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Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart
from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects
as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these
artifacts in the Polyakov-loop-extended Nambu–Jona-Lasinio (PNJL) model and compare its predictions to
existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even
qualitative agreement with lattice data requires the introduction of two novel elements in the model:
(i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the
chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge
sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to
previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data
for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our
effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an
analogous term in the lattice Wilson action.
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I. INTRODUCTION

Hadronic matter in extreme conditions such as high
temperature or high density has received considerable
attention over the past decades. However, direct numeri-
cal simulations of the theory of strong interactions—
QCD—at nonzero baryon density are a formidable
challenge due to the infamous sign problem. Large
efforts have been made to overcome this problem (see
for instance Ref. [1] for some recent proposals), yet with
limited success so far. At present, the only tools for
quantitative analysis of dense nuclear matter are phe-
nomenological effective models and, to some extent,
continuum functional methods [2].
Lattice simulations and phenomenological models can

be of mutual benefit: while numerical simulations can
provide a firm model-independent basis for effective
continuum approaches, results obtained by the latter can
be easily extrapolated to conditions where lattice tech-
niques are difficult to apply. However, there is a gap that
needs to be bridged to make this interaction possible.
Lattice simulations have to deal with several artifacts,
namely the effects of finite volume and spacetime discre-
tization, as well as the need for external sources to pick a
unique ground state whenever continuous symmetries are

expected to be spontaneously broken. Usually, it is much
easier to introduce these effects in models, rather than
eliminate them from lattice simulations.
The main goal of the present paper is to do exactly that.

We effectively reintroduce the effects of external sources
and spacetime discretization using a phenomenological
continuum model and focus on discriminating between
physics and lattice artifacts. Our work is based upon results
of recent simulations of two-color QCD (2cQCD) at high
baryon density, using two flavors of Wilson-type quarks
[3,4]. These are compared to an effective model of the
Nambu–Jona-Lasinio (NJL) type [5–7], augmented with
the Polyakov loop, which is an (approximate) order
parameter for deconfinement [8–10]. We discuss in detail
the model under the constraints of spacetime and internal
symmetries. Starting from a classification of all operators
allowed in the Lagrangian by symmetries, we propose two
modifications:

(i) Incorporation of explicit chiral symmetry breaking
in the four-fermion interaction.

(ii) Addition of a two-derivative kinetic term, mimick-
ing the lattice Wilson term.

We then show that the modification of the four-fermion
interaction is required for the model predictions to be
consistent with lattice results, at least away from the
continuum limit (at fixed lattice spacing).
We would like to stress that it is not our purpose here to

carry out a precise numerical fit of the effective model to
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available lattice data. We rather wish to gain qualitative
insight with a reasonable number of free parameters and
thus to prepare the ground for a future more detailed
quantitative study. The simple setting used here allows us to
study separately, and make robust conclusions about, the
various physical ingredients entering the problem, namely
the chiral restoration at high density and low temperature as
well as deconfinement at high temperature and moderate-
to-high density.
The outline of the paper is as follows. In Sec. II, we

review the most important properties of 2cQCD (see
Ref. [11] for a recent review). Section III is devoted to a
detailed discussion of the model. We classify all operators
up to dimension 6, allowed by the symmetries, and give a
brief overview of the qualitative changes brought about
by the nonstandard operators. Since we modify one of the
interaction terms, it is mandatory to first analyze how it
affects the physics in the vacuum. This is done in Sec. IV,
where we also fix the parameters in the quark (NJL) sector
of the model. The next two sections constitute the core of
the paper, where we investigate various lattice artifacts in
accordance with our main program. In Sec. V, we work at
zero temperature, allowing us to separate the physics of
flavor symmetry from deconfinement issues and the
Polyakov loop. We analyze in turn the effects of a diquark
source, the dependence on the quark mass, and the
modified interaction term. In Sec. VI, we add the gauge
sector to the model and study the thermodynamics
at nonzero temperature; the renormalization of the
Polyakov loop is a new element here. Subsequently, we
extract the chemical potential dependence of the temper-
ature scale in the Polyakov-loop potential, which essen-
tially determines the position of the deconfinement
crossover. In Sec. VII, we summarize and conclude.
Some calculation details can be found in the Appendix,
where we analyze in detail the consequences of the
two-derivative (Wilson) kinetic term for quarks.

II. TWO-COLOR QCD

In this paper, 2cQCD means a non-Abelian gauge
theory with the SU(2) gauge group and Nf degenerate
flavors of fundamental quarks. Two-color QCD differs in
many respects from real-world, three-color QCD, most of
them stemming from the fact that the fundamental
representation of SU(2) is pseudoreal. For instance, a color
singlet can only be made out of an even number of
quarks, and hence baryons in 2cQCD are bosons.
Consequently, dilute nuclear matter is expected to be
formed by a Bose-Einstein condensate of bosonic baryons
rather than by a Fermi sea of nucleons.
Next comes the question of the low-energy hadronic

spectrum, which is of importance for the thermodynamics
at low temperatures. The lowest-lying states in the spec-
trum are determined by the spontaneously broken flavor
symmetry in the (2c)QCD vacuum. Here, the pseudoreality

of quarks implies that the usual SUðNfÞL × SUðNfÞR ×
Uð1ÞB chiral symmetry of QCD in the limit of vanishing
quark masses is embedded in an extended SUð2NfÞ flavor
symmetry group [12]. The chiral condensate in the vacuum
breaks this to Spð2NfÞ, leading to 2N2

f − Nf − 1Goldstone
bosons. These include N2

f − 1 pseudoscalar mesons and
NfðNf − 1Þ=2 diquark-antidiquark pairs. Nonzero (degen-
erate) quark masses make these modes massive. Forming
an irreducible multiplet of the Spð2NfÞ symmetry, these
states are all degenerate with a common mass that we
denote by mπ.
The determinant of the Dirac operator of 2cQCD is

necessarily real, and for an even number of degenerate
quark flavors, it is also positive [13]. Consequently, the
theory does not suffer from the sign problem, and
Monte Carlo simulations of dense matter are possible. In
the following, we will focus exclusively on the simplest
case of two quark flavors. In this case, the usual pion triplet
is augmented by a single diquark-antidiquark pair carrying
a baryon number but no isospin. This determines the basic
topology of the phase diagram of 2cQCD. Nonzero baryon
chemical potential μB breaks the flavor symmetry down to
the usual SUð2ÞL × SUð2ÞR × Uð1ÞB chiral group; this is
natural as the additional symmetry generators following
from the pseudoreality of the quark representation do not
commute with the baryon number operator. For nonzero
(degenerate) quark masses, only the SUð2ÞV × Uð1ÞB
subgroup is exact.
When μB ≥ mπ , the diquarks are expected to undergo

Bose-Einstein condensation, which breaks Uð1ÞB sponta-
neously. Since Uð1ÞB is an exact symmetry, the baryon
superfluid phase is necessarily separated from the vacuum
by a phase transition. As the chemical potential is further
increased, one eventually enters a Bardeen-Cooper-
Schrieffer-like (BCS-like) regime where the thermodynam-
ics is dominated by a Fermi sea of quarks that form weakly
bound Cooper pairs. The order parameter for Uð1ÞB
symmetry breaking now is a composite diquark operator,
which has the same quantum numbers as the order
parameter in the BEC phase. The two regimes should
therefore be smoothly connected [14]; in this context, one
speaks of a BEC-BCS crossover [15].
If we instead crank up the temperature at zero baryon

chemical potential, we expect the physics to be more or less
similar to that of three-color QCD. Around some pseu-
docritical temperature Tc, we expect a rapid crossover from
hadronic to quark degrees of freedom, accompanied by a
rise in the expectation value of the Polyakov loop. This is
loosely referred to as deconfinement. In the same range of
temperatures, the chiral condensate melts, and we enter the
quark-gluon plasma phase.
In lattice simulations of 2cQCD with Wilson fermions,

the symmetry of the theory is affected in a twofold manner.
First, Lorentz invariance is broken to a discrete symmetry
group of the spacetime lattice, which may result in a certain
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degree of anisotropy. At the same time, the Wilson term in
the action acts as an additional source of explicit breaking
of flavor symmetry which only disappears in the continuum
limit. Since it breaks the flavor symmetry in exactly the
same way as the quark masses do, it may not be possible to
distinguish the two sources of symmetry breaking in low-
energy observables.
In our model calculations, we will focus on two classes

of observables: symmetry-breaking order parameters (con-
densates) and thermodynamic quantities such as pressure
or baryon density. We now summarize the expectations for
these observables and then describe the relevant lattice
results in order to set the stage for our analysis.

A. Chiral perturbation theory

The flavor symmetry of 2cQCD and its spontaneous
breaking are most conveniently encoded in the low-energy
effective theory for the pseudo-Goldstone modes, namely
chiral perturbation theory (χPT) [16]. Following the nota-
tion of Refs. [12,17], the pions and diquarks are expressed
in terms of a 2Nf × 2Nf antisymmetric unimodular unitary
matrix Σ, in terms of which the leading-order χPT
Lagrangian in Minkowski space reads

LχPT ¼ 1

2
f2πtrðDμΣDμΣ†Þ þHRe tr ðJΣÞ: ð1Þ

Here, fπ is the pion decay constant, and the covariant
derivative Dμ includes the baryon number chemical poten-
tial μB, DμΣ≡ ∂μΣ − iδμ0μBðBΣþ ΣBTÞ, where B is the
baryon number operator. The matrix J in general contains
sources that couple to scalar or pseudoscalar quark bilin-
ears. Here, we will need the scalar source m0 (quark mass)
and the diquark source j, in terms of which we have
J ¼ m0Σ

†
1 þ jΣ†

2. In the case of two flavors, the matrix
basis can be chosen such that

B ¼ 1

2

�
1 0

0 −1

�
; Σ1 ¼

�
0 −1
1 0

�
;

Σ2 ¼
�
τ2 0

0 τ2

�
ð2Þ

in the 2 × 2 block form, where τ2 is a Pauli matrix. Finally,
the coupling H can be fixed by expanding the Lagrangian
(1) to second order in the fluctuations about the vacuum, or
by using the Gell-Mann-Oakes-Renner relation, leading
to H ¼ f2πm2

π=m0.
As the low-energy spectrum contains excitations carry-

ing a baryon number, the leading-order chiral Lagrangian
(1) can be used to study the phase diagram of 2cQCD at
zero temperature and nonzero baryon density [18]. The
ground state at finite density is most easily visualized by
using a Lie algebra isomorphism to cast the coset space
SUð4Þ=Spð4Þ equivalently as SOð6Þ=SOð5Þ [17]. The

unitary matrix Σ can thus be mapped onto a unit 6-vector

~n via the relation Σ ¼ ~n · ~Σ, where Σi is a set of suitably
chosen basis matrices. Depending on the values of the
chemical potential(s) and the external sources, the ground
state therefore moves on a unit sphere. In the absence of an
isospin chemical potential μI and other sources except m0,
j, the symmetry of the problem can be exploited to rotate
the ground state into the (n1, n2) plane, corresponding to a
chiral condensate and a diquark condensate with a fixed
phase. The ground state can thus be parametrized by a
single angle θ such that n1 ¼ cos θ and n2 ¼ sin θ.
For the time being, we will assume that j ¼ 0. The

effects of the diquark source will be discussed in detail
in Sec. VA. The static part of the Lagrangian (1), the
maximum of which is to be found, then becomes

Lstat
χPT ¼ 2f2πμ2Bsin

2θ þ 4f2πm2
π cos θ: ð3Þ

As expected, the chiral-symmetry-breaking state θ ¼ 0 is
stable for μB < mπ. As μB further increases, the equilibrium
starts rotating into the diquark direction, and the angle of
rotation θ is given by [12]

cos θ ¼ m2
π

μ2B
: ð4Þ

This result is a priori expected to hold only within the range
of validity of χPT, in particular only in the BEC regime
where bosonic degrees of freedom dominate the physics of
dense two-color matter. It should therefore be emphasized
that, in fact, it remains at least qualitatively accurate even
for much higher values of μB. A numerical solution of the
NJL model shows that Eq. (4) holds also for chemical
potentials rather deep in the BCS phase where a Fermi sea
of quarks has been formed. The agreement between the
two approaches, based on completely different degrees of
freedom, persists at zero temperature up to μB ≈ 3mπ [19].
This can be attributed to the fact that in this range of μB,
the physics at zero temperature is almost entirely driven by
the condensates; the contribution of quark quasiparticles is
negligible.

B. Puzzle and its resolution

The above discussion hints that the quantitative aspects
of the phase diagram of 2cQCD are determined by its
symmetries even far beyond the region where one would
expect it. The results of lattice simulations are in a stark
contrast to this naive expectation. Most importantly, the
lattice data indicate a fast transition to a BCS regime just
above μB ¼ mπ; the expected bosonic BEC phase, if
present at all, is not resolved [20]. Moreover, in the
BCS regime, 2cQCD behaves as a system of weakly
interacting, almost massless quarks. This conclusion is
supported by two independent pieces of evidence [3]:
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(i) The values of pressure and baryon number density,
when normalized to their values for an ideal gas
of massless quarks—the Stefan-Boltzmann (SB)
limit—exhibit a plateau at μB ≳mπ close to 1.
The precise height of this plateau is currently hard
to determine, but its existence seems to be confirmed.

(ii) The expectation value of the color-singlet diquark
operator scales with μ2B in the same range of chemical
potentials, reminiscent of the density of states at a
sharp Fermi surface of massless relativistic fermions.

An additional, related piece of evidence is provided by the
fact that the critical temperature Td for diquark condensa-
tion saturates at high μB at a value roughly given by Td ≈
Tc=2 [4], whereas the picture of the order parameter
rotating on a unit sphere, sketched above, would naively
suggest a vastly different value, Td ≈ Tc.
How can we reconcile these observations with the

universal model-independent predictions of χPT? The
simple and short answer is we cannot. The SB scaling
of thermodynamic observables requires that the quarks are
almost massless and their quasiparticle gap, proportional to
the diquark condensate, is very small as well. It is obvious
that this cannot be true simultaneously in χPT, according
to which the sum of squares of the chiral and diquark
condensates is constant.
It is apparent that the key physical ingredient required is

the rapid transition to a BCS-like gas of almost massless
and gapless quarks at μB ≳mπ . Once this is achieved, the
other features—μ2B-scaling of the expectation value of the
diquark operator and the suppression of Td—should follow
naturally. χPT as well as effective models based on the
same symmetries lead to predictions that are at odds with
this requirement. We therefore expect explicit chiral sym-
metry breaking to play a crucial role. However, as we
demonstrate in Sec. V B, tuning the current quark mass
even to unreasonably high values is not sufficient. In the
remainder of this paper, we therefore take a rather radical
approach to the problem in which we abandon the chiral
symmetry altogether. We introduce explicit symmetry
breaking into the effective four-quark interaction and show
that this leads to the desired effect. The possible origin of
this symmetry breaking is discussed in Sec. VII.

III. MODEL

Our model is of PNJL type, which is based on quark
degrees of freedom. Thus, the only field variable is the
quark spinor ψ. For the time being, we focus on the quark
sector. The gauge sector will be discussed in detail later,
when the effects of nonzero temperature are introduced.
The form of the Lagrangian is constrained by spacetime
and internal symmetries, which we assume to be as follows:
Poincaré invariance plus the discrete symmetries of charge
conjugation, parity, and time reversal; global SU(2) color
symmetry; and Sp(4) flavor symmetry. We therefore
abandon the full SU(4) flavor group. This group is

explicitly broken down to the Sp(4) subgroup by
(degenerate) quark masses and the Wilson term in the
lattice action. The Sp(4) subgroup therefore constitutes
the true flavor symmetry of both lattice and continuum
2cQCD with massive quarks.
Finally, we make one more step which goes beyond the

usual PNJL model building. We do not restrict ourselves
to the simplest possible Lagrangian consisting of a quark
kinetic term and a four-quark interaction. Instead, we
classify all terms in the Lagrangian consistent with the
above symmetries up to dimension 6 [21]. This is in
agreement with the effective field theory philosophy where
all operators up to a given dimension allowed by symmetry
should be included [22].

A. Classification of operators

We start by classifying the operators according to their
canonical dimension. The operators are written schemati-
cally with their indices suppressed:

(i) Order 3: The only parity-even Lorentz scalar that
respects baryon number, SU(2) color, and isospin
invariance is the quark mass term ψ̄ψ . The Sp(4)
symmetry is automatically implied, but the full
SU(4) group is explicitly broken.

(ii) Order 4: Schematically, the operator must be of the
ψ̄Dψ type to respect the baryon number. Lorentz
invariance and parity together with the SU(2) color
and isospin invariance single out the usual quark
kinetic term ψ̄Dψ . The full SU(4) symmetry is
automatically implied.

(iii) Order 5: Here, we have two possibilities respecting
baryon number conservation and Lorentz invariance,
namely Dμψ̄Dμψ and Dμψ̄ ½γμ; γν�Dνψ . The latter is,
however, irrelevant for our purposes since we only
consider a purely temporal background gauge field,
representing the baryon chemical potential and the
Polyakov loop. Parity, SU(2) color, and isospin
invariance then single out the operator Dμψ̄Dμψ.
The Sp(4) symmetry is automatically implied, but
the full SU(4) group is explicitly broken. We will
refer to this operator as the Wilson term since it
closely resembles the corresponding operator in the
lattice Wilson action.

(iv) Order 6: Here, we have two schematic possibilities
respecting baryon number, namely ψ̄DDDψ and
ðψ̄ψÞ2. Lorentz invariance requires the former to
contain an odd number of Dirac matrices, and hence
it represents a higher-order correction to the kinetic
term which automatically preserves chiral sym-
metry. We will therefore drop it from further con-
sideration since we do not expect that it leads to
any qualitatively new effects. The nonderivative
operator, on the other hand, is a standard NJL-type
four-quark interaction. There are many operators of
this type that respect a given symmetry, as can be
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seen by performing a Fierz transformation of the
basic one-gluon-exchange type of operator [7]. In
the mean-field approximation, we want to build an
invariant interaction out of fermion bilinears that
carry the quantum numbers of the low-energy
degrees of freedom. The degrees of freedom that
must be present in the model are the pseudo-
Goldstone bosons: the pion triplet (represented by
ψ̄ iγ5~τψ) and the isospin-singlet diquark, which is
represented by ψ̄Cγ5σ2τ2ψ (where C stands for
charge conjugation and σ2 is the Pauli matrix in
color space). Furthermore, the operator with the
quantum numbers of a true scalar, ψ̄ψ , must be
added in order to account for the chiral condensate.
The two Sp(4)-invariant interactions that can be built
out of the squares of these operators are

ðψ̄ψÞ2 and ðψ̄ iγ5~τψÞ2 þ jψ̄Cγ5σ2τ2ψ j2: ð5Þ

The above considerations suggest the following generic
NJL-type Lagrangian,

LNJL ¼ ψ̄ðiD −m0Þψ þ κDμψ̄Dμψ þGðψ̄ψÞ2
þ λG½ðψ̄ iγ5~τψÞ2 þ jψ̄Cγ5σ2τ2ψ j2�; ð6Þ

where the covariant derivative Dμψ includes the baryon
chemical potential, and later in Sec. VI also the constant
background gauge field representing the Polyakov loop.
The dimensionless parameter λ is referred to as the chiral
twist in the remainder of this paper. The minimal NJL
model for three-color QCD amounts to skipping the last
operator inside the brackets and setting κ ¼ 0 and λ ¼ 1
[6]. The two-color version including the diquark channel,
with κ ¼ 0 and λ ¼ 1, was first introduced in Ref. [23] and
subsequently used by several other groups [24,25]. In the
following subsection, we will discuss the consequences of
the modifications introduced here.

B. Effects of chiral symmetry breaking

The classification of invariant operators has automati-
cally guided us to introducing two new couplings in the
Lagrangian. Let us start with the Wilson term proportional
to κ. As already mentioned, it mimics the discretization
artifacts introduced by the lattice Wilson action. The
presence of a two-derivative bilinear operator in the
Lagrangian leads to doubling of the fermion degrees of
freedom. For small κ, we expect the new fermion species to
be heavy with mass scaling as 1=κ. Since the Wilson term
breaks chiral symmetry explicitly, it will enhance the chiral
condensate in the vacuum. Regarding thermodynamics, we
expect the effects of theWilson term to be most pronounced
at high temperatures since the new fermion is heavy and
thus difficult to excite thermally. In addition, the presence
of a heavy fermion may lead to undesirable artifacts at high

baryon density, namely the appearance of a second Fermi
surface at high μB and low temperature. Some of the
quantitative consequences of the Wilson term will be
worked out in the Appendix.
It is the chiral twist that will play a pivotal role in our

analysis. As we abandon chiral symmetry here, the scalar
and pseudoscalar channels are no longer forced to appear
with the same strength. However, the diquark and pion
operators do enter through a fixed combination, as required
by the exact Sp(4) symmetry of two-flavor 2cQCD. This
guarantees exact mass degeneracy of pions and diquarks
and therefore that the critical chemical potential for diquark
condensation at zero temperature equals the pion mass.
A detailed analysis of the consequences of our model (6)

with the modified interaction constitutes the bulk of the
remainder of the paper. Yet some qualitative observations
can be made already now. It is clear that the existence of
a bound state in the pion channel requires λ > 0. Since
the strength of attraction in the scalar channel remains fixed
to G, the constituent quark mass in the vacuum will be
unaffected by λ. As a consequence, the pion will become
less strongly bound, and its mass will increase with
decreasing λ. The location of the BEC-BCS crossover at
zero temperature will therefore shift toward lower values of
μB=mπ , and it is conceivable that the BEC region can be
eliminated altogether. In the following, we will therefore
consider only the range 0 < λ ≤ 1.
Since the coupling in the diquark channel also decreases

with λ, we expect the diquark condensate to be suppressed.
This will sharpen the quark Fermi surface and move the
system closer to the SB limit. An additional effect which
follows from our analysis below is that the chiral con-
densate will also be suppressed as compared to the naive
expectation based on Eq. (4). Suppressing both the diquark
and the chiral condensate, the chiral twist is therefore
exactly what we need in order to explain the rapid crossover
to the gas of weakly coupled almost massless quarks.
From the strict symmetry point of view, the Wilson term

and the chiral twist should be treated on the same footing as
they break symmetry in the same way. However, a detailed
numerical investigation reveals that the Wilson term has a
rather marginal effect on the observables considered in this
paper and certainly cannot resolve the puzzle presented in
Sec. II B. We therefore take the liberty and discard the
Wilson term altogether from most of our analysis. This
step is driven by simplicity: as explained in detail in the
Appendix, including the Wilson term requires a substantial
modification of the framework including a change of
regularization scheme. At the level of accuracy, considered
in this paper, the chiral twist turns out to be the only
necessary and sufficient new ingredient in the model.

IV. VACUUM PHYSICS

In the remainder of the paper, except for the Appendix,
we set κ ¼ 0. The composite bosonic degrees of freedom σ,
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~π, Δ, and Δ� are introduced by the Hubbard-Stratonovich
transformation, adding to the Lagrangian (6) the term

ΔLNJL ¼ −
1

4G
ðσ þ 2Gψ̄ψÞ2 − 1

4λG
ð~π þ 2λGψ̄ iγ5~τψÞ2

−
1

4λG
jΔ� − 2λGψ̄ iγ5σ2τ2ψCj2: ð7Þ

The Lagrangian is now bilinear in the quark fields, and we
can integrate them out exactly. This leads to the effective
bosonic action

SeffNJL ¼ −
Z

dtd3x

�
σ2

4G
þ ~π2 þ jΔj2

4λG

�
− iTr logD; ð8Þ

where

D≡
�
iD −M − iγ5~π · ~τ Δγ5

−Δ�γ5 iD −M þ iγ5~π · ~τ

�
ð9Þ

is the Dirac operator acting on the Nambu space spanned by
red quarks and green antiquarks. We have introduced the
shorthand notation M ≡m0 þ σ for the constituent quark
mass and denoted by “Tr” the functional trace.
In the following, we work in the mean-field approxi-

mation. This means that, after taking functional derivatives
of the action (8) as appropriate, all bosonic fields are set
equal to a constant. The integrals that appear are ultraviolet
divergent, and we need to regulate them. With the excep-
tion of the Appendix, we will use a simple sharp three-
momentum cutoff Λ. Depending on the cutoff, writing the
expressions in a manifestly Lorentz-covariant form may
involve some manipulations that are not justified from a
strictly mathematical point of view. This is, however, a
well-known issue [6].
The vacuum of 2cQCD is characterized by broken chiral

symmetry. Differentiating Eq. (8) with respect to m0, we
find that the chiral condensate of a single quark flavor is
related to the σ condensate by

hūui ¼ −
σ

4G
: ð10Þ

The latter is found from the stationary point condition
δSeffNJL=δσ ¼ 0. This yields [26]

σ ¼ 16iGNcM
Z

d4k
ð2πÞ4

1

k2 −M2
¼ 8GNcM

Z
d3k
ð2πÞ3

1

ϵk
;

ð11Þ
where the quark dispersion relation in the vacuum is

ϵk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
: ð12Þ

The spectrum of pseudo-Goldstone bosons can be
determined from the polarization function (inverse

propagator), which is obtained by taking a second func-
tional derivative of the action. We already know that in
the vacuum pions and diquarks are degenerate, so we
just state the result for the pion polarization function,
simplified by using Eq. (11),

χðp2Þ ¼ −
1

2G

�
1

λ
−

σ

M

�
þ 4Ncp2Iðp2Þ; ð13Þ

where

Iðp2Þ≡ −i
Z

d4k
ð2πÞ4

1

½ðkþ pÞ2 −M2�ðk2 −M2Þ : ð14Þ

In the chiral limit, M ¼ σ, and we can immediately see
the effect of explicit chiral symmetry breaking by the
chiral twist: the pion is exactly massless only for λ ¼ 1.
In general, the pion mass squared is given by the zero
of the inverse propagator, χðm2

πÞ ¼ 0. Using the gap
equation (11) once more, we can rewrite this as

1 ¼ 8λGNc

Z
d3k
ð2πÞ3

�
1

2ϵk þmπ
þ 1

2ϵk −mπ

�
: ð15Þ

Using the Lehmann spectral representation of the pion
propagator, we can determine the coupling gπqq of the
one-pion state to the pseudoscalar quark bilinear ψ̄ iγ5~τψ,

1

g2πqq
¼ χ0ðp2Þjp2¼m2

π
¼ 16Nc

Z
d3k
ð2πÞ3

ϵk
ð4ϵ2k −m2

πÞ2
: ð16Þ

From this result, one can obtain the coupling of the
one-pion state to the axial vector current, that is, the pion
decay constant fπ . The resulting expression is

fπ ¼
gπqq
2Gm2

π

�
M
λ
− σ

�
: ð17Þ

A. Parameter fixing

The NJL model (6) with κ ¼ 0 and λ ¼ 1 is defined by
the three parameters m0, G, and Λ, which should be
determined by a fit to three independent observables. It
is customary to use the chiral condensate, pion decay
constant, and pion mass for that purpose. We follow
Ref. [24] and determine the values of these input quantities
in 2cQCD from their physical, three-color counterparts
using a naive scaling with the number of colors Nc,

hūui ¼ −ð218 MeVÞ3;
fπ ¼ 75.4 MeV; ðphysical inputÞ
mπ ¼ 140 MeV: ð18Þ

Equations (10), (15), and (17) then give us the following
values,
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G ¼ 7.23 GeV−2;

Λ ¼ 657 MeV; ðfitted parametersÞ
m0 ¼ 5.4 MeV; ð19Þ

which we will use throughout the rest of the paper unless
explicitly stated otherwise. The coupling λwill be treated as
a tunable parameter.

B. Role of the chiral twist

As explained in Sec. III B, we expect that the pion mass
increases with decreasing λ. It is clear from the left panel of
Fig. 1 that the effect is actually rather large. At λ ≈ 0.95, the
pion mass is increased by a factor of 2, and at around
λ ≈ 0.6, it reaches the (unphysical) threshold for decay into
a quark-antiquark pair. (The σ condensate in the vacuum is
to great precision equal to 300 MeV for our choice of
parameters.) At the same time, the pion decay constant
starts to drop rapidly (right panel of Fig. 1), which indicates
that the pion ceases to behave as a Goldstone boson. The
interval [0.6,1] therefore defines the range of reasonable
values for λ to which we will restrict ourselves in the
following.
To gain a more analytic insight into the λ-dependence

of physical observables, we take the derivative of Eq. (15)
with respect to λ. Using Eq. (16) allows us to rewrite the
result in the form of an exact differential equation,

dm2
π

dλ
¼ −

g2πqq
2λ2G

: ð20Þ

In the chiral limit, the pion mass will scale asymptotically
as mπ ∝

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
for λ → 1. Using in addition Eq. (17), we

readily obtain another differential equation, this time for the
pion decay constant,

f2π ¼
1

2G
ðM − λσÞ2 d

dλ
1

m2
π
: ð21Þ

This expression together with the asymptotic scaling mπ ∝ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
explains the very weak λ-dependence of fπ for λ

close to 1, see the right panel of Fig. 1. The fact that fπ is
almost constant in the range λ ∈ ½0.8; 1� also justifies
a posteriori our treatment of λ as a tunable parameter:
since the quark mass, and hence the pion mass, is a free
parameter on the lattice anyway, we have some freedom in
tuning both m0 and λ without affecting the physical
observables hūui and fπ and do not have to refit our
parameters anew for each value of λ.

V. ZERO TEMPERATURE:
CHIRAL RESTORATION

In this section, we will investigate the effects of tuning
various parameters on different physical quantities at zero
temperature. We focus on the chiral and diquark conden-
sates, the pressure, and the baryon number density. We can
therefore drop the pion field ~π in Eq. (8). Evaluating the
action for constant σ and Δ and going to Euclidean space
gives the thermodynamic potential

ΩT¼0
NJL ¼ σ2

4G
þ jΔj2
4λG

− 2Nc

X
�

Z
d3k
ð2πÞ3 E

�
k ; ð22Þ

where the quark quasiparticle dispersion relations are
defined by [27]

E�
k ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ�k Þ2 þ jΔj2

q
; ξ�k ≡ ϵk � μ: ð23Þ

The values of the condensates for a given μ are found
by direct numerical minimization of the thermodynamic
potential. The pressure is equal to −ΩT¼0

NJL conventionally

FIG. 1. Pion mass (left panel) and decay constant (right panel) as a function of λ. All other parameters are fixed according to Eq. (19).
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shifted by a constant so that the pressure is zero in the
vacuum. The baryon number density is obtained by taking
the derivative of the pressure with respect to μB, giving

nT¼0
B ¼ Nc

Z
d3k
ð2πÞ3

�
ξþk
Eþ
k

−
ξ−k
E−
k

�
; ð24Þ

where we have separated the particle and antiparticle
contributions.

A. Role of the diquark source

The first lattice simulations of dense 2cQCD with
Wilson quarks were performed with a fixed external source
j for the diquark operator [28]; only recently has the
extrapolation to a vanishing source been studied. However,
these attempts were based on fitting three data points
by a simple analytical Ansatz for the j-dependence.
Reference [3] resorted to a linear extrapolation, but as
pointed out in Ref. [4], none of the three Ansätze used
therein (linear, power law, and power law with an offset) led
to satisfactory results.
In principle, adding a diquark source to the NJL model is

straightforward and is analogous to introducing the quark
mass m0 as a source for the ψ̄ψ operator. All we need to do
is to make the shift Δ → Δþ j in the fermion part of the
thermodynamic potential (22). However, since we want to
gain analytic insight into the scaling of the Δ condensate in
the limit j → 0, the numerical solution of the NJL model is
not satisfactory. Instead, we once again employ χPT. We
have confidence in this since the NJL model and χPT give
numerically very similar results in a large range of chemical
potentials [19].
We showed below Eq. (1) how the diquark source enters

the χPT Lagrangian. Following Ref. [12], we relate the
diquark source to the quark mass by introducing a new
angle ϕ and express the chemical potential in terms of a
dimensionless parameter x, via

j ¼ m0 tanϕ≡m0
~j; x≡ μB

mπ
: ð25Þ

The static part of the Lagrangian (3) with the added diquark
source term can then be rewritten as a dimensionless
potential,

VðθÞ≡ −
Lstat
χPT

4f2πm2
π
¼ −

1

2
x2sin2θ − cos θ − ~j sin θ

¼ −
1

2
x2sin2θ −

cosðθ − ϕÞ
cosϕ

: ð26Þ

Finally, introducing the shorthand notation δ≡ sin θ for the
normalized diquark condensate, the stationarity condition
δVðθÞ=δθ ¼ 0 takes the simple form

~j ¼ δffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p − x2δ: ð27Þ

Note that for ~j ¼ 0, we recover the nontrivial solution for
the chiral condensate (4), now expressed as cos θ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
¼ 1=x2. It is easy to see that for any ~j > 0,

Eq. (27) admits a unique positive solution δð~jÞ.
The presence of the condensate in the ground state is

reflected by a specific asymptotic scaling of this solution in
the limit ~j → 0. The asymptotic expansion of δð~jÞ can be
found by an iterative solution of Eq. (27), leading to

δð~jÞ ¼
~j

1 − x2
−

~j3

2ð1 − x2Þ4 þOð~j5Þ; ðx < 1Þ;

δð~jÞ ¼ ð2~jÞ1=3 −
~j
2
þ ð2~jÞ5=3

24
þOð~j3Þ; ðx ¼ 1Þ;

δð~jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x4

r
þ

~j
x2ðx4 − 1Þ

−
3x2~j2

2ðx4 − 1Þ5=2 þOð~j3Þ; ðx > 1Þ: ð28Þ

The x ¼ 1 part is most easily obtained by writing Eq. (27)
as ~j ¼ 4tan3 θ

2
=ð1 − tan4 θ

2
Þ, first solving for θð~jÞ and then

converting this into a series for δð~jÞ. In contrast, the
solutions in the regions x < 1 and x > 1 are simple
Taylor expansions. Moreover, for x < 1, the expansion
only contains odd powers of ~j, reflecting the unbroken
discrete symmetry of Eq. (27), under which both ~j and δ
change sign. We stress that in both regions x < 1 and
x > 1, the condensate is a linear function of the source in
the limit ~j → 0, but the series convergence becomes slower
and slower as the phase transition is approached. A rough
upper bound on the range of values of ~j in which a linear
extrapolation makes sense can be obtained by comparing
the first two ~j-dependent terms of the expansion, giving
~j≲ jx2 − 1j3=2 for x close to 1 in both regions. The
convergence of the expansion can also be judged from
the exact numerical solution of Eq. (27), shown in Fig. 2.

B. Role of the quark mass

We argued in Sec. II B that reproducing the fast transition
to a gas of weakly interacting almost massless quarks at
μB ≥ mπ, as seen on the lattice, requires strong explicit
breaking of chiral symmetry. It might be tempting to think
that this effect is due to a large current quark mass. In this
section, we therefore set λ ¼ 1 and investigate the depend-
ence on m0 at zero temperature using the mean-field
approximation (22).
Since the transition to the baryon superfluid phase is

expected to occur at μB ¼ mπ , it makes sense to trade
the chemical potential for the dimensionless parameter
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x ¼ μB=mπ for the sake of comparison. This is done in
Fig. 3, where the solutions to the gap equations for the
chiral and diquark condensates are shown for several values
of m0. It is obvious, after proper rescaling, that the
prediction of χPT (4), indicated by a dashed line in the
figure, works quite well even for unreasonably heavy
quarks. (One would probably not expect an approach based
on spontaneously broken symmetry to still work even when
the mass of the pseudo-Goldstone boson reaches the scale
of the ultraviolet cutoff.) It is also clear that just tuning the

quark mass not is sufficient for our purposes, even for the
largest values of m0; the size of the quasiquark gap Δ
remains largely unaffected [29]. Moreover, the slight
reduction in the chiral condensate is canceled by the
increased current quark mass so that the constituent quark
mass is not reduced at all.
The results shown in Fig. 3 are also in a good agreement

with older lattice simulations using staggered quarks
[13,30]. There, the prediction (4) of χPT was verified
numerically for current quark masses varying by an order of
magnitude. A tiny reduction of the chiral condensate as
compared to Eq. (4), observed therein, could—exactly as in
our case—be ascribed to the relatively large current quark
mass. Since the staggered implementation of lattice quarks
preserves chiral symmetry, we conclude that heavy quarks
alone are not sufficient to explain the thermodynamic
behavior in the baryon superfluid phase observed in
Ref. [3]. An additional source of chiral symmetry breaking
is needed. On the lattice, this is provided by the Wilson
term in the action. In our NJL model, the chiral twist serves
this purpose, as we will now demonstrate.

C. Role of the chiral twist

In this section, we fix m0 to its value given in Eq. (19)
and instead vary the chiral twist. Figure 4 shows the
dependence of the chiral and diquark condensates at zero
temperature on λ. Since the pion mass is very sensitive to λ,
we again plot these quantities against the ratio x ¼ μB=mπ .
The numerical results fully confirm our expectations out-
lined in Sec. III B, namely that the diquark condensate (at
fixed x) becomes rather strongly suppressed as λ decreases.
At the same time, the chiral condensate is strongly sup-
pressed as well. We note that this is in contrast to χPT

FIG. 3 (color online). Dependence of the rescaled chiral and diquark condensate on x ¼ μB=mπ for several different values of the
current quark mass m0. Here, σ0 is the chiral condensate in the vacuum for given m0 and the other parameters as in Eq. (19). The values
of m0 in MeV are indicated in bold (the same color coding is used in both panels). The dashed line shows the prediction of χPT.

FIG. 2 (color online). Dependence of the rescaled diquark
condensate δ on the dimensionless source ~j for several different
values of the parameter x ¼ μB=mπ (given in bold).
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where the sum of the two condensates squared is constant.
The suppression of both condensates simultaneously is
exactly what we want.
How small should λ be to reach a quantitative agreement

with the lattice results of Refs. [3,4]? The suppression of
the diquark condensate leads to a suppression of the critical
temperature Td. In this paper, we are not going to compute
the critical temperature, but we can make at least an
estimate [31]. Since in the weak-coupling BCS theory as
well as in its extension, including the most important
corrections due to fluctuations, the critical temperature is
proportional to the pairing gap at zero temperature, and

since we want Td ≈ Tc=2, we need to reduce the diquark
condensate roughly by a factor of 2. This suggests that λ
should fall somewhere in the range [0.6,0.7].
Let us next consider the thermodynamic observables

baryon number density and pressure. (Since we are at zero
temperature, the energy density is linearly dependent on
these two via the Gibbs-Duhem relation.) Both quantities
are plotted in Fig. 5. The peak just after the onset of diquark
condensation at μB ¼ mπ , well formed at λ ¼ 1, is a
hallmark of BEC. As λ decreases, it is gradually washed
away, and again we need λ ∈ ½0.6; 0.7� to be able to
conclude that the BEC-like behavior has given way to

FIG. 4 (color online). Dependence of the rescaled chiral (left panel) and diquark (right panel) condensate on x ¼ μB=mπ for several
values of λ (shown in bold). Here, σ0 ≈ 300 MeV is the chiral condensate in the vacuum for our parameter set (19). The dashed line
indicates the prediction of χPT.

FIG. 5 (color online). Dependence of baryon number density (left panel) and pressure (right panel) on the chemical potential for
several values of λ (shown in bold; the same color coding as in Fig. 4 is used). Both quantities are normalized to the SB values for a gas
of free massless quarks.

JENS O. ANDERSEN, TOMÁŠ BRAUNER, and WILLIAM R. NAYLOR PHYSICAL REVIEW D 92, 114504 (2015)

114504-10



BCS-like scaling. One should, however, be aware of the
fact that the absolute height of the peak is only indicative
here, as it is very sensitive to the value of the pion decay
constant and thus to the precise values of the parameters
used [19].
Before closing this section, we would like to point out a

subtle detail concerning the dependence of our results on the
chiral twist. As may be seen already in Fig. 4, the diquark
condensation phase transition becomes first order for suffi-
ciently small λ. In order to highlight this feature, we zoom in
on Fig. 4 in the immediate vicinity of the transition. This is
shown in Fig. 6. The discontinuity of the condensates
becomes rather strong, yet the location of the transition
remains very close to μB=mπ ¼ 1. For the values of λ
considered here, it remains in the range of μB=mπ ∈
½0.98; 1�. We have confirmed numerically that around the

transition point, the thermodynamic potential has two com-
peting local minima, and we used this to locate the transition
precisely. The first-order transition only appears for suffi-
ciently low values of λ, the critical value being approx-
imately λc ≈ 0.88.
While the appearance of a first-order transition was

somewhat unexpected to us, it is not in contradiction with
symmetry or any other physical principle. The change of
the order of the transition may well be an artifact of our
model, and we therefore do not analyze it any further. It is
nevertheless interesting to note that introducing the chiral
twist provides a mechanism for a direct transition from the
vacuum to the BCS regime of weakly coupled quarks
without the necessity for an intermediate BEC phase. In any
case, we remark that the first-order transition is unlikely to
be visible in current lattice simulations, since it appears

FIG. 6 (color online). Detail of Fig. 4 close to the phase transition. The same color coding is used.

FIG. 7 (color online). Dependence of the rescaled chiral and diquark condensate on the diquark source j for λ ¼ 0.8. The values of j in
MeV are indicated in bold.
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very close to its expected position, and since even a small
external diquark source j is likely to turn it into a crossover.
This is clear from Fig. 7, showing details of the transition
for λ ¼ 0.8: an external source as small as 1 MeV is
sufficient to smooth out the transition into a crossover.

VI. NONZERO TEMPERATURE:
DECONFINEMENT

At nonzero temperature, the nature of thermal excitations
in the system becomes important, and the simple NJL
model (6) does not capture the equilibrium thermodynam-
ics of (2c)QCD correctly; at low temperatures, the relevant
degrees of freedom of 2cQCD are the pions and the
diquarks, whereas the NJL model is based on the quark
degrees of freedom. We follow the, by now, standard
procedure and take into account the confining property
of strong interactions by coupling the model to the
Polyakov loop. We have avoided doing so until now for
two reasons: (i) there is considerable freedom in the choice
of the gauge sector of the model [32], and (ii) the resulting
framework is no longer a Lagrangian field theory in the
usual sense but merely a statistical model, since there are no
dynamical gauge degrees of freedom.
At nonzero temperature, we have to add the effects of

thermal quark excitations as well as the gauge sector to
Eq. (22). The full thermodynamic potential of the PNJL
model 2cQCD then becomes [24]

ΩPNJL ¼ΩgaugeðΦÞþ
σ2

4G
þjΔj2
4λG

−2Nc

×
X
�

Z
d3k
ð2πÞ3 ½E

�
k þT logð1þ2Φe−βE

�
k þe−2βE

�
k Þ�;

ð29Þ

where Φ is the expectation value of the Polyakov loop and
ΩgaugeðΦÞ is the yet unspecified contribution of the gauge
sector.

A. Renormalization of the Polyakov loop

Before we proceed with the numerical solution of the
model, we have to address a conceptual issue related to the
Polyakov loop. On the lattice, the concept of the Polyakov
loop is rather subtle as in the naive continuum limit, its
expectation value vanishes even in the deconfined phase;
the Polyakov loop requires renormalization [33]. A simple
way to think of it is as follows. The Polyakov-loop
expectation value can be related to the free energy of a
static heavy quark immersed in the colored medium, Fq,
via Φ ∼ e−βFq . An additive renormalization of the free
energy then gives a multiplicative renormalization of the
Polyakov loop via

ΦR ¼ e−βΔFqΦ0; ð30Þ

where Φ0 is its “bare” value. On the lattice, another
interpretation of this formula is available. Using the relation
β ¼ Nτas, where Nτ is the number of lattice points in the
temporal direction and as is the lattice spacing, we have
e−βΔFq ¼ ðe−asΔFqÞNτ ≡ ZNτ

Φ . The lattice Polyakov loop
is a time-ordered product of Nτ link variables, winding
around the temporal direction. Renormalization of each
link variable by the constant factor ZΦ therefore gives
rise to a temperature-dependent renormalization of the
Polyakov loop.
In practice, the ZΦ factor is found by imposing a certain

renormalization condition. Following Refs. [3,4], we define
this condition by prescribing a value Φ̄R for the renormal-
ized Polyakov loop at a given reference temperature T̄ and
μB ¼ 0. This leads to the relation

ΦRðT; μBÞ ¼ Φ0ðT; μBÞ
�

Φ̄R

Φ0ðT̄; 0Þ
�T̄=T

: ð31Þ

The ZΦ factor is kept constant throughout the computation:
it is fixed at μB ¼ 0, and the same value is used regardless
of the baryon chemical potential.
How should we compare the prediction of our model

(29) to the renormalized Polyakov loop measured on the
lattice? Note that, depending on the reference value Φ̄R, the
renormalized Polyakov loop can in principle take on any
positive value, whereas the quantity Φ in Eq. (29) is usually
assumed (and for some choices of Ωgauge enforced) to lie in
the range [0,1]. Here, we take the point of view that in our
model, the finite-valued Φ is already renormalized, but in
some a priori unknown scheme. In order to be able to

FIG. 8 (color online). Expectation value of the rescaled
chiral condensate (black line) and the Polyakov loop (red line)
at μB ¼ 0 as a function of temperature. The data points are taken
from Ref. [4]; the highest data point is the reference point which
defines the renormalization condition. Note that in order to be
able to display both curves on the same scale, the chiral
condensate is rescaled to equal 1=2 in the vacuum.
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compare our model to lattice results, we therefore first have
to minimize the thermodynamic potential (29) with respect
to Φ and then perform an additional finite renormalization
using Eq. (31) with the same renormalization condition as
used on the lattice.

B. Zero chemical potential

We next have to make a choice for the Polyakov-loop
potential ΩgaugeðΦÞ. Some of the potentials used in the
literature include a large number of free parameters, allowing
a precise numerical fit to lattice data [9]. However, since we
aim at a qualitative understanding rather than numerical
fitting, we prefer to have a model with as few free parameters
as possible. We therefore employ the potential already used
in the context of 2cQCD in Ref. [24], motivated by the lattice
strong-coupling expansion [8],

ΩgaugeðΦÞ ¼ −bT½24Φ2e−βa þ logð1 − Φ2Þ�: ð32Þ

The parameter a is proportional to the deconfinement
temperature Tg in the pure-gauge theory via a ¼
Tg log 24. The parameter b can be related to the string
tension. While the parameters of the quark sector of the
model are fixed by Eq. (19)—the chiral twist does not affect
the mean-field thermodynamic potential at μB ¼ 0—the
parameters a, b will be determined by a fit to lattice data
for the expectation value of the Polyakov loop.
To this end, we use the conversion between the lattice

and physical units provided by Ref. [3], defined by the
reference temperature of T̄ ¼ 281 MeV for Nτ ¼ 4. We
then use the renormalization scheme B of Ref. [4], in which
Φ̄R ¼ 1=2. Our best fit to the lattice data is shown in Fig. 8
and corresponds to the values

b ¼ ð278 MeVÞ3; Tg ¼ 247 MeV: ð33Þ

In the same figure, we also display the temperature
dependence of the chiral condensate (rescaled for

FIG. 9 (color online). Expectation value of the renormalized Polyakov loop for λ ¼ 0.7 and several values of μB. The red lines
represent the best fit of the Tg parameter. The orange bands were obtained by varying Tg in order to estimate the error of the fit. The data
points are taken from Ref. [4].
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convenience to equal 1=2 in the vacuum). This demon-
strates that with the present values of the gauge sector
parameters, differing somewhat from those of Ref. [24], the
chiral and deconfinement crossovers at zero chemical
potential appear in the same range of temperatures. Note
that the location of the crossover may depend somewhat on
the choice of the renormalization condition. We prefer not
to give a single value for a pseudocritical temperature due
to the ambiguity of this concept.

C. Chemical potential dependence

With the increasing chemical potential, one generally
expects that the deconfinement crossover moves toward
lower temperatures due to the backreaction of the dense
medium to the gauge sector. However, it is notoriously
difficult to take this backreaction into account in the PNJL
model. A common way around this is to include an explicit
μB-dependence in the potential Ωgauge, usually using an
analytic Ansatz motivated by perturbation theory [34,35].
One should note that introducing such a chemical potential
dependence into Ωgauge leads to an unphysical artifact: it
gives an extra contribution to the baryon number density
that does not arise from the quark degrees of freedom of the
model. However, since Ωgauge ¼ 0 at T ¼ 0, this artifact
does not violate the “Silver Blaze” property stating that at
zero temperature, physics is independent of μB below the
onset of diquark BEC [36].
Here, we would like to make the case that the data for the

expectation value of the Polyakov loop at nonzero baryon
density of Refs. [3,4] can be exploited to obtain direct
information about the Polyakov-loop potential, without
resorting to any Ansatz. To make it as simple as possible,
we assume that b is constant and fixed by Eq. (33), while
the parameter a contains a μB-dependent temperature scale,

aðμBÞ ¼ TgðμBÞ log 24: ð34Þ

This is in accord with the ideas put forward in Ref. [34],
based on the perturbative running with the physical scale
set by the chemical potential. Figure 9 shows a comparison
of our model predictions with lattice data for different
values of μB taken from Ref. [4]. In each plot, we have
adjusted the value of TgðμBÞ to represent the lattice data
most faithfully; the quality of the fit can be assessed by
varying Tg, indicated by the bands in Fig. 9. Along with
adjusting TgðμBÞ, the μB-independent value λ ¼ 0.7 was
chosen to achieve the best overall fit. Note that this value
agrees well with the estimate λ ∈ ½0.6; 0.7� obtained in the
previous section, based on different observables for a
different thermodynamic regime, namely high density
and zero temperature.
The extracted values of TgðμBÞ are shown as the blue

data points in Fig. 10, with error bars defined by the bands
in Fig. 9. This plot provides direct information about the

backreaction of the dense medium to the gauge sector,
without the need to employ a particular analytical Ansatz
for the function TgðμBÞ. If desired, the data points in Fig. 10
can of course be fitted with a suitably chosen function
of μB.
The effect of tuning the chiral twist on the Polyakov-loop

crossover can be appreciated with the help of Fig. 11. For
λ ¼ 1, the crossover tends to be too steep. The reason is that
we are in the baryon superfluid phase and the quark gap Δ
is too large to allow thermal excitation of quarks. Hence,
the behavior of the Polyakov loop to a large extent is the

FIG. 10 (color online). Temperature scale Tg of the Polyakov-
loop potential (32) as a function of μB=mπ . The blue data points
are extracted directly from Fig. 9; the error bars are defined by the
bands therein. The red data points correspond to m0 ¼ 48 MeV,
with the other parameters of the NJL model still given by
Eq. (19); this reproduces the pion mass used in Ref. [4]. Both
data sets correspond to the same values of μB=mπ , but the red
points were slightly displaced for the sake of convenience.

FIG. 11 (color online). Expectation value of the renormalized
Polyakov loop for μB=mπ ¼ 1.24 and several different values of
λ. The same color coding as in Fig. 4 is used: decreasing λ by
steps of 0.1 moves from red (λ ¼ 1) to cyan (λ ¼ 0.6).
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same as in the pure-gauge theory. Once λ is lowered, the
quark gap is reduced, and the light quark excitations smear
out the crossover. The fact that the curves for different λ
converge at high temperatures is easy to understand: at
these temperatures, the system has already undergone the
phase transition to the normal phase (visible in some of the
curves as a small cusp) where the thermodynamic potential
is independent of λ altogether. The residual deviation
between different curves is a consequence of rescaling
μB by the λ-dependent pion mass for the sake of the plot.
Before closing the section, two remarks are in order.

First, we have not made an attempt to fit all the parameters
of our model precisely to the lattice data. As a consequence,
our pion mass (about 550 MeV for λ ¼ 0.7) differs by
about 25% from its lattice value (720 MeV in physical
units). The latter can be reproduced in our model by setting
m0 ¼ 48 MeV while keeping the other parameters in
Eq. (19) unchanged. Following the same procedure, that
is fitting the parameters a, b at μB ¼ 0 to the lattice data and
then readjusting Tg for each particular value of μB, we
arrive at the red data points shown in Fig. 10. The proximity
of the two data sets demonstrates that our results are rather
robust and to a large extent independent of the precise
model setup. Note that in this latter calculation, including a
nonzero diquark source is essential to achieve a good
agreement with the lattice data. The effect of the diquark
source on the expectation value of the Polyakov loop is
much weaker for the light quark parameter set (19), and all
results shown in Figs. 8 and 9 are understood at j ¼ 0.
Second, as can be seen in Fig. 9, our model cannot

reproduce very well the Polyakov-loop data at both low and
high temperatures. Reaching agreement here may require
going beyond the simple model of Eq. (32) and introducing
a more phenomenological gauge sector potential with a
larger number of free parameters or using input from other
methods [37]. Nevertheless, for lower temperatures and
lower μB, our simple model can reproduce the lattice data
quite well, which makes our conclusions based on sym-
metry and its explicit breaking rather robust.

VII. CONCLUSIONS AND OUTLOOK

In the present paper, we have studied in detail the PNJL
model with focus on comparing it to lattice data for 2cQCD.
We have discussed extensively the effects of strong explicit
chiral symmetry breaking due to finite quark masses and the
Wilson term in the lattice action.We argued that taking these
effects into account requires a generalization of the standard
PNJLmodel. This is accomplished by introducing the chiral
twist that incorporates explicit breaking of chiral symmetry
in the four-quark interaction term. Based on diverse pieces
of evidence, we have argued for its value in the range
λ ∈ ½0.6; 0.7�, which can simultaneously account for the
following nontrivial effects:

(i) Rapid crossover from the vacuum to a BCS-like gas
of almost massless and gapless quarks at μB ≳mπ .

(ii) Strong suppression of the critical temperature Td
for baryon number breaking as compared to the
(pseudo)critical temperature Tc for chiral restoration
at μB ¼ 0.

(iii) Strong broadening of the Polyakov-loop crossover
within the baryon superfluid phase.

We argued in Sec. V B that these effects cannot be explained
by a large current quark mass. However, this statement
should be understood within the (P)NJL model framework.
We cannot discriminate with confidence the effects of
explicit chiral symmetry breaking by lattice discretization
and by the current quark mass on the level of the 2cQCD
Lagrangian.Which of these sources of symmetry breaking is
more important can be decided with future lattice simu-
lations by varying the quark mass and lattice spacing.
In addition, we were able to extract the μB-dependent

temperature scale TgðμBÞ from the lattice data for the
expectation value of the Polyakov loop. This is a model-
independent result in the sense that it does not rely on a
particular analytical Ansatz for the μB-dependence of the
Polyakov-loop potential. However, one should not interpret
Tg as a deconfinement temperature; while the actual
transition from hadronic to quark degrees of freedom is
a smooth crossover which does not have a well-defined
critical temperature, the quantity Tg is well defined but
depends on the choice of the Polyakov-loop potential.
Our simple mean-field model of course has its limita-

tions, most importantly in that it ignores fluctuations of the
composite bosonic degrees of freedom. We therefore have
to carefully choose observables which are not sensitive to
such fluctuations. (Their effect on the phase diagram of
2cQCD was investigated in Ref. [38].) Examples of such
observables, discussed in this paper, include:

(i) Thermodynamical observables at low temperature
and high density, where the physics is dominated by a
Fermi sea of quarks as well as the chiral and diquark
condensates. Indeed, it is well known that the mean-
field BCS pairing theory works quantitatively quite
well at weak coupling and zero temperature.

(ii) Expectation value of the Polyakov loop from low to
high temperatures. The Polyakov loop couples only
indirectly to, and therefore is very mildly affected
by, the colorless diquark degrees of freedom [24].
The dominant matter contribution to the Polyakov-
loop thermodynamics comes from the colored
quarks, which we do take into account.

Observables for which the diquark fluctuations play an
essential role, and which we therefore deliberately avoid
discussing in this paper, include:

(i) Critical temperature Td for baryon superfluidity.
This is the main reason why we prefer not to plot
the phase diagram of 2cQCD.

(ii) Baryon number density in the confined phase with-
out a diquark condensate (that is, at low T as well
as μB).
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There are several open questions that we would like to
understand better and we leave them for future work. First,
we have not provided any microscopic derivation of the
chiral twist. Both interaction terms in Eq. (6) are expected
to arise as we integrate out high-momentum modes in
2cQCD to arrive at a low-energy effective description. In
particular, it would be desirable to have an explanation for
the fact that λ < 1. We simply assumed this since it leads to
the desired phenomenology.
Second, we have not touched upon the fact that in the

lattice simulations of Ref. [3], a second onset is observed at
high μB, where the thermodynamic quantities rise signifi-
cantly above their SB limits. At present, we do not have any
explanation for this effect.
Finally, we wish to make the case that current and future

lattice data for dense two-color QCD should be used to
improve our understanding of the real world. To this end, we
need a dictionary to translate between models for two-color
and three-color QCD.What we have in mind is a framework
valid for both two and three colors, augmented by amapping
of the model parameters. For example, one can use the
expected scaling based on large-Nc arguments. This was
done here and in Ref. [24] to fix the parameters of the NJL
part of the model. The gauge sector can be treated in similar
manner. Once we have a specific analytical model that
reproduces or at least fits the data for TgðμBÞ, we can extract
an improved μB-dependent Polyakov-loop potential for
QCD simply by assuming that its quark-induced part is
suppressed by a factor of 1=Nc relative to the dominant,
gluon contribution. The resulting model will allow one to
study, for example, the interplay of chiral symmetry resto-
ration and deconfinement in cold and dense quark matter.
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APPENDIX: CHIRAL MODEL
WITH A WILSON TERM

In this Appendix, we consider the effects of adding a
Wilson term to the NJL Lagrangian.

1. Three-momentum cutoff

Let us revisit the model of Eq. (6). In the mean-field
approximation, the Lagrangian describes a pair of fermion
species with squared masses

M2
� ¼ 1

2κ2
ð1þ 2κM � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4κM
p Þ; ðA1Þ

where M ¼ m0 þ σ. In the limit κ → 0, one of the masses
approachesM, as expected. The other, however, diverges as
1=κ. In lattice field theory, this mode is interpreted as the
Wilson doubler which decouples in the continuum limit.
We shall now argue that a naive three-momentum cutoff

Λ is not a suitable regulator in a theory with a heavy
doubler. To see this, consider the thermodynamic potential
in the vacuum. The thermodynamic potential is given by

Ωvac
NJL ¼ σ2

4G
− 4Nc

X
e¼�

Z
d3k
ð2πÞ3 ϵek; ðA2Þ

where ϵek ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

e

p
. The gap equation for the chiral

condensate is obtained by taking the derivative with respect
to σ. This yields

σ ¼ 4GNc

κ

X
e¼�

Z
d3k
ð2πÞ3

1

ϵek

�
1þ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4κM
p

�
; ðA3Þ

generalizing Eq. (11). The core of the problem is visible
now. In the limit κ → 0, the integrand involving the heavy
doubler approaches a nonzero constant. Hence, the heavy
fermion gives a nonzero contribution to the gap equation
even in the limit when its mass goes to infinity. The heavy
doubler does not decouple. This can be traced to the fact
that the Wilson term modifies the spectrum of the theory,
yet the momentum cutoff is sensitive to momenta only,
not to masses. We need to use some regularization scheme
which affects masses directly.

2. Pauli-Villars regularization

Implementing the Pauli-Villars (PV) scheme may be
subtle since covariant regulators in general tend to intro-
duce unphysical artifacts at finite temperature and chemical
potential. We therefore first derive the naive expression
for the thermodynamic potential with the Wilson term
and subsequently introduce the regulator. This will ensure
thermodynamic consistency.
Returning to Eq. (8) and switching to Euclidean space,

the mean-field thermodynamic potential reads

ΩPNJL ¼ ΩgaugeðΦÞ þ
σ2

4G
þ jΔj2
4λG

− 2T
X
n

Z
d3k
ð2πÞ3 log detG

−1ðωn; kÞ; ðA4Þ

where the determinant of the inverse propagator takes the
form
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detG−1 ¼ f½ðM − κK2
↑Þ2 − K2

↑�½ðM − κK2
↓Þ2 − K2

↓�
þ 2jΔj2½ðM − κK2

↑ÞðM − κK2
↓Þ − K↑ · K↓�

þ jΔj4g2: ðA5Þ
The arrows indicate momenta of red quarks and green

antiquarks, Kμ
↑;↓ ≡ ðK0

↑;↓; kÞ, with

K0
↑ ≡ iωn þ μ − iα; K0

↓ ≡ iωn − μ − iα: ðA6Þ
Furthermore,ωn ≡ ð2nþ 1ÞπT are the fermionicMatsubara
frequencies, and α is the constant background color gauge
field, related to the Polyakov-loopvariableviaΦ ¼ cosðβαÞ.
It is not easy to factorize the determinant (A5) into simple
factors corresponding to free fermionic quasiparticles for
generalΔ. In the following,we therefore setΔ ¼ 0 andmake
sure that μB is low enough so that we do not enter the baryon
superfluid phase. Note that as a consequence, λ becomes
irrelevant for the thermodynamics.
PV regularization is introduced by making the replace-

ment in Eq. (A4),

log detG−1 →
X
j

cj log detG−1
j ; ðA7Þ

where the inverse propagator G−1
j is defined analogously to

Eq. (A5) by

detG−1
j ¼ f½ðM − κK2

↑Þ2 þ jΛ2 − K2
↑�

× ½ðM − κK2
↓Þ2 þ jΛ2 − K2

↓�g2: ðA8Þ
The coefficients cj are chosen in order to cancel ultra-

violet divergences. Two simple choices, referred to as the
PV2 and PV3 schemes, correspond to j ¼ 0, 1, 2 with cj ¼
f1;−2; 1g and to j ¼ 0, 1, 2, 3 with cj ¼ f1;−3; 3;−1g
[6]. The PV2 scheme removes all the divergences, except a
residual logarithmic divergence in the thermodynamic
potential. This divergence can be eliminated by subtracting
the potential at a conveniently chosen reference point. All
derivatives of the thermodynamic potential such as the
gap equation are rendered finite. The PV3 scheme, on the
other hand, renders the thermodynamic potential finite
without further subtractions. We choose the PV3 scheme
for convenience since the PV2 scheme turns out to be
continuous but nonanalytic in the limit κ → 0.
Since at Δ ¼ 0 the Dirac determinant (A5) trivially

factorizes, it is easy to carry out the Matsubara sum, leading
to a generalization of Eq. (29), valid in the normal phase,

ΩΔ¼0
PNJL ¼ ΩgaugeðΦÞ þ

σ2

4G
− 2Nc

X
e¼�

X
�

Z
d3k
ð2πÞ3

×
X3
j¼0

cj½Ej�
ek þ T logð1þ 2Φe−βE

j�
ek þ e−2βE

j�
ek Þ�;

ðA9Þ
where

Ej�
ek≡

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

je

q
� μ

���;
M2

je ≡ 1

2κ2

�
1þ 2κM þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κM − 4jκ2Λ2

q 	
: ðA10Þ

The latter generalizes Eq. (A1) for the Wilson masses to
the PV regulator modes. Before we work out the physical
consequences, it is useful to pause and explain why we
introduced the PV regularization via Eq. (A8). Here is our
consistency checklist:

(i) The regularization manifestly cancels all divergen-
ces. This is easy to see by expanding the logarithm
of the regulated determinant (A8) in powers of Λ.
Every factor of jΛ2 is suppressed by 1=K4 for κ > 0,
or at least 1=K2 for κ ¼ 0. Since the thermodynamic
potential has a quartic divergence, three subtractions
are sufficient to make it finite.

(ii) For κ ¼ 0, our prescription reduces to the simple
replacement M2 → M2 þ jΛ2, corresponding to the
usual implementation of the PV scheme in Lorentz-
invariant theories. However, this naive replacement
does not work for nonzero κ.

(iii) Our thermodynamic potential represents a gas of
quasiparticles with masses Mje at finite chemical
potential. Since the regularization does not affect
the shift of K0 by μ, it automatically has the
Silver Blaze property [36], namely that the physics
is completely independent of μB at T ¼ 0 below the
onset of diquark condensation. Note that this
property is not necessarily preserved in some
PV-like regularizations where the whole Gram
matrix of the Dirac operator is regulated [39].

FIG. 12. Chiral condensate in the vacuum as a function of
the dimensionless combination κΛ; all the other parameters
are fixed by Eq. (A11). Note the logarithmic scale of the
horizontal axis.
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3. Vacuum physics

As the first step, we have to refit the model parameters
owing to the different regularization scheme. The same
values for the chiral condensate, pion decay constant, and
pion mass given in Eq. (18) yield the parameter values in
the PV3 scheme

G ¼ 5.11 GeV−2;

Λ ¼ 1129 MeV; ðfitted parametersÞ
m0 ¼ 5.4 MeV: ðA11Þ

The fact that the same physical observables require a
relatively high cutoff and give a comparably small con-
stituent quark mass in covariant regularization schemes is
well known [6]. The Wilson coupling κ is treated as a free
parameter.

Figure 12 shows the effect of the κ coupling on the chiral
condensate in the vacuum. As expected, the chiral con-
densate initially grows with κ. However, around κΛ ≈ 10−1,
the growth stops, and further increasing κ leads to a
suppression of the condensate. This is connected to the
fact that the PV regulator masses (A10) become complex,
and we therefore do not attach physical significance to
this threshold. Large values of κ are not physical anyway
since the masses of the two fermion species converge to
each other.
In a similar fashion, one can use Eq. (A9) to study the

consequences of the Wilson term for thermodynamics
quantities. However, we do not perform a detailed analysis
here but just remark that it does not affect the qualitative
conclusions made in this paper. At a quantitative level,
we expect κ to play a role whenever chiral symmetry is
important. In particular, the presence of an extra heavy
fermion species should manifest itself in modified thermo-
dynamics at high temperatures.
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