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A confining, symmetry-preserving, Dyson-Schwinger equation treatment of a vector ⊗ vector contact
interaction is used to formulate Faddeev equations for the nucleon and Δ-baryon in which the kernel
involves dynamical dressed-quark exchange and whose solutions therefore provide momentum-dependent
Faddeev amplitudes. These solutions are compared with those obtained in the static approximation and
with a QCD-kindred formulation of the Faddeev kernel. They are also used to compute a range of nucleon
properties, amongst them: the proton’s σ-term; the large Bjorken-x values of separate ratios of unpolarized
and longitudinally polarized valence u- and d-quark parton distribution functions; and the proton’s tensor
charges, which enable one to directly determine the effect of dressed-quark electric dipole moments
(EDMs) on neutron and proton EDMs.
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I. INTRODUCTION

A Poincaré-covariant Faddeev equation for baryons was
introduced in Ref. [1]. In principle, it sums all possible
quantum field theoretical exchanges and interactions that
can take place between the three dressed-quarks that
characterize a baryon’s valence-quark content; and first,
rudimentary computations were described in Ref. [2].
Numerous analyses of baryon properties using this frame-
work have subsequently appeared, with the level of
sophistication and breadth of application increasing
steadily, e.g. Refs. [3–23]. The computational effort
required to solve the Faddeev equation has naturally
increased as the kernels have become more complex, so
that one can consume significant resources in formulating
and tackling even straightforward problems [12,13,15].
On the other hand, numerous practical and realistic

simplifications present themselves. Chief amongst these
is suggested by the observation that bound-state studies
which employ realistic quark-quark interactions [24,25]
predict the appearance of nonpointlike color-antitriplet
quarkþ quark (diquark) correlations within baryons
[26–29]. Consequently, the baryon bound-state problem
may be transformed into solving the linear, homogeneous
matrix equation depicted in Fig. 1. The veracity of this

approximation was established in Ref. [12]; and it has
yielded a wide variety of novel predictions for baryon
structure and interactions [14,16,17,20–23]. Notably,
empirical evidence supporting the presence of diquarks
in the proton is accumulating [19,21,23,30].
The diquarks within baryons are correlated by dressed-

gluon exchange [23] and their structure is therefore
described by a Bethe-Salpeter equation [26–29]. These
correlations are thus fundamentally different from the
rudimentary, elementary diquarks introduced roughly fifty
years ago in order to simplify treatment of the three-quark
bound-state [31,32]. As highlighted by the shaded region in
Fig. 1, the two-body correlation predicted by modern
Faddeev equation studies is not frozen: all dressed-quarks
participate in all diquark clusters [23]. The baryon spectrum
produced by this Faddeev equation should therefore
possess significant overlap with that of the three-quark

FIG. 1 (color online). Poincaré covariant Faddeev equation. Ψ
is the Faddeev amplitude for a baryon of total momentum
P ¼ pq þ pd. The shaded rectangle demarcates the kernel of
the Faddeev equation: single line, dressed-quark propagator; Γ,
diquark correlation amplitude; and double line, diquark propa-
gator. (See Sec. II for details.)
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constituent model and bear no simple relationship with that
of the quarkþ elementary-diquark picture.
Given that solving the Faddeev equation can demand

extensive numerical analysis, many authors have sought
simplifications. A drastic approach is to replace the Bethe-
Salpeter kernel for the quark-quark system by a momentum-
independent interaction, a motivation for which may be
found in the Nambu–Jona-Lasinio model [33,34]. On the
other hand, following a body of recent work [14,35–44] it
may also be viewed differently. Namely, since gluon propa-
gation is characterized by a mass-scale mg ≃ 0.5 GeV,
which screens infrared field modes [25,45–56], a vector ⊗
vector contact-interaction can be a realistic representation of
the quark-quark scattering kernel in QCD so long as the
momentum scales being resolved are smaller than mg.
Indeed, a symmetry-preserving Dyson-Schwinger equation
(DSE) treatment of this interaction yields many results that
are practically indistinguishable from those obtainedwith the
most sophisticated kernels that have thus far been employed
[57–62].
Recall now that quark exchange within the Faddeev

equation kernel, highlighted by the shading in Fig. 1,
guarantees that no single dressed-quark is treated differ-
ently from the others. This exchange also provides addi-
tional binding within the baryon. Here, in the context of a
contact vector ⊗ vector quark-quark interaction, which
produces diquark correlations amplitudes (Γ in Fig. 1) that
are momentum-independent, dynamical quark-exchange is
the only feature of the Faddeev kernel which can introduce
momentum dependence into the baryon Faddeev ampli-
tude, Ψ. This complication, too, may be avoided if one
employs a “static approximation” for the exchanged quark,
viz. [3]

SðpÞ ¼ 1

iγ · pþM
→

1

M
; ð1Þ

where M ≈ 0.4 GeV is the momentum-independent
dressed-quark mass obtained in solving the gap equation
using a contact interaction that provides an efficacious
phenomenology. Using Eq. (1), or variants thereof, the
Faddeev equation collapses to a simple algebraic expres-
sion, whose solution provides both a baryon’s mass and a
momentum-independent Faddeev amplitude, which
expresses the relative strength of various possible diquark
correlations in the bound-system [38].
Today, Eq. (1) is often a convenience, not a necessity. It

is employed by some authors because it can assist with the
development of intuition about the bound three-valence-
quark system and its properties. Furthermore, where
comparisons with more sophisticated studies can be made,
such as for the nucleon,Δ-baryon, and the Roper resonance
[13,21,22], the static-approximation provides an equally
good description of baryon masses. On the other hand, it
provides a flawed description of hadron elastic and

transition form factors because it leads to extreme hard-
ening [21], and fails completely in describing the internal
structure of the Roper resonance [22].
Herein we therefore analyze the nucleon and, to a lesser

extent, Δ-baryon Faddeev equations using the contact-
interaction but eschewing the static-approximation, with an
aim of determining whether the increased complexity
brings benefits which outweigh the loss of simplicity.
We formulate the associated Faddeev equations in
Sec. II and describe a procedure for their solution in
Sec. III. The results for the masses and amplitudes are
presented and discussed in Sec. IV.
As noted at the outset, the Faddeev equation is important

because its solutions enable computation of numerous
observable properties of baryons. Hence, in Sec. V we
present results for the nucleon σ-term, Bjorken-x ¼ 1
values for the separate ratios of unpolarized and longitu-
dinally polarized u- and d-quark parton distribution func-
tions (PDFs), the proton’s tensor charges, and derived
results for the neutron and proton electric dipole moments
(EDMs). We conclude in Sec. VI.

II. CONTACT-INTERACTION AND
THE FADDEEV EQUATION

A. Gap equation

The basic pieces of the Faddeev equation in Fig. 1 are the
dressed-quark and -diquark propagators, and the diquark
Bethe-Salpeter amplitudes. The dressed-quark propagator
is obtained from a gap equation:

S−1ðpÞ ¼ ðiγ · pþmbmÞ þ ΣðpÞ; ð2aÞ

ΣðpÞ ¼
Z

Λ

dq
g2Dμνðp − qÞ λ

a

2
γμSðqÞ

λa

2
Γνðq; pÞ: ð2bÞ

Here Dμν is the gluon propagator; Γν, the quark-gluon
vertex;

R
Λ
dq, a symbol representing a Poincaré invariant

regularization of the four-dimensional integral, with Λ the
regularization mass-scale; and mbmðΛÞ is the current-quark
bare mass. We employ a confining, symmetry-preserving
DSE treatment of a vector ⊗ vector contact-interaction,
which is implemented by writing

g2Dμνðp − qÞ ¼ δμν
4παIR
m2

G
; ð3Þ

where mG ¼ 0.5 GeV is a gluon mass-scale typical of
QCD and the fitted parameter αIR ¼ 0.36π is commensu-
rate with contemporary estimates of the zero-momentum
value of a running-coupling in QCD [25]. This interaction
is embedded in a rainbow-ladder (RL) truncation of the
DSEs [63,64], viz. one writes

Γνðp; qÞ ¼ γν ð4Þ
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in the gap equation and in the subsequent construction of
the Bethe-Salpeter kernels. Notably, with realistic inter-
actions [24], the RL truncation is known to be reliable for
properties of the following ground-states: isospin-nonzero-
pseudoscalar- and vector-mesons, and octet and decuplet
baryons [57–62].
Using Eqs. (3), (4), the gap equation becomes

S−1ðpÞ ¼ iγ · pþmþ 16π

3

αIR
m2

G

Z
Λ

dq
γμSðqÞγμ: ð5Þ

We have assumed isospin symmetry, so that mu ¼ m ¼ md
and strong interactions do not distinguish between u and d-
quarks, and use a Euclidean metric, which is detailed in
Appendix A of Ref. [14]. Equation (5) possesses a
quadratic divergence; but if that is regularized in a
Poincaré covariant manner, the solution is

SðpÞ−1 ¼ iγ · pþM; ð6Þ

where M is momentum-independent and determined by

M ¼ mþM
4αIR
3πm2

G

Z
∞

0

ds s
1

sþM2
: ð7Þ

We implement a confining regularization of the contact-
interaction by following Ref. [65] and writing

1

sþM2
¼

Z
∞

0

dτ e−τðsþM2Þ ð8Þ

→
Z

τ2ir

τ2uv

dτ e−τðsþM2Þ ¼ e−ðsþM2Þτ2uv − e−ðsþM2Þτ2ir
sþM2

; ð9Þ

where τir;uv are, respectively, infrared and ultraviolet
regulators. This will be our definition of

R
Λ
dq. Evidently,

a finite value of τir ≕ 1=Λir in Eq. (9) implements confine-
ment by ensuring the absence of quark production thresh-
olds in color singlet amplitudes. It is worth adding to this
remark. Contemporary theory predicts that both quarks and
gluons acquire mass distributions, which are large at
infrared momenta [25,45–56,66–69]. The generation of
these mass distributions leads to the emergence of a length-
scale ς ≈ 0.5 fm, whose existence is evident in all modern
studies of dressed-gluon and -quark propagators and which
signals a marked change in their analytic properties. In this
realization, which has been canvassed by numerous authors
(e.g. Refs. [70–75] and citations thereof), confinement is a
dynamical process that may be realized via Eq. (9).
The interaction in Eq. (3) does not define a renormaliz-

able theory and hence Λuv ≔ 1=τuv cannot be removed.
Instead, it plays a dynamical role, setting the scale of all
dimensioned quantities. Using Eq. (9), the gap equation
becomes

M ¼ mþM
4αIR
3πm2

G
CiuðM2Þ; ð10Þ

where CiuðωÞ=ω ¼ C̄iuðωÞ ¼ Γð−1;ωτ2uvÞ − Γð−1;ωτ2irÞ,
with Γðα; yÞ being the incomplete gamma-function.
Solutions are listed in Table I. N.B. It is a feature of
Eq. (10) that in the chiral limit, m ¼ m0 ¼ 0, a nonzero
solution for M0 ≔ limmf→0Mf is obtained so long as αIR
exceeds a minimum value. With Λir;uv as specified in the
table, that value is αcIR ≈ 0.16π. This appearance of “mass
from nothing” expresses the phenomenon of dynamical
chiral symmetry breaking (DCSB), which is the source of
more than 98% of the mass of visible material in the
Universe [76].

B. Diquark correlations

It has long been known [26] that scalar and axial-vector
diquark correlations are overwhelmingly dominant in the
nucleon because all are positive-parity states and the
correlation masses satisfy mqq0þ, mqq1þ ≲mN . Notably,
theΔ-baryon involves only axial-vector diquarks because it
is impossible to build an isospin-3=2 state from a dressed-
quark and an isospin-zero scalar diquark.
A contact interaction treatment of diquark correlations is

detailed in Sec. 2.2 of Ref. [14]. In this case, the scalar and
axial-vector diquarks are described by the following
amplitudes:

Γ0þ
qqðPÞ ¼ iγ5Eqq0ðPÞ þ

1

M
γ5γ · PFqq0ðPÞ; ð11aÞ

iΓ1þ
qqμðPÞ ¼ iγTμEqq1ðPÞ; ð11bÞ

where Pμγ
T
μ ¼ 0. These amplitudes do not depend on the

quark-quark relative momentum; and in all applications
they are canonically normalized (qþ ¼ qþ P,
SPμ

ðqþÞ ≔ ∂SðqþÞ=∂Pμ):

Pμ ¼ 2 tr
Z

Λ

dq
Γ0þ
qqð−PÞSPμ

ðqþÞΓ0þ
qqðPÞSðqÞ; ð12aÞ

Pμ ¼
2

3
tr
Z

Λ

dq
Γ1þ
qqαð−PÞSPμ

ðqþÞΓ1þ
qqαðPÞSðqÞ: ð12bÞ

TABLE I. Computed dressed-quark properties, required as
input for the Bethe-Salpeter and Faddeev equations, and derived
scalar and axial-vector diquark properties. All results obtained
with αIR ¼ 0.36π and (in GeV) Λir ¼ 0.24, Λuv ¼ 0.905. N.B.
These parameters are taken from the spectrum calculation of
Ref. [38]. (Dimensioned quantities are listed in GeV.)

M0 mu Mu mqq0þ mqq1þ Eqq0 Fqq0 Eqq1

0.36 0.007 0.37 0.78 1.06 2.74 0.31 1.30
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The computed values of the correlation mass-scales and the
constants which characterize the amplitudes are listed in
Table I.

C. Faddeev equation

Numerous details relating to the Faddeev equation
treatment of the nucleon and Δ-baryon are provided else-
where (e.g. Sec. 3 and Appendix C in Ref. [14]). Here we
merely recapitulate the main ideas, as they are relevant to
our analysis.
The nucleon Faddeev amplitude is

Ψ ¼ Ψ1 þΨ2 þΨ3; ð13Þ

where the subscript identifies the bystander quark and, e.g.
Ψ1;2 are obtained from Ψ3 by a cyclic permutation of all
quark labels. As remarked above, the nucleon is composed
from a sum of scalar and axial-vector diquark correlations:

Ψ3ðpj; αj; τjÞ ¼ N 0þ
3 þN 1þ

3 ; ð14Þ

with ðpj; αj; τjÞ representing the momentum, spin and
flavor labels of the quarks constituting the bound state,
and P ¼ p1 þ p2 þ p3 is the system’s total momentum.
The scalar diquark piece in Eq. (14) is

N 0þ
3 ðpi;αi; τiÞ ¼ ½Γ0þðKÞ�τ1τ2α1α2

Δ0þðKÞ½Sðl;PÞuðPÞ�τ3α3 ;
ð15Þ

where S is a 4 × 4 Dirac matrix, which describes the
relative quark–scalar-diquark momentum correlation
within the nucleon, the spinor satisfies

ūðPÞðiγ · PþmNÞ ¼ 0 ¼ ðiγ · PþmNÞuðPÞ; ð16Þ

with mN the nucleon mass, K ¼ p1 þ p2 ≕ pf12g,
l ≔ ð−pf12g þ 2p3Þ, and

Δ0þðKÞ ¼ 1

K2 þm2
qq0þ

ð17Þ

is the scalar diquark propagator. The color antisymmetry of
Ψ3 is implicit in ΓJP , with the Levi-Civita tensor, ϵc1c2c3 ,
expressed via the antisymmetric Gell-Mann matrices, viz.
ϵc1c2c3 ¼ ðHc3Þc1c2 when

fH1 ¼ iλ7; H2 ¼ −iλ5; H3 ¼ iλ2g: ð18Þ

The axial-vector component in Eq. (14) is

N 1þ
3 ðpi;αi; τiÞ
¼ ½tiΓ1þ

μ ðKÞ�τ1τ2α1α2
Δ1þ

μν ðKÞ½Ai
νðl;PÞuðPÞ�τ3α3 ; ð19Þ

where Aν is a 4 × 4 Dirac matrix, which describes the
relative quark–pseudovector-diquark momentum correla-
tion within the nucleon, the symmetric isospin-triplet
matrices are

tþ ¼ 1ffiffiffi
2

p ðτ0 þ τ3Þ; t0 ¼ τ1; t− ¼ 1ffiffiffi
2

p ðτ0 − τ3Þ

ð20Þ

and, with T1
μνðKÞ ¼ δμν þ KμKν=mqq1þ ,

Δ1þ
μν ðKÞ ¼ 1

K2 þm2
qq1þ

T1
μνðKÞ: ð21Þ

The Δ-baryon contains only an axial-vector diquark:

ΨΔ
3 ðpi; αi; τiÞ ¼ D1þ

3 ; ð22Þ

and when computing the mass and Faddeev amplitude one
can focus on theΔþþ, owing to isospin symmetry, in which
case:

D1þ
3 ¼ ½tþΓ1þ

μ ðKÞ�τ1τ2α1α2
Δ1þ

μν ðKÞ½Dνρðl;PÞuρðPÞ�τ3α3 ; ð23Þ

where Dνρ is a 4 × 4 Dirac matrix, which describes the
relative quark–pseudovector-diquark momentum correla-
tion within the Δþþ, and uρðPÞ is a Rarita-Schwinger
spinor (see Appendix A of Ref. [14] for details).
The Dirac-matrix structure of Eqs. (15), (19) may be

expressed as follows:

Sðl;PÞ ¼
X2
n¼1

snðl;PÞτnðl;PÞ; ð24aÞ

Ai
μðl;PÞ ¼

X8
n¼3

ainðl;PÞτnμðl;PÞ; i ¼ þ; 0; ð24bÞ

where snðl;PÞ and ainðl;PÞ are scalar functions of l2, l · P,
and the 4 × 4 matrices fτi; τjμji ¼ 1; 2; j ¼ 3;…; 8g are
defined in Eq. (A1) of Appendix A. The Δ-baryon
amplitudes may be expressed similarly:

Dνρðl;PÞ ¼
X8
n¼1

fnðl;PÞτnνρðl;PÞ; ð25Þ

where fnðl;PÞ are scalar functions and the 4 × 4 matrices
fτiνρji ¼ 1;…; 8g are defined in Eq. (A2).

SHU-SHENG XU et al. PHYSICAL REVIEW D 92, 114034 (2015)

114034-4



One can now express the Faddeev equation for Ψ3:

�
Sðk;PÞuðPÞ

Ai
μðk;PÞuðPÞ

�

¼ −4
Z

Λ

dl
Mðk; l;PÞ

�
Sðl;PÞuðPÞ

Aj
νðl;PÞuðPÞ

�
; ð26Þ

where

Mðk; l;PÞ ¼
�

M00 ðM01Þjν
ðM10Þiμ ðM11Þijμν

�
; ð27Þ

with

M00 ¼ Γ0þðlqqÞSTðlqq − kqÞ
× Γ̄0þð−kqqÞSðlqÞΔ0þðlqqÞ; ð28aÞ

ðM01Þjν ¼ tjΓ1þ
μ ðlqqÞSTðlqq − kqÞ

× Γ̄0þð−kqqÞSðlqÞΔ1þ
μν ðlqqÞ; ð28bÞ

ðM10Þiμ ¼ Γ0þðlqqÞSTðlqq − kqÞti

× Γ̄1þ
μ ð−kqqÞSðlqÞΔ0þðlqqÞ; ð28cÞ

ðM11Þijμν ¼ tjΓ1þ
ρ ðlqqÞSTðlqq − kqÞti

× Γ̄1þ
μ ð−kqqÞSðlqÞΔ1þ

ρν ðlqqÞ: ð28dÞ

where: lq ¼ lþ P=3, kq ¼ kþ P=3, lqq ¼ −lþ 2P=3,
kqq ¼ −kþ 2P=3; Γ̄ ¼ C†ΓðPÞTC, with C ¼ γ2γ4 being
the charge conjugation matrix, C† ¼ −C; and the super-
script “T” denotes a transposing of all matrix indices.
At this point one can use isospin symmetry to define

Aðk;PÞ ≔ A0ðk;PÞ ¼ −Aþðk;PÞ= ffiffiffi
2

p
and therewith sim-

plify Eq. (26):

�
Sðk;PÞuðPÞ
Aμðk;PÞuðPÞ

�

¼ −4
Z

Λ

dl
M̄ðk; l;PÞ

�
Sðl;PÞuðPÞ
Aνðl;PÞuðPÞ

�
; ð29Þ

where, with all entries referring to i, j ¼ 0,

M̄ðk; l;PÞ ¼
�
M00 3ðM01Þν
ðM10Þμ −ðM11Þμν

�
: ð30Þ

The Δ-baryon Faddeev equation is

Dλρðk;PÞuρðPÞ

¼ 4

Z
Λ

dl
MΔ

λμðk; l;PÞDμσðl;PÞuσðPÞ; ð31Þ

with

MΔ
λμðk; l;PÞ ¼ tþΓ1þ

σ ðlqqÞ
× STðlqq − kqÞtþΓ̄λð−kqqÞSðlqÞΔ1þ

σμðlqqÞ:
ð32Þ

III. DEFINING AND SOLVING THE
FADDEEV EQUATIONS

A. Scalar equations

Since we are not going to employ the so-called static-
approximation, Eq. (1), the Faddeev equations must be
solved numerically, with momentum-dependent results for
all the functions in Eqs. (24), (25). To begin that process,
we define a set of Dirac-matrix-valued projection operators,
Eqs. (A3), (A4) in Appendix A, in order to convert
the linear, homogeneous, Dirac-matrix-valued Faddeev
equations into a set of equations for these scalar functions.
Left-multiplying Eq. (29) with the projection operators,
right-multiplying with ūðPÞ, and forming the spinor trace,
one obtains:

ϕN
mðk;PÞ ¼ −4

Z
Λ

dl

X8
n¼1

Kmn
N ϕN

n ðl;PÞ; ð33Þ

where each kernel entry Kmn
N is a function of k2, l2, k · P,

l · P, k · l, and we have defined

ϕN
mðk;PÞ ≔

�
smðk;PÞ; m ¼ 1; 2

amðk;PÞ; m ¼ 3;…; 8
; ð34Þ

Kmn
N ≔

8>>>>><
>>>>>:

Kmn
00 ; m ¼ 1; 2; n ¼ 1; 2

Kmn
01 ; m ¼ 1; 2; n ¼ 3;…; 8

Kmn
10 ; m ¼ 3;…; 8; n ¼ 1; 2

Kmn
11 ; m ¼ 3;…; 8; n ¼ 3; � � � ; 8

; ð35Þ

where the form of the entries is obvious, given the
description above and Eq. (A6), e.g.

Kmn
00 ¼ trτ̄mðk;PÞΓ0þðlqqÞSTðlqq − kqÞΓ̄0þð−kqqÞ

× SðlqÞΔ0þðlqqÞτnðl;PÞΛþðPÞ: ð36Þ

Following a similar procedure, an analogous equation for
the Δ-baryon is readily obtained:

ϕΔ
mðk;PÞ ¼ 4

Z
Λ

dl

X8
n¼1

Kmn
Δ ϕΔ

n ðl;PÞ; ð37Þ

where
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Kmn
Δ ¼ tr τ̄mλνðk;PÞΓ1þ

ρ ðlqqÞSTðlqq − kqÞΓ̄1þ
λ ð−kqqÞ

× SðlqÞΔ1þ
ρσ ðlqqÞτnσκðl;PÞRΔ

κνðPÞ: ð38Þ

B. Regularized equations

As is typical for bound-state equations founded on a
contact interaction, Eqs. (33), (37) involve divergences,
which we tame by using the confining regularization
procedure described in connection with the gap equation,
Eqs. (8), (9). For illustration, consider the first entry on the
right-hand-side (rhs) in the equation for ϕN

1 ðk;PÞ, viz.
Z

Λ

dl
K11

N ϕN
1 ðl;PÞ ¼

Z
Λ

dl

N11ðk; l;PÞ
D1D2D3

ϕN
1 ðl;PÞ; ð39Þ

where, using Eq. (36),

N11 ¼ trτ̄1ðkÞΓ0þðlqqÞ½−iðγ · lqq − γ · kqÞ þM�T
× Γ̄0þð−kqqÞð−iγ · lq þMÞτ1ðl;PÞΛþðPÞ; ð40aÞ

D1 ¼ l2q þM2; ð40bÞ

D2 ¼ ðlqq − kqÞ2 þM2; ð40cÞ

D3 ¼ l2qq þm2
qq0þ : ð40dÞ

The explicit form for N11 is cumbersome, so we do not
include it here; but it is worth detailing our treatment of the
denominator product:

1

D1D2D3

¼ 2

Z
1

0

dx dy x
1

D3
; ð41Þ

where

D ¼ ð1 − xÞD1 þ xð1 − yÞD2 þ xyD3

¼ ðlþ xyk − ðx − ηð1þ xyÞÞPÞ2 þ ω; ð42aÞ

ω ¼ M2½1 − xð1 − yÞ� þ xy½k2 − 2k · Pð1 − η − xÞ
− ð2ηk · Pþ k2Þxy� þ x½m2

qq0þð1 − yÞ
−m2

Nð1 − ½2 − η�ηyþ x½1 − ηy�2Þ�: ð42bÞ

Assuming a Poincaré-covariant regularization procedure,
one may shift the integration variable as follows
lμ → lμ − xykμ þ ðx − ηð1þ xyÞÞPμ, so that

N11ðk; l;PÞ → ~N11ðk; l;PÞ
¼ N11ðk; l − xykþ ðx − ηð1þ xyÞÞP;PÞ ð43Þ

and hence

Z
Λ

dl

N11ðk; l;PÞ
D1D2D3

ϕN
1 ðk;PÞ

¼ 2

Z
1

0

dx dy x
Z

Λ

dl

~N11ðk; l;PÞ
ðl2 þ ωÞ3 ϕ1ðl;PÞ: ð44Þ

N.B. After the change-of-variables, l · P ¼ 0; and in the
computation of ~N11ðk; l;PÞ one may then follow Ref. [38]
and set:

k2qq → −m2
qq; l2qq → −m2

qq; kqqμ →
2

3
Pμ; lqqμ →

2

3
Pμ:

ð45Þ
At this point we use Eqs. (8), (9) and infer

1

znþ1
→ Eiu

n ðzÞ ≔
ð−1Þn
n!

dn

dωn

e−τ
2
uvz − e−τ

2
irz

z
; ð46Þ

in which case Eq. (44) becomes

Z
Λ

dl

N11ðk; l;PÞ
D1D2D3

ϕN
1 ðk;PÞ

¼ 2

Z
1

0

dx dy x
Z

∞

dl
N11ðk; l;PÞEiu

2 ðl2 þ ωÞϕN
1 ðk;PÞ;

ð47Þ

where
R∞
dl ¼ R

d4l=ð2πÞ4 represents the unbounded four-
dimensional momentum integral. The integral on the rhs is
now free from ultraviolet divergences and exhibits no quark
production thresholds, i.e. confinement is realized.

C. Solving the regularized equations

Full implementation of the procedures illustrated above
yields a collection of well-defined linear, homogeneous
integral equations, one set for the nucleon Faddeev ampli-
tude and another set for theΔ-baryon. These equations only
have solutions at discrete, separated values of P2. As usual,
therefore, we consider a modified equation, which takes the
form, using the nucleon as an example:

λðP2ÞϕN
mðk;PÞ ¼ −4

Z
Λ

dl

X8
n¼1

Kmn
N ϕN

n ðl;PÞ: ð48Þ

Equation (48) has at least one solution for every value of
P2; and Faddeev equation solutions for physical bound-
states are obtained at those values of P2 for which
λðP2Þ ¼ 1. Any sensible numerical procedure may now
be used to locate bound-state masses and determine the
associated Faddeev amplitudes.

IV. RESULTS FROM THE FADDEEV EQUATIONS

We solved the Faddeev equations using the contact-
interaction parameters described in connection with Table I.
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The computed masses are listed in Table II. The first
column of numerical entries compares our results, obtained
with a full treatment of the contact-interaction, with those
produced using the original static-approximation, Eq. (1). It
provides a surprise, viz. any additional attraction introduced
by our complete treatment of the quark-exchange kernel is
compensated by the appearance of additional spin-orbit
repulsion, expressed in the momentum-dependent Faddeev
amplitude by the presence of the components s2ðk;PÞ,
a4;6;7;8ðk;PÞ in Eqs. (24). The calculated masses are
therefore almost unaffected by eliminating the static-
approximation.
The numerical values of the calculated masses are shifted

roughly 25% above their respective empirical values. It is
appropriate that the Faddeev equation in Fig. 1 should yield
masses that are larger than experiment because, as
explained elsewhere [10,77], the kernel in Fig. 1 omits
all those resonant contributions which may be associated
with the meson-baryon final-state interactions that are
resummed in dynamical coupled channels models
[78–80] in order to transform a bare-baryon into the
observed state. Our Faddeev equation should therefore
be understood as producing the dressed-quark core of the
bound-state, not the completely-dressed and hence observ-
able object. The problem here is that the shift is too large.
Analysis of the effect of meson-baryon final-state

interactions indicates that they typically produce a 15%
reduction in nucleon and Δ-baryon quark-core masses. As
noted in Ref. [38], a Faddeev equation kernel capable of
producing more realistic quark-core masses can be obtained
through a modest modification of the quark exchange
kernel, which is herein implemented thus:

SðpÞ ¼ 1

iγ · pþM
→

g2N;Δ

iγ · pþM
: ð49Þ

Using this expedient, one obtains the results in the last
column of Table II, where the parameters gN;Δ were chosen
in order to obtain values for the baryon masses which are
consistent with estimates of the respective quark-core
masses.
It is important to determine whether the modification

induced by Eq. (49) has any effect on baryon internal

structure. That question can be answered by peering into
the Faddeev amplitudes. In the static approximation, the
effect is modest, e.g. including gN > 1 via the value in
Table II increases the scalar-diquark component of the
nucleon by 3%. The outcome is similar when the quark
exchange is dynamical, as evident in Fig. 2: with the
normalization fixed such that the zeroth Chebyshev
moment of s1ðp;PÞ is unity at p2 ¼ 0, the p2 ¼ 0 strength
of the leading pseudovector component drops by ≲10%
when gN ¼ 1 → 1.28 and the p2-dependence of both
moments is only affected modestly.
Figure 2 also highlights a salient difference between our

results and those obtained using the static approximation,
Eq. (1); namely, whereas the static approximation produces
a momentum-independent result, our amplitude, obtained
with dynamical quark exchange, exhibits strong momen-
tum dependence: for p2 ≳ 3m2

N the leading Chebyshev
moments of the dominant scalar and pseudovector ampli-
tudes depicted in Fig. 2 fall as 1=p2, up to lnp2-corrections.
Such behavior is typical of two-body systems in quantum
field theory; and here we have a quark-diquark system, with
the diquark described by a momentum-independent Bethe-
Salpeter correlation amplitude.
This outcome motivates a comparison, depicted in Fig. 3,

between the amplitude computed herein and that obtained
using the QCD-kindred Faddeev equation kernel described
in Refs. [21,23], which successfully unifies the description

TABLE II. Computed masses of the nucleon and Δ-baryon,
obtained with the contact interaction parameters listed in Table I.
The quantities gN;Δ are described in connection with Eq. (49).
(Dimensioned quantities are listed in GeV.)

Herein gN ¼ 1, gΔ ¼ 1 gN ¼ 1.28, gΔ ¼ 1.73

mN 1.30 1.14
mΔ 1.65 1.39

Ref. [14] gN ¼ 1, gΔ ¼ 1 gN ¼ 1.18, gΔ ¼ 1.56
mN 1.27 1.14
mΔ 1.60 1.39

FIG. 2 (color online). Upper panel: Zeroth Chebyshev moment
of the dominant amplitude in the scalar-diquark component of the
nucleon’s Faddeev amplitude, s1ðp;PÞ in the notation of
Eq. (24), plotted for the two values of gN in Table II: solid
(blue) gN ¼ 1.28; red (dashed) gN ¼ 1.0. Lower panel: similar
image for the dominant amplitude in the pseudovector-diquark
component of the nucleon’s Faddeev amplitude, a3ðp;PÞ.
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of nucleon, Δ-baryon and Roper resonance properties and
differs from ours by using momentum-dependent dressed-
quark masses and diquark Bethe-Salpeter correlation
amplitudes. Whilst the spacetime dependence of the dom-
inant piece in the nucleon’s eight-component Poincaré-
covariant Faddeev amplitude, s1ðjpj; cos θÞ, computed
using the contact interaction with dynamical quark
exchange is quantitatively different from that obtained
with the more realistic kernel, the functions nevertheless
show marked qualitative similarities. For example, the
support for both is concentrated in the forward direction,
cos θ > 0, so that alignment of p and P is favored; and the
amplitude peaks at ðjpj≃MN=6; cos θ ¼ 1Þ, whereat pq ≈
P=2 ≈ pd and hence the natural relative momentum is
zero. In the antiparallel direction, cos θ < 0, the support
for both these functions is concentrated at jpj ¼ 0,

i.e. pq ≈ P=3, pd ≈ 2P=3. Figure 3 shows that using the
static approximation in the contact-interaction Faddeev
equation, in which case the analogous plot would simply
depict the curve s1ðjpj; cos θÞ≡ 1, provides a description
of nucleon structure that is badly flawed in connection with
any probe sensitive to the nucleon interior; whereas
implementation of dynamical quark exchange in the con-
tact-interaction Faddeev equation yields a significant
improvement in the description of a baryon’s internal
structure. Notwithstanding this, it should be borne in mind
that when computed using a QCD-kindred kernel, the
functions in Fig. 2 fall as 1=p4, up to lnp2-corrections, as
one would expect of a three valence-body system.

V. PROBING THE NUCLEON

A. Sigma term

Following Refs. [81,82], it is straightforward to obtain
the nucleon’s scalar charge by using the Feynman-
Hellmann theorem. This method skirts the need to compute
the canonical normalization constant for the nucleon’s
Faddeev amplitude because one need only compute the
variation of the nucleon’s mass produced by a change in
current-quark mass. With the Faddeev equation kernel
constructed as described in connection with Eqs. (3),
(4), (49), one obtains

mNðmÞ ¼m≃7 MeV
1.12þ 2.85mþ 8.54m2 ð50Þ

and hence

∂mN

∂m
����
ζH

m¼7 MeV
¼ 2.73: ð51Þ

This result is quoted at an hadronic scale appropriate to our
formulation, viz. ζH ¼ 0.39� 0.02 GeV (see Ref. [20],
Appendix E). On the other hand, the product

σN ¼ m 2.73 ¼ 19 MeV ð52Þ

is independent of scale. (Inclusion of meson-baryon loop
effects is likely to increase the result in Eq. (52) by roughly
7 MeV [81].)
The result in Eq. (52) is approximately one-half that

reported in computations using a QCD-derived interaction
[81,82] and contemporary simulations of lattice-regularised
QCD [83,84]. As explained elsewhere [20], this mismatch
exposes a defect of the contact interaction, viz. it produces
rigid, momentum-independent diquark Bethe-Salpeter
amplitudes, an artefact which leads to a weaker m-depend-
ence of the diquark (and hence nucleon) masses than is
obtained with more realistic kernels. Consequently,
Eq. (52) is an underestimate of σN .

FIG. 3 (color online). Top panel: Depiction of the complete
spacetime dependence of the dominant piece in the nucleon’s
eight-component Poincaré-covariant Faddeev amplitude,
s1ðjpj; cos θÞ, computed herein using the contact interaction with
dynamical quark exchange. Middle panel: Same function com-
puted using the QCD-kindred Faddeev equation kernel described
in Refs. [21,23], which differs from that used herein by using
momentum-dependent dressed-quark masses and diquark Bethe-
Salpeter correlation amplitudes. Bottom panel: Difference be-
tween these two functions.
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B. Canonical normalization

The σ-term is an exception. Typically, one must calculate
the normalization before reporting a physical value for any
observable. The canonical normalization constant for the
Faddeev amplitude associated with an isospin multiplet is
fixed by ensuring that the zero momentum-transfer
(Q2 ¼ 0) value of the electric form factor connected with
a charged member of the multiplet is equal to the electric
charge of that state [85]. In connection with the nucleon,
whose Poincaré-covariant electromagnetic current may be
written (Q ¼ Pf − Pi)

ūðPfÞ
�
γμF1ðQ2Þ þ 1

2mN
σμνQνF2ðQ2Þ

�
uðPiÞ; ð53Þ

this means imposing F1ðQ2 ¼ 0Þ ¼ 1 for the proton.
The nucleon current is detailed in Ref. [6]; and using a

vector ⊗ vector contact-interaction, that current may be
described in terms of the four diagrams depicted in
Fig. 4. (The so-called seagull terms vanish in our case
because the diquark Bethe-Salpeter amplitudes are
momentum-independent.) Diagram 4 vanishes at Q2 ¼
0 and hence does not contribute to the normalization. Its
analogue does contribute to the tensor charge, however. If
one chooses to distinguish between quark flavors, the
remaining diagrams produce fourteen distinct contribu-
tions: Diagrams 1 and 2, three each; and Diagram 3,
eight terms.
Using the symbols ð0;→;↑Þ to denote diquark isospin

labels–0, scalar [ud] diquark; →, pseudovector fudg
diquark; and ↑, pseudovector fuug diquark, then the
distinct proton diagrams can be expressed as follows:

C1;200 ; C
1;2
→→; C1;2↑↑;

C300; C
3
0→; C

3
0↑; C

3
→0;

C3→→; C3→↑; C
3
↑0; C

3
↑→: ð54Þ

Here, e.g. C100 represents a [ud] diquark in both the initial
and final-state proton, with the probe striking a u-quark;
and C3↑→ describes a fudg diquark in the initial-state, fuug
in the final state, and the probe striking a u-quark
exchanged between the two. (The neutron diagrams are
obtained by exchanging u ↔ d so that “↑” becomes “↓”
and the fuug diquark is replaced with the fddg correla-
tion.) Naturally, isospin symmetry reduces the number of
truly independent computations to just seven:

C1;200 ; C
1;2
↑↑ ∝ C1;2→→; C300;

C3↑0 ∝ C3→0 ∝ C30↑ ∝ C30→;

C3↑→ ∝ C3→↑ ∝ C3→→; ð55Þ

and current-conservation makes one of these redundant.
Our calculation of the normalization is sketched in
Appendix B.

C. Valence-quark distributions

It is now possible to exploit a connection between the
Q2 ¼ 0 values of elastic form factors, i.e. the Faddeev
amplitude’s normalization, and the dimensionless structure
functions of deep inelastic scattering at Bjorken-
x ≕ xB ¼ 1. As remarked elsewhere [17,21,39,86], whilst
all familiar parton distribution functions (PDFs) vanish at
xB ¼ 1, ratios of any two need not; and, under DGLAP
evolution [87–90], the value of such a ratio is invariant.
Thus, e.g. with dvðxBÞ, uvðxBÞ the proton’s d, u valence-
quark PDFs, the value of limxB→1dvðxBÞ=uvðxBÞ is an
unambiguous, scale invariant, nonperturbative feature of
QCD. It is therefore a keen discriminator between frame-
works that claim to explain nucleon structure. Furthermore,
xB ¼ 1 corresponds strictly to the situation in which the
invariant mass of the hadronic final state is precisely that of
the target, viz. elastic scattering. The structure functions
inferred experimentally on the neighborhood xB ≃ 1 are
therefore determined theoretically by the target’s elastic
form factors.
In this connection, consider the current depicted in

Fig. 4. Since diquarks are soft, the only contributions
which survive at xB ¼ 1 are those from Diagrams 1 and 3,
in which the probe interacts with an isolated quark. Each
piece from these diagrams appears with a strength deter-
mined by the proton’s Faddeev amplitude, which expresses
the effect of weightings derived from both the amplitude’s
spacetime- and isospin-dependence. These properties are
expressed in Eq. (B32), which yields the following prob-
abilities for finding a quark of flavor f ¼ u, d at xB ¼ 1:

FIG. 4. Vertex which ensures a conserved electromagnetic
current for on-shell baryons described by the Faddeev ampli-
tudes, Ψi;f , described in Sec. II. As in Fig. 1, the single line
represents SðpÞ, the dressed-quark propagator, Sec. II A, and the
double line, the diquark propagator, Sec. II B; Γ is the diquark
Bethe-Salpeter amplitude, Sec. II B; and the remaining vertices
are described in Appendix B–the top-left image is Diagram 1; the
top-right, Diagram 2; and so on, with the bottom-right image,
Diagram 4.
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Af ¼ ∂ep
∂ef ; Pf ¼ Af=ðAu þ AdÞ: ð56Þ

Inserting computed values for each of the elements in
Eq. (B32), one finds

Pu ¼ 0.88; Pd ¼ 0.12; lim
xB→1

dvðxBÞ
uvðxBÞ

¼ 0.14; ð57Þ

which corresponds to Fn
2=F

p
2 ¼ 0.38 at xB ¼ 1. These

results are collected in Table III. The value of
limxB→1dvðxBÞ=uvðxBÞ in Eq. (57) is 20% smaller than
that computed using the contact interaction in tandem with
the static approximation [39]. In part this is because the
static approximation kills Diagram 3 and that diagram
favors hard u-quarks; but the reduction occurs mostly
because removing the static approximation strengthens
the Diagram 1 scalar-diquark contribution (hard u-quark
only) relative to that from the heavier pseudovector-
diquark. (This can be seen via the discussion of Fig. 2.)
The observations that open this subsection have also

been exploited [17] in order to deduce a collection of
simple formulas, expressed in terms of the diquark

appearance and mixing probabilities, from which one
may compute ratios of longitudinal-spin-dependent u-
and d-quark parton distribution functions on the domain
xB ≃ 1:

An
1 ¼

4ðPd↑ − Pd↓Þ þ ðPu↑ − Pu↓Þ
4ðPd↑ þ Pd↓Þ þ ðPu↑ þ Pu↓Þ

; ð58aÞ

Ap
1 ¼ 4ðPu↑ − Pu↓Þ þ ðPd↑ − Pd↓Þ

4ðPu↑ þ Pu↓Þ þ ðPd↑ þ Pd↓Þ
; ð58bÞ

where the probabilities for the different quark flavors to
have helicity aligned (↑) or opposite (↓) to that of the
proton are

Pu↑ ¼ Pp;s
u↑ þ 1

9
Pp;a þ 1

3
Pp;m ð59aÞ

Pu↓ ¼ Pp;s
u↓ þ 2

9
Pp;a þ 1

3
Pp;m; ð59bÞ

Pd↑ ¼
2

9
Pp;a þ 1

6
Pp;m; ð59cÞ

Pd↓ ¼
4

9
Pp;a þ 1

6
Pp;m: ð59dÞ

The first line of Eq. (59) can be understood once one
understands that Pp;s is the probability for finding a u-
quark bystander in association with a scalar [ud]-diquark
correlation in the proton. Owing to Poincaré covariance,
this term expresses a sum of quark-diquark angular
momentum Lu½ud� ¼ 0 and Lu½ud� ¼ 1 correlations within
the nucleon. With Lu½ud� ¼ 0, the bystander quark carries all
the nucleon’s spin. On the other hand, the Lu½ud� ¼ 1
correlation contributes to both the parallel and antiparallel
alignment probabilities of the bystander quark:
2½ud�

Lu½ud�
z ¼1

u↓ ⊕ ½ud�
Lu½ud�
z ¼0

u↑. The relative strength of

these terms is fixed by solving the Faddeev equation and
expressed thereafter in the Faddeev amplitude: Ψ0þ∼
ψL¼0 þ ψL¼1, so that, converting the amplitude to proba-
bilities,

Pp;s ¼ Pp;s
u↑ þ Pp;s

u↓ ;

Pp;s
u↑ ¼ ψ2

L¼0 þ 2ψL¼0ψL¼1 þ
1

3
ψ2
L¼1;

Pp;s
u↓ ¼ 2

3
ψ2
L¼1: ð60Þ

With the Faddeev equation used herein, Pp;s ¼ 0.82,
ψL¼0 ¼ 0.67, ψL¼1 ¼ 0.24 cf. ψL¼0 ¼ 0.55, ψL¼1 ¼
0.22 in Ref. [21] and ψL¼0 ¼ 0.88, ψL¼1 ¼ 0 in Ref. [39].
The other two quantities in Eqs. (59) are Pp;a, Pp;m,

which, respectively, gauge the probability that the photon

TABLE III. Selected predictions for the xB ¼ 1 value of the
indicated quantities. The DSE results are computed using the
formulae in Eqs. (58)–(60): “realistic” denotes results obtained
with a sophisticated QCD-kindred Faddeev equation kernel [21];
“contact-S” are contact-interaction results obtained using a static
approximation, described in connection with Eq. (1); and “con-
tact-D” are the results obtained herein, deriving from a Faddeev
equation kernel with dynamical dressed-quark exchange. The
next four rows are, respectively, results drawn from Refs. [91–
94]: the row labeled 0þ½ud�-frozen reproduces results from a model

in which a nondynamical scalar-diquark is used to describe
nucleon structure, i.e. it is not based on a Faddeev equation and
hence Diagrams 3 and 4 in Fig. 4 are absent. The last row, labeled
“pQCD,” expresses predictions made in Refs. [95,96], which are
based on an SU(6) spin-flavor wave function for the proton’s
valence-quarks and assume helicity conservation in their inter-
action with hard-photons (for reference, 3=7 ≈ 0.43).

Fn
2

Fp
2

d
u

Δd
Δu

Δu
u

Δd
d

An
1 Ap

1

DSE-realistic
[21]

0.50 0.29 −0.12 0.67 −0.29 0.16 0.61

DSE-contact-S
[37]

0.41 0.18 −0.07 0.88 −0.33 0.34 0.88

DSE-contact-D 0.38 0.14 −0.05 0.83 −0.33 0.43 0.79
0þ½ud�-frozen

1
4

0 0 1 0 1 1

NJL 0.43 0.20 −0.06 0.80 −0.25 0.35 0.77

SU(6) 2
3

1
2

− 1
4

2
3

− 1
3

0 5
9

CQM 1
4

0 0 1 − 1
3

1 1

pQCD 3
7

1
5

1
5

1 1 1 1
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interacts with an axial-vector diquark component of the
nucleon or induces a transition between diquark compo-
nents of the incoming and outgoing nucleon. Our dynami-
cal dressed-quark exchange Faddeev kernel generates
Pp;a ¼ 0.18 and Pp;m ≈ 0; and we list results for numerous
ratios in Table III. (As remarked above, the result Pp;m ≈ 0
owes to the generally small magnitude of each Diagram 3
term and interference between their contributions, see
Table B.1.)
It is worth reiterating that the results in Table III highlight

that no single ratio is capable of completely distinguishing
between distinct pictures of nucleon structure. Conversely,
they show that a comparison between experiment and
different predictions for the combination of all tabulated
quantities provides a very effective means of discriminating
between competing descriptions [17].

D. Tensor charges

With the normalization computed, one may also readily
calculate the proton’s tensor charges, which are defined via
(q ¼ u, d):

hPðp; σÞjq̄σμνqjPðp; σÞi ¼ δTqūðp; σÞσμνuðp; σÞ; ð61Þ

where jPðp; σÞi is a state vector describing a proton with
momentum p and spin σ.1 The derived isoscalar and
isovector tensor charges are

gð0ÞT ¼ δTuþ δTd; gð1ÞT ¼ δTu − δTd: ð62Þ

Importantly, the tensor charges are scale-dependent quan-
tities, as explained, for instance, in Appendix F of Ref. [20].
The values decrease uniformly as the resolving scale is
increased. We compute the results at ζH and use one-loop
evolution equations in order to also report values
at ζ2 ≔ 2 GeV.
The nucleon’s tensor interaction is qualitatively iden-

tical to the photon-nucleon interaction depicted in
Fig. 4. If one distinguishes between quark flavors in
this case, there are sixteen distinct contributions to each
tensor charge because Diagram 4 is nonzero. Using
isospin symmetry, this tally is reduced to only eight.
The analysis is illustrated via consideration of Diagram
4 in Appendix C. Notably,

C4T→0 ¼ C4T0→ ð63Þ

and C2T00 ≡ 0 because a scalar correlation cannot possess
a tensor charge.
Our computed results for the proton’s tensor charge at

the hadronic scale ζH are summarized in the upper panel

of Table IV. It is natural to compare the listed values
with those in Ref. [20], obtained using the contact
interaction and the static approximation, and listed in
Table C3 therein. To facilitate that comparison, we note
that Diagram 1 herein equates to the sum of Diagrams 1
and 2 therein, Diagram 2 herein is the sum of Diagrams
3 and 4 therein, Diagram 3 is absent in Ref. [20] owing
to the static approximation, and our Diagram 4 equates
to the sum of Diagrams 5 and 6 therein. The net results
of both calculations are semiquantitatively similar.
However, there are some line-item discrepancies. We
have a nonzero result for Diagram 3, which adds to both
δu, δd, whereas this contribution is naturally absent
when the static approximation is used. There is also a
difference between the Diagram 2 contributions. This
owes to a combination of the inadvertent omission in
Ref. [20] of a factor of two in the probe-diquark
vertices, which we have restored, with the corrected
results listed in the lower panel of Table IV, combined
with our use of Eqs. (B21) in simplifying computation
of the currents.
It is worth analyzing the microscopic origin of the

proton’s tensor charges in our calculation. The dominant
contribution to δTu arises from Diagram 1: tensor probe
interacting with a dressed u-quark when a scalar diquark is
the bystander. The next largest piece is produced by
Diagram 4, in which the tensor probe excites a transition
between the scalar and pseudovector diquarks; but this is
largely cancelled by the sum of Diagram 2 (tensor probe
interacting with the pseudovector diquark with a dressed-
quark spectator) and Diagram 3 (two-loop diagrams in
which the tensor probe interacts with a dressed-quark “in-
flight”). Qualitatively equivalent interference was seen in
Ref. [20], so that one may still conclude that δTu directly

TABLE IV. Upper panel: Proton tensor charges evaluated at the
model scale: ζH ¼ 0.39� 0.02 GeV, partitioned according to
contributions from the diagrams in Fig. 4 and summed to provide
the complete result. Lower panel: Same quantities evaluated
using the static approximation. The listed values serve as an
update of the results in Ref. [20].

Dynamic δu δd gð0ÞT gð1ÞT

Diagram 1 0.72 −0.039 0.69 0.76
Diagram 2 0.14 0.027 0.16 0.11
Diagram 3 0.12 −0.050 0.075 0.17
Diagram 4 −0.19 −0.19 −0.38 0
Total 0.79 −0.25 0.54 1.05

Static δu δd gð0ÞT gð1ÞT

Diagram 1 0.56 −0.036 0.53 0.60
Diagram 2 0.29 0.059 0.35 0.23
Diagram 3 0 0 0 0
Diagram 4 −0.25 −0.25 −0.50 0
Total 0.61 −0.23 0.38 0.83

1In the isospin symmetric limit: δpTu ≔ δTu ¼ δnTd,
δpTd ≔ δTd ¼ δnTu, where the superscripts denote the hadron in
which the indicated valence-quark resides.
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probes the strength of DCSB and hence the strong
interaction at infrared momenta. Owing to analogous
interference between Diagrams 1-3, Diagram 4 in Fig. 4
is responsible for the bulk of δTd.
Notably herein, in contrast to Ref. [20], δTd ≠ 0 even in

the absence of pseudovector diquark correlations: owing to
Diagram 3, the tensor probe can interact with a dressed d-
quark exchanged during the breakup and reformation of a
scalar diquark. However, as already noted, the contribution
is small, viz. this term produces just 20% of the Diagram 3-
δd entry in the upper panel of Table IVand all other entries
would be zero in the absence of pseudovector diquarks. The
magnitude of δTd may therefore still be interpreted as a
measure of the strength of pseudovector diquark correla-
tions in the proton.
In ascribing an error to our final result for the tensor

charges, we follow the reasoning in Ref. [20]. Namely,
since one generally finds that systematic treatments of the
contact interaction yield results for low-momentum-trans-
fer observables which are practically indistinguishable
from those produced by RL studies that employ more
sophisticated interactions [14,35–44]; and analyses of
hadron physics observables using the RL truncation and
one-loop QCD renormalization-group-improved (RGI) ker-
nels for the gap and bound-state equations produce results
that are normally within 15% of the experimental value
[59], we therefore attach a relative error of 15% to the
results in Table IV. Hence, our predictions are

δTu δTd gð0ÞT gð1ÞT

ζH ≈ M 0.79ð12Þ −0.25ð4Þ 0.54ð8Þ 1.05ð16Þ :

ð64Þ

Given that our computed value of the proton’s σ-term is
too small by a factor of roughly two, one might be
concerned by the size of our error assignment. This concern
can be allayed by first noting that the small size of σp can be
tracked directly to an underestimate of the diquarks’ σ-
terms [20]. These quantities measure the rate-of-change of
a “charge” (the diquark mass, in this case) associated with
variations in an external source. Although those rates-of-
change are underestimated, the masses are not. Thus, whilst
our framework might produce rates-of-change for the
tensor charges that are too small, the values of the tensor
charges themselves should be accurate within the usual
error associated with rainbow-ladder truncation.
The results in Eq. (64) are quoted at the model scale.

In order to make a sensible comparison with estimates
obtained in modern simulations of lattice-regularized
QCD, those results must be evolved to ζ2 ¼ 2 GeV. We
therefore list here the results obtained under leading-
order evolution to ζ2 ¼ 2 GeV, obtained via multipli-
cation by the factor 0.794, explained and computed in
Appendix F of Ref. [20]:

δTu δTd gð0ÞT gð1ÞT

ζ2 0.63ð9Þ −0.20ð3Þ 0.43ð6Þ 0.83ð12Þ : ð65Þ

We use the one-loop expression owing to the simplicity
of our framework. Employing next-to-leading-order
evolution leads simply to a 25% increase in ζH with
no material phenomenological differences.
The predictions in Eq. (65) are compared in Fig. 5 with

phenomenological analyses [97,98] that benchmark a
proposed JLab experiment [99] and results obtained using
numerous other methods [100–108]. Evidently, our pre-
dictions match, within errors, the most recent results
obtained using lattice-QCD [100,101], which appear at
“6” and “7” in Fig. 5. Aweighted combination of the most
recent DSE- and lattice-QCD results yields the following
estimates, drawn in Fig. 5:

δTu ¼ 0.70� 0.03; δTd ¼ −0.21� 0.01: ð66Þ

Another interesting point is highlighted by a compari-
son between our predictions and the values obtained
when the proton is considered to be a weakly-interacting
collection of three massive valence-quarks described by
an SU(4)-symmetric spin-flavor wave function [108]:

δSUð4ÞT u ¼ 2eu and δSUð4ÞT d ¼ ed cf. our results,
Eq. (64), δTu ¼ 0.59ð2euÞ, δTd ¼ 0.75ðedÞ. It is thus
apparent that the presence of diquark correlations in the

FIG. 5 (color online). Flavor separation of the proton’s tensor
charge: “1”–illustration of anticipated accuracy in planned JLab
experiment [99], with central values based on the analysis in
Ref. [97]; “2”–results drawn from Ref. [97]; “3” phenomeno-
logical estimate in Ref. [98] “4”–prediction herein, Eq. (65); “5”–
corrected results from Ref. [20], drawn from the lower panel of
Table IV and evolved to ζ2; “6-14”–estimates from Refs. [100–
108], respectively. The bands drawn from “4”–“7” are described
in connection with Eq. (66). By way of context, we note that were
the proton a weakly-interacting collection of three massive
valence-quarks, then [108] the quark axial and tensor charges
are identical, so that δTu ¼ 4=3 and δTd ¼ −1=3 at the model
scale. These values are located at “15”. If one assumes that ζH
may reasonably be assigned as the scale of that model, then those
values evolve to δTu ¼ 1.06 and δTd ¼ −0.26, which we also
plot at “15”.
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proton Faddeev amplitude materially suppresses the
magnitude of the tensor charge associated with each
valence quark whilst simultaneously increasing the ratio
δTd=δTu by approximately 30%.

E. Electric dipole moments

In typical extensions of the standard model, quarks
acquire an EDM [109,110], i.e. an interaction with the
photon that proceeds via a current of the form:

~dqqγ5σμνq; ð67Þ

where ~dq is the quark’s EDM and here we consider q ¼ u,
d. The EDM of a proton containing quarks which interact in
this way is defined as follows:

hPðp; σÞjJ EDM
μν jPðp; σÞi ¼ ~dpūðp; σÞγ5σμνuðp; σÞ; ð68Þ

where

J EDM
μν ðxÞ ¼ ~duūðxÞγ5σμνuðxÞ þ ~ddd̄ðxÞγ5σμνdðxÞ: ð69Þ

At this point, using a simple Dirac-matrix identity:

γ5σμν ¼
1

2
εμναβσαβ; ð70Þ

one can write

J EDM
μν ¼ 1

2
εμναβ½ ~duūσαβuþ ~ddd̄σαβd�: ð71Þ

It follows that

hPðp; σÞjJ EDM
μν jPðp; σÞi

¼ ½ ~duδTuþ ~ddδTd�ūðp; σÞγ5σμνuðp; σÞ; ð72Þ

namely [20], the quark-EDM contribution to a proton’s
EDM is completely determined once the proton’s tensor
charges are known:

~dp ¼ ~duδTuþ ~ddδTd: ð73Þ

With emerging experimental techniques, it is possible to
place competitive upper-limits on the proton’s EDM using
storage rings in which polarized particles are exposed to an
electric field [111].
An analogous result for the neutron is readily inferred. In

the limit of isospin symmetry,

hNðp; σÞjūσμνujNðp; σÞi ¼ hPðp; σÞjd̄σμνdjPðp; σÞi;
hNðp; σÞjd̄σμνdjNðp; σÞi ¼ hPðp; σÞjūσμνujPðp; σÞi;

ð74Þ

and hence ~dn ¼ ~duδTdþ ~ddδTu. Using the results in
Eq. (64), we therefore have

~dn ¼ −0.25~du þ 0.79~dd; ~dp ¼ 0.79~du − 0.25~dd:

ð75Þ

It is worth contrasting Eqs. (75) with the results one
would obtain by assuming that the nucleon is simply a
collection of three massive valence-quarks described by an
SU(4)-symmetric spin-flavour wave function. Then, by
analogy with magnetic moment computations, a procedure
also made valid by Eq. (70):

~dn ¼ −
1

3
~du þ

4

3
~dd; ~dp ¼ 4

3
~du −

1

3
~dd; ð76Þ

values which are roughly 50% larger than ours.
The impact of our tensor-charge predictions on

beyond-standard-model phenomenology may be eluci-
dated, e.g. by following the analysis in Refs. [112,113].
In this connection it is worth remarking that the
possibility of a s-quark contribution produces consid-
erable uncertainty in estimates of nucleon EDMs [114],
largely because its size is very uncertain [115].
Therefore, even a rudimentary DSE estimate of this
contribution could be useful. Such may be obtained via
a simplified treatment of meson-loop corrections to the
quark gap equations, as used elsewhere [116,117] to
estimate the proton’s strangeness-magnetic-moment and
-σ-term. Following that reasoning, one is led
to δTsðζ2Þ ≈ 0.02g0T ¼ 0.009.

VI. CONCLUSION

We employed a confining, symmetry-preserving, Dyson-
Schwinger equation treatment of a vector ⊗ vector contact
interaction in order to formulate and solve Faddeev
equations for the nucleon and Δ-baryon in which the
kernel involves dynamical dressed-quark exchange.
These are the first contact-interaction calculations to
produce momentum-dependent Faddeev amplitudes.
Previous contact-interaction studies have imposed a sup-
plementary condition on the Faddeev equation kernel, viz. a
“static approximation” [Eq. (1)], which leads to momen-
tum-independent amplitudes.
So far as computed masses of the nucleon and Δ-

baryon are concerned, eliminating the static approxima-
tion has little effect [Table II]. On the other hand, the
impact on the Faddeev amplitudes is dramatic. In stark
contrast to static approximation results, contact-interac-
tion dynamical quark exchange produces amplitudes that
compare far more favorably with those obtained using
kernels built from elements that possess momentum-
dependence typical of QCD [Fig. 3]. This marked
improvement can potentially lead to a better description
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of those baryon properties which are sensitive to
momentum scales that exceed the dressed-quark mass,
M ∼ 0.4 GeV. That can be tested, e.g., in a study of the
nucleon’s first radial excitation and the related transition
form factors, for which the contact-interactionþ
static-approximation yields poor results.
Regarding the proton’s σ-term, the contact interaction

result is one-half that obtained using more realistic inter-
actions [Eq. (52)], whether or not the static approximation
is employed. The small value is thus a defect of the contact
interaction itself, which may be traced to the rigid nature of
the diquark masses and Bethe-Salpeter amplitudes obtained
with this interaction.
Implementing dynamical quark exchange in the con-

tact-interaction Faddeev equation kernels yields results
for the large Bjorken-x values of the separate ratios of
unpolarized and longitudinally polarized valence u- and
d-quark parton distribution functions that are noticeably
different from those obtained using the static approxi-
mation. The differences owe primarily to an increase in
strength for the scalar diquark component of the
nucleon. Our dynamical results [Eqs. (57)] should be
viewed as a truer representation of the contact-inter-
action’s predictions.
The increase in strength for the scalar-diquark com-

ponent of the nucleon, induced by dynamical quark
exchange, also affects the computed values of the
proton’s tensor charges, δTu, δTd [reported in
Eq. (65) and compared with other estimates in
Fig. 5]: it acts primarily to increase δTu. Our calcu-
lations confirm that the presence of diquark correlations
in the proton reduces the size of δTu, δTd compared
with results obtained in simple quark models whilst
simultaneously increasing jδTd=δTuj; verify that δTu is a
direct measure of the strength of DCSB in the standard
model; and emphasize that jδTd=δTuj diminishes with
Pp;a=Pp;s, i.e. the ratio of pseudovector- and scalar-
diquark interaction probabilities.
With this analysis we have completed the first

improvement promised in Ref. [20] and so must address
the question posed in the Introduction, viz. Does the
increased complexity which accompanies dynamical
quark exchange in the Faddeev kernel outweigh the
loss of simplicity inherent in using the static approxi-
mation? If one is driving toward a realistic picture of a
wide range of hadron physics observables, including
those sensitive to probe momenta greater than the
dressed-quark mass, then the answer must be affirma-
tive. This question has a natural extension, however: Is
there merit in continuing to use a contact interaction
when computational resources are beginning to enable
the use of realistic interactions in the study of baryons?
Here the answer is: Yes, depending upon the problem in
hand; but the character of those problems is rapidly
evolving.

Finally, returning to the proton’s tensor charges, the next
step should be computation using the approaches of
Refs. [13,21,23] in order to obtain continuum predictions
with a direct connection to QCD.
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APPENDIX A: COLLECTED FORMULAS

The matrices in Eqs. (24), (25), which express the
Dirac-matrix structure of the positive-energy nucleon and
Δ, are

τ1ðl;PÞ ¼ I4×4; τ2ðl;PÞ ¼ iγ · l̂⊥;

τ3μðl;PÞ ¼
1ffiffiffi
3

p γ⊥μ γ5; τ4μðl;PÞ ¼
iffiffiffi
3

p γ⊥μ γ · l̂⊥γ5;

τ5μðl;PÞ ¼ −iP̂μγ5; τ6μðl;PÞ ¼ P̂μγ · l̂
⊥γ5;

τ7μðl;PÞ ¼
1ffiffiffi
6

p ðγ⊥μ − 3γ · l̂T l̂
⊥
μ Þγ5;

τ8μðl;PÞ ¼
iffiffiffi
6

p ðγ⊥μ γ · l̂T − l̂⊥μ Þγ5; ðA1Þ

where l̂⊥ν ¼ l̂ν þ l̂ · P̂P̂ν, γ⊥ν ¼ γν þ γ · P̂P̂ν, l̂2 ¼ 1,
P̂2 ¼ −1; and

τ1νρðl;PÞ ¼ δμν;

τ2νρðl;PÞ ¼
iffiffiffi
5

p ð2γ⊥ν lρT − 3δνργ · l⊥Þ;

τ3νρðl;PÞ ¼ −i
ffiffiffi
3

p
P̂μl⊥ν γ · lT;

τ4νρðl;PÞ ¼
ffiffiffi
3

p
P̂μ l̂

⊥
ν ;

τ5νρðl;PÞ ¼ γ⊥μ l̂⊥ν γ · l̂⊥;
τ6νρðl;PÞ ¼ −iγ⊥μ l̂⊥ν ;
τ7νρðl;PÞ ¼ −γ⊥μ l̂⊥ν γ · l̂⊥ − δμν þ 3l̂⊥μ l̂⊥ν ;

τ8νρðl;PÞ ¼
iffiffiffi
5

p ðδμνγ · l̂⊥ þ γ⊥μ l̂⊥ν − 5l̂⊥μ l̂⊥ν γ · l̂⊥Þ: ðA2Þ

We use the following projection operators in arriving at
the scalar-valued integral equations in Sec. III—for the
nucleon,
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τ̄1ðl;PÞ ¼ 1

2
I4×4; τ̄2ðl;PÞ ¼ −

i
2
γ · l̂⊥;

τ̄3μðl;PÞ ¼
1

2
ffiffiffi
3

p γ5γ
⊥
μ ; τ̄4μðl;PÞ ¼ −

i

2
ffiffiffi
3

p γ5γ
⊥
μ γ · l̂

⊥;

τ̄5μðl;PÞ ¼ −
1

2
iγ5P̂μ; τ̄6μðl;PÞ ¼ −

1

2
γ5P̂μγ · l̂

⊥;

τ̄7μðl;PÞ ¼
1

2
ffiffiffi
6

p γ5ðγ⊥μ − 3γ · l̂T l̂Tμ Þ;

τ̄8μðl;PÞ ¼ −
i

2
ffiffiffi
6

p γ5ðγTμ γ · l̂T − l̂⊥μ Þ; ðA3Þ

and for the Δ-baryon,

τ̄1νρðl;PÞ ¼
1

4
δμν;

τ̄2νρðl;PÞ ¼ −
i

4
ffiffiffi
5

p ð2γ⊥ν l⊥ρ − 3δνργ · l⊥Þ;

τ̄3νρðl;PÞ ¼ −i
ffiffiffi
3

p

4
P̂μl⊥ν γ · l⊥;

τ̄4νρðl;PÞ ¼ −
ffiffiffi
3

p

4
P̂μl̂

⊥
ν ;

τ̄5νρðl;PÞ ¼
1

4
l̂⊥ν γ · l̂⊥γ⊥μ ;

τ̄6νρðl;PÞ ¼
i
4
γ⊥μ l̂⊥ν ;

τ̄7νρðl;PÞ ¼ −
1

4
l̂⊥ν γ · l̂⊥γ⊥μ − δμν þ 3l̂⊥μ l̂⊥ν :

τ̄8νρðl;PÞ ¼ −
i

4
ffiffiffi
5

p ðδμνγ · l̂⊥ þ γ⊥μ l̂⊥ν − 5l̂⊥μ l̂⊥ν γ · l̂⊥Þ: ðA4Þ

These projectors are defined such that, for the nucleon:

tr½τ̄iðlÞτjðlÞΛþðPÞ� ¼ δij; i; j ¼ 1; 2; ðA5aÞ

tr½τ̄iμðlÞτjμðlÞΛþðPÞ� ¼ δij; i; j ¼ 3;…; 8; ðA5bÞ

tr½τ̄iðlÞτjμðlÞΛþðPÞ� ¼ 0; i ¼ 1; 2; j ¼ 3;…; 8; ðA5cÞ

where the positive-energy projector is defined via

2MΛþðPÞ ≔
X
s¼�

uðP; sÞūðP; sÞ ¼ ð−iγ · PþMÞ: ðA6Þ

In connection with the Δ-baryon,

Tr½τ̄iμνðlÞτjμρðlÞRΔ
ρνðPÞ� ¼ δij; i; j ¼ 1;…; 8; ðA7Þ

where

RΔ
μνðPÞ ¼

�
δμν −

1

3
γμγν þ

2

3
P̂μP̂ν −

i
3
ðP̂μγν − P̂νγμÞ

�

× ΛþðPÞ: ðA8Þ

APPENDIX B: NUCLEON-PHOTON VERTEX

1. Diagram 1: Normalization

When a symmetry-preserving regularization of the con-
tact interaction is employed, one finds

Γγ
μðQ2 ¼ 0Þ ¼ γμ; ðB1Þ

i.e. the dressed-photon–quark vertex preserves its bare form
at zero momentum-transfer [36]. Consequently, the C100
(scalar-diquark) contribution to the nucleon normalization
constant, Np, can be written

Q1
00ΛþðPÞγμΛþðPÞ

¼ NpΛþðPÞ
Z

Λ

dk
S̄ðk;−PÞ

× SðkqÞeuγμSðkqÞΔ0þðkqqÞSðk;PÞΛþðPÞ; ðB2Þ

where Sðk;PÞ is the [ud] scalar-diquark component of the
nucleon’s Faddeev amplitude in Eq. (24a) and
S̄ðk;−PÞ ¼ C†S̄ð−k;−PÞC; SðkqÞ is the dressed-quark
propagator described in Sec. II A; and eu ¼ ð2=3Þ.
After some algebra, following the pattern in Sec. III B,

Eq. (B2) yields

Q1
00 ¼ 2euNp

Z
1

0

dx x
Z

∞

dk
E2ðk2 þ ω0ÞD1

00ð~k;PÞ; ðB3Þ

where, with nðlÞ ¼ −iγ · lþM,

D1
00ðk;PÞ ¼ tr

1

2
γμΛþðPÞ

× S̄ðk;−PÞnðkqÞγμnðkqÞSðk;PÞΛþðPÞ;
ðB4aÞ

~k ¼ kþ
�
2

3
− x

�
P; ðB4bÞ

ω0 ¼ xM2 þ ð1 − xÞm2
qq0þ − xð1 − xÞm2

N: ðB4cÞ

Inserting our gN ¼ 1.28 computed nucleon mass and
Faddeev amplitude into Eq. (B3), we obtain

Q1
00 ¼ 0.0163euNp ≕ Q0euNp: ðB5Þ

Diagram 1 also represents two other cases, viz. a dressed-
quark struck with either fudg or fuug axial-vector
diquarks as the spectator, C1→→, C1↑↑ respectively.
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Consider first the case of a u-quark struck with a fudg
spectator. Analysis of the type described above yields

Q1
11 ¼ euNp

Z
1

0

dx x
Z

∞

dk
E2ðk2 þ ω1ÞD1

11ð~k;PÞ; ðB6Þ

where

D1
11ðk;PÞ ¼ tr

1

2
γμΛþðPÞĀαðk;−PÞ

×nðkqÞγμnðkqÞT1
αβðkqqÞAβðk;PÞΛþðPÞ;

ðB7aÞ

ω1 ¼ xM2 þ ð1 − xÞm2
qq1þ − xð1 − xÞm2

N: ðB7bÞ

Inserting our gN ¼ 1.28 nucleon mass and Faddeev ampli-
tude into Eq. (B6), we obtain

Q1
11 ¼ 0.00148euNp ≕ Q1euNp: ðB8Þ

Owing to isospin symmetry, the other case,
d-quark struck with a fuug spectator, C1↑↑, contributes
(ed ¼ −eu=2)

ðed=euÞQ1
11ð−

ffiffiffi
2

p
Þ2 ¼ −Q1

11: ðB9Þ

Plainly, therefore, diagrams with axial-vector diquark spec-
tators do not contribute to the proton’s normalization. More
generally, in fact, they contribute nothing to the proton’s
electromagnetic form factors [39]: C1→→ þ C1↑↑ ≡ 0.

2. Diagram 2: Normalization

In this instance, the first contribution we consider is a
u-quark spectator to a photon–scalar-diquark interaction,
C200:

Q2
00ΛþðPÞγμΛþðPÞ

¼ NpΛþðPÞ
Z

Λ

dk
S̄ðk;−PÞ

× Δ0þðkqqÞVμðkqqÞΔ0þðkqqÞSðkqÞSðk;PÞΛþðPÞ;
ðB10Þ

where, owing to a Ward-Green-Takahashi identity main-
tained by a symmetry-preserving regularization of the
contact interaction [37], the dressed photon–scalar-diquark
vertex at zero momentum transfer is (eud ¼ eu þ ed)

VμðkqqÞ ¼ 2eudkqqμ: ðB11Þ

Using this result and the now standard procedures,
Eq. (B10) yields

Q2
00 ¼ 0.0152eudNp ≕ D0eudNp: ðB12Þ

Diagram 2 also represents two other cases, viz. a dressed-
quark spectator to a photon interacting with either a fudg or
fuug axial-vector diquark, C2→→, C2↑↑ respectively. The
u-quark spectator contribution is

Q2
11ΛþðPÞγμΛþðPÞ

¼ NpΛþðPÞ
Z

Λ

dk
Āαðk;−PÞΔ1þ

αα0 ðkqqÞ

× Vμ;α0β0 ðkqqÞΔ1þ
β0βðkqqÞSðkqÞAðk;PÞΛþðPÞ; ðB13Þ

which involves the dressed photon–pseudovector-diquark
vertex at zero momentum transfer [37]:

Vμ;αβðkqqÞ ¼ 2eudkqqμT1
αβðkqqÞ: ðB14Þ

Using this result, Eq. (B13) yields

Q2
11 ¼ 0.000879eudNp ≕ D1eudNp: ðB15Þ

Owing to isospin symmetry, the analogous result for C2↑↑,
the d-quark spectator diagram, is (euu ¼ 2eu ¼ 4eud)

ðeuu=eudÞð−
ffiffiffi
2

p
Þ2Q2

11 ¼ 8D1eudNp: ðB16Þ

3. Diagram 3: Normalization

If quark flavors are distinguished, then this image in
Fig. 4 corresponds to eight two-loop diagrams. The
simplest example involves a scalar-diquark in the initial
and final states, so that a dressed d-quark is struck “in-
flight” by the photon, C300:

Q3
00ΛþðPÞγμΛþðPÞ

¼ NpΛþðPÞedg2N
Z

Λ

dk

Z
Λ

dl
S̄ðk;−PÞ

× SðkqÞΔ0þðkqqÞΓ0þðlqqÞ½Sð−kXÞγμSð−kXÞ�T
× Γ̄0þð−kqqÞSðlqÞΔ0þðlqqÞSðl;PÞΛþðPÞ; ðB17Þ

where kX ¼ kþ l − P=3. After some algebra, Eq. (B17)
can be recast in the following form:

Q3
00 ¼ edg2NNp

Z
Λ

dk

Z
Λ

dl

N3
00

D1D2D3D4D2
5

; ðB18Þ

with

D1 ¼ k2q þM2; D2 ¼ k2qq þm2
qq0þ ;

D3 ¼ l2q þM2; D4 ¼ l2qq þm2
qq0þ ;

D5 ¼ k2X þM2; ðB19Þ
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and

N3
00 ¼ tr

1

2
γμΛþðPÞS̄ðk;−PÞSðkqÞΔ0þðkqqÞΓ0þðlqqÞ

× ½nð−kXÞγμnð−kXÞ�TΓ̄0þð−kqqÞ
×nðlqÞΔ0þðlqqÞSðl;PÞΛþðPÞ: ðB20Þ

In the algebraic evaluation of N3
00, the following replace-

ments are used sequentially:

k2qq → −m2
qq0þ ; l2qq → −m2

qq0þ ;

kqqμ →
2

3
Pμ; lqqμ →

2

3
Pμ: ðB21Þ

As usual, the next step is to combine the denominators
using a Feynman parametrization, in which case Eq. (B18)
becomes

Q3
00 ¼ edg2NNp

Z
Λ

dk

Z
Λ

dl

× 24

Z
1

0

dx1dx2dx3dx4x41x
3
2x

2
3x4

N3
00ð~k; ~l;PÞ
½D3

00�6
;

ðB22Þ

where the variable transformations k → ~k, l → ~l are con-
structed so that D3

00 ¼ fðk2; l2; P2 ¼ −m2
NÞ. At this point

one can implement the confining regularization prescrip-
tion and thereby obtain

Q3
00 ¼ edg2NNp

Z
∞

dk

Z
∞

dl
24

Z
1

0

dx1dx2dx3dx4x41x
3
2x

2
3x4

×N3
00ð~k; ~l;PÞE5ðfðk2; l2;−m2

NÞ: ðB23Þ

The precise forms for the elements in Eq. (B23) are
lengthy so we do not present them here. Notwithstanding
that, their computation is straightforward; and inserting our
gN ¼ 1.28 nucleon mass and Faddeev amplitudes into the
expressions one derives, the following numerical result is
obtained:

Q3
00 ¼ 5.34 × 10−5edg2NNp ¼ 8.75 × 10−5edNp ðB24Þ

≕ X00edNp: ðB25Þ

There are seven more contributions; but, owing to
isospin symmetry, as described in connection with
Eq. (55), only two additional computations are necessary:
fudg pseudovector-diquark breakup, d-quark struck in-
flight, [ud] scalar diquark recombination ð½ud�dγfudgÞ,
C30→; and fudg pseudovector-diquark breakup, d-quark
struck in-flight, fudg pseudovector diquark recombination
ðfudgdγfudgÞ, C3→→. The results are

Q3
0→ ¼ 1.79 × 10−5edNp ≕ X0→edNp; ðB26aÞ

½ud�uγfuug ¼ C30↑ ¼ −
ffiffiffi
2

p
euX0→Np; ðB26bÞ

fudgdγ½ud� ¼ C3→0 ¼ edX0→Np; ðB26cÞ

fuuguγ½ud� ¼ C3↑0 ¼ −
ffiffiffi
2

p
euX0→Np; ðB26dÞ

and

Q3
→→ ¼−8.8×10−7edNp≕X→→edNp; ðB27aÞ

fudguγfuug ¼ C3→↑ ¼ −
ffiffiffi
2

p
euX→→Np; ðB27bÞ

fuuguγfudg ¼ C3↑→ ¼ −
ffiffiffi
2

p
euX→→Np: ðB27cÞ

4. Collected results: Normalization

For ease of reference, we gather all independent results
computed in Secs. B 1–B 3 into Eq. (B28), wherein each
entry should be divided by 103:

Q0 Q1 D0 D1 X00 X0→ X00

16.3 1.48 15.2 0.879 0.0875 0.0179 −8.80× 10−4
:

ðB28Þ

The associated contributions to the nucleon’s canonical
normalization constant are listed in Table B.1.

5. Current conservation

In a symmetry preserving treatment of the contact
interaction, using integration by parts and changes of
variables, one can establish the following Ward identities
between the contributions described above:

Q0 ¼ D0 þ 2X00 þ 2ð1 −
ffiffiffi
2

p
ÞX0→; ðB29aÞ

Q1 ¼ D1 þ 2X0→ þ 2ð1 −
ffiffiffi
2

p
ÞX→→; ðB29bÞ

X→→ ¼ 1þ ffiffiffi
2

p

1 −
ffiffiffi
2

p X0→: ðB29cÞ

In the static approximation, Eqs. (1), (49), the exchange
diagrams vanish and Eqs. (B29) reproduce the identities
used in Refs. [39,43,44].
At the same level, the neutron should be neutral.

Consider, therefore, that in the isospin symmetric limit,
the neutron’s charge can be computed from the diagrams
detailed in Secs. B 1–B 3 by making the exchange u ↔ d:
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en ¼ Np½Q0ed þ Q1ðed þ 2euÞ
þD0eud þD1ðeud þ 2eddÞ
þX00eu þ 2X0→ðeu −

ffiffiffi
2

p
edÞ

þX→→ðeu − 2
ffiffiffi
2

p
edÞ� ¼ 0; ðB30Þ

if Eqs. (B29) are satisfied. Numerically, however, they are
not. That is because the last step in our regularization
procedure involves the introduction of hard infrared and
ultraviolet cutoffs, which naturally spoils the conditions
necessary to prove Eqs. (B29). Following Ref. [20], a
remedy is straightforward. Namely, we use Eq. (B29b) as a
definition of X11 and introduce rescaling factors r0;1, with
Q0 → Q̄0 ¼ Q0ð1þ r0Þ, D0 → D̄0 ¼ D0ð1 − r0Þ and
Q1 → Q̄1 ¼ Q1ð1þ r1Þ, D1 → D1 ¼ D1ð1 − r1Þ, such
that Eqs. (B29) are satisfied when expressed in terms of
Q̄0;1, D̄0;1. This procedure yields

r0 ¼ −0.0298; r1 ¼ −0.203; ðB31Þ

and entails X→→ → X̄→→ ¼ 119X0→ ≕ rXX0→. N.B.
These same scaling factors are applied to the analogous
diagrams that appear in computing the proton’s tensor
charges.
The nucleon Faddeev amplitude can now be normalized,

following the procedure described in Sec. V B. One has

ep ¼ Np½Q̄0eu þ Q̄1ðeu þ 2edÞ
þ D̄0eud þ D̄1ðeud þ 2euuÞ
þX00ed þ 2X0→ðed −

ffiffiffi
2

p
euÞ

þ X̄→→ðed − 2
ffiffiffi
2

p
euÞ� ¼ 0.0192Np ðB32Þ

⇒ Np ¼ 52.2: ðB33Þ

The contribution from each diagram-number is listed
separately in Table B.1.

APPENDIX C: NUCLEON-TENSOR VERTEX

When a symmetry-preserving regularization of the con-
tact interaction is employed, one finds [20]

Vμν ¼ σμν; ðC1Þ

i.e. the tensor vertex is not dressed, a result which owes to
the inability of any symmetry-preserving regularization of a
contact interaction to support nonzero relative momentum
in a quark-antiquark system.
Following our analysis of the proton’s electromagnetic

current at Q2 ¼ 0, only one type of diagram remains to be
explicated, viz. Diagram 4 in Fig. 4. In connection with a
zero-momentum tensor probe, this image translates into
two terms: C40→ ¼ C4→0, with the latter corresponding to

T4
0→ΛþðPÞσμνΛþðPÞ

¼ NpΛþðPÞ
Z

Λ

dk
Āαðk;−PÞΔ1þ

αβðkqq1þÞVβμνðkqq1þ ; kqq0þÞ

× Δ0þðkqq0þÞSðkqÞSðk;PÞΛþðPÞ; ðC2Þ

where the tensor transition vertex is (Nf ¼ 2, ND
c ¼ 2):

Vβμνðkqq1þ ; kqq0þÞ

¼ −2NfND
c tr

Z
Λ

dq
Sðqþ kqq1þÞσμν

× Sðqþ kqq0þÞΓ0þðkqq0þÞSðqÞΓ̄1þ
β ð−kqq1þÞ: ðC3Þ

Analyzing and combining these integrals in the now
customary way, then at the hadronic scale ζH ¼ 0.39�
0.02 GeV one obtains

T4
0→ ¼ −3.68 × 10−3Np ¼ −0.192: ðC4Þ

Both C40→, C
4
→0 contribute half their strength equally to δTu,

δTd, so that

δ4Tu ¼ δ4Td ¼ T4
0→: ðC5Þ

The complete list of contributions from Diagrams 1-3 is

T1
00 ¼ 0.0147Npð1þ r0Þ ¼ 0.744; ðC6aÞ

T1
→→ ¼ −4.86 × 10−4Npð1þ r1Þ ¼ −0.0195; ðC6bÞ

T1
↑↑ ¼ 2T1

→→; ðC6cÞ

T2
00 ¼ 0; ðC7aÞ

T2
→→ ¼ 8.48 × 10−4Npð1 − r1Þ ¼ 0.0544; ðC7bÞ

T2
↑↑ ¼ 2T2

→→; ðC7cÞ

TABLE B.1. Breakdown by diagram of contributions to the
nucleon’s canonical normalization. Column 2: Results scaled as
described in Sec. B 5. N.B. In relation to Eqs. (B28), (B32):
Diagram 1 corresponds to summing Q terms; Diagram 2,
summation of D terms; and Diagram 3, summation of X terms.
(Actual value of each entry is obtained via division by 103.)

1=Np 1=NR
p

Diagram 1 10.9 10.5
Diagram 2 7.70 8.46
Diagram 3 −0.0729 0.157
Diagram 4 0 0
Total 18.5 19.2
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T3
00 ¼ −1.93 × 10−4Np ¼ −0.00992; ðC8aÞ

T3
0→ ¼ 8.8 × 10−5Np ¼ 0.00459; ðC8bÞ

T3
0↑ ¼ −

ffiffiffi
2

p
T3

0→; ðC8cÞ

T3
→0 ¼ T3

0→; ðC8dÞ

T3
↑0 ¼ −

ffiffiffi
2

p
T3

0→; ðC8eÞ

T3
→→ ¼ −7.87 × 10−6NprX ¼ −0.0487; ðC8fÞ

T3
→↑ ¼ −

ffiffiffi
2

p
T3

→→; ðC8gÞ

T3
↑→ ¼ −

ffiffiffi
2

p
T3

→→: ðC8hÞ

In terms of the contributions in Eqs. (C5)–(C8), the
proton’s tensor charges are

δTu ¼ ½T1
00 þT1

→→� þ
�
1

2
T2

→→ þT2
↑↑

�

þ ½T3
0↑ þT3

→↑ þT3
↑0 þT3

↑→� þT4
→0;

ðC9aÞ

δTd ¼ T1
↑↑ þ

1

2
T2

→→

þ ½T3
00 þT3

0→ þT3
→0 þT3

→→� þT4
→0:

ðC9bÞ

These expressions yield the results in the upper panel of
Table IV.
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