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We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching
from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice
simulations with staggered quarks; the continuum extrapolation is based on Nt ¼ 10–24 in the crossover
region and Nt ¼ 8–16 at higher temperatures. We find that the hadron resonance gas model predictions
describe the lattice data rather well in the confined phase. At high temperatures (above ∼250 MeV) we find
agreement with the three-loop hard thermal loop results.
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I. INTRODUCTION

The quark gluon plasmawas formed in the early Universe
just a few microseconds after the Big Bang; today it is
produced in heavy ion collision experiments at the Large
Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven Lab (BNL). This phase
exists at high temperatures and/or densities, and is separated
from the hadronic phase of quantum chromodynamics
(QCD) by a crossover transition [1]. Lattice QCD has
determined the temperature of this crossover in Refs. [2–5].
Below the transition temperature, the thermodynamics is

governed by massive hadrons with integer charges, whereas
at high temperature nearly free and nearly massless quarks
with fractional charges and gluons dominate. Fluctuations of
various conserved charges are sensitive probes of the
quantum numbers and the associated masses, and have been
proposed as a signal of the deconfinement transition [6,7]. In
heavy ion experiments there is an ongoing effort to measure
the moments of conserved charge distributions [8], which
can be related one-to-one to fluctuations. They are particu-
larly interesting for the beam energy scan program at RHIC,
since theymay signal a nearby critical end point: higher order
moments of net proton distributions are sensitive to an
increase in the correlation length [9]. Fluctuations can also
be used to extract the chemical freeze-out temperature and
chemical potential [10], as an alternative method to the
thermal fits to particle yields or ratios [11–15]. The STAR
collaboration has published the first fourmoments of the net-
proton [16] and net-electric charge [17] distributions. In
parallel to the experimental efforts, the past years have
witnessed a rapid development in the lattice calculations

of fluctuations [18,19], leading to quantitative estimates of
the chemical freeze-out temperature and chemical potential
for a range of RHIC energies [20].
Diagonal quark number susceptibilities have already been

calculated in the early dynamical simulations [21–23]; these
were later complemented by the off-diagonal ones [24–29].
In the following years, higher order fluctuations have been
calculated up to the sixth order [29,30], with the main
motivation to extrapolate several thermodynamic observ-
ables to larger values of the chemical potential. These were
staggered simulations projects, but studies with Wilson
quarks are also emerging [31–35]. Strangeness fluctuations
were used also to locate the transition temperature and, for
this purpose, they were continuum extrapolated. With
Wilson quarks this was done with pion masses down to
285 MeV [31,32], for staggered quarks the continuum limit
was calculated at the physical point [2–4,36]. Continuum
results for the other second cumulants appeared first in
Ref. [37] then inRef. [36]. Selected higher order fluctuations
were continuum extrapolated first in Refs. [19,38–40].
Below the crossover temperature, hadrons (mesons and

baryons) dominate the thermodynamics. In this regime, the
hadron resonance gas (HRG) model provides a simple
description of thermodynamic quantities, including specific
fluctuations or correlations [41,42]. Even before simulations
with physical quarkmasses could be performed, latticeQCD
data were well described by the HRG model if the actual
particle spectrum was replaced by the unphysical one
simulated on the lattice [43,44]. The success of the HRG
model based on the experimental resonance table has been
demonstrated later in several papers with physical quark
masses and continuum extrapolation for the chiral conden-
sate [4], the equation of state [45] and fluctuations [36,37].
The concept of HRG has motivated new studies where

fluctuation-based observables were proposed for which,
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within the framework of the HRGmodel, only particles and
resonances with a specific quantum number contribute (e.g.
baryons in a specific strangeness sector) [46]. Since at low
T most lattice results agree with the HRG predictions,
which is no longer true in the deconfined phase, the highest
temperature of agreement can be a model-dependent
indicator of deconfinement, which can be studied on a
flavor-specific basis [39].
Very high temperature QCD is best discussed in terms of

improved perturbation theory. The QCD thermodynamic
potential is known up to α3 logðαÞ order [47]. This result was
later generalized to finite chemical potentials [48] and the
quark number susceptibilities were calculated to the same
order [49]. The soft contributions to these unimproved
perturbative results can be resummed via dimensional
reduction [50]. This idea has been applied to the four-loop
perturbative quark number susceptibilities [51,52].
The hard thermal loop perturbation theory reorganizes

the perturbative series, enhancing its convergence [53,54].
Recently, the next-to-next-to-leading order pressure and
energy density were calculated for the SU(3) theory, [55],
dramatically improving the agreement with lattice simu-
lations [56,57]. Soon afterwards, the full QCD result was
calculated, too [58,59]. Fluctuations were calculated at one-
[51], two- [60] and three-loop order [61], improving the
earlier hard thermal loop (HTL) calculations of suscep-
tibilities [62,63]. This result was later generalized to finite
chemical potentials [64].
In general, these highly resummed perturbative results

are expected to provide a good approximation, but their
range of validity can only be determined if they are
compared with a nonperturbative approach, e.g. lattice
QCD simulations. Such comparisons have already been
made, first on the level of the equation of state [59].
Unfortunately, for this observable, the renormalization
scale dependence is too large for a definitive answer on
the range of validity. Fluctuations, however, offer a more
strict test for these diagrammatic approaches because of the
rather small renormalization scale dependence of the result
from dimensional reduction (DR) [52] and from HTLs [61].
Today lattice calculations at high temperatures are available
e.g. with the HISQ action of the BNL-Bielefeld group
[36,40] and also with the 2stout action of the Wuppertal-
Budapest collaboration [37,38].
In this paper, we present results on diagonal and non-

diagonal second and fourth-order fluctuations, in a temper-
ature range which stretches from the transition region to the
perturbation theory domain. Our simulations are performed
within the second generation staggered thermodynamics
program (4stout action). We start with the discussion of the
conserved charges in the grand canonical field theory and
provide details on how their fluctuations are calculated on
the lattice. After describing our lattice thermodynamics
program, the scale setting procedure and the finite temper-
ature simulations, we highlight the technical challenges of a

continuum extrapolation and the estimate of the systematic
error on the continuum results. The results are organized
in two sections. First we consider the crossover region,
around the point where the hadron resonance gas loses its
predictive power. Afterwards we compare our data to
(resummed) perturbative results at high temperatures. We
close with some concluding remarks pointing to further
directions of research.

II. FLUCTUATIONS IN LATTICE QCD

A. QCD as a grand canonical ensemble

In a canonical ensemble, the conserved charges are
external parameters. In a heavy ion collision, for example,
the number of baryons, their electric charge and the
vanishing strangeness are fixed during the entire collision,
expansion of the plasma and freeze-out. A grand canonical
ensemble emerges if a small subsystem is considered, that
is still large enough to be close to the thermodynamic
limit [65].
In QCD there exists a conserved charge for each quark

flavor, thus one can introduce four quark chemical poten-
tials in a 2þ 1þ 1 flavor system: μu, μd, μs and μc, in
short fμqg.
The expectation number of a conserved charge is then

found as a derivative with respect to the chemical potential,

hNii ¼ T
∂ logZðT; V; fμigÞ

∂μi : ð1Þ

The response of the system to the thermodynamic force
μi is proportional to the fluctuation of the conserved charge:

∂hNii
∂μj ¼ T

∂2 logZðT; V; fμqgÞ
∂μj∂μi ¼ 1

T
ðhNiNji − hNiihNjiÞ:

ð2Þ

Since Ni is an extensive thermodynamic quantity and so
is its μ-derivative, there the OðV2Þ contributions cancel in
Eq. (2). Charge conjugation symmetry implies that, at
μq ≡ 0, the expectation value of any odd combination
vanishes, e.g. the last term in Eq. (2). However, there is no
such symmetry for different flavors, allowing e.g. for a
hNuNdi correlator. The first perturbative diagram that
contributes to the latter consists of two fermion loops,
connected by three gluon lines [62].
The free energy density (−T=V logZ) is proportional to

the pressure in large volumes:

p
T4

¼ 1

VT3
logZðT; V; fμqgÞ: ð3Þ

The derivatives with respect to the chemical potential can
thus be written in terms of the pressure:
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χu;d;s;ci;j;k;l ¼ ∂iþjþkþlðp=T4Þ
ð∂μ̂uÞið∂μ̂dÞjð∂μ̂sÞkð∂μ̂cÞl ð4Þ

with μ̂q ¼ μq=T. This normalization ensures that the
cumulants stay dimensionless, and become finite in the
infinite volume and infinite temperature limit. In this
normalization χ1ðT; fμqgÞ is the expected number of
quarks of the given flavor in a volume T−3.
The higher derivatives with respect to the same quark

chemical potential correspond to the higher moments of
that flavor:

mean∶ M ∼ χ1 variance∶ σ2 ∼ χ2

skewness∶ S ∼ χ3=χ
3=2
2 kurtosis∶ κ ∼ χ4=χ22: ð5Þ

In experiment, the net-charge distribution moments are
measured, each carrying an unknown volume factor. A
known caveat is the fluctuation of these volumes them-
selves. The study of these goes beyond the scope of this
paper, see [66,67]. For a fixed volume, though, the
unknown volume factor in the actual experiment can be
simply canceled out by forming ratios of cumulants of the
same conserved charge:

Sσ ¼ χ3=χ2; κσ2 ¼ χ4=χ2

M=σ2 ¼ χ1=χ2; Sσ3=M ¼ χ3=χ1: ð6Þ

Phenomenological models and experiments usually
work in the baryon number (B)–electric charge (Q)–
strangeness (S) basis. Since the charm quark plays a
negligible role in the transition region one can express
these directions in the μ space as a three-dimensional
transformation:

μu ¼
1

3
μB þ 2

3
μQ; ð7Þ

μd ¼
1

3
μB −

1

3
μQ; ð8Þ

μs ¼
1

3
μB −

1

3
μQ − μS: ð9Þ

The fluctuations of the conserved charges (B, Q and S)
can then be expressed in terms of the quark derivatives. In
addition, the (z component of the) light isospin is often
studied with μI ¼ ðμu − μdÞ. Assuming zero chemical
potential and degenerate u and d quarks on the lattice,
several simplifications occur, and we have [27,36]

χB2 ¼ 1

9
½2χu2 þ χs2 þ 4χus11 þ 2χud11 �; ð10Þ

χQ2 ¼ 1

9
½5χu2 þ χs2 − 2χus11 − 4χud11 �; ð11Þ

χI2 ¼
1

2
½χu2 − χud11 �; ð12Þ

χBQ11 ¼ 1

9
½χu2 − χs2 − χus11 þ χud11 �; ð13Þ

χBS11 ¼ −
1

3
½χs2 þ 2χus11�; ð14Þ

χQS
11 ¼ 1

3
½χs2 − χus11�: ð15Þ

Indeed, due to the u↔d degeneracy the six second-order
combinations in theB,Q, S space can be expressed in terms
of four quark correlators. Inverting Eqs. (10)–(15) one finds
the quark-flavor derivatives from the fluctuations in the
phenomenological basis. These can be used to translate the
results from the hadron resonance gas model:

χu2 ¼ 2χB2 þ χQ2 þ χBS11 ; ð16Þ

χs2 ¼ χS2; ð17Þ

χud11 ¼ 5

2
χB2 − χQ2 þ 1

2
χS2 þ 2χBS11 ; ð18Þ

χus11 ¼ −
1

2
χS2 −

3

2
χBS11 ¼ −3χQS

11 þ χS2 ¼
3

2
χB2 −

1

2
χS2 − 3χBQ11 :

ð19Þ

There are 15 fourth-order correlators in the (B, Q, S)
space that can be expressed in terms of nine fourth-order
quark correlators. The kurtosis of the baryon and the
electric charge is given by the following correlators:

χB4 ¼ 1

81
½2χu4 þ χs4 þ 6χud22 þ 12χus22 þ 8χus13 þ 8χus31

þ 8χud31 þ 24χuds211 þ 12χuds112�; ð20Þ

χQ4 ¼ 1

81
½17χu4 þ χs4 þ 24χud22 þ 30χus22 − 4χus13 − 28χus31

− 40χud31 þ 24χuds211 − 24χuds112�; ð21Þ

other mixed derivatives can be calculated analogously.
Equations (20) and (21) refer to the charmless definition

of the baryon number and the electric charge. In the
phenomenologically relevant temperature region (up to
170 MeV) this simplification has no impact on the
observables (e.g. χBQ11 ). We stress that our variables still
refer to exactly conserved charges. We will stick to the
definition in Eqs. (10) and (20) also at higher temperatures,
for the reason that the hard thermal loop results refer to
fluctuations of three light baryons, and the heavy charm
quark should not be counted in the comparison. If we do
count the charm quarks the diagonal fluctuations will read
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χ
B;ðnf¼4Þ
2 ¼ 1

9
½2χu2 þ 2χud11 þ 4χus11 þ 4χuc11 þ χs2 þ 2χsc11 þ χc2�;

ð22Þ

χ
Q;ðnf¼4Þ
2 ¼ 1

9
½5χu2 − 4χud11 − 2χus11 þ 4χuc11 þ χs2 − 4χsc11 þ 4χc2�;

ð23Þ

χ
B;ðnf¼4Þ
4 ¼ 1

81
½2χu4 þ 8χud31 þ 8χus31 þ 8χuc31 þ 6χud22 þ 24χuds211

þ 24χudc211 þ 12χus22 þ 24χusc211 þ 12χuc22 þ 12χuds112

þ 24χudsc1111 þ 12χudc112 þ 8χus13 þ 24χusc121 þ 24χusc112

þ 8χuc13 þ χs4 þ 4χsc31 þ 6χsc22 þ 4χsc13 þ χc4�;
ð24Þ

χ
Q;ðnf¼4Þ
4 ¼ 1

81
½17χu4 − 40χud31 − 28χus31 þ 56χuc31 þ 24χud22

þ 24χuds211 − 48χudc211 þ 30χus22 − 120χusc211

þ 120χuc22 − 24χuds112 þ 96χudsc1111 − 96χudc112 − 4χus13

þ 24χusc121 − 48χusc112 þ 32χuc13 þ χs4 − 8χsc31

þ 24χsc22 − 32χsc13 þ 16χc4�: ð25Þ

At high temperature, fluctuations approach the Stefan-
Boltzmann limit. For an ideal gas, the pressure at finite
chemical potential reads [68,69]

p
T4

¼ 8π2

45
þ 7π2

60
Nf þ

1

2

X

f

�
μ2f
T2

þ μ4f
2π2T4

�
: ð26Þ

For the second- and fourth-order fluctuations this means
that in the high temperature limit χ2 → 1 and χ4 → 6=π2,
and no mixed derivatives survive.

B. Fluctuations on the lattice

The standard way to introduce the chemical potential on
the lattice is to modify the temporal links, like the A4

component of a homogeneous U(1) field [70]:

U4ðμÞ ¼ eμU4; Uþ
4 ðμÞ ¼ e−μUþ

4 : ð27Þ

The fermion matrix M is built from the μ-dependent links.
In the staggered formalism, which we will use in this paper,
each fermion flavor may carry an independent chemical
potential. The fermion determinants express a single quark
flavor:

Z ¼
Z

DUe−SgðdetMuÞ1=4ðdetMdÞ1=4

× ðdetMsÞ1=4ðdetMcÞ1=4; ð28Þ

where Sg is the gauge action. To be specific, in this paper
we use the tree-level Symanzik improvement in Sg, how-
ever its form plays no role in the fluctuation-related
formulas. The derivative of the staggered fermion matrix
M takes the following from:

dM
dμ

ψðxÞ ¼ 1

2
η4ðxÞ½U4ðxÞψðxþ 4̂ÞþUþ

4 ðx− 0̂Þψðx− 4̂Þ�;

d2M
dμ2

ψðxÞ ¼ 1

2
η0ðxÞ½U4ðxÞψðxþ 4̂Þ−Uþ

4 ðx− 0̂Þψðx− 4̂Þ�;

any higher odd derivative is equal to dM=dμ, while any
higher even derivative is equal to d2M=dμ2. ηνðxÞ is the
Kogut-Susskind phase factor.
For the fourth-order μ-derivative one has to evaluate the

fourth derivatives of detM. These are traces of the fermion
matrix that have to be calculated for every generated finite
temperature configuration [26]:

Aj ¼
d
dμj

logðdetMjÞ1=4 ¼
1

4
trM−1

j M0
j; ð29Þ

Bj ¼
d2

ðdμjÞ2
logðdetMjÞ1=4

¼ 1

4
trðM00

jM
−1
j −M00

jM
−1
j M00

jM
−1
j Þ; ð30Þ

Cj ¼
d3

ðdμjÞ3
logðdetMjÞ1=4

¼ 1

4
trðM0

jM
−1
j − 3M00

jM
−1
j M0

jM
−1
j

þ2M0
jM

−1
j M0

jM
−1
j M0

jM
−1
j Þ; ð31Þ

Dj ¼
d4

ðdμjÞ4
logðdetMjÞ1=4

¼ 1

4
trðM00

jM
−1
j − 4M0

jM
−1
j M0

jM
−1
j − 3M00

jM
−1
j M00

jM
−1
j

þ12M00
jM

−1
j M0

jM
−1
j M0

jM
−1
j

−6M0
jM

−1
j M0

jM
−1
j M0

jM
−1
j M0

jM
−1
j Þ: ð32Þ

Using the simple notation ∂j for ∂=∂μj, the derivatives
can now be written for the full free energy:

∂i logZ ¼ hAii: ð33Þ

The derivative of the expectation value of any X lattice
observable is obtained as

∂jhXi ¼ hXAji − hXihAji þ h∂jXi: ð34Þ

When we derive the higher order formulas (see also [26])
we assume nonzero chemical potential and use Eq. (34)
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recursively. Setting in the end μ ¼ 0 we have, to second
order,

∂i∂j logZ ¼ hAiAji − hAiihAji þ δijhBii; ð35Þ

and to fourth order, exploiting the degeneracy between the
light quark flavors:

∂4
i logZ ¼ hA4

i i − 3hA2
i i2 þ 3ðhB2

i i − hBii2Þ
þ 6ðhA2

i Bii − hA2
i ihBiiÞ þ 4hAiCii þ hDii;

ð36Þ

∂3
u∂d logZ ¼ hA4

ui − 3hA2
ui2

þ 3ðhA2
i Bii − hA2

i ihBiiÞ þ hAiCii; ð37Þ

∂2
u∂2

d logZ ¼ hA4
ui − 3hA2

ui2 þ hB2
ui − hBui2

þ 2ðhA2
i Bii − hA2

i ihBiiÞ; ð38Þ

∂2
u∂2

s logZ ¼ hA2
uA2

si − 2hAuAsi2 − hA2
uihA2

si
þ hBuBsi − hBuihBsi
þ hA2

uBsi − hA2
uihBsi þ hA2

sBui − hA2
sihBui;

ð39Þ

∂3
u∂s logZ ¼ hA3

uAsi − 3hA2
uihAuAsi

þ 3ðhAuAsBui − hAuAsihBuiÞ þ hAsCui;
ð40Þ

∂u∂3
s logZ ¼ hAuA3

si − 3hA2
sihAuAsi

þ 3ðhAuAsBsi − hAuAsihBsiÞ þ hAuCsi;
ð41Þ

∂u∂d∂2
s logZ ¼ hA2

uA2
si − 2hAuAsi2 − hA2

uihA2
si

þ hA2
uBsi − hA2

uihBsi; ð42Þ

∂2
u∂d∂s logZ ¼ hA3

uAsi − 3hAuAsihA2
ui

þ hAuAsBui − hAuAsihBui: ð43Þ

We follow the standard stochastic strategy to calculate
the traces A…D, and evaluate them with a large number of
Gaussian random sources. If one is only interested in up to
the fourth derivative, five calls to the linear solver Mx ¼ b
are necessary for each random source. Since the operatorD
appears only in connected contributions, we do not need it
to high accuracy. A, on the other hand, appears in the
disconnected term with the most difficult cancellation, so it
needs to be evaluated more often. A requires one solver,
while C requires three solvers. Thus, if we evaluate D with
N sources, we evaluate the A operator 8N times and the B
and C operators 4N times.

It was pointed out in [26] that, when products of traces
are calculated (e.g. hAAi ∼ χud2 ), the two (or more) oper-
ators in the product must be calculated with different (or
uncorrelated) random sources. For this reason, we always
use quartets of independent sources. We typically use N ¼
128 quartets in our analysis. Multi-right-hand-side solvers
are particularly useful in this context, since these typically
achieve a higher flop rate on many supercomputers,
because the gauge fields do not have to be loaded from
the memory with each source [71].
The numerical evaluation of these diagrams with multi-

ple random sources can be accelerated by various means.
One observation was that e.g. the A operator can be split
into two parts A0 þ δA, where A0 is the result of a truncated
solver and δA is the difference between the truncated result
and the full precision solution. The advantage is that δA can
be evaluated with less sources, while the more noisy A0 is
cheaper to work with [72].

III. LATTICE ACTION AND ENSEMBLES

This work is part of the second generation thermody-
namics program of the Wuppertal-Budapest collaboration.
We use the tree-level Symanzik gauge action with 2þ 1þ
1 flavors of four times stout smeared staggered quarks [73],
with the smearing parameter ρ ¼ 0.125.

A. Zero temperature simulations
and the line of constant physics

An essential step, before thermodynamics runs can be
started with a new action, is the tuning of the mass
parameters and the determination of the scale or, in other
words, the mass and coupling renormalization of the theory
for each lattice cutoff that the thermodynamics project
intends to use. In this project we use degenerate up and
down quarks. For simplicity, we do not tune the charm
mass separately but accept the continuum extrapolated
quark mass ratio mc=ms ¼ 11.85 of Ref. [74]. The light
and strange quark masses are obtained by tuning the
following ratios to their physical values:

Rphys
S ¼ 2m2

K −m2
π

f2π
¼ 27.65; Rphys

L ¼ mπ

fπ
¼ 1.069;

ð44Þ
where we use the isospin-averaged pion and kaon masses
(mπ and mK) [75]. fπ ¼ 130.41 MeV (see Ref. [76]) is
used to set the scale.
In this paper we use the zero temperature lattice

configurations produced for the 4stout T ¼ 0 project
[77]. In the lattice spacing range a ¼ 0.188–0.077 fm
we simulate four or more ensembles for eight inverse bare
couplings β ¼ 6=g2. The rational hybrid Monte Carlo
(RHMC) streams for the ensembles are typically ∼2000
trajectories long after thermalization. We parametrized
these ensembles such that they form a �3% bracket around
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the physical point, which is defined in Eq. (44). The box
size of these zero temperature simulations was without
exception Lmπ ≳ 4.
In Fig. 1 we summarize the zero temperature configu-

rations. For each β we interpolated in the space of bare
quark masses, getting these to a few per mill accuracy. On
the left panel of Fig. 1 we show the combinations in
Eq. (44). The right panel shows the position of individual
bare parameters relative to the thus interpolated physical
point (with details given in Ref. [77]).
Our finest large volume ensemble was simulated at β ¼

4.0126 on a 963 × 144 lattice. Its parameters were extrapo-
lated and then corrected using simulations at this β in the
flavor symmetric point, where all three light quark masses
are degenerate (the charm mass staying physical).
The tuning effort using the flavor symmetric lattices goes

as follows: first, we have to acknowledge that various scale
setting schemes differ in the cutoff effects. Thus, changing
the scale setting or tuning principle may introduce different
cutoff effects on different parts of the line of constant
physics. A continuum extrapolation that spans a larger
range of lattice spacings will thus be distorted. To prevent
this from happening, we match not only the scale but also
the a2 corrections and check for the insignificance of the a4

effects whenever we are forced to switch between scale
setting schemes along the line of constant physics. In this
particular case, we chose the mass-independent renormal-
ization scheme. For a fixed gauge coupling, we define a
3þ1 flavor theory with the bare masses calculated from the
ones of the 2þ1þ1 flavor theory: m̄¼1

3
ðmuþmdþmsÞ,

mc ¼ 33.15m̄. This corresponds to a new scheme, and the
pseudoscalar mass to decay constant ratio will have an
a2 dependence. We plot this ratio in Fig. 2 (notice that, in
the 2þ 1þ 1 theory, mπ=fπ had no a-dependence by

definition). To extract the bare quark masses of the 2þ
1þ 1 dimensional theory at β ¼ 4.00 and β ¼ 4.15, we
performed several simulations in the 3þ 1 flavor theory
and interpolatedmPS=fPS in m̄ to match the extrapolation in
Fig. 2. We translated the masses back to the 2þ 1þ 1
flavor theory. At this point, we had to assume thems=mu ¼
27.63 ratio (which is consistent to our estimate from this
work) [74,78–80]. For the large volume simulation at
β ¼ 4.0126, which was running with such an indirectly
tuned mass, we show the result in Fig. 1: the physical point
is reproduced with an accuracy below one percent. The
lattice spacings are shown in the plot, for the finest lattice
we used the SU(2) low energy constants to extrapolate the
final one percent to the physical point [81].
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For even finer lattices we had to resort to a perturbative
continuation of the line of constant physics. For the scale
setting, the universal two-loop beta function does not yet
describe the data. We have an alternative scale setting
scheme w0, introduced in [82], which is based on the
gradient flow [83]. In that case, finite volume effects are
small even for lattices as small as 1.5 fm [82]. This allowed
to match again the value and a2-dependence of w0 at β ¼
4.1479 (a ≈ 0.047 fm) and β ¼ 4.2562 (a ≈ 0.038 fm).
The exploding autocorrelation times have forced us to
use extremely long update streams (approximately 50000
trajectories) in a 404 volume. For even finer lattices we
again measured and matched the flow and its leading lattice
artifacts in fixed physical volume and topological sector in
several subsequent steps. The final scale is plotted in Fig. 3.
Since w0 is of great interest for a wider community we will
discuss its value, volume dependence and other systematics
in a publication devoted solely to scale setting.
Figure 3 shows two versions of the scale setting.

Controlled continuum extrapolations are independent of
the choice of the scale setting scheme. The equivalence of
the schemes on fine lattices is evident from Fig. 3.
Nevertheless, this choice obviously influences the temper-
ature of a particular ensemble. Especially for observables
with large slope in temperature (e.g. the quark number
susceptibilities in the crossover region) the scale setting has
an impact on the continuum scaling. We propagate this
effect into the final error bars by calculating the continuum
limits with both scale settings and include this in our study
of systematics.

B. Finite temperature ensembles

We have generated three sets of ensembles, each with
multiple lattice spacings and temperatures. In the first set

we use the aspect ratio LT ¼ 3, which might have finite
volume effects, but gives a more favorable signal/noise
ratio than larger volumes. The second set has LT ¼ 4 and
covers the entire transition range up to 2Tc. Using these
ensembles we can conclude that, wherever it was possible
to perform a meaningful comparison (this includes all
second-order fluctuations and cross correlators), finite
volume effects on the LT ¼ 3 ensembles are negligible
for any lattice spacing, let alone in the continuum limit
which is the largest source of systematic errors. We see
significant finite volume effects only in the chiral con-
densate and susceptibility, which are not part of this study.
For temperatures T > 300 MeV we do not keep the lattice
geometry constant in our temperature scan, but keep the
physical volume more or less constant with LTc ≳ 2. For
the finest, Nt ¼ 16 lattices in this set we have thus used the
lattices 803 × 16, 963 × 16, 1123 × 16 and 1283 × 16 for
T ¼ 360, 440, 520 and 600 MeV, respectively. In the high
temperature range, the statistics is limited to ∼1000
configuration/temperature/lattice spacing.
Table I shows the statistics for the LT ¼ 4 ensembles in

the crossover region and in the quark gluon plasma phase.
The temperatures below 150 MeV are used to compare the
data to the predictions of the hadron resonance gas model.
The LT ¼ 3 data set is restricted to the crossover region
(see Table II). In the tables we give the number of
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FIG. 3 (color online). The lattice spacing as a function of the
inverse bare gauge coupling. The red squares show the outcome
of the zero-temperature simulations with Lmπ > 4 for fπ. The
scale in the w0 scheme from the same runs is represented by the
red circles. The blue dots correspond to smaller volumes, for
which we used w0 only. The differences coming from the two
scale setting options are part of our systematic error estimate.

TABLE I. The statistics of lattices with LT ¼ 4 aspect ratio.
The numbers count the saved and analyzed configurations, each
separated by ten RHMC updates.

T [MeV] 323 × 8 403 × 10 483 × 12 643 × 16 803 × 20

125 10514 10080 10008 5027 2060
130 5766 4625 10253 5099 2000
135 14762 10590 10060 10189 2720
140 14863 5381 15043 4959 5097
145 5784 5020 10014 5019 1280
150 5464 5067 11043 5064 1631
153 4985 5517 6410 3641 � � �
155 5613 5001 10137 5015 1726
157 5526 5409 10018 5160 1065
160 5247 5017 4973 5073 1082
165 8169 10086 10496 5000 1000
170 6005 6113 5600 5111 600
175 12018 5375 5058 5104 972
180 5007 5089 5034 5013 1000
190 4900 5031 5121 5045 992
200 5989 5002 6722 1012 1000
220 5514 5000 7231 1003 1000
240 1712 5000 8082 3947 1000
250 10695 5685 5146 � � � � � �
260 6287 5000 8623 5441 1000
270 11574 5682 5684 � � � � � �
280 7067 5003 8751 1021 558
290 7316 5680 5684 � � � � � �
300 5125 4917 5398 5310 1011
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configurations that we have analyzed for generalized quark
number susceptibilities: these are separated by ten RHMC
trajectories. The acceptance range varies between 80%
and 95%.
In the absence of visible finite volume effects in this

range, we combine the results of these with the LT ¼ 4 data
set to enhance the signal. Indeed, the fluctuations of
disconnected diagrams (especially hA4i − 3hA2i2) in
Eq. (36) are heavily penalized by large volumes. This
contribution also appears in the Taylor coefficients of the
μB expansion and is the main source of noise.

C. Continuum extrapolation

The continuum extrapolation is mostly based on all
available lattice spacings. Since fine lattices have lower
statistics, the coarsest Nt ¼ 8 results are usually included
only in nonlinear extrapolations (e.g. Aþ B=N2

t þ C=N4
t

and other variations, where A is the continuum limit).
While for some observables [e.g. χS2ðTÞ, χB2 ðTÞ] there is a

clear range of safe linear extrapolation (in most cases
Nt ≥ 10), observables that are related to pion physics
[e.g. χQ2 ðTÞ, χud11ðTÞ] show a very strong, nonlinear 1=N2

t

dependence. Only for very fine lattices (Nt ≳ 16) we see a
linear regime. Such behavior has been already reported for
the second-order cumulants [36,37].
Here we show the charge fourth and second moment for

a single temperature in the confined phase (T ¼ 130 MeV)
in Fig. 4. This plot features an additional 963 × 32 point
with 1485 analyzed configurations. We attempt several
fit models, f1ðNtÞ ¼ Aþ B expð−C=N2

t Þ resembles a
Boltzmann factor with an artifact mass vanishing as
1=N2

t . f2ðNtÞ ¼ Aþ B=N2
t þ C=N2

t = logðNtÞ is similar
to including a αa2 term into the extrapolation. The shown
continuum limit is based on the linear fit only. Taking these
continuum extrapolations one has χQ4 =χ

Q
2 ¼ 1.52ð16Þ,

which compares to 1.62 in HRG. This particular ratio will
be of direct phenomenological consequence, once the full
temperature dependence is calculated from lattice QCD.
Not all observables require the finest lattices in our data

set. Strange quark correlators receive no pion contributions,
and the small relative taste violation in the kaon sector can
be extrapolated away. We find that our data with its current
precision allow linear fitting for Nt ≥ 10. As examples we
show the up-strange correlator (χus11) and the higher order
correlator between the same quarks χus22 in Fig. 5. Both have
only disconnected contributions [see Eqs. (35) and (39)].
The parameters of the finite temperature runs have been

tuned to have the same temperature in the fπ scale setting
scheme. Since we also use the w0 scale setting scheme, in
that case the temperatures are no longer aligned and
interpolations are necessary. The alignment of the temper-
atures is also not perfect in the fπ scale setting scheme, thus
we interpolate all data sets. The interpolation is performed
by fitting a spline through several (7–9) node points with
two different sets of nodes so that the systematics of the
interpolation can be picked up by the systematic error. We
then perform the continuum extrapolation temperature by
temperature, for those temperatures for which we had data
points. The lattice artifacts of the diagonal fluctuations can

TABLE II. The number of analyzed configurations on lattices
with LT ≈ 3 aspect ratio. The configurations are separated by ten
RHMC updates.

T [MeV] 243 × 8 323 × 10 403 × 12 483 × 16 643 × 24

130 39161 7736 10351 � � � 2007
135 41462 8724 10696 9892 3000
140 39867 8550 10240 8248 1551
145 40247 8518 10348 10130 2550
150 39996 8461 10569 6717 3044
155 19953 8625 10345 10211 1546
160 20015 9174 11611 10140 2063
165 10965 9750 10219 10136 1200
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be understood from tree-level perturbative diagrams [25].
We can correct for the α-independent part of the discre-
tization errors by a T-independent factor (tree level
improvement) [84]. This factor converges to 1 in the
continuum limit. We perform the continuum extrapolation
in three possible ways: without this improvement, with the
tree-level improvement, and with the improvement factor of
the free energy, which we find empirically to also reduce
the cutoff effects at intermediate temperatures. We must
then judge for every observable separately whether we can
include the Nt ¼ 8 and Nt ¼ 10 ensembles, and which
nonlinear models are plausible and match the data. We have
given examples for this in Fig. 4, but very often we simply
add the models A=ð1þ B=N2

t Þ and Aþ B=N2
t þ C=N4

t to
the linear fit.
We treat every mentioned option independently and

perform 16–32 analyses per temperature, depending on
the complexity of the continuum scaling. We use this large
set of analyses to estimate the systematic errors temperature
by temperature using the histogram method introduced in
Refs. [85,86]. In this paper we build a histogram of the
results. The analyses with a fixed data set but different
systematics are weighted using the Akaike information
criterion (AIC) [87]. The AIC weighted results correspond-
ing to the various fit windows in 1=N2

t are combined with
uniform weights. In the case of the charm susceptibility we
calculate the systematic errors on the finite Nt points first
and then perform various continuum extrapolations which
then enter the histogram method. Since all analyses are
equal we identify the median with the result. The distri-
bution of results is not necessarily Gaussian and may
contain isolated combinations of the analysis options that
produce outliers. These do not contribute to the median.
The systematic error is the spread of the distribution.
Instead of the standard deviation we use the spread of
central 68% of the distribution, so that we do not have to
make assumptions on the tail of the distribution. The
median can be calculated for every jackknife or bootstrap

sample. We use the variance of the median as statistical
error. In the plots we show the combined errors, by adding
up the systematic and statistical errors in quadrature.

IV. RESULTS IN THE CROSSOVER REGION

Previous papers have suggested that the hadron reso-
nance gas (HRG) model provides a good description of the
data in the range 130–150 MeV [4,36,37,44,45], and
perhaps missing strange resonances might account for
the small deviations in the strangeness sector [88].
In this paper we supplement the picture with additional

continuum extrapolated data. Finite lattice spacing studies
(with or without a well improved action) can never state
with certainty whether deviations from the model are a
genuine effect. Here we compare our lattice results using
the 2014 edition of the Particle Data Book [89].
In our previous paper [37] we have calculated nearly all

the second-order fluctuations. Only the most difficult
correlator was omitted χud11ðTÞ, which is not only noisy
but had severe lattice spacing effects, similar to χQ2 ðTÞ
in Fig. 4.
The continuum extrapolation of χud11ðTÞ and the data in

the full lattice spacing range are shown in Fig. 6, together
with the up-strange correlator χus11ðTÞ. The continuum
limit for χud11ðTÞ is well described by the HRG model up
to T ≈ 155 MeV, which lies at the center of the transition
region [4,5]. The main hadrons that contribute to the
HRG prediction are the light mesons, mostly pions (the
combination of a quark with an antiquark makes the χud11
contribution negative). At high temperatures, heavier
hadrons and their resonances have non-negligible
Boltzmann factors, allowing the baryons (mostly protons)
to take over the main role and bend the curve upwards. The
important role played by the pions is also highlighted by
the staggered lattice artifacts (taste breaking) that increase
the mass of the various staggered pionlike degrees of
freedom (tastes) [90]. Looking at Eq. (18) the discretization
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FIG. 5 (color online). Examples of linear continuum extrapolations for the light-strange correlators χus11 and χus22 at various
temperatures. The error on our continuum results contains the systematics of varying the fit model, fit window, scale setting and
interpolation, see text.
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uncertainties in χud11 mostly come from the χQ2 term, shown
in the right panel of Fig. 4, they are eliminated by using fine
lattices up to Nt ¼ 24. There is no contribution to χus11 from
χQ2 [see Eq. (19)], and the discretization errors are smaller,
as expected (see Fig. 5). For χud11 the strange resonances play
no role. For χus11 any discrepancy between HRG and the
strange susceptibilities [88] is minimized since χus11 is less
sensitive to multistrange contributions and the correspond-
ing HRG now includes all relevant resonances from PDG-
2014 [89].
In lattice QCD χud11ðTÞ ∼ hAuAdi=V in the notation of

Eq. (35). The A ¼ ð1=4ÞTrM−1M0 operator is a trace over
the whole lattice. The normalized Gaussian random
sources (χ) that we use to evaluate A contribute each as
χþM−1M0χ=4 ∼ V. This C-odd estimator is widely oscillat-
ing between sources. Thus, inA and then also in the stochastic
representation of hAAi=V, large cancellations occur between
opposite-sign contributions. References [26,91] link the
phase of the fermion determinant at small μB to the odd
operatorsA andC. Indeed, the sign problem is alreadypresent
in the Taylor-expansion technique and in the calculation of
baryonic fluctuations in general.
The consequence is that the severity of the sign problem

is related to the magnitude of χud11 . In early staggered studies
one saw peak heights of ≈ − 0.005 [26], ≈ − 0.014 [29],
and ≈ − 0.05 [27], well short of today’s continuum limit
in Fig. 6. With the early actions and coarse lattices the
calculation of higher derivatives and reweighting were
easier.
Note that the light isospin susceptibility (χI2) does not

depend on the A operator, χI2 ∼ hBi, it does not contain any
disconnected diagrams at all. The fourth derivative
χI4 ∼ ½6hδB2i − hDi�=V, too, contains only C-even opera-
tors. Indeed, thermodynamics at finite isospin chemical
potential is not plagued by the sign problem.
A subset of the authors of this paper have remarked that

one can observe a hierarchy between flavors in their
fluctuations [39]. We are now extending the picture and
show the continuum extrapolations of the flavor-specific

quark number susceptibilities in Fig. 7. The HRG model
describes the light flavors reasonably well. The charm
susceptibility in Fig. 7 rises at higher temperatures,
compared to the lighter flavors. It was emphasized in
Ref. [92] that open charm with fractional baryon charge
starts appearing near the chiral crossover temperature. In
addition to the hadron resonance gas model we show a
naive quasiparticle estimate for the charm susceptibility
(see also [93]). The mass of the charm quark was fitted to
the last points (mQP

c ¼ 1430 MeV). This mass is empirical,
and may depend on the range of the matching to our lattice
data. In general the mass of the charm quark is scheme
dependent. The susceptibility curve runs near the quasi-
particle model, qualitatively confirming that χC2 is contrib-
uted to by the deconfined charm quark. Nevertheless, the
quasiparticle model’s results are overestimating the lattice
data below approximately 350 MeV. This leaves room for
multiple interpretations (e.g. T-dependent mQP

c , limitations
of the quasiparticle model or charmonium bound states that
absorb some of the free quarks).
Figures 8 and 9 detail our continuum results for the

fourth-order cumulants. The normalized strangeness
(χS4=χ

S
2) [39] and baryon cumulants (χSB=χ

B
2 ) [19,46] have
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been published in earlier papers. In these publications we
found that baryon ration was in agreement with HRG up to
≈145 MeV, whereas for the strange ratio a consistency was
observed at up to 10–15 MeV higher temperatures.
In this paper we show the fourth derivative with respect

to the light single quark chemical potential (Fig. 8). On
coarse lattices we see a strong peak around the transition
temperature.
Such a peak has indeed been expected: if QCD is in the

chiral scaling regime with an O(N) symmetry (i.e. the light
quark masses are small enough for QCD being nearly
chiral) then this scaling is expected to dominate the so-
called magnetic equation of state [94], which parametrizes
the singular part of the free energy as a reduced temperature

and the quark masses that play the role of the magnetic
field in the OðNÞ model’s language. The chemical
potential enters through its shifting effect on the transition
temperature. At finite μ, the reduced temperature is
t ∼ ðT − TcÞ=Tc − κμ2=T2, where κ is the curvature of
the QCD transition line [95]. Using the critical exponents
one has, for the nth derivative, a singular contribution of
χBn ∼ jtj2−α−n=2, with 2 − α ¼ βδð1þ 1=δÞ [96]. In the O(4)
universality class α ¼ −0.2131ð34Þ [97]. The nonanalytic
contribution of χB4 ðTÞ is thus singular in the chiral limit and
has a mild peak near Tc at finite mass, while χB6 ðTÞ changes
sign near Tc [96].
The data in Fig. 8 show that the peak is strongly reduced

on finer lattices, as if we were moving away from the chiral
limit. It will be interesting to see if this pattern is observed
with other actions with an improved dispersion relation.
Since here the Nt ¼ 24 data have insufficient statistics, we
cannot perform a controlled continuum extrapolation at all
temperatures: we call our result below Tc a continuum
estimate. What we see is that already at 145 MeV the
hadron resonance gas model is unlikely to describe the
lattice data. From our extrapolation based on Nt ¼ 8, 10,
12 and 16 lattices it is plausible to assume agreement at
135 MeV.
The baryon fourth moment shows milder lattice artifacts;

here the large statistical errors dominate over the systematic
errors (see Fig. 9). We also show χB2 ðTÞ since the second
and fourth moment receive the same prediction from the
HRG model, independently of how many baryons and
mesons are included in the resonance list. The point where
χB2 ðTÞ and χB4 ðTÞ are no longer consistent cannot be
described by any resonance list. Multibaryon states are
expected to lead to χB4 > χB2 , but here we observe the
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opposite from T > 155 MeV. The relation χB4 < χB2 moti-
vates the concept that the free energy is dominated by
objects with fractional baryon numbers: quarks. Given the
trend of the HRGmodel, it is conceivable that the departure
point from the HRG model and the respective maximum of
the fourth-order derivative (χU4 or χB4 ) are very close in
temperature.

V. RESULTS AT HIGH TEMPERATURES

In this section we show our continuum extrapolated
results at intermediate and high temperatures. The first
observables are the off-diagonal quark flavor correlators,
already shown in the transition region in Fig. 6. Increasing
the temperature range (see Fig. 10), we actually see that the
value of the light-light correlator spans more than 2 orders
of magnitude between Tc and 5Tc. Between 4Tc and 5Tc
the leading perturbative log, which was calculated at zero
quark mass [62], describes our data. The mass of the
strange quark is negligible in this observable already at a
temperature ∼240 MeV. Our data suggest that the light-
charm correlator becomes compatible with the light-light
correlator at about 4Tc, but its agreement with the leading
log starts a bit earlier. According to these data the charm

quark decouples at intermediate and high temperature from
the rest in alignment with the perturbative expectations.
This is consistent with the nearly quasiparticle behavior of
the charm quark in the diagonal fluctuation χC2 .
For the light quark number susceptibility (Fig. 11) there

are continuum results available [37,40]. Here we compare
to the recent result with the HISQ action (with a combined
analysis also using p4 data) [40]. Our result is compatible
with both Refs. [37,40] within error bars. Here we also
show the latest (improved) perturbative estimates, based on
HTLs [61] and dimensional reduction (DR) [52]. The
improvement used in Ref. [52] has reduced the renormal-
ization scale dependence enormously. Our data are approx-
imately one sigma higher than the upper edge of the yellow
band of the DR result. The central line of the band is
calculated at the renormalization scale 2πT, the upper edge
at 4πT and the lower edge at πT.
The fourth-order cumulants at high and intermediate

temperature are shown in Fig. 12. Both χU4 and χB4 are the
fourth derivative of the free energy with respect to
the chemical potential, the difference is that for the former
the chemical potential is associated with only one of the
quarks, whereas for the latter it is associated with all quarks
at the same time. Here the HTL results have a very small
renormalization scale dependence. The data confirm the
HTL prediction that the Stefan-Boltzmann limit is (almost)
reached for χB4 at intermediate temperatures, χU4 approaches
it much slower. In both cases the improved and resummed
perturbative results give an accurate description of lattice
data above 250 MeV.
This agreement may seem trivial since the lattice result is

continuum extrapolated and resummed perturbation theory
is evaluated at high temperatures, both approaches are
expected to solve QCD. There is a subtle difference,
however, between HTL theory and lattice solutions. We
simulated our ensembles with physical quark masses and
2þ 1þ 1 dynamical flavors. HTL results, on the other
hand, are available for massless quarks only, and for Nf ¼
3 as well as for Nf ¼ 4. The mass of the strange quarks
becomes irrelevant before we see agreement between lattice
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FIG. 11 (color online). Second-order diagonal fluctuations
using the single quark chemical potential χU2 vs the baryon
chemical potential χB2 ; we also compare our data to the BNL-
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data and HTLs. At intermediate temperatures the large
mass of the charm makes the Nf ¼ 3 hard thermal loop
theory the closest match to our setting. In order to compare
the same observables we do not count the baryon charge of
the charm quark in χB4 and χB2 . To estimate the effect of the
charm quark in the sea from the improved perturbation
theory side we plot the three-flavor and four-flavor result
for χU4 together in Fig. 12 (see Ref. [64]).
We close our discussion with the off-diagonal fourth-

order correlator. In Fig. 13 we show both the light-light and
the light-strange correlator. Here the effect of the strange
quark mass diminishes even sooner, at around 200 MeV.
The agreement with the HTL result starts at a temperature
T ∼ 250 MeV, in accordance with the other observables
We also show the prediction of dimensional reduction [52].

VI. CONCLUDING REMARKS

In this paper we introduced our thermodynamics pro-
gram with the four-level-smeared (4stout) staggered action.
We focused on the fluctuations of conserved charges and
updated our earlier result on second-order fluctuations [37].
Since our first paper on fluctuations, we have introduced
very fine lattices (Nt ¼ 24) in the transition range and
extended the analysis to high temperatures where a com-
parison to resummed and improved perturbation theory is
possible. We have also presented diagonal and off-diagonal
fourth-order cumulants. Here our data could be used to
determine the lowest temperature for the three-loop HTL
approximation: approximately 250 MeV.
We have studied whether the hadron resonance gas

(HRG) model gives an adequate description of the fluc-
tuation data. We find that well below the deconfinement

temperature, i.e. around 130 MeV, all studied observables
are well described by the HRG model. This was the most
difficult to demonstrate for the fourth moment of the net
charge distribution χ4Q, which is a candidate for the freeze-
out thermometer at the LHC. In this case, after adding a
963 × 32 lattice to the analysis (a ¼ 0.047 fm), our con-
tinuum extrapolation based on Nt ¼ 20, 24 and 32 lattices
is consistent with the HRG model prediction.
It is very likely that HRG does not describe all aspects of

fluctuations in QCD thermodynamics below the transition.
But for quantities for which it does one can introduce the
highest temperature of agreement between lattice and
HRG. This indicator of deconfinement is unavoidably
model dependent, even if one considers combinations that
do not or only weakly depend on the actual list of
resonances. This temperature can, however, be determined
as long as the continuum limits are feasible with a sufficient
precision. The data on our plots show in most cases an
agreement up to ∼Tc, which can move to a lower temper-
ature as our precision improves. This should not be
confused with the limiting temperature of the Hagedorn
spectrum, which can be higher. The temperature of highest
agreement is not the same for all fluctuations as it was also
suggested in Ref. [39], e.g. χU4 and very possibly χQ4 depart
from the HRG estimates at lower temperatures. This may
be a signal of the limitations of the HRG approach, but also
suggests that the transition is a broad crossover.
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APPENDIX A: CONTINUUM RESULTS

We tabulate the presented continuum extrapolated results in this Appendix. The diagonal and off-diagonal quark number
fluctuations are shown to second order in Table III and fourth order in Table IV.

TABLE III. Diagonal and off-diagonal second-order fluctuations.

T MeV χu2 χs2 χc2 χB2 χud11 χus11 χuc11

130 0.321(20) 0.114(10) 0.00004(20) −0.196ð30Þ −0.0389ð30Þ
135 0.364(30) 0.132(10) −0.00002ð10Þ 0.0376(50) −0.177ð20Þ −0.0411ð30Þ
140 0.405(20) 0.1640(70) −0.00002ð20Þ 0.0478(40) −0.202ð20Þ −0.0411ð20Þ
145 0.453(20) 0.1943(70) 0.00005(20) 0.0647(40) −0.200ð30Þ −0.0442ð30Þ
150 0.503(20) 0.2251(70) 0.00007(20) 0.0866(40) −0.174ð20Þ −0.0440ð30Þ
155 0.545(30) 0.259(10) 0.00024(30) 0.1098(50) −0.141ð20Þ −0.0424ð40Þ
160 0.599(30) 0.304(10) 0.00031(40) 0.1316(50) −0.115ð10Þ −0.0389ð50Þ
165 0.650(20) 0.352(10) 0.00035(50) 0.1507(50) −0.0962ð90Þ −0.0361ð40Þ
170 0.693(20) 0.402(20) 0.00058(70) 0.1686(50) −0.0815ð90Þ −0.0337ð30Þ
175 0.727(20) 0.449(20) 0.1843(40) −0.0687ð80Þ −0.0316ð40Þ
180 0.756(10) 0.498(20) 0.0005(10) 0.1983(30) −0.0579ð60Þ −0.0308ð40Þ
185 0.785(10) 0.542(20) 0.2109(30) −0.0482ð40Þ −0.0282ð30Þ
190 0.808(10) 0.579(20) 0.0018(10) 0.2228(30) −0.0398ð40Þ −0.0245ð30Þ
195 0.821(10) 0.611(20) 0.2327(40) −0.0336ð40Þ −0.0215ð30Þ
200 0.832(10) 0.639(20) 0.0048(20) 0.2411(40) −0.0289ð30Þ −0.0194ð40Þ
210 0.852(10) 0.691(20) 0.2539(40)
220 0.8646(90) 0.724(10) 0.0111(30) 0.2620(40) −0.0191ð50Þ −0.0135ð40Þ
230 0.8747(80) 0.7591(90) 0.2692(40)
240 0.8826(70) 0.7885(90) 0.0215(40) 0.2751(40) −0.0125ð10Þ −0.00019ð20Þ
250 0.8897(80) 0.8131(90) 0.2803(30)
260 0.8963(80) 0.8329(90) 0.0361(70) 0.2849(30) −0.0097ð10Þ −0.00032ð20Þ
270 0.9023(80) 0.8489(90) 0.2889(30)
280 0.9076(80) 0.8625(90) 0.0544(80) 0.2922(30) −0.00766ð90Þ −0.00046ð10Þ
290 0.9123(80) 0.8740(80) 0.2951(30)
300 0.9165(80) 0.8828(90) 0.076(10) 0.2976(30) −0.00621ð90Þ −0.00056ð10Þ
320 0.9238(70) 0.8943(90) 0.101(10) 0.3015(20) −0.00058ð20Þ
340 0.9296(60) 0.9028(90) 0.128(20) 0.3043(30) −0.00062ð20Þ
360 0.9339(60) 0.9091(80) 0.156(20) 0.3063(30) −0.00063ð20Þ
380 0.9374(60) 0.9150(70) 0.185(20) 0.3079(30) −0.00065ð30Þ
400 0.9388(40) 0.9206(70) 0.214(20) 0.3090(30) −0.00254ð70Þ −0.00071ð20Þ
420 0.9408(40) 0.9249(70) 0.243(20) 0.3099(20)
440 0.9427(50) 0.9327(70) 0.273(30) 0.3116(20) −0.00078ð10Þ
480 0.9451(60) 0.9368(60) 0.329(30) 0.3129(10) −0.00079ð20Þ
500 0.9462(60) 0.9383(50) 0.3134(10) −0.00169ð60Þ
520 0.9471(50) 0.9409(60) 0.384(30) 0.3139(10) −0.00072ð30Þ
550 0.9481(40) 0.9409(40) 0.3144(10) −0.00140ð60Þ
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APPENDIX B: SIMULATION PARAMETERS

In this Appendix we provide a list of simulation parameters for an extensive set the used runs (Table V). The temperatures
refer to the fπ scale setting method. We give the tentative values and remind the reader that the actual scale at the given
parameter has systematic errors that we propagate into the final results. For each lattice spacing and temperature we give
inverse coupling β, the light and strange bare quark masses (mud, ms). The charm quark mass can be calculated through
mc ¼ 11.85ms. In cases where we had different volumes the bare parameters were identical. We tabulate the parameters for
up to Nt ¼ 16, for the finer lattices with lower temperatures the parameters can be easily calculated.

TABLE V. Simulation parameters for various lattice resolutions. Note that we fixed mc ¼ 11.85ms.

Nt ¼ 8

T MeV β mud ms T MeV β mud ms

130 3.5462 0.00321128 0.0906668 190 3.7009 0.00206126 0.0578245
135 3.5620 0.00305286 0.0861789 200 3.7219 0.00195400 0.0547049
140 3.5771 0.00291258 0.0822005 220 3.7613 0.00177052 0.0493658
145 3.5914 0.00278764 0.0786528 240 3.7978 0.00161742 0.0449454
150 3.6052 0.00267563 0.0754670 260 3.8319 0.00148677 0.0412196
155 3.6185 0.00257449 0.0725853 280 3.8639 0.00137390 0.0380367
160 3.6314 0.00248254 0.0699595 300 3.8942 0.00127565 0.0352876
165 3.6438 0.00239837 0.0675501 360 3.9759 0.00104649 0.0289221
170 3.6558 0.00232086 0.0653251 440 4.0687 0.00084070 0.0232297
175 3.6676 0.00224907 0.0632590 520 4.1479 0.00070103 0.0193696
180 3.6790 0.00218228 0.0613308 600 4.2171 0.00060056 0.0165936

(Table continued)

TABLE IV. Diagonal and off-diagonal fourth-order fluctuations.

T MeV χu4 χB4 χud22 χus22

130 0.62(20) 0.034(30) 0.080(30)
135 0.73(10) 0.051(40) 0.088(30)
140 0.735(70) 0.052(30) 0.091(20)
145 0.782(90) 0.063(20) 0.098(10)
150 0.76(10) 0.067(20) 0.110(20)
160 0.801(80) 0.065(20) 0.119(20)
165 0.738(70) 0.063(20) 0.117(20)
170 0.672(60) 0.059(10) 0.176(30) 0.110(10)
175 0.057(10) 0.145(20) 0.102(10)
180 0.525(40) 0.054(10) 0.122(20) 0.093(10)
185 0.0505(90) 0.102(20) 0.089(10)
190 0.472(40) 0.0461(90) 0.088(10) 0.0819(90)
195 0.0411(80) 0.077(10) 0.0755(80)
200 0.446(20) 0.0401(80) 0.069(10) 0.0699(70)
210 0.442(20) 0.0360(60) 0.0572(90) 0.0602(60)
220 0.440(20) 0.0323(50) 0.0489(70) 0.0524(50)
240 0.435(10) 0.0274(30) 0.0385(40) 0.0411(30)
260 0.4340(90) 0.0244(20) 0.0315(30) 0.0325(30)
280 0.442(10) 0.0226(20) 0.0263(30) 0.0265(30)
300 0.4459(80) 0.0218(20) 0.0222(30) 0.0223(30)
320 0.450(10) 0.0214(20) 0.0194(50)
400 0.467(10) 0.0222(30) 0.0137(90)
440 0.462(10) 0.0206(50) 0.0110(70)
480 0.464(10) 0.0199(50) 0.0117(90)
520 0.470(10) 0.0199(50) 0.014(10)
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