lost in the truncated partition function.
This expectation follows from the fact that the sixth-
and higher-order cumulants at μ ¼ 0 should be influenced
by the phase transition and the truncated series is still able
to reproduce them. It would be interesting to see how the
distribution of the zeros in the smallNmax cases in Figs. 5–6
is related to the remnant of the phase transition.
The order of the truncation in the fugacity series to

obtain the stable edge of the Yang-Lee zeros, Nmax, is
nevertheless found to be much larger than those for
higher-order cumulants. We cannot make a quantitative
assessment on realistic values for heavy ion experiments
due to the lack of connection between the model and the
real world. We hope that such an estimate becomes
feasible in the near future.
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APPENDIX A: DERIVATION OF THE
CANONICAL PARTITION FUNCTION IN A

CHIRAL RANDOM MATRIX MODEL

In the following, we derive an analytic expression
for ZðT;Ns; NÞ from Eq. (28). First we rewrite the μ-
dependent part in terms of the fugacity λ ¼ eμ=T.
Since

Re
��

A sinh
μ

2T
þ i

�
2k1

�
A sinh

μ

2T
− i

�
2k2

�
ðA1Þ

¼
�
A2sinh2

μ

2T
þ 1

�
k1þk2

cos½2ðk1 − k2Þϕ�; ðA2Þ

where

tanϕ ¼
�
A sinh

μ

2T

�
−1
; ðA3Þ

and the imaginary part vanishes after summation over k1
and k2, using the Chebychev polynomial

Tk1−k2ðcos 2ϕÞ ¼ cos½2ðk1 − k2Þϕ� ðA4Þ

and

cos 2ϕ ¼
�
A2 sinh

μ

2T
− 1

�
=

�
A2 sinh

μ

2T
þ 1

�
; ðA5Þ

we have the partition function Z as

Z ¼
XNs=2

k1;k2¼0

�
Ns=2
k1

��
Ns=2
k2

�
ðNs − k1 − k2Þ!

×1 F1ðk1 þ k2 − Ns; 1;−m2NsÞð−Ns
~T2A2=4Þk1þk2

×

�
λþ 1

λ
þ 2ð2 − A2Þ

A2

�
k1þk2

× Tk1−k2

�
λþ λ−1 − 2ðA2 þ 2Þ=A2

λþ λ−1 − 2ðA2 − 2Þ=A2

�
: ðA6Þ

Expanding the Chebychev polynomial by the following
expression,

TnðxÞ¼
�
1 n¼0

n
P

n
k¼0ð−2Þk ðnþk−1Þ!

ðn−kÞ!ð2kÞ!ð1−xÞk n≥1;
ðA7Þ

and using binomial expansion in the third line of (A6), we
can express Z in terms of λþ λ−1. We obtain Eq. (29) by
applying the projection (6). Note that the maximum power
of λ is given by Ns.

APPENDIX B: ROBERGE-WEISS TRANSITION
AS A THERMAL CUT

In this appendix, we give a brief explanation of the cut
arising from the Fermi distribution function and apply it to
the Roberge-Weiss transition in QCD.

1. Thermal cut in free Fermi gas

The thermodynamic potential of the free Fermi gas is
given by

Ωf ∼ −
Z

d3p
ð2πÞ3 ln½1þ e−βðEp−μÞ� þ ðμ → −μÞ; ðB1Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. When the chemical potential μ

has an imaginary part, μI ¼ θT, the imaginary part gives a
phase in front of the Boltzmann factor,

1þ e−βðEp−μÞ ¼ 1þ eiθe−βðEp−μRÞ; ðB2Þ

where μ ¼ μR þ iμI . Therefore, for θ ¼ �π, the phase
gives −1 and the thermodynamic potential has a logarith-
mic cut at θ ¼ �π and m ≤ μR < ∞. The antiparticle term
also gives the cut symmetric with respect to the imaginary
axis. In Ref. [73], it is pointed out that the branch point
singularity limits the convergence radius when one tries to
analytically continue the results in the imaginary chemical
potential to the real one. Since this cut originates from the
Fermi distribution, the same analytic structure appears in
chiral models with fermions [69].

2. Roberge-Weiss transition

In QCD at high temperature, quarks are deconfined and
have a light mass owing to chiral restoration. Since the
deconfinement can be expressed as a breaking of ZðNcÞ
symmetry, it is useful to resort to chiral effective models
with the Polyakov loop background [74–76] which suc-
cessfully describe the Roberge-Weiss transition [64,65,77].
Then, the relevant leading single-quark contribution to the
thermodynamic potential reads

Ωqq̄ ∼ −
Z

d3p
ð2πÞ3 ln½1þ 3Φe−βðEp−μqÞ�

þ ðμq → −μq;Φ → Φ̄Þ; ðB3Þ

where μq ¼ μ=3 is the quark chemical potential and Φ is
the expectation value of the Polyakov loop. For the
antiquark contribution, the conjugate Φ̄ couples to the
thermal distribution. At the imaginary chemical potential,
the Polyakov loop Φ acquires a complex phase φ. One may
express Φ ¼ jΦjeiφ. Then the thermodynamic contribution
becomes
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1þ 3Φe−βðEp−μqÞ ¼ 1þ 3jΦjeiðφ−θqÞe−βðEq−μq;RÞ: ðB4Þ

The phase of the Polyakov loop φ varies as a
function of the imaginary quark chemical potential
θq. The Roberge-Weiss transition at θq ¼ π=3 can be
understood as a transition from one Zð3Þ sector with
φ ¼ 0 to another one φ ¼ −2π=3 [65]. Then the
coupling between φ and θq gives the prefactor −1 in

front of the Boltzmann factor. Moreover, jΦj ∼ 1 in the
deconfined phase and the prefactor 3 allow this function
to have the singularity at μq;R ¼ 0. This feature gives
the cut drawn as the RW transition line in Fig. 7. A
derivation based on the Gaussian PðNÞ can be found in
Ref. [55]. In the confinement phase where jΦj ∼ 0, this
term is suppressed, and the thermal cut from the quark
does not appear.
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