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The entanglement interactions between the Polyakov loop and chiral condensate have been recently
studied in the entangled Polyakov-loop Nambu–Jona-Lasinio model (EPNJL). The calculation shows that
such an interaction plays an important role in the pseudocritical temperatures of deconfinement and chiral
symmetry restoration. As a further study, here we construct a hadron-quark two-equation-of-state (two-
EoS) model, based on the Walecka-quantum hadrodynamics and the EPNJL pictures, in order to study the
equilibrium transition between hadronic and quark matter in heavy-ion collisions at finite densities and
temperatures. We can explore the phase diagram of strongly interacting matter and the transition boundaries
from nuclear to quark matter. We discuss the influence of the entanglement interaction on the critical point
of the expected first-order phase transition in the two-EoS model. In particular, for charge asymmetric
matter, we analyze the local asymmetry of the u, d quarks as a function of quark concentration in the
hadron-quark mixed phase during the phase transition. We finally propose some related observables that are
possibly measurable in heavy-ion collision experiments.
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I. INTRODUCTION

The exploration of the QCD phase diagram of strongly
interacting matter and the phase transition signatures from
nuclear to quark-gluonmatter are subjects of great interest in
recent decades. The investigation involves ultrarelativistic
heavy-ion collisions (HICs), nuclear astrophysics, and the
evolution of the early Universe. Intensive searches with
high-energyHICs have been performed at laboratories, such
as the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC), and a promising observation of the
signatures of the phase transformation is eagerly anticipated
[1]. On the other hand, observations from compact stars
[2–4] gradually provide us more and more important data in
exploring the properties of strongly interacting matter.
However, in spite of tremendous theoretical and exper-

imental efforts, the QCD phase diagram has not been
unveiled yet [5,6]. As a fundamental tool, lattice QCD
(l-QCD) simulation provides us a good framework to
investigate the thermodynamics of strongly interacting
matter at small chemical potential [7–12], but it suffers
the well-known sign problem of the fermion determinant
with three colors at finite baryon chemical potential.
Though some approximation methods have been proposed
to try to evade the problem, the region of large densities and
low temperatures essentially remains inaccessible [13–16].
To give a complete description of theQCDphase diagram,

different types of quantum field theory approaches and
phenomenological models, such as the Dyson-Schwinger
equation approach [17–24], theNambu–Jona-Lasinio (NJL)
model [25–36], the Polyakov-loop improved NJL (PNJL)

model [37–46], and the Polyakov-loop extended quark
meson (PQM) model [47–49], have been developed to
disclose the essence of strong interaction. Among these
models, the PNJL model, which takes into account both the
chiral symmetry and (de)confinement effect, gives a good
presentation of lattice data at high temperatures. At the same
time, it has the ability to make predictions at high baryon
density that cannot be reached presently in l-QCD
simulations.
As a further improvement, the PNJL model has been

generalized recently to include an effective four-quark
vertex interaction coupled with a Poyakov loop, the
entanglement interaction. The extension of the PNJL model
with the entanglement interaction between the chiral
condensate and Polyakov loop is named the EPNJL model
[50–52]. In the EPNJL model, the entanglement correlates
the quark chiral symmetry and color confinement, which
plays an important role in the properties of quark-gluon
matter at high temperature and low chemical potentials.
With such an entanglement interaction, the coincidence of
chiral symmetry restoration and quark deconfinement can
be easily obtained with adapted parameters. Recently, the
theta-vacuum effects on the QCD phase diagram were also
studied using the SU(3) EPNJL model in [53]. In addition,
it was taken to explore the phase diagram for zero and
imaginary quark-number chemical potential in [54] to
reproduce qualitatively the lattice QCD results. In
Refs. [55,56], the effect of external magnetic field on
the deconfinement and chiral pseudocritical temperatures
was also investigated in the EPNJL model.

PHYSICAL REVIEW D 92, 114027 (2015)

1550-7998=2015=92(11)=114027(10) 114027-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.114027
http://dx.doi.org/10.1103/PhysRevD.92.114027
http://dx.doi.org/10.1103/PhysRevD.92.114027
http://dx.doi.org/10.1103/PhysRevD.92.114027


Most effective models, including the (E)PNJL model,
describe strongly interacting matter based on quark degrees
of freedom. Baryons are not treated in these models.
However, as far as we know, the QCD dynamics is
governed by hadrons at low temperatures and relatively
small baryon chemical potentials. When one investigates
the phase transformation from nuclear to quark matter, it is
practical and plausible to describe nuclear matter based on
the hadronic degrees of freedom at low T and small μB, but
quark matter with quark degrees of freedom at high T and
large μB. This picture can be realized in an equilibrium
phase transition between the hadronic and quark phases,
possibly reached in the interior of compact stars and in HIC
experiments at intermediate energies.
In the equilibrium transition from hadronic to quark

matter, the two phases are connected through the Gibbs
conditions. This approach is widely used in the description
of the phase transition in a neutron star with a quark core or
kaon condensate [57–66]. Recently, this method has been
generalized to explore the phase diagram of the hadron-
quark phase transition in HICs [67–76]. In particular,
attention was focused on the isospin asymmetric matter,
and some observable isospin effects on charged meson
yield ratios were proposed in our previous investigations
[74–76].
As a further study along this line, we construct a new

two-EoS model based on the recently developed EPNJL
model and explore the phase diagram of strongly interact-
ing matter with an equilibrium phase transition. We
investigate the influence of the entanglement interaction
on the location of the critical point of the first-order phase
transition and propose some observables relevant in the
transformation from asymmetric nuclear matter to quark
matter. This study can be significant for the planned
subjects at the new facilities of NICA (JINR-Dubna) and
FAIR (GSI-Darmstadt) as well as for the beam energy scan
(BES) program at RHIC, with realistic asymmetries for
stable and unstable nuclei.
The paper is organized as follows. In Sec. II, we describe

briefly the two-EoS approach and give the relevant for-
mulas of the hadron-EPNJL model. In Sec. III, we present
the numerical results about the phase diagram of the
equilibrated phase transition and propose some possible
observables to explore the transition boundaries from
asymmetric nuclear matter to quark matter in HICs.
Finally, a summary and some suggestions for further study
are given in Sec. IV.

II. THE MODELS

In the two-EoS model, the pure hadronic phase at low T
and small μB is described by the nonlinear Walecka-type
model. The pure quark phase at high T and large μB is
described with the EPNJL model with the entanglement
interaction between the chiral condensate and Poyakov
loop. For the phase transition from nuclear matter to quark

matter, the phases are connected through the Gibbs con-
ditions with thermal, chemical, and mechanical equilib-
rium. In addition, the asymmetry parameters in the hadron-
quark mixed phase are required to fulfill the isospin charge
conservation in strong interaction.

A. The pure hadronic matter

To describe nuclear matter, we take the Lagrangian,

LH ¼
X
N

ψ̄N ½iγμ∂μ −M þ gσσ − gωγμωμ − gργμτ · ρμ�ψN

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − VðσÞ þ 1

2
m2

ωωμω
μ

−
1

4
ωμνω

μν þ 1

2
m2

ρρμ · ρμ −
1

4
ρμν · ρμν; ð1Þ

where ωμν ¼ ∂μων − ∂νωμ, ρμν ≡ ∂μρν − ∂νρμ. In this
model, the interactions between nucleons are mediated
by σ, ω, ρ mesons. The self-interactions of the σ meson,
VðσÞ ¼ 1

3
bðgσσÞ3 þ 1

4
cðgσσÞ4, are included to give the

correct compression modulus, the effective nucleon mass
at saturation density. The parameter set NL3 is used
in the calculation, which gives a well description of the
properties of nuclear matter. (The details can be found in
Refs. [57,63]).
To describe asymmetric nuclear matter, we define the

baryon and isospin chemical potential as μHB ¼ðμpþμnÞ=2,
μH3 ¼ ðμp − μnÞ, The asymmetry parameter is defined as

αH ¼ ðρn − ρpÞ=ðρp þ ρnÞ; ð2Þ

which is determined by the heavy ions taken in experi-
ments. The values of αH are compiled for some heavy-ion
sources in [72], and the largest one is αH ¼ 0.227 in 238Uþ
238U collision for stable nuclei. For unstable nuclei, αH can
take a larger value.

B. The pure quark matter

We describe pure quark matter using the recently
developed EPNJL model [50,51]. Firstly, we introduce
the PNJL model, and then consider the entanglement
interaction between chiral condensate and Poyakov loop.
The Lagrangian of the standard two-flavor PNJL model is

LQ ¼ q̄ðiγμDμ − m̂0Þqþ GðΦÞ½ðq̄qÞ2 þ ðq̄iγ5~τqÞ2�
− UðΦ½A�; Φ̄½A�; TÞ; ð3Þ

where q denotes the quark fields with two flavors, u and d,
and three colors; m̂0 ¼ diagðmu;mdÞ in flavor space. The
covariant derivative in the Lagrangian is defined as
Dμ ¼ ∂μ − iAμ − iμqδ0μ. The gluon background field Aμ ¼
δ0μA0 is supposed to be homogeneous and static, with
A0 ¼ gAα

0
λα

2
, where λα

2
is the SUð3Þ color generators.
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The effective potential UðΦ½A�; Φ̄½A�; TÞ is expressed in
terms of the traced Polyakov loop Φ ¼ ðTrcLÞ=NC and its
conjugate Φ̄ ¼ ðTrcL†Þ=NC. The Polyakov loop L is a
matrix in color space,

Lð~xÞ ¼ P exp
�
i
Z

β

0

dτA4ð~x; τÞ
�
; ð4Þ

where β ¼ 1=T is the inverse of temperature and A4 ¼ iA0.
The temperature-dependent effective potential UðΦ; Φ̄; TÞ
proposed in [77] to mimic Lattice QCD data is taken in this
study, with the form

UðΦ; Φ̄; TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þ Φ3Þ − 3ðΦ̄ΦÞ2�; ð5Þ

where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

: ð6Þ

The parameters ai, bi summarized in Table I are precisely
fitted according to the result of l-QCD thermodynamics in
the pure gauge sector. And T0 is found to be 270 MeV as
the critical temperature for the deconfinement phase tran-
sition at zero baryon chemical potential [78]. When
fermion fields are included, a rescaling of T0 is usually
implemented to obtain a consistent result between the
model calculation and full lattice simulation which gives
the critical temperatures of deconfinement TΦ ¼ 173�
8 MeV [7–9] at zero chemical potential.
In the PNJL model, T0 ¼ 210 MeV is usually taken in

the literature, which produces the pseudocritical temper-
ature of chiral symmetry restoration Tσ ¼ 205.1 and
TΦ ¼ 172.7 MeV. The difference Δ ¼ jTσ − TΦj=Tσ is
about 15%. However, according to the Coleman-Witten
conjecture, it has long been believed that chiral symmetry
restoration and color deconfinement have a common origin,
and the associated phase transitions coincide. The coinci-
dence has been reproduced in some practical calculation of
l-QCD at imaginary chemical potential and at real and
imaginary isospin chemical potential where the sign prob-
lem does not appear. The coincidence cannot be reproduced
in the original PNJL model. This shortcoming of the PNJL

model comes from the weak correlation between the chiral
condensate and the quark Poyakov loop. To evade this
problem, an effective four-quark vertexGðΦÞ depending on
Φ is introduced in [50,51]

GðΦÞ ¼ G½1 − α1ΦΦ̄ − α2ðΦ3 þ Φ̄3Þ�; ð7Þ
which preserves the chiral symmetry, the C symmetry, and
the extended Z3 symmetry.
With the consideration of such an entanglement inter-

action between the chiral condensate and Poyakov loop,
this model is named the EPNJL model. We then replace the
four quark vertex, G, in the Largrangian given in Eq. (3)
with the new vertex GðΦÞ.
The thermodynamical potential of quark matter in the

EPNJL model within the mean field approximation can be
derived then as

Ω ¼ UðΦ̄;Φ; TÞ þ GðΦÞðϕu þ ϕdÞ2

− 2

Z
Λ

d3k
ð2πÞ3 3ðEu þ EdÞ

− 2T
X
u;d

Z
d3k
ð2πÞ3 ½lnð1þ 3Φe−ðEi−μiÞ=T

þ 3Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=TÞ�

− 2T
X
u;d

Z
d3k
ð2πÞ3 ½lnð1þ 3Φ̄e−ðEiþμiÞ=T

þ 3Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=TÞ�; ð8Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

i

p
is the energy-momentum

dispersion relation of the quark flavor i, and μi is the
corresponding quark chemical potential.
The dynamical quark masses and quark condensates are

coupled with the following equations,

Mi ¼ m0 − 2GðΦÞðϕu þ ϕdÞ; ð9Þ

ϕi ¼ −2Nc

Z
d3k
ð2πÞ3

Mi

Ei
ð1 − niðkÞ − n̄iðkÞÞ; ð10Þ

where niðkÞ and n̄iðkÞ

niðkÞ ¼
Φe−ðEi−μiÞ=T þ 2Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T

1þ 3Φe−ðEi−μiÞ=T þ 3Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T ;

ð11Þ

n̄iðkÞ ¼
Φ̄e−ðEiþμiÞ=T þ 2Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T

1þ 3Φ̄e−ðEiþμiÞ=T þ 3Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T :

ð12Þ
are modified Fermion distribution functions of quark and
antiquark. The values of ϕu, ϕd, Φ, and Φ̄ can be
determined by minimizing the thermodynamical potential,

TABLE I. Parameters in Polyakov effective potential given in
[77].

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75
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∂Ω
∂ϕu

¼ ∂Ω
∂ϕd

¼ ∂Ω
∂Φ ¼ ∂Ω

∂Φ̄ ¼ 0: ð13Þ

All the thermodynamic quantities relevant to the bulk
properties of quark matter can be obtained from Ω. In
particular, we note that the pressure and energy density
should be zero in the vacuum.
Like the NJL model, the EPNJL model is not renorma-

lizeable, so a cutoff Λ is implemented in 3-momentum
space for divergent integrations. Here Λ ¼ 651 MeV,
G ¼ 5.04 GeV−2, mu;d ¼ 5.5 MeV will be taken by fitting
the experimental values of the pion decay constant fπ ¼
92.3 MeV and pion mass mπ ¼ 139.3 MeV.
For asymmetric quark matter, the baryon and isospin

chemical potential are defined as μQB ¼ 3
2
ðμu þ μdÞ,

μQ3 ¼ ðμu − μdÞ, respectively. The asymmetry parameter
of pure quark matter is

αQ ¼ −
ρQ3
ρQB

¼ −
ðρu − ρdÞ

ðρu þ ρdÞ=3
; ð14Þ

where ρQ3 ¼ ðρu − ρdÞ, and ρQB ¼ ðρu þ ρdÞ=3.

C. The hadron-quark mixed phase

The above introduction is a separate description of the
pure hadronic and quark phase. When the equilibrated
phase transformation between the hadronic and quark
matter forms, the Gibbs conditions (thermal, chemical,
and mechanical equilibrium) need to be fulfilled (general
discussion of phase transitions in multicomponent systems
can be found in Ref. [58]),

μHB ¼ μQB ; μH3 ¼ μQ3 ; TH ¼ TQ; PH ¼ PQ;

ð15Þ

where μH3 and μQ3 are the isospin chemical potential of the
two phases. For the coexisting phase, the total baryon
density consists of two parts, ρB ¼ ð1 − χÞρHB þ χρQB where
χ is the fraction of quark matter and 1 − χ is the ratio of
nuclear matter. Similarly, ρ3 ¼ ð1 − χÞρH3 þ χρQ3 is the total
isospin density.
As shown in the previous study, the phase transition

features of asymmetric matter are isospin dependent. Once
the species of heavy ions is chosen in HIC experiments,
the asymmetry parameter will be determined. Due to the
isospin conservation in strong interaction, the global
asymmetry parameter α for the mixed phase,

α≡ −
ρ3
ρB

¼ −
ð1 − χÞρH3 þ χρQ3
ð1 − χÞρHB þ χρQB

; ð16Þ

should maintain constant.

Although the global asymmetry parameter α keeps
constant in the equilibrated state, in the coexisting phase
the local asymmetry parameters, αH and αQ, can vary for
different χ quark concentrations. It is just the χ dependence
of αH and αQ that provides the possibility to test the
isospin-relevant signals generated in the hadronization
stage in HIC experiments. The details about the phase
transformation from asymmetric nuclear matter to quark
matter will be discussed in the next section. One can also
refer to our previous research [70,74–76].

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Features of pure quark matter in the EPNJL model
with the entanglement interaction

First, in this subsection, we present some properties of
pure quark matter in the EPNJL model. From Eq. (7), we
can see that the value of α1 and α2 determines the strength
of the entanglement between the chiral condensate and
Poyakov loop. The PNJL model is just a special case of the
EPNJL model with α1 ¼ 0 and α2 ¼ 0. In the PNJL model,
the pseudocritical temperature of chiral restoration is Tσ ¼
205.1 MeV and that of color deconfinement is TΦ ¼
172.7 MeV at zero baryon chemical potential, as listed
in Table II. The difference Δ ¼ jTσ − TΦj=Tσ is about
15%. The coincidence predicted by the Coleman-Witten
conjecture and other l-QCD simulations does not appear in
the PNJL model without the entanglement interaction.
To show how the difference between the pseudocritical

temperature of quark chiral restoration and that of color
deconfinement varies with the strength of entanglement
interaction, we calculate Tσ and TΦ for several values
of α1 and α2 at zero chemical potential. The same
T0 ¼ 210.0 MeV, as used in the PNJL model, is adopted,
and the numerical results are listed in Table II. This table
clearly shows that the difference between Tσ and TΦ gets
smaller with the increase of α1 and α2. For the case of
α1 ¼ α2 ¼ 0.25, the chiral restoration and deconfinement
coincide. These results show the entanglement interaction
is crucial for the coincidence of chiral restoration and
deconfinement.
As a matter of fact, for the case of α1 ¼ α2 ¼ 0.25, TΦ ¼

183.4 MeV is out of the range TΦ ¼ 173� 8 MeV given

TABLE II. Pseudocritical temperatures of chiral restoration and
deconfinement with different parametrization ðα1; α2Þ of the
entanglement interaction at zero baryon chemical potential with
T0 ¼ 210.0 MeV.

α1 α2 Tσ TΦ

0 0 205.1 172.7 PNJL
0.10 0.10 188.8 178.2
0.15 0.15 185.0 180.9 EPNJL (A)
0.20 0.20 183.9 183.0
0.25 0.25 183.4 183.4
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by l-QCD [7–9] and extracted from the data taken at RHIC
[1]. Therefore, we take relatively smaller values of α1 ¼
α2 ¼ 0.15 with which the chiral restoration and deconfine-
ment nearly coincide with Δ ¼ jTσ − TΦj=Tσ ≈ 2%, and
TΦ fulfill the requirement of l-QCD simulations. For
convenience in later discussion, the parameter set with
α1 ¼ α2 ¼ 0.15 is labeled “EPNJL (A).”
One alternative way to study the coincidence of chiral

restoration and deconfinement is to reset T0. With the
parameters T0 ¼ 190.4 MeV, α1 ¼ α2 ¼ 0.2, the calcula-
tion shows Tσ ¼ TΦ ¼ 173.0 MeV, which means the
coincidence appears and the corresponding pseudocritical
temperatures are consistent with l-QCD and the experiment
on RHIC. For this parameter set, we label it “EPNJL (B)” in
Table III. Similar results can be obtained with
T0 ¼ 170 MeV, but different cutoff Λ and coupling con-
stant G [79].
With the parameter sets of the standard PNJL model, the

EPNJL (A), and the EPNJL (B), we plot the chiral
condensate ϕl=ϕl0 ðϕl ¼ ϕu ¼ ϕdÞ and the Poyakov loop
Φ as functions of T in Fig. 1. This figure shows that at low
T the chiral condensate almost keeps constant, and the
value of Φ is very close to zero. In this case, the
entanglement interaction is very weak, which is easily
understood from Eq. (7). For each parameter set of
EPNJL(A) and EPNJL(B), this figure also demonstrates
that there exists a range along temperature in which the
chiral condensate decreases and Φ increases quickly. It

implies that the entanglement effect between the chiral
condensate and color confinement is strong in this range.
We calculate the partial derivatives of the chiral con-

densate ∂ϕl=∂T and Poyakov loop ∂Φ=∂T as shown in
Fig. 2 for the different parameter sets. This figure and Fig. 1
demonstrate that the critical temperatures of the chiral
condensate Tσ and color deconfinement TΦ get close to
each other when the entanglement interaction is included.
In particular, for the parameter set of EPNJL(B), Tσ and TΦ
completely coincide.
In thermodynamics, the property of quark matter is

highly relevant to the dynamical quark mass in the
(P)NJL type models. With the inclusion of entanglement
interaction, the dynamical quark mass M is determined by
the product of GðΦÞ and quark condensate ϕl, as given in
Eq. (9). Therefore, the values of Φ and ϕl together
(entangled through complex equations) are responsible
for the dynamical quark mass, which just embodies the
meaning of the entanglement interaction.
We should note that onlywhen thevalues of bothΦ andϕl

are not close to zero does the entanglement interaction play
an important part. However, at very low temperatures, Φ is
almost zero due to quark confinement, and at very high
temperatures ϕl becomes small because of the chiral
symmetry restoration. In the extreme low or high temper-
atures, the entanglement is weak, and the EPNJL model is
almost equivalent to the PNJLmodel.When the temperature
is in the range of about 160–200 MeV, neither Φ nor ϕl is
small. In this case, the variation of Φwill affect the value ϕl
and vice versa, due to the entanglement between them. It is
just the entanglement interaction that provides the possibil-
ity of the coincidence of chiral restoration and deconfine-
ment for appropriate parameters of α1 and α2. The numerical
results demonstrated in Figs. 1 and 2 indeed prove this point.

FIG. 1 (color online). ϕl=ϕl0 and the Poyakov loop Φ as
functions of T at zero chemical potential for the parameter sets of
the standard PNJL model, the EPNJL (A), and the EPNJL (B).

TABLE III. Pseudocritical temperatures of chiral restoration
and deconfinement with T0 ¼ 190.4 MeV and the parametriza-
tion ðα1 ¼ 0.2; α2 ¼ 0.2Þ.
α1 α2 Tσ TΦ

0.20 0.20 173.0 173.0 EPNJL (B)

FIG. 2 (color online). Partial derivatives of the chiral conden-
sate −∂ϕl=∂T and Poyakov loop ∂Φ=∂T as functions of T at zero
chemical potential for the parameter sets of the standard PNJL
model, the EPNJL (A), and the EPNJL (B).
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B. The phase transformation
from nuclear to quark matter

In the above subsection, we present some properties of
quark matter in the (E)PNJL quark model. In the following,
we will show the phase transition from nuclear to quark
matter based on the two-phase equilibrium theory. In this
framework, the Gibbs criteria with more than one con-
served charge are used. The transition signals are isospin
dependent and are possibly measurable for asymmetric
matter at the NICA and FAIR facilities [70,74–76]. The
research in this part is focused on the phase transition from
asymmetric matter to quark matter. Since the largest
asymmetry parameter possibly reached for stable nuclei
is the α ¼ 0.227 in 238Uþ 238U collision, we choose a
reasonable value α ¼ 0.2 in the calculation to demonstrate
the features of the phase transition. As a matter of fact, α
can take a larger value for neutron-rich unstable nuclei.
First, in Fig. 3 we present the phase diagram of

asymmetric matter in the T-ρB plane with the different
parameter sets including the standard PNJL model, the
EPNJL (A), and the EPNJL (B). From this figure, we see
that the phase diagram for each parameter set is composed
of three parts, the hadronic phase, the quark phase and the
mixed phase. When the temperature is lower than 50 MeV,
the phase diagrams derived by the three parameter sets are
almost the same, but they are quite different at high
temperatures. The reason is that the values of Φ and Φ̄
are almost zero at low temperatures, which leads to a very
weak entanglement with the chiral condensate, but the
entanglement increases with the rising Φ and Φ̄ at high
temperatures close to pseudocritical points.
We can also see from Fig. 3 that there exists a critical end

point (CEP) for each parameter set, close to the pseudocir-
itical point predicted by l-QCD for smaller chemical
potential. The locations of the critical end points depend

on the entanglement interaction and the competition of
dynamic mass of nucleons and quarks. As pointed out in
our previous study [74], on the right side of the CEP, the
effective nucleons mass; e.g., the proton mass, Mp derived
in the hadronic phase is always larger than Mu þ 2Md
derived in the quark phase, and the relation ρQB > ρHB can be
obtained for the hadron-quark phase transition. However,
the effective mass of protons Mp in the hadronic phase is
close to the value Mu þ 2Md in the quark phase near the
CEP, and Mp < Mu þ 2Md will be derived on the left side
of the CEP, which leads to ρQB < ρHB , an unphysical
solution. This is the reason why there exists a CEP in
the two-EoS model when the dynamic quark masses are
considered.
Comparing the parameter set of the standard PNJL

model with that of EPNJL(A), the only difference lies in
the entanglement interaction which is included in the
EPNJL(A) case. It is easy to see from Eq. (9) that the
dynamic masses of quarks with the entanglement inter-
action in the EPNJL(A) are smaller than quark masses
without this interaction for the same quark condensate at
high temperature. Therefore, with the entanglement inter-
action the range in which ρQB > ρHB is enlarged, which
explains why the CEP derived in the hadron-EPNJL(A)
model moves to a smaller density and higher temperature
than that of the hadron-PNJL model.
Similar behaviors appear in the hadron-EPNJL(B) results.

Figure 3 also shows that the critical temperature of the
hadron-EPNJL(B) is lower than that of the hadron-PNJL
model. The reason is that a rescaled T0 ¼ 190.4 MeV is
taken to get the coincidence of chiral restoration and
deconfinement in the EPNJL(B) quark model. With
T0 ¼ 190.4 MeV, the chiral restoration and deconfinement
take place at relatively lower temperatures as presented in
Figs. 1 and 2.When this parameter set is taken in the hadron-
EPNJL(B) model, the pressure of the quark phase at the left
of theCEP (along the baryon density) is larger than that of the
hadron phase at high temperatures. In this case, the equilib-
rium cannot be reached. All of this explains the existence of a
CEP with a smaller density and temperature in the hadron-
EPNJL(B) model.
The phase diagram of the hadron-quark transformation

in the T-μB plane is displayed in Fig. 4. Similar to Fig. 3,
the phase diagram is composed of three parts for each
parameter set. The lines with the same color show the
boundaries of the pure hadronic and quark phase, and the
corresponding intermediate part is the mixed range of
nuclear and quark matter.
In Fig. 5, we display the hadronic and quark energy

density at the boundaries of the hadron-quark phase
transition. εH stands for the energy density of hadronic
matter at the beginning of the phase transition, and εQ is the
energy density of quark matter when only pure quark
matter is observed. This figure shows a behavior similar to
the T − ρB phase diagram presented in Fig. 3. As discussed

FIG. 3 (color online). Phase diagram of the hadron-quark phase
transition in the T-ρB plane with the parameter sets of PNJL,
EPNJL (A), and EPNJL (B).
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above, Fig. 5 indicates once again that the entanglement
interaction plays an important role at high temperatures
when both the chiral condensate and Φ vary quickly.
Finally we discuss the interesting isospin features of

the phase transformation in the coexisting range. With the
global asymmetry parameter α ¼ 0.2, we show in Fig. 6 the
variation of the local isospin asymmetry parameters of αQ

as functions of quark fraction χ at different temperatures.
We see that the value of αQ is much larger at the beginning,
when quark matter starts forming and χ is relatively small.
We remark that αQ will be further enhanced if a larger α is
taken for unstable nuclei or an hadronic EoS with larger
symmetry energy is taken as shown in [74,75].

In the T-ρB plane as shown in Fig. 3, χ ¼ 0 starts from
the left line for each parameter set. The values of αQ

decrease with the increase of quark concentration. The local
asymmetry parameter αQ reduces to the global asymmetry
α ¼ 0.2 when the pure quark phase is reached with χ ¼ 1,
which just embodies the isospin conservation in strong
interaction. χ ¼ 1 corresponds to the right line in Fig. 3 for
each parameter set. From Fig. 6, it appears that the
behaviors of αQ are the same with or without the entangle-
ment interaction. This could be expected since the entan-
glement mechanism is not affecting the symmetry energy in
the quark phase, which is behind the observed isospin
distillation effect in the mixed phase [70,71,74–76].
Combining Figs. 3 and 4, we see that the transformation

signals in the heavy-ion collision experiments are possibly
quite different for different beam energy. When two beams
collide, whether the hadron-quark phase transition can
happen depends on the beam energy: (1) If the beams’
energy is small, quark-gluon matter cannot forms. (2) If the
beams’ energy is high enough, pure quark-gluon matter can
form. (3) For the intermediate beam energy, the beam
energy can only transform a part of the nuclear matter into
quark matter; i.e., the mixed phase but not the pure quark
phase forms. A systematic analysis of nucleus-nucleus
collisions in [68,69,80–82] shows that the hadron-quark-
gluon mixed phase possibly forms in HIC experiments at
intermediate energy.
Once the mixed phase is reached, due to the isospin

conservation in the later hadronization stage, quarks will
recombine into αQ-dependent generated hadrons, i.e.,
also beam-energy-dependent. The different value of αQ

(or beam energy) will influence the isospin-relevant meson
yield ratio, such as π−=πþ, K0=Kþ. It also determines the
production of isospin-rich resonances and subsequent
decays. At the same time, nuclear matter that is not
transformed into quark matter will emit neutron-rich

FIG. 4 (color online). Phase diagram of the hadron-quark phase
transformaton in the T-μB plane with the parameter sets of PNJL,
EPNJL (A), and EPNJL (B).

FIG. 5 (color online). Energy density εH of hadronic matter and
εQ of quark matter at the boundaries of the hadron-quark phase
transition with the parameter sets of PNJL, EPNJL (A), and
EPNJL (B).

FIG. 6 (color online). Local isospin asymmetry parameter of αQ

inside the mixed phase at various temperatures with the parameter
sets of PNJL, EPNJL (A), and EPNJL (B).
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clusters, but due to the isospin trapping in the quark
component of the mixed phase, the emission is greatly
reduced as compared with the case of asymmetric matter
without phase transition. Therefore, in the future facilities,
we can perform the beam energy scan in a wide energy
range and measure the relevant signals at RHIC, NICA, and
FAIR, mapping isospin effects of generated hadrons. We
can possibly discover the phase transition boundaries from
nuclear to quark matter, and then also probe whether the
entanglement interaction is strong or weak.
The vector interactions between quarks are not included

in this study. In fact, we have discussed elaborately the role
of vector interactions in the phase transition in our previous
research [76]. The calculation shows that when the quark
vector interactions are included, the features of the hadron-
quark phase transition in the two-phase model are essen-
tially preserved.
In particular, at high temperatures, the influence of

vector interactions on the phase diagrams is minor. The
reason is that the vector interactions mainly modify the
effective quark chemical potential which is relevant to
quark number density. However, from the T − μB and T −
ρB phase diagrams given by the two-phase model, we can
see that both the chemical potential and quark number
density are relatively small at high temperatures. Therefore,
the modification to the phase diagram from vector inter-
actions at high temperatures should be small as, in fact,
obtained in the numerical calculations of [76].
At low temperatures, the inclusion of quark vector

interactions will indeed affect the boundaries of the
hadron-quark phase transition. Since the vector contribu-
tions are repulsive in both isoscalar and isovector channels,
we can see two main effects. First, when the isoscalar
vector interaction is considered, we have more repulsion in
the quark sector and therefore the onset densities of the
mixed phase at low temperatures will be postponed to
higher values. The symmetry energy in the hadron phase
will be larger, and so we will see a stronger isospin
distillation, with an enhanced asymmetry parameter αQ
in the mixed phase. Second, when the isovector vector
interaction is considered, the coexisting range at low
temperatures will shrink, and αQ in the mixed phase will
decrease. This is because the isovector vector channel
interaction is isospin relevant and enhances the symmetry
energy of quark matter. As for how far the quark vector
interactions will modify the phase diagram at low temper-
atures, that depends on the strength of vector coupling
constants that have not yet been determined.
In conclusion, whether we include the vector interactions

or not, the calculation in [76] shows that the main features
of the phase diagram and phase-transition signature from
asymmetric nuclear matter to quark matter are preserved.
Moreover, experimental data on the mixed phase would

also be relevant to shed light on the vector part of the quark
interactions.
In fact, from the above analysis and the discussion about

entanglement interaction contained in this study, we con-
clude that entanglement interaction plays an important role
in the phase transition at high T and small μB, but the quark
vector interactions are important at low T and large μB.
Therefore, if we can map the isospin-relevant signals based
on the full beam energy scan in the future, this will be
helpful to understand both the entanglement interaction and
the vector interactions between quarks.

IV. SUMMARY

We study the properties of quark matter at high temper-
ature and the transformation from asymmetric nuclear
matter to quark matter. In the description of quark matter,
we take the recently developed EPNJL model in which the
entanglement interaction between the chiral condensate and
Poyakov loop is included. First, we discuss the coincidence
of deconfinement and chiral restoration at zero baryon
chemical potential. The calculation shows that the coinci-
dence can happen by adjusting the strength of the entan-
glement interaction or by rescaling the value of T0 in the
effective potential UðΦ; Φ̄; TÞ.
We further construct the hadron-EPNJL two-EoS model

and use it to explore the phase transition from asymmetric
nuclear matter to quark matter. We derived the boundaries
of the phase transition for different parameter sets.
Compared to the hadron-PNJL model, the calculation
shows that the phase curves move to higher temperature
and lower density if the entanglement interaction is
considered and the same T0 is used. However, if we rescale
T0 to a lower value with which the chiral restoration and
deconfinement completely coincide in the pure EPNJL
quark model, the phase transition curves move to slightly
lower temperature and smaller density. According to the
variation of local charge asymmetry αQ with the increasing
of quark concentration in the mixed phase and its depend-
ence on beam energy, we suggest measuring some isospin-
relevant signatures in the next generation accelerators such
as FAIR and NICA, as well as in the BES program at RHIC,
which would be helpful in understanding the entanglement
interaction and restricting the value of T0.
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