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Single- and double-heavy baryons are studied in the constituent quark model. The model Hamiltonian is
chosen as a standard one with two exceptions: (1) the color-Coulomb term depends on quark masses and
(2) an antisymmetric LS (spin-orbit) force is introduced. Model parameters are fixed by the strange baryon
spectra, Λ and Σ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well
reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific
excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from
the SU(3) limit to the strange quark mass, and, further, to the charm and bottom quark masses, we
demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy-quark-symmetry ones.
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I. INTRODUCTION

Recent hadron physics has been stimulated by observa-
tions of exotic hadrons with heavy quarks. So-called X; Y,
and Zmesons most likely contain a hidden heavy quark and
antiquark pair, either c̄c or b̄b. In addition, they may
contain a light quark and antiquark pair, thus forming a
multiquark configuration near the threshold region of open
flavor. For instance, Xð3872Þ; Zbð10610; 10850Þ are
expected to be hadronic molecules of DD̄�, BB̄�, or
B�B̄� via the strong correlation of a quark and antiquark
pair [1,2]. Furthermore, the pentaquarks Pcð4380Þ and
Pcð4450Þ recently discovered by LHCb [3] may also have
such a structure.
Theoretically, diquark qq correlations may also play an

important role, leading to the idea of compact tetraquarks
[4,5]. In fact, the diquark correlations have been considered
for long time in many different contexts [6] to explain the
mass ordering of light scalar mesons, weak decays of
hyperons, missing nucleon resonances, the novel phase
structure of the quark matter, and so on. In QCD, the
correlation densities of the two light quarks were measured,
having indicated a strong attraction in a so-called good
diquark pair [7]. In reality, the evidence should be also seen
in masses of excited states. Charmed baryons with two light
quarks may provide a good opportunity for such a study.
Pioneering work was done some time ago by Copley

et al. [8] in a constituent quark model, which was later
elaborated by Roberts and Pervin [9]. They studied various
excited states of charmed and bottomed baryons by solving
three-quark systems explicitly. A motivation of the present
work is to further point out the behavior of various

properties of heavy baryons as functions of the heavy-
quark mass, smoothly interpolating the SU(3) limit of equal
quark masses and the heavy-quark limit. Such a study in
different flavor regions is useful to systematically under-
stand the nature of spectrum, in particular the roles of the
two internal motions when baryons are regarded as three-
body systems of quarks. The structure information, then,
must show up sensitively in various transition amplitudes of
decays and productions, which can be studied experimen-
tally as planned at J-PARC and FAIR.
Let us start by briefly showing the essential features of

the three-quark systems, with one heavy quark (Q) of mass
mQ and the two light quarks (q) of equal mass mq, using a
nonrelativistic quark model with a harmonic oscillator
potential for confinement [8].
It is convenient to introduce the Jacobi coordinates

λ ¼ rQ − rq1þrq2
2

and ρ ¼ rq2 − rq1, with obvious notations.
In the harmonic oscillator potential, the two degrees of
freedom decouple and the Hamiltonian can be written
simply as a sum of the two parts,

H ¼
X
i

p2i
2mi

þ
X
i<j

k
2
jri − rjj2

¼ p2ρ
2mρ

þ p2λ
2mλ

þmρωρ
2

2
ρ2 þmλωλ

2

2
λ2; ð1Þ

where mρ and mλ denote the reduced masses

mρ ¼
mq

2
; mλ ¼

2mqmQ

2mq þmQ
ð2Þ

and the oscillator frequencies ωρ and ωλ are given by
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ωρ ¼
ffiffiffiffiffiffiffiffiffi
3k
2mρ

s
; ωλ ¼

ffiffiffiffiffiffi
2k
mλ

s
: ð3Þ

The ratio of the two excited energies is then given by

ωλ

ωρ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð1þ 2mq=mQÞ

r
≤ 1: ð4Þ

In the SU(3) limit, when the quark masses are equal,
mq ¼ mQ, the λ and ρ modes degenerate, ωλ ¼ ωρ.
However, when mQ > mq, the excited energy of the λ
mode is smaller than that of the ρ mode, ωλ < ωρ (see
Fig. 1). Thus, we expect that in the heavy-quark sector, the
λ excitation modes become dominant for low-lying states of
singly heavy-quark baryons. In contrast, when mQ < mq,
which corresponds to doubly heavy-quark baryons, we
have ωλ > ωρ; therefore, the ρ excitation modes become
dominant. It is shown that this feature is rather general for
nonrelativistic potential models except for the case when
the Coulomb type potential of 1=r dominates the binding.
One important symmetry structure realized in the heavy-

quarkhadrons is theheavy-quarkspinsymmetry (HQS) [10].
In theheavy-quarklimit, the interactionswhichdependonthe
spin of the heavy quark disappear. Thus, in a single-heavy
hadron the heavy-quark spin sQ is conserved (i.e.,
½H; sQ� ¼ 0); with the conservation of the total angular
momentum J, one sees that j≡ J − sQ which is the angular
momentum carried by the light quarks (including all the
orbital angularmomenta) is also conserved.Wewill call j the
light-spin component. Consequently, the two states whose
quantum numbers are J ¼ jþ 1=2 and J ¼ j − 1=2will be
degenerate.Theyformaheavy-quarkspindoublet, except for
j ¼ 0, which yields a HQS singlet. A simple example
of a HQS doublet is the pair of ΣQð1=2þÞ and ΣQð3=2þÞ.

The mass differences Σsð3=2þÞ − Σsð1=2þÞ ¼ 174 MeV,
Σcð3=2þÞ−Σcð1=2þÞ¼63MeVandΣbð3=2þÞ − Σbð1=2þÞ
¼ 22 MeV decrease as mQ becomes large.
We organize this paper as follows. In Sec. II, we present

our formulation of the nonrelativistic constituent quark
model. The Hamiltonian and the quark interaction are
introduced in Sec. II A; we employ a linear potential for
quark confinement supplemented by spin-spin, tensor, and
spin-orbit (LS) forces. The antisymmetric LS force is
also needed to guarantee the heavy-quark symmetry. In
Sec. II B, the Gaussian expansion method is introduced to
solve the three-quark system. When the heavy-quark mass
is varied from mQ ¼ mq to mQ → ∞, the symmetry of the
spectrum then changes from the SU(3) to the heavy-quark
spin symmetry. In Sec. II C, the relation of the two
symmetry limits and mixings of the two internal excitation
modes are discussed. The results of the present work are
presented in Sec. III. The results of single-heavy baryons
and those of double-heavy baryons are discussed in
Secs. III A and III B, respectively. The properties of the
λ and ρ modes are discussed in detail in Sec. III C. In
Sec. III D, the heavy-quark limit is investigated. Finally, a
summary is given in Sec. IV.

II. FORMALISM

A. Hamiltonian

In this subsection, we discuss our model Hamiltonian in
detail. In the nonrelativistic quark model, baryons are
formed by three valence (constituent) quarks. They are
confined by a confining potential and interact with each
other by residual two-body interactions. Their internal
motions are then described by the two spatial variables ρ
and λ. In other models of baryons, nonquark degrees of
freedom are considered such as constituent gluons and
confining fields. Their signals in baryon excitations are,
however, not yet confirmed in experiments, and are
expected to lie at higher energies than the low-lying quark
excitation modes. Empirically these justify the applicability
of the quark model, especially for low-lying excita-
tion modes.
Thus our Hamiltonian is written as

H ¼ K þ Vcon þ Vshort; ð5Þ

where the kinetic energy, K, the confinement potential,
Vcon, and the short-range interaction, Vshort, are given as

K ¼
X
i

�
mi þ

p2i
2mi

�
− KG; ð6Þ

Vcon ¼
X
i<j

brij
2

þ C; ð7Þ

FIG. 1 (color online). Heavy-quark mass dependence of excited
energies of the λ mode (red solid line) and the ρ mode (blue solid
line) in Eq. (1).
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Vshort ¼
X
i<j

�
−
2αCoul

3rij
þ 16παss

9mimj
si · sj

Λ2

4πrij
expð−ΛrijÞ þ

αsoð1 − expð−ΛrijÞÞ2
3rij3

×

��
1

m2
i
þ 1

m2
j
þ 4

1

mimj

�
Lij · ðsi þ sjÞ þ

�
1

m2
i
−

1

m2
j

�
Lij · ðsi − sjÞ

�

þ 2αtenð1 − expð−ΛrijÞÞ2
3mimjrij3

�
3ðsi · rijÞðsj · rijÞ

rij2
− si · sj

��
: ð8Þ

In Eq. (6),mi is the constituent quark mass of the ith quark,
and the center-of-mass energy, KG, is subtracted so that the
kinetic energy consists only those for the ρ and λ coor-
dinates. In Eq. (7), we employ the linear confinement
potential with the b parameter corresponding to the string
tension and rij ¼ ri − rj is the relative coordinate. In
Eq. (8), Lij ¼ ðri − rjÞ × ðmjpi −mipjÞ=ðmi þmjÞ is the
relative orbital angular momentum and sið¼ σi=2Þ is the
spin operator of the ith quark. The components of Eq. (8)
are inferred by the one-gluon exchange (OGE), which
requires only one coupling constant common to the four
terms. Practically, however, they may have different origins
other than the OGE; therefore, we treat the four coupling
strengths, αCoul, αss, αso, and αten as independent parameters
for better description of baryon masses.
The third term in Eq. (8) consists of the symmetric LS

(SLS) potential, VSLS, with Lij · ðsi þ sjÞ and the antisym-
metric LS (ALS) potential, VALS, with Lij · ðsi − sjÞ. The
ALS is necessary to guarantee the heavy quark symmetry.
The terms dependent on the heavy-quark spin sQ of the
VSLS and VALS in a single-heavy baryon are given by

VSLS →
X
i¼1;2

αsoð1 − expð−ΛriQÞÞ2
3r3iQ

×

�
1

m2
i
þ 1

m2
Q
þ 4

mimQ

�
LiQ · sQ; ð9Þ

VALS →
X
i¼1;2

αsoð1 − expð−ΛriQÞÞ2
3r3iQ

ð10Þ

×

�
1

m2
i
−

1

m2
Q

�
LiQ · ð−sQÞ; ð11Þ

where we choose i ¼ 3 for the heavy quark. Then, by
summing the parts from the SLS and ALS, the LQ · sQ is

always proportional to 1=mQ or higher. Thus the sQ
dependence disappears in the mQ → ∞ limit, and the
heavy-quark symmetry is guaranteed.
Recently, it was suggested by a Lattice QCD calculation

[11] that the strength, αCoul, of the color Coulomb force
depends significantly on the quark mass. In our study, we
therefore assume that αCoul for the i − j pair of quarks
depends on the reduced mass, μij ¼ mimj

miþmj
, as follows:

αCoul ¼ K
μij

: ð12Þ

We summarize 10 parameters in the Hamiltonian
employed here in Table I. The parameters are determined
from experimental data of the strange baryon spectrum (see
Table II). First, we switch off the LS and tensor force to
determine the parameters C, αss,mq,ms, Λ, and K from the
positive parity state. Then, we determine αso and b from
negative parity states. The details of how to determine the
parameters are as follows:
(i) The constant term C: In the constituent quark models,

we can predict mass differences between different
states, but the absolute values can not be determined.
In our work, we introduce the constant C to reproduce
the ground state of Λð1115Þ and we assume that the
constant C is independent of the constituent quark
mass; namely, we use the same value for the charmed
baryons.

(ii) Spin-spin term: The spin-spin term in the Hamiltonian
is responsible for the splitting among Λ, Σ, and Σ�.
This term depends on αss, mq, ms, and Λ. Because
we have four parameters for three states to be fitted,
we fix mq ¼ 300 MeV, which is the standard value
suggested from the magnetic moment of the baryon
in the constituent quark model, and then we
determine the other parameters to reproduce the
masses of Λ, Σ, Σ�.

TABLE I. Parameters in the Hamiltonian. We determine mq, ms, b, K, αss, and Λ to reproduce strange baryons,
and mc and mb are determined from the ground state of Λc and Λb.

mq ms mc mb b K C Λ
(MeV) (MeV) (MeV) (MeV) (GeV2) (MeV) αss αso (¼ αten) (MeV) (fm−1)

300 510 1750 5112 0.165 90 1.2 0.077 −1139 3.5
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(iii) The parameter K: In our calculation, we introduce
αCoul as a quark-mass-dependent form as given by
Eq. (12). Thus, the Coulomb force can contribute to
the mass splitting between the ground states of ΛsðΣsÞ,
Ξss, and Ωsss. This force also contributes to the mass
differences between the ground state and the excited
states. We determine the parameter K to reproduce
Ξð1=2þÞ and the mass difference between the ground
state and the excited states.

(iv) The linear confinement b: Our emphasis in the
present study is on the P-wave states. The parameters
which mainly determine the mass differences are b
and K. K is determined from Ξð1=2þÞ as mentio-
ned above and we determine the parameter b to
reproduce the splitting between the ground state and
the P-wave state.

(v) The spin-orbit coupling αso: The strength αso of the
spin-orbit force may be determined by the splitting of
the P-wave baryons, such as Λð1=2−Þ and Λð3=2−Þ.
However, we do not use the lowest Λð1=2−Þ,
¼ Λð1405Þ, because various recent studies on the
Λð1405Þ resonance suggests that this is not simply
a pure three-quark state, but rather a NK̄ molecularlike
state. Therefore, we determine the parameter αso to
reproduce the splitting between the second Λð1=2−Þ
and Λð3=2−Þ, namely Λð1670Þ and Λð1690Þ. Thus, as
expected, αso becomes very small, much smaller than
αss. If the spin-spin and LS forces come only from the
OGE, then their values are not consistent. However,
other sources of quark interactions, including the
relativistic correlations to the confinement and instan-
ton-induced interaction (III), may also contribute the
LS interaction. It was pointed out [12] that the LS

TABLE II. Calculated energy spectra and corresponding
experimental data of Λs, Σs, and Ξss. We take the three-star
and four-star resonances in PDG except for the first 1=2− state of
Σs, which has only two stars.

Λs

Theory Experiment
JP (MeV) (MeV)

1
2
þ 1116 1116

1799 1560–1700
1922 1750–1850

3
2
þ 1882 1850–1910

2030
2100

5
2
þ 1891 1815–1825

2045 2090–2140
2143

1
2
− 1526 1405

1665 1660–1680
1777 1720–1850

3
2
− 1537 1520

1685 1685–1695
1810

5
2
− 1814 1810–1830

2394
2448

Σs

Theory Experiment
JP (MeV) (MeV)

1
2
þ 1197 1192

1895 1630–1690
2016

3
2
þ 1391 1385

2004
2028

5
2
þ 2012 1900–1935

2085
2091

1
2
− 1654 (≈1620)

1734 1730–1800
1751

3
2
− 1660 1665–1685

1755 1900–1950
1760

5
2
− 1762 1770–1780

2324
2427

Ξss

Theory Experiment
JP (MeV) (MeV)

1
2
þ 1325 1314

1962
2131

(Table continued)

TABLE II. (Continued)

Ξss

Theory Experiment
JP (MeV) (MeV)

3
2
þ 1525 1530

2034
2115

5
2
þ 2040

2166
2211

1
2
− 1778

1875
1910

3
2
− 1782 1820

1877
1920

5
2
− 1933

2460
2518
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forces from OGE and III are opposite. Then, the
discrepancy between αss and αso can be explained.

(vi) The strength αten: The tensor force in the Hamiltonian
contributes mainly to the positive parity Σð1=2þÞ,
Σð3=2þÞ and the lowest negative states. It has been
known that the tensor force is weak and does not
contribute much except for generating mixings of
S ¼ 1=2 and 3=2 states. We choose αten equal to αso.

(vii) Charm- and bottom-quark mass, mc;mb: We fit the
charm-quark mass mc (bottom-quark mass mb) to the
ground state of Λc (Λb). These values contribute to
the mass splittings as well as the absolute values, but
once we determine the other parameters in the strange
sector, mc and mb are determined uniquely.

From Table II, we find that our results reproduce most of
the known strange baryon masses, except for the second
JP ¼ 1=2þ state and the first JP ¼ 1=2− state. It is well
known that the Roper resonance Nð1440Þ, the second
JP ¼ 1=2þ state, is lighter than lowest JP ¼ 1=2− state,
which is incompatible with the quark model predictions.
Similarly, in the strange sector, the Roper-like states
Λð1600Þ and Σð1660Þ are predicted at higher masses than
experiment. The origin of these discrepancies may reside
outside the simple three-quark picture of the baryons in
the quark model. We therefore omit these states from the
fitting in the present analysis.

B. Baryon wave function

We here consider three-quark systems (Table III) with
one heavy quark,Q ¼ ðc or bÞ, and with two or three heavy
quarks with the same flavor, i.e., QQ ¼ ðcc or bbÞ and
QQQ ¼ ðccc or bbbÞ. The remaining quarks are u, d, or s.
We classify the baryons according to the number of heavy
quarks, the strangeness, S, and the total isospin, T. The
last column of Table III shows the isospin wave function
where η0 ¼ 1.

In expressing three-quark wave functions, we introduce
three sets of Jacobi coordinates, which we call channels
(Fig. 2). The Jacobi coordinates in each channel c (c ¼ 1,
2, 3) are defined as

λc ¼ rk −
miri þmjrj
mi þmj

; ð13Þ

ρc ¼ rj − ri; ð14Þ

where (i; j; k) are given by Table IV.
The total wave function is given as a superposition of the

channel wave functions as

ΦJM
total ¼

X
cα

Cc;αΦ
ðcÞ
JM;αðρc; λcÞ; ð15Þ

where the index α represents fs; S;l; L; I; n; Ng. Here s is
the spin of the (i; j) quark pair, S is the total spin, l and L
are the orbital angular momentum for the coordinate ρ and
λ, respectively, and I is the total orbital angular momentum.
The coupling scheme of the spin and angular momenta is as

s ¼ si þ sj; sþ sk ¼ S;

lþ L ¼ I; Sþ I ¼ J: ð16Þ

The wave function for channel c is given by

ΦðcÞ
JMðρc; λcÞ ¼ ϕc ⊗ ½XðcÞ

S;s ⊗ ΦðcÞ
l;L;I�JM ⊗ HðcÞ

T;t; ð17Þ

where the color wave function, ϕc, the spin wave function,
XS, the orbital wave function, ΦI, and the isospin wave
function, HT , are given by

ϕc ¼
1ffiffiffi
6

p ðrgb − rbgþ gbr − grbþ brg − bgrÞ; ð18Þ

TABLE III. Heavy baryons and their flavor contents. We use
the isopin classification so that q stands collectively for the u and
d quarks. Q denotes a c or b quark. We do not consider mixing
of c and b.

Isospin Strangeness
Heavy baryons S T Isospin wave function

ΛQ ¼ ½qq�T¼0Q 0 0 ½½η1=2η1=2�t¼0
η0�T¼0

ΣQ ¼ ½qq�T¼1Q 0 1 ½½η1=2η1=2�t¼1
η1=2�T¼1

ΞQ ¼ sqQ −1 1=2 ½½η0η1=2�t¼1=2η0�T¼1=2

ΩQ ¼ ssQ −2 0 1

ΞQQ ¼ QQq 0 1=2 ½½η0η0�t¼0η1=2�T¼1=2

ΩQQ ¼ QQs −1 0 1

ΩQQQ ¼ QQQ 0 0 1

FIG. 2. Jacobi coordinates for the three-body system. We place
the heavy quark as the third particle in the case of single-heavy
baryons, while the first and second particles are heavy quarks in
double-heavy baryons.

TABLE IV. The quark assignments ði; j; kÞ for the Jacobi
channels.

Channel i j k

1 2 3 1
2 3 1 2
3 1 2 3
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XðcÞ
S;s ¼ ½½χ1=2ðiÞχ1=2ðjÞ�sχ1=2ðkÞ�S; ð19Þ

HðcÞ
T:t ¼ ½½ητiðiÞητjðjÞ�tητkðkÞ�T; ð20Þ

ΦðcÞ
l;L;I ¼ ½ϕðcÞ

l ðρcÞϕðcÞ
L ðλcÞ�I; ð21Þ

ϕðcÞ
l ðρcÞ ¼ Nnlρ

l
ce−βnρ

2
cYlmðρ̂cÞ; ð22Þ

ϕðcÞ
L ðλcÞ ¼ NNLλ

L
c e−γNλ

2
cYLMðλ̂cÞ: ð23Þ

In Eq. (18), r; g; b denote the color of the quark, and the
color-singlet wave function is totally antisymmetric. In
Eq. (19), χ1=2 is the spin wave function of the quark, while
ητ in Eq. (20) is the isospin wave function with τ defined by

τ ¼
�
1=2 for u; d

0 for s; c; b:
ð24Þ

We consider the quark antisymmetrization for the light
quarks, u and d, and the heavy quarks, s, c, b, separately.
Then, for single-heavy baryons, antisymmetrization is
applied only to the light quarks. As the color wave function
is always totally antisymmetric, the spin, isospin and the
orbital angular momentum in the channel c ¼ 3 should
satisfy

lþ sþ t ¼ even for ΛQ;ΣQ; ð25Þ

where l, s, t are the orbital angular momentum, total spin,
and isospin of the two light quarks. Similarly, the heavy
quarks are antisymmetrized in the double-heavy baryons as

lþ sþ 1 ¼ even for ΞQQ;ΩQ;ΩQQ; ð26Þ

where l, s, t are the corresponding ones for the heavy
quarks. Considering the antisymmetrization and the com-
binations of the angular momenta, we obtain possible
assignments of the angular momenta for the low-lying
ΛQð1=2þÞ in Table V, where we take all the combinations
satisfying lþ L ≤ 2.
In solving the Schrödinger equation, we use the

Gaussian expansion method [13], where the orbital wave

functions are expanded, in Eqs. (22) and (23), by Gaussian
functions with the range parameters, βn and γN , chosen as

βn ¼ 1=r2n; rn ¼ r1an−1ðn ¼ 1;…; nmaxÞ; ð27Þ

γN ¼ 1=R2
N; RN ¼ R1bN−1ðN ¼ 1;…; NmaxÞ: ð28Þ

In Eqs. (22) and (23), NnlðNNLÞ denotes the normali-
zation constant of the Gaussian basis. The coefficients Cc;α

of the variational wave function, Eq. (15), are determined
by the Rayleigh-Ritz variational principle. In order to check
that the energy converges to the required precision, we
change the number of bases and plot the eigenenergy of the
lowest-lying Λcð3=2−Þ in Fig. 3. The filled points are the
results from the calculation only using the channel c ¼ 3,
while the open circles are the results from the three-channel
calculation (Fig. 2). One sees that when we take only one
channel, the convergence is slow and has not yet reached
the required precision at Nmax ¼ nmax ¼ 10.

C. Heavy-quark limit

One of the aims of this paper is to see how the heavy-
baryon spectrum changes when the heavy-quark mass mQ

changes. Two limits are important: the SU(3) limit with
mQ ¼ mq, and the HQ limit, mQ → ∞.
In the limit mQ → mq, the spectrum is classified by the

SU(3) representations. For instance, the lowest P-wave
baryons are expected to belong to the SU(6) 70-
dimensional representation, which contains 21, 28, 48,
and 210. Here the upper index number is the spin
multiplicity and the bold number represents the SU(3)
multiplicity. On the other hand, in the HQ limit, mQ → ∞,

TABLE V. Combinations of the spin and orbital angular
momenta in channel 3 of the low-lying Λð1=2þÞ. In our study,
we restrict the total angular momentum up to 2, lþ L ¼ 0, 2.

Channel l L I s S

3 0 0 0 0 1=2
3 1 1 0 1 1=2
3 1 1 1 1 1=2
3 1 1 1 1 3=2
3 1 1 2 1 3=2

FIG. 3. Convergence of the energy of the lowest Λcð3=2−Þ for
increasing the number of bases functions.
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as we have discussed in Sec. I, the P-wave baryons are
better classified by the ρ- and λ-mode excitations (Fig. 4).
Here we derive relations between the two pictures.
Let us consider single-heavy ΛQ and ΣQ baryons. We

put the heavy quark Q as the third quark. Then the orbital-
spin wave functions of ΛQ and ΣQ in the SU(3) limit are
given by

ΨðΛQ;
21Þ ¼ 1ffiffiffi

2
p ðX1=2;1Φ1;0;1 − X1=2;0Φ1;1;0Þ; ð29Þ

ΨðΛQ;
28Þ ¼ 1ffiffiffi

2
p ðX1=2;1Φ1;0;1 þ X1=2;0Φ1;1;0Þ; ð30Þ

ΨðΛQ;
48Þ ¼ X3=2;1Φ1;0;1 ð31Þ

and

ΨðΣQ;
210Þ ¼ 1ffiffiffi

2
p ðX1=2;1Φ1;1;0 þ X1=2;0Φ1;0;1Þ; ð32Þ

ΨðΣQ;
28Þ ¼ 1ffiffiffi

2
p ðX1=2;1Φ1;1;0 − X1=2;0Φ1;0;1Þ; ð33Þ

ΨðΣQ;
48Þ ¼ X3=2;1Φ1;1;0: ð34Þ

In the SU(3) limit, the 28ðS ¼ 1=2Þ and 48ðS ¼ 3=2Þ can
be mixed with the spin-spin/spin-orbit forces [if we further
argue SU(6), they do not mix]. For mq < mQ, ΨðΛQ;

21Þ
and ΨðΛQ;

28Þ may mix with each other; in the large mQ

limit, they are reduced to the λ-mode, Φ1;1;0, and the
ρ-mode, Φ1;0;1, excitations. Representing the λðρÞ mode
with the total spin S by 2Sþ1λð2Sþ1ρÞ, we obtain

ΨðΛQ;
2λÞ ¼ X1=2;0Φ1;1;0

¼ 1ffiffiffi
2

p ðΨðΛQ;
28Þ −ΨðΛQ;

21ÞÞ; ð35Þ

ΨðΛQ;
2ρÞ ¼ X1=2;1Φ1;0;1

¼ 1ffiffiffi
2

p ðΨðΛQ;
28Þ þΨðΛQ;

21ÞÞ; ð36Þ

ΨðΛQ;
4ρÞ ¼ X3=2;1Φ1;0;1 ¼ ΨðΛQ;

48Þ ð37Þ

for the ΛQ baryons and

ΨðΣQ;
2λÞ ¼ X1=2;1Φ1;1;0

¼ 1ffiffiffi
2

p ðΨðΣQ;
210Þ þΨðΣQ;

28ÞÞ; ð38Þ

ΨðΣQ;
2ρÞ ¼ X1=2;0Φ1;0;1

¼ 1ffiffiffi
2

p ðΨðΣQ;
210Þ −ΨðΣQ;

28ÞÞ; ð39Þ

ΨðΣQ;
4λÞ ¼ X3=2;1Φ1;1;0 ¼ ΨðΣQ;

48Þ ð40Þ

for the ΣQ baryons.
Generally, the λ modes appear lower in energy than the ρ

modes and they do not mix with each other in the heavy-
quark limit. The two states which are in the same mode but
have different spin (ΛQ;

2ρ, ΛQ;
4ρ and ΣQ;

2λ, ΣQ;
4λ) may

mix even in the heavy-quark limit, because the light-quark
spin-spin force is still alive in this limit. For intermediate
heavy-quark masses, all these states may mix; the wave
functions of energy eigenstates show how the mixings
change as the heavy-quark mass increases.
A similar analysis can be done for other heavy-quark

baryons. We tabulate, in Table VI, the λ- and ρ-mode

FIG. 4 (color online). The ρ- and λ-mode excitations of the
single-heavy baryon.

TABLE VI. The λ- and ρ-mode assignments of the P-wave
excitations of ΛQ, ΣQ, ΞQ, ΞQQ, ΩQQ, and ΩQQQ. The quantum
numbers are given in the Jacobi coordinate channel c ¼ 3.

Flavor l L I s S Mode J

0 1 1 0 1=2 2λ 1=2−; 3=2−

ΛQ 1 0 1 1 1=2 2ρ 1=2−; 3=2−

1 0 1 1 3=2 4ρ 1=2−; 3=2−; 5=2−

0 1 1 1 1=2 2λ 1=2−; 3=2−

ΣQ 0 1 1 1 3=2 4λ 1=2−; 3=2−; 5=2−

1 0 1 0 1=2 2ρ 1=2−; 3=2−

0 1 1 0 1=2 2λ 1=2−; 3=2−

1 0 1 1 1=2 2ρ 1=2−; 3=2−

ΞQ 1 0 1 1 3=2 4ρ 1=2−; 3=2−; 5=2−

0 1 1 1 1=2 2λ 1=2−; 3=2−

0 1 1 1 3=2 4λ 1=2−; 3=2−; 5=2−

1 0 1 0 1=2 2ρ 1=2−; 3=2−

0 1 1 1 1=2 2λ 1=2−; 3=2−

ΞQQ 0 1 1 1 3=2 4λ 1=2−; 3=2−; 5=2−

1 0 1 0 1=2 2ρ 1=2−; 3=2−

0 1 1 1 1=2 2λ 1=2−; 3=2−

ΩQQ 0 1 1 1 3=2 4λ 1=2−; 3=2−; 5=2−

1 0 1 0 1=2 2ρ 1=2−; 3=2−

ΩQQQ 0 1 1 1 1=2 2λ 1=2−; 3=2−

1 0 1 0 1=2 2ρ 1=2−; 3=2−
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classification of the P-wave heavy-quark baryons and their
quantum numbers in the Jacobi coordinate channel c ¼ 3.
In the heavy-quark limit, mQ → ∞, HQS symmetry

becomes exact, where the spin degeneracy of J¼j�1=2
appears. In this limit, the light component j ¼ J − sQ and
the heavy-quark spin sQ are conserved independently,
½H; sQ� ¼ 0 → ½H; J − sQ� ¼ ½H; j� ¼ 0. The basis in which
j becomes diagonal can be written in terms of the Jacobi-
coordinate basis states Eq. (17) for the channel c ¼ 3 as

ΨðqqQ; j; JÞ ¼ ½½χ1=2ðqÞχ1=2ðqÞ�sΦlLI�jχ1=2ðQÞ�J
¼

X
S

ð−ÞðsþSþ1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Sþ 1Þð2jþ 1Þ

p

×

�
1=2 s S

I J j

�
½XS;s ⊗ ΦIlL�J: ð41Þ

III. RESULTS AND DISCUSSION

A. Energy spectra of single-heavy systems

We first discuss energy spectra of the single-charmed
baryons, Λc, Σc, and Ωc. The energies of the charmed
baryons are listed in Table VII and are illustrated in Fig. 5.
The mass of the lowest Λc is used to fix the charm
quark mass mc. The energy differences among the lowest
Λcð1=2þÞ, Σcð1=2þÞ, and Σc

�ð3=2þÞ states are given
by Σcð1=2þÞ − Λcð1=2þÞ ¼ 175 MeV (expt. 170 MeV),
Σc

�ð3=2þÞ − Σcð1=2þÞ ¼ 71 MeV (expt. 65 MeV), which
agree very well to the experimental data. The mass of the
other single-charmed baryons are also well reproduced
within a deviation of 50 MeV.
The energies of the lowestΛcð1=2−Þ andΛcð3=2−Þ states

are consistent with the experimental data within 40 MeV,
while the spin-orbit splitting between them is smaller than

TABLE VII. Calculated energy spectra and experimental re-
sults of Λc, Σc, and Ωc.

Λc

Theory Experiment
JP (MeV) (MeV)

1
2
þ 2285 2285

2857
3123

3
2
þ 2920

3175
3191

5
2
þ 2922 2881

3202
3230

1
2
− 2628 2595

2890
2933

(Table continued)

TABLE VII. (Continued)

Λc

Theory Experiment
JP (MeV) (MeV)

3
2
− 2630 2628

2917
2956

5
2
− 2960

3444
3491

Σc

Theory Experiment
JP (MeV) (MeV)

1
2
þ 2460 2455

3029
3103

3
2
þ 2523 2518

3065
3094

5
2
þ 3099

3114
3191

1
2
− 2802

2826
2909

3
2
− 2807

2837
2910

5
2
− 2839

3316
3521

Ωc

Theory Experiment
JP (MeV) (MeV)

1
2
þ 2731 2698

3227
3292

3
2
þ 2779 2768

3257
3285

5
2
þ 3288

3299
3359

1
2
− 3030

3048
3110

3
2
− 3033

3056
3111

5
2
− 3057

3477
3620
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FIG. 5. Calculated energy spectra of Λc, Σc, and Ωc for 1=2þ, 3=2þ, 5=2þ, 1=2−, 3=2−, and 5=2−(solid line) together with
experimental data (dashed line). Several thresholds are also shown by dotted lines.

TABLE VIII. Calculated energy spectra and experimental
results of Λb, Σb, and Ωb.

Λb

Theory Experiment
JP (MeV) (MeV)

1
2
þ 5618 5624

6153
6467

3
2
þ 6211

6488
6511

5
2
þ 6212

6530
6539

1
2
− 5938 5912

6236
6273

3
2
− 5939 5920

6273
6285

5
2
− 6289

6739
6786

Σb

Theory Experiment
JP (MeV) (MeV)

1
2
þ 5823 5815

6343

(Table continued)

TABLE VIII. (Continued)

Σb

Theory Experiment
JP (MeV) (MeV)

6395
3
2
þ 5845 5835

6356
6393

5
2
þ 6397

6402
6505

1
2
− 6127

6135
6246

3
2
− 6132

6141
6246

5
2
− 6144

6592
6834

Ωb

Theory Experiment
JP (MeV) (MeV)

1
2
þ 6076 6048

6517
6561

3
2
þ 6094

6528

(Table continued)
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the observed ones. This tendency is also seen in the
previous quark model calculations. One possible cause
for the discrepancy is the coupling to the meson-baryon
scattering states. As in the case of Λð1405Þ, Λcð2595Þ and
Λcð2628Þ may couple to DN and D�N states [14,15].
Although the effects of the couplings may be smaller than
the Λð1405Þ case due to the higher threshold of Dð�ÞN
continuum, the coupling may alter the spin-orbit splitting.
There are two observed states, Λcð2940Þ and Σcð2800Þ,

whose spin and parity have not been assigned. The present
calculation indicates that Λcð2940Þ can be assigned to
one of the following states: 3=2þ1 (2920 MeV), 5=2−1

(2960 MeV), 1=2−2 (2890 MeV), 1=2−3 (2933 MeV),
3=2−2 (2917 MeV), and 3=2−3 (2956 MeV), while
Σcð2800Þ may be assigned to one of 1=2−1 (2802 MeV),
3=2−1 (2807 MeV), 1=2−2 (2826 MeV), 3=2−2 (2837 MeV),
and 5=2−1 (2839 MeV). Here, JPn denotes the nth JP state.
Further experimental information, such as decay branching
ratios and production rates, will be necessary to determine
the quantum numbers of these states.
For S ¼ −2 baryons, the lowest states of Ωcð1=2þÞ and

Ωcð3=2þÞ have been experimentally observed. We under-
estimate the mass difference between them by about
20 MeV.
The masses of the single-bottom baryons are listed in

Table VIII and illustrated in Fig. 6. The ground state
Λb is fitted to the experimental data of the Particle
Data Group. The mass differences among Λb, Σb, and
Σb

� are Σbð1=2þÞ − Λbð1=2þÞ ¼ 188 MeV, Σb
�ð3=2þÞ −

Σbð1=2þÞ ¼ 21 MeV experimentally, while our calculation
gives Σbð1=2þÞ−Λbð1=2þÞ¼195MeV, and Σb

�ð3=2þÞ−
Σbð1=2þÞ ¼ 22 MeV. Thus, we find that the low-lying
positive-parity states are reproduced within a 10-MeV
deviation.
The negative-parity Λb states, Λbð5912Þ and Λbð5920Þ,

have been discovered recently. Their mass difference is
about 8 MeV in experiment, and in our prediction it is
1 MeV. For S ¼ −2 bottom baryons, Ωbð1=2þÞ, our
estimate of the mass is 6076 MeV, which is higher than
the experimental value, 6015 MeV.

B. Energy spectra of double-heavy baryon systems

Tables IX and X and Figs. 7 and 8 show the calculated
energy spectra and experimental data for double-heavy

TABLE VIII. (Continued)

Ωb

Theory Experiment
JP (MeV) (MeV)

6559
5
2
þ 6561

6566
6657

1
2
− 6333

6340
6437

3
2
− 6336

6344
6438

5
2
− 6345

6728
6919

FIG. 6. Calculated energy spectra of Λb, Σb, and Ωb for 1=2þ, 3=2þ, 5=2þ, 1=2−, 3=2−, and 5=2− (solid line) together with
experimental data (dashed line). Several thresholds are also shown by dotted lines.
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baryons. Lattice QCD [16,17] and quark models [9,18]
predicted the masses of double-heavy baryons and varia-
tions among the model calculations to be large, compared
to those in the single-heavy baryons.
The calculated mass of the lowest Ξcc state is

3685 MeV, which is much higher than the experimental
observations by SELEX [19], 3519 MeV. However,

the other experimental searches by BABAR [20],
Belle [21], and LHCb [22] could not confirm this
state. Our prediction is consistent with the recent
Lattice QCD result as well as the other quark model
calculations.
We predict that the lowest Ξbb state is Ξbbð12þÞ ¼

10 314 MeV followed by Ξbbð32þÞ ¼ 10 339 MeV.

TABLE IX. Calculated energy spectra and experimental results
of Ξcc and Ξbb.

Ξcc

Theory Experiment
JP (MeV) (MeV) [16] [9]

1
2
þ 3685 3512 3603� 15� 16 3674

4079 4029
4159

3
2
þ 3754 3706� 22� 16 3753

4114 4042
4131

5
2
þ 4115 4047

4164 4091
4348

1
2
− 3947 3910

4135 4074
4149

3
2
− 3949 3921

4137 4078
4159

5
2
− 4163 4092

4488
4534

Ξbb

Theory [9]
JP (MeV) (MeV)

1
2
þ 10 314 10 340

10 571
10 612

3
2
þ 10 339 10 367

10 592
10 593

5
2
þ 10 592 10 676

10 613
10 809

1
2
− 10 476 10 493

10 703
10 740

3
2
− 10 476 10 495

10 704
10 742

5
2
− 10 759 10 713

10 973
11 004

TABLE X. Calculated energy spectra and experimental result
of Ωcc and Ωbb.

Ωcc

Theory
JP (MeV) [16] [9]

1
2
þ 3832 3704� 5� 16 3815

4227 4180
4295

3
2
þ 3883 3779� 6� 17 3876

4263 4188
4265

5
2
þ 4264 4202

4299 4232
4410

1
2
− 4086 4046

4199 4135
4210

3
2
− 4086 4052

4201 4140
4218

5
2
− 4220 4152

4555
4600

Ωbb

Theory
JP (MeV) [9]

1
2
þ 10 447 10 454

10 707 10 693
10 744

3
2
þ 10 467 10 486

10 723 10 721
10 730

5
2
þ 10 729 10 720

10 744 10 734
10 937

1
2
− 10 607 10 616

10 796 10 763
10 803

3
2
− 10 608 10 619

10 797 10 765
10 805

5
2
− 10 808 10 766

11 028
11 059
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C. λ-mode and ρ-mode structures in
heavy-baryon systems

Now we compare the heavy-baryon spectra for the
strange sector and the heavier sector (c and b) and clarify
the quark dynamics in the heavy baryon. Strange baryons
are conventionally analyzed by the SUð3Þf symmetry.

When the strange quark is replaced by a heavier quark,
c or b, we can study the dynamics of the two light quarks,
which may be regarded as a diquark. From this point of
view, one sees two distinct excitation modes: λ and ρ
modes. The λ-mode state is composed of the ðqqÞl¼0

diquark with L ¼ 1 excitation relative to the heavy quark,

FIG. 7. Calculated energy spectra of Ξcc and Ωcc for 1=2þ, 3=2þ, 5=2þ, 1=2−, 3=2−, and 5=2− (solid line) together with experimental
data (dashed line).

FIG. 8. Calculated energy spectra of Ξbb and Ωbb for 1=2þ, 3=2þ, 5=2þ, 1=2−, 3=2−, and 5=2− (solid line) together with experimental
data (dashed line).
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Q, while the ρ-mode state has an excited diquark ðqqÞl¼1 in
the L ¼ 0 orbit around Q.
As is discussed in Sec. I, the λ and ρ modes are largely

mixed in the SU(3) limit in the light-quark sector. This
mixing is induced mainly by the spin-spin interaction.
Because the spin-dependent interaction for the heavy quark
is weak, the λ and ρmodes are well separated for the charm
and bottom baryons. Then, each P-wave state is dominated
and characterized either by the λ mode or ρ mode.
In order to demonstrate these properties quantitatively,

we change the heavy-quark mass, mQ, from 300 MeV to
6 GeV and analyze the excitation energies and wave
functions. Figure 9 shows the spectra of ΛQ and ΣQ as
functions of mQ. One sees that the splitting between the
first and second 1=2− state of ΛQ increases rapidly from
100 MeV in the SU(3) limit to 300 MeV in the heavy-quark
limit when mQ increases. This behavior is due to the λ − ρ
splitting as demonstrated by the harmonic oscillator model
(in Fig. 1). Namely, the lowest state becomes dominated by
the λ mode as mQ becomes large. This is confirmed in
Fig. 10, where the λ- and ρ-mode probabilities of the lowest
1=2− state are plotted as functions of mQ. One sees that the
state is almost purely in the λmode atmQ ≥ 1.5 GeV; the λ
dominance is seen even at mQ ¼ 510 MeV. As classified
in Table VI, the quark model predicts seven P-wave ΛQ

excitations, ð1=2−Þ3, ð3=2−Þ3, ð5=2−Þ. They split into the
ð1=2−; 3=2−Þ λ modes and ð1=2−Þ2, ð3=2−Þ2, 5=2− ρ
modes. In Fig. 9, one sees clear splitting (≈350 MeV)
of two low-lying λ modes and five higher ρ-mode states.
The P-wave ΣQ has also seven states in the quark model,

ð1=2−Þ3, ð3=2−Þ3, ð5=2−Þ. One sees that they are classified
into the ð1=2Þ2, ð3=2−Þ2, ð5=2−Þ λmodes and ð1=2−; 3=2−Þ

ρ modes from Fig. 9. The λ and ρ modes are separated
more slowly than ΛQ as mQ increases, and the λ domi-
nance is seen at mQ ≥ 1750 MeV. The difference comes
from the interaction between light quarks which forms the
diquark. The diquark in ΣQ has spin 1 and the spin-spin
interaction is repulsive for the λ mode, while the ρ mode
has a diquark state of spin 0 and the spin-spin interaction
is attractive. Therefore, the difference between the exci-
tation energies of the two modes is small compared to ΛQ.
Thus, the splitting between the excitation energies of two
modes is larger for ΛQ and smaller for ΣQ compared with
the case in which there is no spin-spin force, as we see in
Sec. I. As a result, the change of the probability of two
modes in the ΣQ case is more slow than the ΛQ case, as
shown in Fig. 10.
In the case of double-heavy baryon, the λ-mode state is

composed of the ðQQÞl¼0 heavy diquark with the light
quark q, while the ρ-mode state has the excited heavy
diquark ðQQÞl¼1 in the L ¼ 0 orbit around q. The
combinations of angular momentum are the same as the
ΣQ case, which is shown in Table VI, but the behavior of
the λ and ρ modes are different because ΞQQ or ΩQQ

contains a heavy diquark. As mentioned in Sec. I, ωλ is
larger than ωρ for the P-wave double-heavy baryons and
thus ρ modes are dominant. This is shown in Figs. 11
and 12. One sees that the ð1=2Þ2, ð3=2−Þ2, ð5=2−Þ λ modes
and the ð1=2−; 3=2−Þ ρ modes split in the heavy-quark
region in Fig. 11, and the ρ modes become dominant for
the lowest states at mQ ≥ mc in Fig. 12.

D. Heavy baryons in the heavy-quark limit

In this subsection, we investigate the behavior of
the single-heavy baryons in the heavy-quark limit. We
decompose the wave functions of the P-wave single-
heavy baryons into the parts with different light-spin

FIG. 9 (color online). Heavy-quark mass dependence of excited
energies of the first, second, and third states for 1=2− (solid line),
3=2− (dashed line), and 5=2− (double dotted line) of ΛQ (red) and
ΣQ (blue). The bullet denotes a heavy-quark singlet. The pair
within a half circle denotes a heavy-quark doublet.

FIG. 10 (color online). The probability of the λmode (blue line)
and the ρ mode (red line) of 1=2− for ΣQ (dotted) and ΛQ (solid).
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component j as

ΦJ¼1=2;M
ΛQ

ðρ; λÞ ¼ ϕJ¼1=2;M
ΛQ;j¼0 ðρ; λÞ

þ ϕJ¼1=2;M
ΛQ;j¼1 ðρ; λÞ; ð42Þ

ΦJ¼3=2;M
ΛQ

ðρ; λÞ ¼ ϕJ¼3=2;M
ΛQ;j¼1 ðρ; λÞ

þ ϕJ¼3=2;M
ΛQ;j¼2 ðρ; λÞ; ð43Þ

ΦJ¼1=2;M
ΣQ

ðρ; λÞ ¼ ϕJ¼1=2;M
ΣQ;j¼0 ðρ; λÞ

þ ϕJ¼1=2;M
ΣQ;j¼1 ðρ; λÞ; ð44Þ

ΦJ¼3=2;M
ΣQ

ðρ; λÞ ¼ ϕJ¼3=2;M
ΣQ;j¼1 ðρ; λÞ

þ ϕJ¼3=2;M
ΣQ;j¼2 ðρ; λÞ: ð45Þ

Here, we take into account only the channel c ¼ 3 of the
Jacobi coordinates, given in Fig. 2. The relation between
the representation Eqs. (42)–(45) and Eq. (15) is shown in
the Appendix. The heavy-quark mass dependences of the
probabilities of each j state are shown in Figs. 13–16 (see
the Appendix for the definition). The mixings between j ¼
0 and j ¼ 1 or j ¼ 1 and j ¼ 2 above 1 GeVare negligible
for the first state of ΛQð1=2−Þ and ΛQð3=2−Þ and the third
state of ΣQð1=2−Þ and ΣQð3=2−Þ, which correspond to the

FIG. 13 (color online). The probabilities of j ¼ 0 (solid line)
and j ¼ 1 (dot-dashed line) for Λð1=2−Þ. Red, blue, and green
lines show the first, second, and third state, respectively.

FIG. 14 (color online). The probabilities of j ¼ 1 (solid line)
and j ¼ 2 (dot-dashed line) for Λð3=2−Þ. Red, blue, and green
lines show the first, second, and third state, respectively.

FIG. 11 (color online). Heavy-quark mass dependence of
excited energies of the first, second, and third state for 1=2−

(red solid line), 3=2− (blue dotted line), and 5=2− (green dashed
line) of ΞQQ.

FIG. 12 (color online). The probability of the λmode (blue line)
and the ρ mode (red line) of 1=2− for ΞQQ (solid) and ΩQQ

(dotted).
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red lines in Figs. 13–14 and the green lines in Figs. 15–16.
This is because these states are isolated from the other
states, as shown in Fig. 9. For the other state, two different j
components (five λ modes of ΣQ and five ρ modes of ΛQ)
still mix in the charm and bottommass region, because they
lie close to each other within 50 MeV (see Fig. 9). Above
mQ ¼ 14 GeV, one sees no mixing between different j
components. In summary, one finds that the second 1=2−

state of ΛQ and the first 1=2− state of 1=2− of ΣQ are the
j ¼ 0 singlet state. All the other states belong to doublets,
ð1=2−1 ; 3=2−1 Þ, ð1=2−3 ; 3=2−2 Þ, and ð3=2−3 ; 5=2−1 Þ for ΛQ and
ð1=2−2 ; 3=2−1 Þ, ð3=2−2 ; 5=2−1 Þ, and ð1=2−3 ; 3=2−2 Þ for ΣQ, as
shown in Fig. 9.

We next discuss the positive-parity states. We focus
on the first six positive-parity states of single-heavy
baryons, corresponding to the states below 3.0 GeV in
the charm sector (see Fig. 5). They consist of the S-wave
[ðL;lÞ ¼ ð0; 0Þ] component, the (1,1) component, the
(2,0) component (ρ mode), and the (0,2) component
(λ mode). Figures 17–22 show the probabilities of the
each component in the total wave function. One sees that
one component becomes dominant above mQ ¼ 1 GeV.
The (0,0) component is dominant for ΛQð1=2þ1 Þ,
ΛQð1=2þ2 Þ, ΣQð1=2þ1 Þ, and ΣQð1=2þ2 Þ and the (2,0)
component (λ mode) is dominant for ΛQð3=2þ1 Þ,
ΛQð5=2þ1 Þ above 1 GeV (see Figs. 17–22). The lowest

FIG. 17 (color online). The heavy-quark mass dependences of
the probabilities of the S-wave (0.0) component (red line) and
(1,1) component (blue line) for Λð1=2þ1 Þ.

FIG. 18 (color online). The heavy-quark mass dependences
of the probabilities of the S-wave (0,0) component (red line) and
the (1,1) component (blue line) for Λð1=2þ2 Þ.

FIG. 16 (color online). The probabilities of j ¼ 1 (solid line)
and j ¼ 2 (dot-dashed line) for Σð3=2−Þ. Red, blue, and green
lines show the first, second, and third state, respectively.

FIG. 15 (color online). The probabilities of j ¼ 0 (solid line)
and j ¼ 1 (dot-dashed line) for Σð1=2−Þ. Red, blue, and green
lines show the first, second, and third state, respectively.
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six states in the heavy-quark region can be written as
follows:

ΦJn¼1=21;M
ΛQ

ðρ; λÞ ¼ ϕ
Jn¼1=2þ

1
;M

ΛQ;j¼0 ðρ; λÞ; ð46Þ

ΦJn¼1=22;M
ΛQ

ðρ; λÞ ¼ ϕJn¼1=22;M
ΛQ;j¼0 ðρ; λÞ; ð47Þ

ΦJn¼3=21;M
ΛQ

ðρ; λÞ ¼ ϕJn¼3=21;M
ΛQ;j¼2 ðρ; λÞ; ð48Þ

ΦJn¼5=21;M
ΛQ

ðρ; λÞ ¼ ϕJn¼5=21;M
ΛQ;j¼2 ðρ; λÞ; ð49Þ

ΦJn¼1=21;M
ΣQ

ðρ; λÞ ¼ ϕJn¼1=21;M
ΣQ;j¼1 ðρ; λÞ; ð50Þ

ΦJn¼3=21;M
ΣQ

ðρ; λÞ ¼ ϕJn¼3=21;M
ΣQ;j¼1 ðρ; λÞ; ð51Þ

where we use Eq. (41) to transform the bases. There are
two doublet pairs [ΛQð3=2þ1 Þ, ΛQð5=2þ1 Þ] (j ¼ 2),
[ΣQð1=2þ1 Þ, ΣQð3=2þ1 Þ] (j ¼ 1) and two singlet states
ΛQð1=2þ1 Þ, ΛQð1=2þ2 Þ in the heavy-quark limit. Mixings
of different j components of the wave function are
negligible even in the charm-quark region.

FIG. 21 (color online). The heavy-quark mass dependences of
the probabilities of the S-wave (0,0) component (red line), the
(1,1) component (blue line), the (2,0) component (green line), and
the (0,2) component (violet line) for Σð1=2þ1 Þ.

FIG. 22 (color online). The heavy-quark mass dependences of
the probabilities of the S-wave (l ¼ 0, L ¼ 0) component (red
line), the (1,1) component (blue line), the (2,0) component (green
line), and the (0,2) component (violet line) for Σð3=2þ1 Þ.

FIG. 20 (color online). The heavy-quark mass dependences of
the probabilities of the (1,1) component (red line), the (2,0)
component (blue line), and the (0,2) component (green line)
for Λð5=2þ1 Þ.

FIG. 19 (color online). The heavy-quark mass dependences of
the probabilities of the (1,1) component (red line), the (2,0)
component (blue line), and the (0,2) component (green line)
for Λð3=2þ1 Þ.
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IV. SUMMARY

We have studied the spectrum of the single- and
double-heavy baryons and discussed their structures
within the framework of a constituent quark model.
The potential parameters are determined so as to repro-
duce the energies of the lowest states: Λð1=2þÞ, Σð1=2þÞ,
Σð3=2þÞ, Λð1=2−Þ, Λð3=2−Þ, Λcð1=2þÞ, and Λbð1=2þÞ.
In the analysis of the baryon wave functions, we
have focused on the two characteristic excited modes
and investigated their probabilities as functions of the
heavy-quark mass. To obtain the precise energy eigen-
values of excited states, we employ the Gaussian
expansion method, which is one of the best methods
for three- and four-body bound states. We have obtained
the following:
(1) Masses of the known ΛQ, ΣQ, and ΩQ are in good

agreement with the observed data within 50 MeV.
Then, we predicted that observed Σcð2800Þ can be
assigned to the 1=2−1 , 3=2

−
1 , 1=2

−
2 , 3=2

−
2 , and 5=2−1

states, and Λc to the 3=2þ1 , 5=2
−
1 , 1=2

−
2 , 1=2

−
3 , 3=2

−
2 ,

and 3=2−3 states.
(2) In the heavy-quark limit, we find six doublets and

two singlets for the P-wave single-heavy baryons
(see Fig. 9) and two doublets and two singlets for
the first six states of positive-parity single-heavy
baryons. In the charm sector, the mass differences
of these heavy-quark spin doublets are less than
30 MeV and in the bottom sector, the differences
reduce to less than 10 MeV.

(3) For the double-heavy baryons, we predict that the
mass of the ground Ξcc state is Ξccð3685Þ. This
result is consistent with the recent Lattice QCD
calculations within 50 MeV. Experimentally, it
was reported that a double- charmed baryon was
found at the mass 3512 MeV [19]. However,
other experimental groups, including the LHC and
Belle Collaborations, have not yet succeeded in
the observing the state.

(4) We have investigated the dependences on the heavy-
quark mass mQ of the λ and ρ modes to see the
features of the negative-parity states. Mixings of the
ρ and λ modes are suppressed and only one mode
dominates. This is because the spin-spin interaction,
which mainly causes the mixing, becomes small in
the heavy-quark region. It would be useful, in future
work, to clarify what physical quantities are sensi-
tive the differences of the two modes. One possibil-
ity is decay patterns, as it is conjectured that the
λ-mode states decay dominantly to a light baryon
and a heavy meson, while the ρ-mode states decay
mostly into a light meson and a heavy baryon. More
studies of the decays and productions of these heavy
baryons will be useful in order to further verify these
structures.
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APPENDIX: THE TRANSFORMATION
OF THE BASES

We discuss the wave function in the heavy-quark
limit in this appendix. For the single-heavy baryons,
we take only the channel c ¼ 3 of the Jacobi coor-
dinate given in Fig. 2. The P-wave wave functions of
the ΛQ and ΣQ baryons are given by the sum of the λ-
mode (2Sþ1λ ¼2 λ, 4λ) and ρ-mode (2Sþ1ρ ¼2 ρ, 4ρ)
components as follows:

ΦJM
ΛQ

ðρ; λÞ ¼ ψ
ΛQ
2ρ

X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ

þ ψ
ΛQ
4ρ

X
ðn;NÞ

C
4ρ
n;Nϕn;Nðρ; λÞ

þ ψ
ΛQ
2λ

X
ðn;NÞ

C
2λ
n;Nϕnðρ; λÞ; ðA1Þ

ΦJM
ΣQ

ðρ; λÞ ¼ ψ
ΣQ
2λ

X
ðn;NÞ

C
2λ
n;Nϕnðρ; λÞ

þ ψ
ΣQ
4λ

X
ðn;NÞ

C
4λ
n ϕn;Nðρ; λÞ

þ ψ
ΣQ
2ρ

X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ: ðA2Þ

Here we extract the parts of the spin and orbital
angular momenta for each mode as

ψ
ΛQ
2ρ

¼ ½XS¼1=2;1½Yl¼1ðρ̂ÞYL¼0ðλ̂Þ�I¼1�JM; ðA3Þ

ψ
ΛQ
4ρ

¼ ½XS¼3=2;1½Yl¼1ðρ̂ÞYL¼0ðλ̂Þ�I¼1�JM; ðA4Þ

ψ
ΛQ
2λ

¼ ½XS¼1=2;0½Yl¼0ðρ̂ÞYL¼1ðλ̂Þ�I¼1�JM; ðA5Þ

ψ
ΣQ
2λ

¼ ½XS¼1=2;1½Yl¼0ðρ̂ÞYL¼1ðλ̂Þ�I¼1�JM; ðA6Þ

ψ
ΣQ
4λ

¼ ½XS¼3=2;1½Yl¼0ðρ̂ÞYL¼1ðλ̂Þ�I¼1�JM; ðA7Þ

ψ
ΣQ
2ρ

¼ ½XS¼1=2;0½Yl¼1ðρ̂ÞYL¼0ðλ̂Þ�I¼1�JM: ðA8Þ

Then, the corresponding radial parts are expanded by
the Gaussian basis as
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ϕn;Nðρ; λÞ ¼ NnlNNLρ
le−βnρ

2

λLe−γNλ
2

; ðA9Þ

where NnlðNNLÞ is the normalization constant.
As discussed in Sec. III C, the light-spin component
j is conserved in the heavy-quark limit. Therefore,
we transform the bases into those which diagonalize j.
We use Eq. (41) to transform the bases, and
obtain

ψ
ΛQ
2ρ

¼
ffiffiffi
1

3

r
ψ j¼0;s¼1 −

ffiffiffi
2

3

r
ψ j¼1;s¼1; ðA10Þ

ψ
ΛQ
4ρ

¼
ffiffiffi
2

3

r
ψ j¼0;s¼1 þ

ffiffiffi
1

3

r
ψ j¼1;s¼1; ðA11Þ

ψ
ΛQ
2λ

¼ −ψ j¼1;s¼0; ðA12Þ

ψ
ΣQ
2λ

¼
ffiffiffi
1

3

r
ψ j¼0;s¼1 −

ffiffiffi
2

3

r
ψ j¼1;s¼1; ðA13Þ

ψ
ΣQ
4λ

¼
ffiffiffi
2

3

r
ψ j¼0;s¼1 þ

ffiffiffi
1

3

r
ψ j¼1;s¼1; ðA14Þ

ψ
ΣQ
2ρ

¼ −ψ j¼1;s¼0 ðA15Þ

for J ¼ 1=2− and

ψ
ΛQ
2ρ

¼ −
ffiffiffi
1

6

r
ψ j¼1;s¼1 þ

ffiffiffi
5

6

r
ψ j¼2;s¼1; ðA16Þ

ψ
ΛQ
4ρ

¼ −
ffiffiffi
5

6

r
ψ j¼1;s¼1 −

ffiffiffi
1

6

r
ψ j¼2;s¼1; ðA17Þ

ψ
ΛQ
2λ

¼ ψ j¼1;s¼0; ðA18Þ

ψ
ΣQ
2λ

¼ −
ffiffiffi
1

6

r
ψ j¼1;s¼1 þ

ffiffiffi
5

6

r
ψ j¼2;s¼1; ðA19Þ

ψ
ΣQ
4λ

¼ −
ffiffiffi
5

6

r
ψ j¼1;s¼1 −

ffiffiffi
1

6

r
ψ j¼2;s¼1; ðA20Þ

ψ
ΣQ
2ρ

¼ ψ j¼1;s¼0 ðA21Þ

for J ¼ 3=2−, where

ψ j;s ¼ ½½½χ1=2ðqÞχ1=2ðqÞ�s½Yðρ̂ÞlYðλ̂ÞL�I�jχ1=2ðQÞ�J: ðA22Þ

By using Eqs. (A3)–(A8), Eq. (A1) and Eq. (A2) are transformed into the bases that are characterized by j, as follows:
(i) ΛQð1=2−; 3=2−Þ:

ϕJ¼1=2;M
ΛQ;j¼0 ðρ; λÞ ¼ ψ j¼0;s¼1

� ffiffiffi
1

3

r X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ þ

ffiffiffi
2

3

r X
ðn;NÞ

C
4ρ
n;Nϕn;Nðρ; λÞ

�
− ψ j¼0;s¼0

X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ; λÞ; ðA23Þ

ϕJ¼1=2;M
ΛQ;j¼1 ðρ; λÞ ¼ ψ j¼1;s¼1

�
−

ffiffiffi
2

3

r X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ þ

ffiffiffi
1

3

r X
ðn;NÞ

C
4ρ
n;Nϕn;Nðρ; λÞ

�
; ðA24Þ

ϕJ¼3=2;M
ΛQ;j¼1 ðρ; λÞ ¼ ψ j¼1;s¼1

�
−

ffiffiffi
1

6

r X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ −

ffiffiffi
5

6

r X
ðn;NÞ

C
4ρ
n;Nϕn;Nðρ; λÞ

�
þ ψ j¼1;s¼0

X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ; λÞ; ðA25Þ

ϕJ¼3=2;M
ΛQ;j¼2 ðρ; λÞ ¼ ψ j¼2;s¼1

� ffiffiffi
5

6

r X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ −

ffiffiffi
1

6

r X
ðn;NÞ

C
4ρ
n;Nϕn;Nðρ; λÞ

�
: ðA26Þ

(ii) ΣQð1=2−; 3=2−Þ:

ϕJ¼1=2;M
ΣQ;j¼0 ðρ;λÞ¼ψ j¼0;s¼1

� ffiffiffi
1

3

r X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ;λÞþ

ffiffiffi
2

3

r X
ðn;NÞ

C
4λ
n;Nϕn;Nðρ;λÞ

�
−ψ j¼0;s¼0

X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ;λÞ; ðA27Þ

ϕJ¼1=2;M
ΣQ;j¼1 ðρ; λÞ ¼ ψ j¼1;s¼1

�
−

ffiffiffi
2

3

r X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ; λÞþ

ffiffiffi
1

3

r X
ðn;NÞ

C
4λ
n;Nϕn;Nðρ; λÞ

�
; ðA28Þ
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ϕJ¼3=2;M
ΣQ;j¼1 ðρ; λÞ ¼ ψ j¼1;s¼1

�
−

ffiffiffi
1

6

r X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ; λÞ −

ffiffiffi
5

6

r X
ðn;NÞ

C
4λ
n;Nϕn;Nðρ; λÞ

�
þ ψ j¼1;s¼0

X
ðn;NÞ

C
2ρ
n;Nϕn;Nðρ; λÞ;

ðA29Þ

ϕJ¼3=2;M
ΣQ;j¼2 ðρ; λÞ ¼ ψ j¼2;s¼1

� ffiffiffi
5

6

r X
ðn;NÞ

C
2λ
n;Nϕn;Nðρ; λÞ−

ffiffiffi
1

6

r X
ðn;NÞ

C
4λ
n;Nϕn;Nðρ; λÞ

�
: ðA30Þ
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