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We study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd
operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole
operators. We present the renormalization matrix to one loop in the MS scheme. We also provide a
definition of the quark chromoelectric dipole operator in a regularization-independent momentum-
subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients
with the MS scheme to one loop in perturbation theory, using both the naïve dimensional regularization
and ’t Hooft–Veltman prescriptions for γ5.
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I. INTRODUCTION

Permanent electric dipole moments (EDMs) of non-
degenerate systems violate invariance under parity (P) and
time reversal (T) or, equivalently [1], CP, the combination
of charge conjugation and parity. Given the smallness of
Standard Model (SM) CP-violating (CPV) contributions
induced by quark mixing [2] (for a review see [3]), nucleon,
nuclear, and atomic/molecular EDMs [4–8] are very deep
probes of the SM θ term (already constrained at the level
of θ ∼ 10−10) and of possible new sources of CP violation
beyond the Standard Model (BSM).
In fact, EDMs at the sensitivity level of ongoing and

planned experiments probe BSM CPV interactions origi-
nating at the TeV scale or above (up to hundreds of TeV
depending on assumptions about the BSM scenario). These
new CPV interactions may be a key ingredient of relatively
low-scale baryogenesis mechanisms such as electroweak
baryogenesis (see [9] and references therein), making the
study of EDMs all the more interesting. EDMs of the
nucleon, nuclei, and atoms are sensitive to a number of new
sources of CP violation, in a complementary way [10], so
that a broad experimental program to search for EDMs in
various systems is called for (a summary of current status
and prospects can be found in Refs. [11,12]).
Extracting robust information on the new CPV sources

from the (non)observation of EDMs is a challenging
theoretical problem that involves physics at scales ranging
from the TeV (or higher) down to the hadronic, nuclear, and
atomic scales, depending on the system under consider-
ation. The relevant physics at the hadronic and nuclear
scale involves strong interactions, and requires the calcu-
lation of nonperturbative matrix elements. While interest-
ing model-independent statements can be made within a
nucleon-level chiral effective theory approach [13–18],
ultimately the computation of a number of hadronic matrix
elements is necessary. Existing calculations of the impact
of BSM operators on hadronic EDMs typically rely on
modeling the strong dynamics in ways consistent with the

quantum chromodynamics (QCD) symmetries, using meth-
ods such as QCD sum rules [19–22] and the Dyson-
Schwinger equations [23,24] (see Refs. [3,12] for reviews).
Since models do not rely on systematic approximations to
the strong dynamics of quarks and gluons in the nucleons,
current results represent in some cases only crude esti-
mates, with different model calculations differing by up to
an order of magnitude, depending on the operator under
study [12]. Needless to say, this state of affairs greatly
dilutes the impact of EDM experimental searches in
probing short-distance physics. Moreover, the uncertainties
affect the robustness of the phenomenological studies
relating new sources of CP violation to baryogenesis
mechanisms (depending on what is the dominant mecha-
nism and operator generating the EDM).
In this context, lattice QCD calculations offer the

opportunity to perform systematically improvable calcu-
lations of the CPV hadronic dynamics. Historically, lattice
QCD efforts have mostly focused on the determination of
the nucleon EDM induced by the SM θ term [25–33]. Only
recently there has been interest in studying the impact of the
leading CP-odd operators on the nucleon EDM [34–36]
and the T-odd pion nucleon couplings [37].
This program, however, comes with several challenges,

ranging from controlling the signal-to-noise ratio on the
lattice to studying operator mixing, and matching suitably
renormalized lattice operators to the minimally subtracted
operators typically used in phenomenological applications.
In this paper we focus on defining UV finite CP-odd
operators of dimension five and lower, using a renormal-
ization scheme suitable for implementation on the lattice,
and matching this scheme to the perturbative MS scheme to
one loop.
The paper is organized as follows. In Sec. II, we describe

the effective theory framework parametrizing BSM effects
at low-energy and identify the leading dimension-five CPV
operators. In Sec. III, we construct the basis of operators
needed to study the renormalization of the quark chromo-
electric dipole moment (CEDM) operator in an off-shell
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momentum subtraction scheme with nonexceptional
momenta. In Sec. IV, we present the one-loop calculations
needed to determine the full mixing matrix to OðαsÞ for the
operator basis discussed in Sec. III. In Sec. V, we give our
results for the matrix of renormalization constants in the
MS scheme, while in Sec. VI we specify the renormaliza-
tion conditions that define a regularization-independent
(RI) momentum subtraction scheme and provide the OðαsÞ
matching coefficients to the MS scheme. In Sec. VII, we
discuss the consistency of our renormalization conditions
with the singlet axial Ward identities. In Sec. VIII, we
compare our results to recent related work [38] that studies
the renormalization of the strangeness changing chromo-
magnetic quark operator. We end with our conclusions and
outlook in Sec. IX.
A number of technical issues are discussed in the

Appendixes. In Appendix A we summarize our choice
of phase convention used to define the CP transformations.
The regularization-independent calculation is done using
off-shell matrix elements with quarks and gluons as
external states in a fixed gauge. In Appendix B we derive
the constraints on the mixing with gauge dependent and
off-shell operators imposed by BRST symmetry. The
Peccei-Quinn mechanism and its implications for CPV
operators are discussed in Appendix C. In Appendix D we
discuss the subtleties that arise in the isospin symmetry
limit. Finally, in Appendix E, we summarize the matching
coefficients between the MS and the RI scheme.

II. FRAMEWORK

In this section we describe in some detail the hadronic-
scale CPVeffective Lagrangian induced by BSM physics at
the high scale. The identification of the CPV combinations
of short-distance parameters involves several steps. We start
our discussion in Sec. II A by classifying the leading
BSM-induced operators that can lead to CPV effects at
the quark and gluon level. We then discuss in Sec. II B the
relation between CP and chiral symmetry in presence of
operators that explicitly break chiral symmetry: the CP
symmetry that remains unbroken by the vacuum takes the
standard form given in Appendix A only after performing an
appropriate chiral rotation of the fields (“vacuum align-
ment”) that eliminates pion tadpoles [39–41]. In Sec. II C
we implement the vacuum alignment in presence of higher-
dimensional operators induced by BSM physics and in
Sec. II D we summarize the vacuum-aligned effective
Lagrangian including operators up to dimension five.

A. CP violation in the Standard Model and beyond

Assuming the existence of new physics beyond the
Standard Model (BSM) at a scale ΛBSM ≫ vew, we can
parametrize the BSM effects in terms of local operators of
dimension five and higher, suppressed by powers of the
scale ΛBSM. The new operators are built out of SM fields

and respect the SUð3ÞC × SUð2ÞW ×Uð1ÞY gauge sym-
metries of the SM. The leading CP-violating operators
appear only at dimension six [42,43]. Their renormalization
group evolution from the new physics scale down to the
hadronic scale has been studied in several papers, most
recently in Refs. [44,45], and the resulting effective chiral
Lagrangian at the hadronic level has been discussed in
Refs. [14,16] (for a review see Ref. [12]).
In this work, we are primarily interested in the structure

of the effective Lagrangian including new sources of CP
violation below the weak scale. After integrating out the top
quark, the Higgs boson, and the W� and Z gauge bosons,
the needed operators are invariant under the SUð3ÞC ×
Uð1ÞEM gauge group. At a scale μ < MW;Z, the effective
Lagrangian including the leading (i.e., originating at
dimension six) flavor-conserving CP-violating effects at
the quark- and gluon-level can be written as follows1:

Leff ¼ LSMjmi¼0 −miψ̄LiψRi −m�
i ψ̄RiψLi −

g2

32π2
θG ~G

−
vew

2Λ2
BSM

eðdðγÞi ψ̄LiσμνFμνψRi þ dðγÞ�i ψ̄RiσμνFμνψLiÞ

−
vew

2Λ2
BSM

gðdðgÞi ψ̄LiσμνGμνψRi þ dðgÞ�i ψ̄RiσμνGμνψLiÞ

þ dG
Λ2
BSM

fabcGa
μν
~Gνβ;bGμ;c

β þ 4-quark operators;

ð1Þ

where e and g are the electric and color charges, vew is
the Higgs VEV (vacuum expectation value), the index i
runs over the active quark flavors (at μ ∼ 1 GeV one has
i ∈ fu; d; sg), and ~Gμν;b ¼ εμναβGb

αβ=2.
The first line in Eq. (1) contains the Standard Model

dimension-four operators, including the mass matrix put in
the standard diagonal form and a common phase, and the
QCD θ term. Because of the anomalous Ward identity, a
choice of fermion phases can be used to rotate the θ term
into a CP-odd pseudoscalar quark mass term, instead.
The second and third lines in Eq. (1) contain the BSM

contribution due to the quark magnetic (MDM) and electric
dipole moment (EDM), and chromomagnetic (CMDM) and
chromoelectric dipole moment (CEDM) operators, respec-
tively. Below the weak scale these operators are of mass-
dimension five: their origin as dimension-six operators at
the high scale is hidden in the overall dimensionless factor
of vew=ΛBSM. It is important to note that the physical

1Without loss of generality, we have performed a SUðnFÞL ×
SUðnFÞR transformation to put the quark mass matrix in diagonal
form, with complex masses sharing a common phase ρ, namely,
mi ¼ jmijeiρ. Moreover, note that the masses mi and θ include
(i) possible threshold corrections, i.e., effects that originate from
higher-dimensional operators, such as H†HG ~G and H†Hq̄Lq0RH,
and (ii) corrections induced by mixing with the chromoelectric
dipole moment at finite quark mass.
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meaning of these operators as CP-violating electric or
CP-conserving magnetic moments relies on an implicit
chiral phase convention. Similar to the quark mass terms,
however, these operators explicitly break chiral symmetry,
thus contributing to vacuum alignment [39]. As discussed
in Sec. II B, the vacuum alignment, in turn, determines
the unbroken CP symmetry, and a chiral rotation—which
mixes the EDM and MDM, as well as CEDM and CMDM
operators—may be needed to put the symmetry trans-
formation in the standard form. If no complex phases
appear in the Lagrangian after such a rotation, no physical
CP violation can arise. In Sec. II C we, therefore, discuss
the combinations of mi, θ, d

ðγÞ
i , and dðgÞi that are indepen-

dent of such phase choices, and give CP-violating con-
tributions to observables.
Finally, the fourth line in Eq. (1) contains the CP-odd

BSM operators that are genuinely of mass-dimension six at
low energy, such as the Weinberg three-gluon operator and
four-quark operators.
In order to convert experimental results on nucleon and

nuclear EDMs into bounds or ranges for the short-distance
CP-odd couplings, one needs to compute the effect of the
CP-odd operators in Eq. (1) on hadronic observables, such
as the nucleon EDM and the T-odd πNN couplings. One
essential step in connecting the short-distance physics to
hadronic observables involves defining UV finite operators
in a suitable scheme, whose matrix elements can then be
computed nonperturbatively using lattice QCD. In this
work, we focus on the ultraviolet divergences and mixing
structure of the leading gauge-invariantCP-odd dimension-
five operators, namely, the quark CEDM and EDM. These
operators are of great phenomenological interest, being the
leading sources of flavor-diagonal CP violation in several
extensions of the SM [3,12]. Moreover, since dimension-
five operators can mix only with operators of dimension up
to five (mixing with lower-dimensional operators occurs in
mass-dependent renormalization schemes), we can consis-
tently ignore operators of dimension six and higher, which
we leave for future work.

B. CP symmetry and chiral symmetry breaking

In this subsection we discuss the connection between CP
and chiral symmetries. The main point is that explicit chiral
symmetry breaking selects the vacuum of the theory [39], as
well as the unbroken CP symmetry. The unbroken CP
symmetry takes the standard form given in Appendix A only
after a chiral rotation that eliminates pion tadpoles, i.e., after
implementing vacuum alignment [39] discussed in Sec. II C.
The CP transformation interchanges left-chiral particles

with right-chiral antiparticles. It is implemented on chiral
fermion fields by

CP−1ψLCP ¼ iγ2ψL
T

CP−1ψRCP ¼ iγ2ψR
T; ð2Þ

where CP is the CP operator (see Appendix A for details).
The CP operation does not commute with chiral rotations,
so we can consider its outer automorphisms. In fact,
defining the chiral rotation operator χ̂ via (i labels quark
flavors)

χ̂−1ψL;iχ̂ ¼ e−iχi=2ψL;i

χ̂−1ψR;iχ̂ ¼ eiχi=2ψR;i; ð3Þ

one finds

CP−1
χ ψL;iCPχ ¼ ieiχiγ2ψL;i

T

CP−1
χ ψR;iCPχ ¼ ie−iχiγ2ψR;i

T; ð4Þ

where CPχ ≡ χ̂−1CPχ̂. If chiral symmetry is a good
symmetry of the Lagrangian L0, then each of these is an
equivalent CP symmetry.
Because of the spontaneous breaking of chiral symmetry,

almost all the CPχ are spontaneously broken by the vacuum
of the theory. In this case, it is convenient to make a chiral
phase choice such that the vacuum has a zero expectation
value for all the flavor bilinears of the form hψ̄ iγ5ψ ji. In
fact, it is only with this phase choice that the pions, the
Goldstone modes of the broken chiral symmetry, corre-
spond to the operator ψ̄ iγ5ψ j. With this choice of phases, in
the “reference vacuum,” the CP symmetry CP0 stays
unbroken by the vacuum; we implicitly make this choice
throughout this paper.
We next consider the effect of explicit chiral symmetry

breaking. For a small explicit breaking of chiral symmetry,
encoded in a new term δL in the LagrangianL ¼ L0 þ εδL
(with ε ≪ 1), chiral perturbation theory is expected to be a
good guide to understanding the structure of the theory.
But, because of the explicit breaking of the chiral sym-
metry, the vacuum is no longer degenerate: the explicit
breaking chooses a direction in chiral space with which the
vacuum aligns [39]. If this does not match the “reference
vacuum”, large corrections appear due to degenerate
perturbation theory.
To avoid this problem, it is convenient to perform a chiral

transformation χ̂ so that the explicit chiral symmetry break-
ing δL selects the reference vacuum, in which the unbroken
CP symmetry takes the standard form, namely, CP0. The
way to do this is to impose the condition that the vacuum
state does not mix with the Goldstone state [39–41], i.e.,

hπjδLjΩi ¼ 0; ð5Þ

where δL are the chiral breaking terms after such a rotation
and jΩi and jπi are the reference vacuum and Goldstone
pion states respectively. If the only chiral breaking comes
from the mass terms, this can be accomplished by rotating
away the flavor nonsinglet CP-violating mass terms in
Eq. (1) by the appropriate chiral transformation χ̂.
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C. Vacuum alignment in presence of
higher-dimensional operators

We now discuss the vacuum alignment in presence of
higher-dimensional operators induced by BSM physics.
After a general discussion of the chiral transformation
needed to enforce Eq. (5), we specialize to the case in
which the dominant source of chiral symmetry breaking is
provided by the quark masses, and the dominant BSM
operators are the quark (C)EDM and (C)MDM. In this case
we present the vacuum-aligned effective Lagrangian in
both scenarios with and without the Peccei-Quinn (PQ)
mechanism [46].
Except for G ~G, all terms of dimension five and lower in

the Lagrangian defined in Eq. (1) that violate CP are
fermion bilinears that also violate chiral symmetry. Each of
these terms mixes with a CP-conserving one under chiral
rotation, and it is conventional to treat the two as real and
imaginary parts of a single operator. Generalizing Eq. (1)
let us write the chiral and CP-violating part of the
Lagrangian involving quark bilinears as

δL ¼ −
X
i;α

½dαi Oα
i þ H:c:�

¼ −
X
i;α

½Re dαi ReOα
i þ Im dαi ImOα

i � ð6Þ

where

Oα
i ¼ ψ̄L;iΓαψR;i;

ReOα
i ¼ Oα

i þOα†
i ;

ImOα
i ¼ i½Oα

i −Oα†
i �; ð7Þ

i is a flavor index and α parametrizes the different
operators, characterized by the structure Γα. The first
few operators are the mass term (α ¼ 0), the quark
CEDM (α ¼ 1) and the quark EDM (α ¼ 2)

d0i O
0
i þ H:c: ¼ ψ̄ i½ðRemiÞ þ iðImmiÞγ5�ψ i ð8Þ

d1i O
1
i þ H:c: ¼ vew

2Λ2
BSM

gψ̄ i½ðRe dðgÞi ÞσμνGμν

þ iðIm dðgÞi ÞσμνGμνγ5�ψ i ð9Þ

d2i O
2
i þ H:c: ¼ vew

2Λ2
BSM

eψ̄ i½ðRe dðγÞi ÞσμνFμν

þ iðIm dðγÞi ÞσμνFμνγ5�ψ i: ð10Þ

In this notation, under a chiral rotation χ̂ (parametrized
by χi)

dαi → dαi e
iχi

θ → θ þ χ1 þ � � � þ χnF ; ð11Þ

and we seek a chiral rotation such that Eq. (5) holds and at
the same time θ → 0.
To implement Eq. (5), we need to introduce the non-

perturbative matrix elements

Δα
ij ≡ hπjjImOα

i jΩi ð12Þ

where the state jπji is interpolated by the field ψ̄ jiγ5ψ j.
Then the mixing of the vacuum with the neutral Goldstone
modes ðjπji − jπkiÞ=

ffiffiffi
2

p
is proportional to

P
iαImdαi

ðΔα
ij − Δα

ikÞ. The condition in Eq. (5) for each neutral
Goldstone mode ðjπji − jπkiÞ=

ffiffiffi
2

p
becomesX

i;α

Imðdαi eiχiÞ½Δα
ij − Δα

ik� ¼ 0; k ¼ 1; j ¼ 2;…; nF:

ð13Þ

Since the unperturbed Lagrangian L0 is SUðnFÞV sym-
metric, the matrix elements can be written in terms of
two constants, the diagonal Δα

S and the off-diagonal Δα
V ,

defined byΔα
ij ¼ Δα

Sδij þ Δα
Vð1 − δijÞ. Eq. (13) implies, for

each flavor i ¼ 1;…; nF,X
α

Imðdαi eiχiÞrðαÞ ¼ κ ð14Þ

where rðαÞ ≡ ðΔα
S − Δα

VÞ=ðΔ0
S − Δ0

VÞ (we divided out the
matrix elements of the dimension-three operator ImO0

i ¼
ψ̄ iiγ5ψ i) and κ is a flavor-independent constant. Defining

di ≡ jdijeiϕi ≡X
α

dαi r
ðαÞ; ð15Þ

the chiral rotation we want needs to satisfy, for each i,

jdij sinðχi þ ϕiÞ ¼ κ: ð16Þ

Moreover, to implement θ → 0, one needs θ þPiχi ¼ 0,
or, equivalently, the constant κ needs to satisfy

θ −
X
i

ϕi þ
X
i

sin−1ðκjdij−1Þ ¼ 0: ð17Þ

Eqs. (16) and (17) provide a system of equations for χi and
κ, which does not have a closed form solution for nF > 2.
On making the chiral transformation dictated by Eqs. (16)
and (17) we find that CP violation is proportional to

δLCPV¼
X
i;α

�
κRe

dαi
di
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdij2−κ2

q
Im

dαi
di

�
ImOα

i

≈
X
i;α

�
−d̄ðθ−ϕtotÞRe

dαi
di

þjdijIm
dαi
di

�
ImOα

i ; ð18Þ

where d̄−1 ≡Pijdij−1 and ϕtot ≡Piϕi, and the second
line is obtained by solving Eq. (17) for small κ=jdij, which
is appropriate when θ is small and the dominant chiral
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violation comes from a real mass term (the latter condition
implies ϕi ≪ 1).
Notice that if there is a single operatorOα

i that is the only
source ofCP violation, then di ∝ dαi , and the second term is
zero. This is because in this case this term is also the only
term that explicitly breaks the chiral symmetry and the
vacuum aligns itself with this direction. As a result,
performing a chiral rotation to make the vacuum have
the conventional chiral phase removes any imaginary part
from the operator, andCP violation can only come from the
anomalous chiral rotations. In this case, however, the CP
violation is proportional to the harmonic sum of the chiral
violations from each flavor, and therefore vanishes if any
flavor remains chirally symmetric.
In what follows, we will instead consider the situation

where the dominant chiral breaking is always due to the
α ¼ 0 mass term, i.e., di ∝ d0i approximately, and consider
the case where all flavors are massive. Only in this case, the
dominant source of CP violation is proportional to Imdαi .
Consistent with this assumption, when studying mixing and
renormalization we will keep in the operator basis terms
proportional to the quark mass matrix.
With these assumptions and after vacuum alignment, the

explicit form of Eq. (18), specialized to the case of a
Lagrangian containing a mass term, quark EDM, and quark
CEDM, is

δLCPV¼ ψ̄iγ5ψm�

�
θ̄−

r
2
Tr½M−1ð½dCE�−m�θ̄M−1½dCM�Þ�

�

þr
2
ψ̄iγ5ð½dCE�−m�θ̄M−1½dCM�Þψ

−
ig
2
ψ̄σμνγ5Gμνð½dCE�−m�θ̄M−1½dCM�Þψ

−
ie
2
ψ̄σμνγ5Fμνð½dE�−m�θ̄M−1½dM�Þψ ; ð19Þ

where we defined r≡ rð1Þ ¼ ðΔ1
S − Δ1

VÞ=ðΔ0
S − Δ0

VÞ and
neglected rð2Þ ¼ OðαEMrð1ÞÞ. We further defined

ψ ¼

0
B@

u

d

s

1
CA; M ¼

0
B@

mu 0 0

0 md 0

0 0 ms

1
CA; ð20Þ

and the matrix-valued CEDM and CMDM couplings as

½dCE� ¼
vew
Λ2
BSM

0
B@

ImdðgÞu 0 0

0 ImdðgÞd 0

0 0 ImdðgÞs

1
CA;

½dCM� ¼
vew
Λ2
BSM

0
B@

RedðgÞu 0 0

0 RedðgÞd 0

0 0 RedðgÞs

1
CA; ð21Þ

with analogous definitions for the electric ½dE� and mag-
netic ½dM� couplings. Finally, θ̄ ¼ θ − nFρ with nFρ the
phase of the determinant of the mass matrix before
the anomalous chiral rotation renders it real, and m� is
the reduced quark mass

m� ¼
msmdmu

msðmu þmdÞ þmumd
: ð22Þ

The first term in Eq. (19) is the familiar θ̄ term, shifted by a
correction proportional to the quark CEDM and a second
correction, proportional to the coefficients of the CMDM
multiplied by θ̄. The third and fourth lines of Eq. (19)
contains the quark (C)EDM operators, which after vacuum
alignment receive a correction proportional to the (C)MDM
coefficient multiplied by θ̄. Moreover, vacuum alignment
causes the appearance of a complex mass term, propor-
tional to the same combination of the CEDM and CMDM
coefficients [second line of Eq. (19)].
The above discussion is valid in absence of PQ mecha-

nism [46]. As we review in Appendix C, if CP violation
arises only from the mass term, the PQ mechanism
dynamically relaxes θ̄ to zero. In the presence of other
CP-violating sources, like the quark CEDM, the Peccei-
Quinn (PQ) mechanism causes θ̄ to relax to a nonzero
value θ̄ind, proportional to the new source of CP violation.
In particular, as we discuss in further detail in Appendix C,
in the presence of the quark CEDM

θ̄ind ¼
r
2
Tr½M−1½dCE��; ð23Þ

thus enforcing a cancellation between the first two terms in
Eq. (19). Since θ̄ind is suppressed by two powers of ΛBSM,
terms proportional to θ̄½dCM� in Eq. (19) become effectively
dimension eight and can be neglected. Thus, if the PQ
mechanism is at work, the first line of Eq. (19) vanishes and
the terms proportional to θ̄ in the second and third line of
Eq. (19) can be neglected, leading to

δLPQ
CPV ¼ r

2
ψ̄ iγ5½dCE�ψ −

ig
2
ψ̄σμνγ5Gμν½dCE�ψ

−
ie
2
ψ̄σμνγ5Fμν½dE�ψ ; ð24Þ

with both CEDM and pseudoscalar quark density with
flavor structure dictated by ½dCE�.
Equation (19) and Eq. (24) provide the vacuum-aligned

low-energy Lagrangians, in presence of BSM sources of
CP and chiral symmetry violation. They are particularly
useful within the chiral perturbation theory framework, as
they guarantee the cancellation of tadpole diagrams in
which Goldstone modes are absorbed by the vacuum. This
form of the CP-violating perturbation allows one to
identify what nonperturbative matrix elements are needed
in order to address the impact of a BSM-induced CEDM
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operator on the nucleon EDM, i.e., the dependence of dn on
½dCE�. Both with and without PQ mechanism the effective
Lagrangian involves the CEDM operator as well as flavor
singlet and nonsinglet pseudoscalar quark operators.
Moreover, at the lowest order, the effect of flavor nonsinglet
ψ̄iγ5t3;8ψ operators is proportional to insertions of the
flavor-singlet density ψ̄iγ5ψ. This is very simple to see
within the functional integral approach, in which ψ̄iγ5t3;8ψ
can be eliminated through a nonanomalous axial rotation.
The same result can be obtained within an operator
approach. In this framework, using soft-pion techniques,
one can show that a cancellation occurs between nontad-
pole and tadpole diagrams with insertion of ψ̄iγ5t3;8ψ ,
leaving a term proportional to the insertion of ψ̄iγ5ψ . In
absence of PQ mechanism, the resulting flavor-singlet
pseudoscalar insertion proportional to ½dCE� cancels exactly
the existing singlet term in Eq. (19). If the PQ mechanism is
operative, the resulting flavor-singlet pseudoscalar inser-
tion is proportional to m�θ̄ind. The net effect is equivalent
to replacing Eqs. (19) and (24) with

δLCPV ¼ m�θ̄ ψ̄ iγ5ψ −
ig
2
ψ̄σμνγ5Gμνð½dCE�

−m�θ̄M−1½dCM�Þψ

−
ie
2
ψ̄σμνγ5Fμνð½dE� −m�θ̄M−1½dM�Þψ ð25aÞ

δLPQ
CPV ¼ m�θ̄indψ̄iγ5ψ −

ig
2
ψ̄σμνγ5Gμν½dCE�ψ

−
ie
2
ψ̄σμνγ5Fμν½dE�ψ : ð25bÞ

These can be regarded as partially aligned effective
Lagrangians, in which only the dominant mass term has
been aligned to eliminate pion tadpoles, while the BSM
perturbation is not aligned. While the physics cannot depend
on the choice of equivalent parametrization of Eq. (19),
Eq. (24) and Eq. (25), use of different effective Lagrangians
is a matter of convenience, depending on the nonperturbative
approach employed to study hadronic physics. Starting from
the Lagrangian in Eq. (25), in the chiral effective theory
approach tadpole diagrams arise, that can be dealt within
perturbation theory [14]. On the other hand, in a non-
perturbative approach based on the functional integral, such
as lattice QCD, the partially aligned Lagrangian can be more
convenient: it shows that the only needed nonperturbative
matrix elements involve the (C)EDM operator and the
singlet pseudoscalar density (or equivalently G ~G).

D. CP-violating effective Lagrangian
at the hadronic scale

To summarize the above discussion, at the hadronic scale
(μ ∼ 1 GeV) the vacuum-aligned flavor-conserving effec-
tive Lagrangian including the leading BSM sources of
CP violation (up to dimension five) can be written as
follows,

L ¼ LQCDþQED − ψ̄Mψ − ψ̄ ½δM�iγ5ψ

−
ie
2
ψ̄σμνγ5Fμν½DE�Qψ −

ig
2
ψ̄σμνγ5Gμν½DCE�ψ ;

ð26Þ

where

Q ¼

0
B@

qu 0 0

0 qd 0

0 0 qs

1
CA: ð27Þ

Here we are neglecting operators that are total derivatives
and/or vanish by using the equations of motion (EOM),
needed later on when we impose off-shell renormalization
conditions at finite momentum insertion. The matrix-valued
CP-violating couplings ½δM�, ½DCE�, ½DE� are related to the
short-distance couplings of Eq. (1) via Eq. (21) and Eq. (19)
or Eq. (24), depending on whether or not the PQ mechanism
is assumed. The pseudoscalar mass term ½δM� in general has
a nonsinglet structure in flavor space, though at leading
order, its physical effects can be related to a flavor-singlet
mass term as discussed in Sec. II C [see Eqs. (25)].

III. CP-ODD OPERATOR OF DIMENSION ≤5

The only T-odd and P-odd operators of dimension five
appearing in the low-energy effective Lagrangian Eq. (26)
are the quark EDM and CEDM, whose mixing and
renormalization we wish to discuss.
The analysis of the quark EDM is relatively simple: this

operator is a quark bilinear from the point of view of strong
interactions, and it is simply related to the tensor density.
Knowledge of the nucleon tensor charges immediately
allows one to extract the contribution of the quark EDM to
the nucleon EDM [47,48]. To lowest (zeroth) order in
electroweak interactions, this operator renormalizes diago-
nally, precisely as the tensor density. Since we are not
interested in the hadronic matrix elements to a precision of
order αEM=π < 1%, we neglect the quark EDM mixing
with any other operator.
On the other hand, the quark CEDM operator does not

renormalize diagonally: it mixes with the quark EDM and
other operators of dimension five or lower. The mixing
structure is particularly rich if one considers renormalization
within a so-called regularization-independent (RI), momen-
tum subtraction (MOM) scheme, amenable to nonperturba-
tive calculations in lattice QCD [49]. In this family of
schemes, the renormalization conditions are imposed on off-
shell quark matrix elements in a fixed gauge, thus requiring
the inclusion of operators that do not contribute to physical
matrix elements, such as total derivatives and operators that
vanish on-shell by using the equations of motion (EOM).We
next discuss the relevant operator basis, the mixing structure,
and the strategy to determine the renormalization matrix.
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A. Operator basis

The implementation of RI momentum subtraction
schemes requires working in a fixed gauge. With gauge
fixing, full gauge invariance is lost and the action is only
invariant under BRST transformations [50,51]. A given
gauge invariant operator O (we have in mind the quark
CEDM) mixes under renormalization with two classes of
operators of the same (or lower) dimension [52,53]:
(i) gauge-invariant and ghost-free operators with the same
symmetry properties as O (Lorentz, CP, P) that do not
vanish by the EOM and (ii) “nuisance” operators allowed
by the solution to the Ward identities associated with the
BRST symmetry: these vanish by the EOM and need not be
gauge invariant. The “nuisance” operators can be con-
structed as off-shell BRST variation of operators that have
ghost number −1, but otherwise with same symmetry
properties as O, as discussed in Ref. [52] and detailed in
Appendix B.2

Following the above general prescription, we have con-
structed the basis of CP-odd (T- and P-odd) operators that
mix with the quark CEDM operator (the CP transformation
properties of fields are reviewed in Appendix A). We present
our results for nF ¼ 3. To restrict the possible structures in
flavor space we use the spurion method. While the effective
Lagrangian in Eq. (26) is not invariant under chiral trans-
formations on the quark fields ψL;R → UL;RψL;R with
UL;R ∈ SUð3ÞL;R, one can formally recover chiral invari-
ance by assigning spurion transformation properties to the
CEDM coupling matrix (½DCE� → UL½DCE�U†

R), the mass
matrix (M → ULMU†

R), and the charge matrix
(Q → UL;RQU†

L;R). One then includes in the basis operators
that are chirally invariant in the spurion sense, and are linear
in the CEDM spurion ½DCE�. Eventually, we set ½DCE� → ta

(a ¼ 0, 3, 8), where t0 ¼ 1=
ffiffiffi
6

p
I3×3 is proportional to the

identity matrix in flavor space, while for a ¼ 3, 8,
ta ¼ λa=2, with λa the SU(3) Gell-Mann matrices (normal-
izations are such that TrFðtataÞ ¼ 1=2 for a ¼ 0, 3, 8).
In our basis we include operators proportional to the

quark mass matrix for two reasons: (i) the identification of
the CPV terms in Eq. (26) assumed the quark mass to be the
dominant source of explicit chiral symmetry breaking, and
(ii) we wish to include the effect of the strange quark, for
which ms=ΛQCD is not a big suppression parameter.
Finally, in order to present the operators that vanish by the

EOM in a compact form, we introduce the combinations:

ψE ≡ ðiDμγμ −MÞψ ;
Dμ ¼ ∂μ − igAa

μTa − ieQAðγÞ
μ ð28Þ

ψ̄E ≡ −ψ̄ðiD⃖μγμ þMÞ;
D⃖μ ¼ ∂⃖μ þ igAa

μTa þ ieQAðγÞ
μ : ð29Þ

Note that ψE transforms under CP in the same way as ψ
(see Appendix A).
Next, we enumerate the operators of dimension five and

lower that can mix with the quark CEDM:

C ¼ igψ̄taσμνγ5Gμνψ ; ð30Þ

labeled by the flavor-diagonal structure ta (a ¼ 0, 3, 8). We

will use the notation OðdÞ
i to indicate the ith operator of

dimension d. If the regularization breaks chiral symmetry,
i.e., an additional left-right spurion (proportional to the
identity in the case of Wilson fermions) is present in the
effective Lagrangian, the CEDM operator can mix with
additional operators. While we will restrict our analysis to
the case of good chiral symmetry (which can be attained on
the lattice by using domain-wall [55] or overlap [56]
fermions), we will nonetheless identify the additional
operators appearing at a given dimensionality. Finally,
note that there are no CP-odd operators containing
ghost-antighost fields up to and including dimension five.

1. Dimension three

At dimension three there is only one operator allowed by
the symmetries:

Oð3Þ ≡ P ¼ ψ̄ iγ5taψ : ð31Þ

This operator mixes with the quark CEDM even in the
absence of other sources of chiral symmetry breaking, such
as mass terms or regularization artifacts. Therefore, the
lattice operator CL requires subtraction of power divergen-
ces due to mixing with the lower-dimensional operator PL.

3

Defining the subtracted operator C≡ CL − ~ZPL, one can
determine ~Z by requiring that the quark two-point function

Γð2Þ
C defined in Eq. (52) vanishes at a given symmetric

kinematic point p2 ¼ p02 ¼ q2 ¼ −Λ2
0 for mq → 0,

namely, TrðΓð2Þ
C γ5taÞΛ0

¼ 0.

2. Dimension four

Assuming good chiral symmetry, there are no dimen-
sion-four operators that mix with the quark CEDM oper-
ator. If the regularization breaks chiral symmetry in a flavor
blind fashion, the CEDM can mix with the following
operators:

2See Ref. [54] for an application of this formalism to the
CP-even sector of QCD. There is a one-to-one correspondence
between our operator basis and the one of Ref. [54], provided we
drop the total-derivative operators from our basis and set m ¼ 0,
as done in Ref. [54].

3Since dimensionally regularized operators do not mix with
lower-dimensional operators at any finite order in perturbation
theory, we will, when necessary, use a subscript L for operators
regularized in a scheme, like the lattice, that includes a hard
cutoff.
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G ~G; ∂μðψ̄γμγ5taψÞ; ψ̄iγ5fM; tagψ ;
Tr½Mta�ψ̄iγ5ψ ; Tr½M�ψ̄iγ5taψ : ð32Þ

3. Dimension five

At dimension five, 14 Hermitian operators are present.
The first ten operators are gauge-invariant and do not
vanish by the EOM. The latter four are “nuisance”
operators. To all operators we assign a number and also
a more suggestive name:

Oð5Þ
1 ≡ C ¼ igψ̄ ~σμνGμνtaψ ~σμν ≡ 1

2
ðσμνγ5 þ γ5σ

μνÞ
ð33Þ

Oð5Þ
2 ≡ ∂2P ¼ ∂2ðψ̄iγ5taψÞ ð34Þ

Oð5Þ
3 ≡ E ¼ ie

2
ψ̄ ~σμνFμνfQ; tagψ ð35Þ

Oð5Þ
4 ≡ ðmF ~FÞ ¼ Tr½MQ2ta� 1

2
ϵμναβFμνFαβ ð36Þ

Oð5Þ
5 ≡ ðmG ~GÞ ¼ Tr½Mta� 1

2
ϵμναβGb

μνGb
αβ ð37Þ

Oð5Þ
6 ≡ ðm∂ · AÞ1 ¼ Tr½Mta�∂μðψ̄γμγ5ψÞ ð38Þ

Oð5Þ
7 ≡ ðm∂ · AÞ2 ¼

1

2
∂μðψ̄γμγ5fM; tagψÞ

−
1

3
Tr½Mta�∂μðψ̄γμγ5ψÞ ð39Þ

Oð5Þ
8 ≡ ðm2PÞ1 ¼

1

2
ψ̄iγ5fM2; tagψ ð40Þ

Oð5Þ
9 ≡ ðm2PÞ2 ¼ Tr½M2�ψ̄ iγ5taψ ð41Þ

Oð5Þ
10 ≡ ðm2PÞ3 ¼ Tr½Mta�ψ̄iγ5Mψ ð42Þ

Oð5Þ
11 ≡ PEE ¼ iψ̄Eγ5taψE ð43Þ

Oð5Þ
12 ≡ ∂ · AE ¼ ∂μ½ψ̄Eγ

μγ5taψ þ ψ̄γμγ5taψE� ð44Þ

Oð5Þ
13 ≡ A∂ ¼ ψ̄γ5∂taψE − ψ̄E∂⃖γ5taψ ð45Þ

Oð5Þ
14 ≡AAðγÞ ¼ ie

2
ðψ̄fQ; tagAðγÞγ5ψE − ψ̄EfQ; tagAðγÞγ5ψÞ:

ð46Þ
With a flavor blind breaking of chiral symmetry, the

CEDM can mix with additional dimension-five operators,
namely,

Tr½M�∂μðψ̄γμγ5taψÞ; Tr½M�ψ̄iγ5Mtaψ ;

ðTrMÞ2ψ̄iγ5taψ ; Tr½M2ta�ψ̄iγ5ψ ;
Tr½M�Tr½Mta�ψ̄iγ5ψ : ð47Þ

In the perturbative analysis presented below, we will
use dimensional regularization. For γ5 we will present
results for both the naïve anticommuting scheme known as
naïve dimensional regularization (NDR) and the consistent
’t Hooft–Veltman (HV) scheme (see [53] and references
therein). It is important that the regulator does not break the
Hermiticity of the operator basis: when considering oper-
ator insertions in the dimensionally regulated theory, care
must be taken to ensure that the operators remain Hermitian
for arbitrary spacetime dimension d. This is essential in
order to obtain correct results for the finite parts of the
diagrams. In what follows we will need to insertOð5Þ

1 in loop
diagrams, so we provide in Eq. (33) the explicit Hermitian
form of Oð5Þ

1 , valid both in HV and NDR schemes.

B. Mixing structure and Renormalization
Conventions

The relation between renormalized operators (Oi) in any
given scheme and bare operators (Oð0Þ

i ) (expressed in terms
of the bare fields) can be written as:

Oð0Þ
i ¼ ZijOj: ð48Þ

The renormalization mixing matrix Zij is scheme-
dependent and has the general structure given in
Table I.4 This structure is dictated by several consider-
ations, including (i) power-counting (some operators are
effectively of dimension three and four with either factors
of masses or external derivatives and cannot mix with
genuinely dimension-five operators), (ii) BRST invariance
[52], and (iii) vanishing by EOM or at zero four-momentum
injection. Indicating the gauge-invariant operators that do
not vanish on using the EOM (Oð5Þ

i for i ¼ 1;…; 10) byOα

and the “nuisance” operators (Oð5Þ
i for i ¼ 11;…; 14) by

Nα, the renormalization matrix has the block-structure

�
Oð0Þ

Nð0Þ

�
¼
�
ZO ZON

0 ZN

��
O

N

�
: ð49Þ

The divergent part of ZO (proportional to 1=ðd − 4Þ in
dimensional regularization or logΛ2 in a cutoff theory),
controlling the physical anomalous dimension, is indepen-
dent of the gauge-fixing choice [52].
In the following we will provide ZO in the MS scheme

and in a momentum subtraction scheme to one-loop order.

4Working to first order in insertions of the new physics
operator, each sector labeled by the diagonal flavor structure
ta (a ¼ 0, 3, 8) renormalizes independently, so that the renorm-
alization matrix has a block-diagonal form in flavor space.
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We will perform the calculations in dimensional regulari-
zation (d ¼ 4 − 2ϵ) and will present results in both the HV
and NDR schemes [53] for γ5 and the γ-matrix algebra
(we use the definition of γ5 and ϵμναβ given in Ref. [57]).
To extract the operator renormalization matrix we define
the field, coupling, and mass renormalization constants as

ψ ð0Þ ¼ ffiffiffiffiffiffi
Zψ

p
ψ ð50aÞ

Að0Þ
μ ¼

ffiffiffiffiffiffi
ZG

p
Aμ ð50bÞ

gð0Þ ¼ ZggμϵMS
μMS ≡ μ

eγE=2

ð4πÞ1=2 ð50cÞ

mð0Þ ¼ Zmm: ð50dÞ

Here, as usual, μ denotes an arbitrary parameter with
dimensions of mass, introduced to keep the renormalized
coupling g dimensionless (½g� ¼ 0), while ½m� ¼ 1,
½ψ � ¼ 3=2 − ϵ, and ½Aμ� ¼ 1 − ϵ. Note that g and αs ≡
g2=ð4πÞ depend on both μ and ϵ, so that dαs=
dðlog μÞ ¼ −2ϵαs þOðα2sÞ.
Finally, let us discuss different conventions for the

renormalization factors for fields, couplings, masses, and
operators, generically denoted by Z. Our definitions in
Eqs. (48) and (50) follow the notation typically used in the
perturbative QCD literature (see for example [58]).
However, we warn the reader that the lattice community
typically uses a different convention (fleshed out explicitly
in Ref. [59]), which is related to the one followed here by
replacing everywhere Z → Z−1.

IV. GREEN’S FUNCTION CALCULATIONS

In order to determine Zij and the relation between MS
and the RI- ~SMOM scheme to be defined in Sec. VI below,

we will study amputated two- and three-point functions5

with operator insertion. These are shown in Fig. 1 and
defined as follows:

Z
d4xe−iq·xhgðp0; ϵ�0 ÞjOðxÞjgðp; ϵÞi

¼ ð2πÞ4δð4Þðqþ p − p0Þϵ�0μ ðp0ÞΓμν
O ðp; p0ÞϵνðpÞ ð51Þ

Z
d4xe−iq·xhqðp0ÞjOðxÞjqðpÞi

¼ ð2πÞ4δð4Þðqþ p − p0Þūðp0ÞΓð2Þ
O ðp; p0ÞuðpÞ ð52Þ

Z
d4xe−iq·xhqðp0Þ; gðk; ϵ�ÞjOðxÞjqðpÞi

¼ ð2πÞ4δð4Þðqþ p − p0 − kÞūðp0ÞΓð3Þ
O ðp; p0; kÞuðpÞ:

ð53Þ

To minimize notational clutter in the above equations and
throughout the paper we will suppress the color indices,
which can be restored as follows. The gluon two-point
function Γμν

O carries the color structure δcc
0
, where c, c0 are

the octet color indices labeling the two amputated gluon

external legs. The quark two-point function Γð2Þ
O carries the

color structure δij, where i, j are the color indices labeling
the two amputated quark external legs. The quark-quark-

gluon three-point function Γð3Þ
O carries the color structure

Tb
ij, where b is the octet color index labeling the amputated

gluon external leg and i, j are the color indices labeling the
amputated quark external legs. Moreover, in our notation

TABLE I. Mixing structure of the dimension-fivee operators, with “x” representing nonzero entries. Throughout, we neglect effects
proportional to the electroweak coupling αEW.

C ∂2P E mF ~F mG ~G ðm∂ · AÞ1 ðm∂ · AÞ2 ðm2PÞ1 ðm2PÞ2 ðm2PÞ3 PEE ∂ · AE A∂ AAðγÞ

C x x x x x x x x x x x x x x
∂2P x
E x
mF ~F x
mG ~G x x
ðm∂ · AÞ1 x
ðm∂ · AÞ2 x
ðm2PÞ1 x
ðm2P̂Þ2 x
ðm2P̂Þ3 x

PEE x x x
∂ · AE x
A∂ x x x x
AAðγÞ x

5Since the terminology of lattice simulations also counts the
points at which the operator is inserted, these correspond to three-
and four- point functions in that terminology.
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Γð3Þ
O is linear in the gluon polarization vector, i.e., Γð3Þ

O ¼
ϵb�μ ðkÞΓð3Þμ

O . Analogous definitions exist for the photon
two-point function and the quark-quark-photon three-point

function, which we will denote by ΓμνðγÞ
O ðp; p0Þ and

Γð3;γÞ
O ðp; p0; kÞ (the latter carries color structure δij). The

assignment of momentum flow in these two- and
three-point functions with operator insertion is shown
in Fig. 1.
In any scheme, the renormalization factors Zij intro-

duced in Eq. (48) can then be determined by imposing
conditions on the two- and three-point functions defined
above. Working to first order in αs, the needed Green’s
functions with insertion of Oð5Þ

1 ≡ C read:

Γð2Þ
C ¼ Γð2Þ

C

���
1-loop

þ
X
j≠1

ðZ−1Þ1jΓð2Þ
Oð5Þ

j

���
tree

ð54Þ

Γð3Þ
C ¼ Γð3Þ

C

���
1-loop

þ ðZψZg

ffiffiffiffiffiffi
ZG

p
ðZ−1Þ11 − 1ÞΓð3Þ

C

���
tree

þ
X
j≠1

ðZ−1Þ1jΓð3Þ
Oð5Þ

j

���
tree

ð55Þ

Γμν
C ¼ Γμν

C

���
1-loop

þ
X
j≠1

ðZ−1Þ1jΓμν

Oð5Þ
j

���
tree

: ð56Þ

The simplest perturbative scheme is MS, in which one
determines the ðZ−1Þ1j by requiring cancellation of the
poles in ϵ ¼ ð4 − dÞ=2. Similar relations involving inser-
tions of Oð5Þ

i≠1 allow one to determine the remaining entries
Zij of the renormalization matrix. This program requires
computing the tree-level and one-loop results for the
two- and three-point functions, to which we turn next.

A. Tree level matrix elements

In this section we give tree-level results for the gluon two-
point functions Γμν

O ðp; p0Þ, the quark two-point functions

Γð2Þ
O ðp; p0Þ, the gluon-quark-quark three-point functions

Γð3Þ
O ðk; p; p0Þ, and the photon-quark-quark three-point func-

tions Γð3;γÞ
O ðk; p; p0Þ, for all the relevant operators OðdÞ

i .
The only operator with nonzero two-gluon matrix

element at tree level is Oð5Þ
5 ≡mG ~G:

Γμν

Oð5Þ
5

ðp; p0Þ ¼ Tr½Mta� × 4ϵμναβpαp0
β: ð57Þ

An analogous result holds for the photon two-point

function ΓμνðγÞ
Oð5Þ

4

ðp; p0Þ.
In Tables II, III, and IV, we give the tree-level 1-particle

irreducible (1PI) matrix elements Γð2Þ
O ðp; p0Þ, Γð3Þ

O ðk; p; p0Þ,
and Γð3γÞ

O ðk; p; p0Þ for each operator. Throughout, we use
the notation:

TABLE III. Nonvanishing tree-level 1PI quark-quark-gluon
3-point functions. For notational conventions and momentum
flow, see discussion below Eq. (53).

O Γð3Þ
O (1PI)

Oð5Þ
1 ¼ C 2gσðϵ�; kÞγ5ta

Oð5Þ
11 ¼ PEE −ig½ϵ� · ðpþ p0Þ − iσðϵ�; p − p0Þ�γ5ta

Oð5Þ
12 ¼ ∂ · AE 2gσðϵ�; qÞγ5ta

Oð5Þ
13 ¼ A∂ −ig½ϵ� · ðpþ p0Þ þ iσðϵ�; p − p0 − 2kÞ�γ5ta

TABLE IV. Nonvanishing tree-level 1PI quark-quark-photon
3-point functions. For notational conventions and momentum
flow, see discussion below Eq. (53).

O Γð3;γÞ
O (1PI)

Oð5Þ
3 ¼ E efQ; tagσðϵ�; kÞγ5

Oð5Þ
11 ¼ PEE − ie

2
fQ; tag½ϵ� · ðpþ p0Þ − iσðϵ�; p − p0Þ�γ5

Oð5Þ
12 ¼ ∂ · AE efQ; tagσðϵ�; qÞγ5

Oð5Þ
13 ¼ A∂ − ie

2
fQ; tag½ϵ� · ðpþ p0Þ þ iσðϵ�; p − p0 − 2kÞ�γ5

Oð5Þ
14 ¼ AAðγÞ − ie

2
fQ; tag½ϵ� · ðpþ p0Þ − iσðϵ�; p − p0Þ�γ5

FIG. 1. Momentum flow of generic diagrams contributing to
the quark-quark, gluon-gluon, and quark-quark-gluon Green’s
functions with operator insertion. The shaded blob represents the
operator insertion with incoming 4-momentum q and higher
order corrections. In the four-point function, the gluon (photon)
momentum is labeled by k.

TABLE II. Nonvanishing tree-level 2-point functions with
operator insertion. For notational conventions and momentum
flow, see discussion below Eq. (53).

O Γð2Þ
O

Oð3Þ ¼ P iγ5ta

Oð5Þ
2 ¼ ∂2P −iq2γ5ta

Oð5Þ
6 ¼ ðm∂ · AÞ1 Tr½Mta�iqγ5

Oð5Þ
7 ¼ ðm∂ · AÞ2 ð1

2
fM; tag − 1

3
Tr½Mta�Þiqγ5

Oð5Þ
8 ¼ ðm2PÞ1 1

2
fM2; tagiγ5

Oð5Þ
9 ¼ ðm2PÞ2 Tr½M2ta�iγ5

Oð5Þ
10 ¼ ðm2PÞ3 Tr½Mta�iMγ5

Oð5Þ
11 ¼ PEE −i½p · p0ta − 1

2
fM2; tag þ iσðp; p0Þta

þ 1
2
fM; tagq�γ5

Oð5Þ
12 ¼ ∂ · AE i½q2ta − fM; tagq − 2iσðp; p0Þta�γ5

Oð5Þ
13 ¼ A∂ −i½ðp2 þ p02Þta − 1

2
fM; tagq�γ5
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σða; bÞ≡ aμσμνbν

ϵμða; b; cÞ≡ ϵαβρμaαbβcρ: ð58Þ

Finally, for a given operator O, non-1PI tree level
contributions to the three-point functions (see Fig. 2) can
be expressed in terms of quark and gluon two-point
functions as follows,

Γð3Þ
O ðp; p0; kÞ ¼ −gϵ�

kþ p 0 þm
s −m2

Γð2Þ
O ðp; kþ p0Þ

− gΓð2Þ
O ðp − k; p0Þp − kþm

u −m2
ϵ�

−
g
t
γμΓ

μν
O ðp − p0; kÞϵ�ν; ð59Þ

where s ¼ ðp0 þ kÞ2, u ¼ ðp − kÞ2, t ¼ ðp0 − pÞ2.

B. One-loop Green’s functions with
CEDM insertion

At one-loop level, we regulate the diagrams with dimen-
sional regularization, following the notation introduced in
Sec. III B. Working in general covariant gauge (with gauge
fixing parameter ξ),6 we have computed both the divergent
and finite parts of the Green’s functions at generic kin-
ematic points, before specializing to nonexceptional
momentum configurations needed to define the operators
in the RI- ~SMOM scheme (see Sec. VI). Specifically, for
the two-point functions (with pþ q ¼ p0) we work at the
symmetric point p2 ¼ p02 ¼ q2 ¼ −Λ2. For the three-point
functions (pþ q ¼ p0 þ k) we work at the nonsymmetric
point ~S characterized by p2 ¼ p02 ¼ k2 ¼ q2 ¼ s ¼ u ¼
t=2 ¼ −Λ2. We will provide the motivation behind this
choice in Sec. VI.
Throughout this work we will denote the SUðNCÞ color

factors as follows:

CF ¼ N2
C − 1

2NC
; CA ¼ NC; TF ¼ 1

2
: ð60Þ

1. Quark two-point function

At one loop, Γð2Þ
C ðp; p0Þ receives contributions from the

diagrams in Fig. 3 and reads:

Γð2Þ
C ðp; p0Þ ¼ iαs

4π

�
ðp2 þ p02Þγ5ta

�
3CF

�
1

ϵ
þ log

μ2

Λ2

�
þf0

�

þ fM; tagqγ5
�
−
3CF

2

�
1

ϵ
þ log

μ2

Λ2

�

þ f1 þO

�
m2

q

Λ2

��

þ fM2; tagγ5
�
−6CF

�
1

ϵ
þ log

μ2

Λ2

�

þ f2 þO

�
m2

q

Λ2

��	
; ð61Þ

where

fHV0 ¼ 22

9
× 3CF; fNDR0 ¼ 4

3
× 3CF ð62Þ

fHV1 ¼ −3CF; fNDR1 ¼ −
2

3
× 3CF ð63Þ

fHV2 ¼ −
10

3
× 3CF; fNDR2 ¼ −

2

3
× 3CF: ð64Þ

2. Gluon two-point function

As illustrated in Fig. 4, at one-loop level three diagrams
contribute to the gluon two-point function with insertion
of the CEDM operator, Γμν

C ðp; p0Þ, defined in Eq. (51). The
third diagram vanishes due to the antisymmetry of σμν,
while the other two contribute

Γμν
C ðp; p0Þ ¼ αs

4π
Tr½Mta�Γμν

G ~G
ðp; p0Þ

×

�
2

�
1

ϵ
þ log

μ2

Λ2

�
þ 4þO

�
m2

q

Λ2

��
; ð65Þ

FIG. 2. Non-1PI diagrams contributing to the quark three-point
function. The shaded blob represents the 1PI contribution to the
relevant two-point function with operator insertion.

FIG. 3. Diagrams contributing to the quark two-point function.
The dot denotes the insertion of the CEDM operator.

FIG. 4. Diagrams contributing to the gluon two-point function.
The dot denotes the insertion of the CEDM operator.

6Feynman gauge corresponds to ξ ¼ 1, while Landau gauge
corresponds to ξ ¼ 0.
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where Γμν

G ~G
ðp; p0Þ ¼ 4ϵμναβpαp0

β [see Eq. (57)]. This result
allows us to identify the mixing between the CEDM

operator C and the operator Oð5Þ
5 ¼ mG ~G.

3. Quark-quark-gluon three-point function

We now turn to the quark-quark-gluon three-point func-
tion with insertion of the chromoelectric operator,
Γð3Þ
C ðp; p0; kÞ, defined in Eq. (53). In all diagrams we

chose to eliminate the four-momentum qμ in favor of
ðkþ p0 − pÞμ. The amputated three-point function receives
contributions from 1PI diagrams (see Fig. 5), non-1PI
diagrams (see Fig. 2), and quark and gluon wave-function
renormalization. In this section we summarize our results for
the 1PI diagrams and note that the non-1PI contributions of
Fig. 2 are determined by the one-loop results for the quark
and gluon two-point functions Γð2Þ

C and Γμν
C presented in

Eqs. (61) and (65), as detailed in Eq. (59). As wewill discuss
in Sec. VI, we can choose a kinematic point and appropriate
conditions so that the non-1PI diagrams are not needed to
determine the RI- ~SMOM renormalization constants.
Γð3Þ
C ðp; p0; kÞ can be decomposed in terms of 16 spinor

structures and is characterized by 16 scalar coefficients
c1;…;16

7

Γð3Þ
C ¼ ½c1γ5 þ c2ϵðϵ�; k; p; p0Þ þ c3 ϵ�γ5 þ c4kγ5 þ c5pγ5

þ c6p 0γ5 þ c7ϵμðϵ�; k; pÞγμ þ c8ϵμðϵ�; k; p0Þγμ
þ c9ϵμðϵ�; p; p0Þγμ þ c10ϵμðk; p; p0Þγμ
þ c11σðϵ�; kÞγ5 þ c12σðϵ�; pÞγ5 þ c13σðϵ�; p0Þγ5
þ c14σðk; pÞγ5 þ c15σðk; p0Þγ5 þ c16σðp; p0Þγ5�:

ð66Þ

The coefficients ci are functions of the invariants p2, p02,
k2, q2, s, t, u, and ϵ� · ðp� p0Þ. The ci’s can be expressed
in terms of triangle and bubble scalar integrals and their
derivatives with respect to the invariants they depend on.
For a generic kinematic configuration, the result involves
logarithms and dilogarithms of ratios of invariants, and
logarithms of ratios of the invariants to the renormalization
scale μ. Working at the RI- ~SMOM kinematic point
p2 ¼ p02 ¼ k2 ¼ q2 ¼ s ¼ u ¼ t=2 ¼ −Λ2, and in the
massless limit, greatly simplifies the integrals, reducing
them to single-scale integrals. At this point, the triangle
scalar integrals collapse to constants, and contribute in two
forms. First, triangles that are functions of three invariants
that become equal at the renormalization point, like p2, k2

and s, or p02, k2 and u, are proportional to the constant

ψ ¼ 2

3

�
ψ ð1Þ

�
1

3

�
−
2

3
π2
�
; ð67Þ

called C0 in Ref. [59]. Here ψ ð1Þ denotes the first derivative
of the digamma function. Second, triangles that depend on
the invariants p2, p02 and t are proportional to the Catalan
constant, which can also be expressed in terms of the first
derivative of the digamma function

K ¼ 1

8

�
ψ ð1Þ

�
1

4

�
− π2

�
: ð68Þ

The only other nonrational number occurring in the result is
log(2), which originates from the choice t ¼ −2Λ2.
Next, we give the UV divergent parts of the diagrams in

Fig. 5, and the finite pieces of those Dirac structures that give
nonvanishing contributions to the projections used to define
the quark CEDM operator in the RI- ~SMOM scheme (see
Sec. VI). The quark-quark-gluon three-point function is

Γð3Þ
C ðp; p0; kÞ ¼ g

αs
4π

�
2σðε�; kÞγ5

��
CFðξ − 2Þ þ CA

�
11

4
þ ξ

4

���
1

ε
þ log

μ2

Λ2

�
þ k1

�

þ σðε�; p − p0Þγ5
�
−
3CA

4

�
1

ε
þ log

μ2

Λ2

�
þ k2

�

þ iðpþ p0Þ · ε�γ5
��

6CF −
3

4
CA

��
1

ε
þ log

μ2

Λ2

�
þ k3

�	
ta þ � � � ð69Þ

FIG. 5. 1PI diagrams contributing to the quark three-point function. The dot denotes the insertion of the CEDM operator.

7Hermiticity of the operator implies constraints among the various coefficients, such as c12 ¼ −c13, which we have used to check our
calculation.
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where, here and later, … denotes the contribution of the
Dirac structures that are not relevant to defining the quark
CEDM in RI- ~SMOM scheme. The constants k1, k2 and k3
depend on the definition of γ5 in d-dimension. In the ’t
Hooft–Veltman scheme, they are given by

kHV1 ¼ −2CFð2 − ξÞ þ 33 − ξ2

4
CAþ

�
2

3
CF −

5þ 2ξ

3
CA

�
ψ

þ ð2CF − CAÞð1 − ξÞK ð70Þ

kHV2 ¼ CFð2 − ξÞ − CA

�
13 − 2ξ

4
−
ξ

6
ψ

�

þ ð2CF − CAÞð1 − ξÞ
�
1

2
logð2Þ − K

�
ð71Þ

kHV3 ¼ 44

3
CF − 2CA þ

�
−4CF þ 3þ 2ξ

6
CA

�
ψ

þ ð2CF − CAÞ
ð3þ ξÞ

2
logð2Þ; ð72Þ

while in NDR

kNDR1 ¼ kHV1 − 2ðCF þ CAÞ ð73Þ

kNDR2 ¼ kHV2 þ 1

2
CA ð74Þ

kNDR3 ¼ kHV3 −
20

3
CF þ 1

2
CA: ð75Þ

4. Quark-quark-photon three-point functions

The quark-quark-photon three-point function with inser-
tion of the quark CEDM gives

Γð3;γÞ
C ¼ e

2
fQ;tag αs

4π

�
2σðε�;kÞγ5

�
−CF

�
1

ε
þ log

μ2

Λ2

�
þkðγÞ1

�
þCFσðε�;p−p0Þγ5
þ iðpþp0Þ · ε�γ5

�
6CF

�
1

ε
þ log

μ2

Λ2

�
þkðγÞ3

�	
þ�� �

ð76Þ

with

kðγÞHV1 ¼ CF

�
−2þ 2

3
ψ

�

kðγÞNDR1 ¼ CF

�
−4þ 2

3
ψ

�
ð77Þ

kðγÞHV3 ¼ CF

�
44

3
− 4ψ

�
kðγÞNDR3 ¼ CFð8 − 4ψÞ: ð78Þ

C. One-loop Green’s functions with
insertions of E, P, ∂ · A, and G ~G

The determination of the physical block ZO of the
mixing matrix in Eq. (49) requires the calculation of quark
and/or gluon two-point functions with insertions of the
operators E, ∂2P, ðm2PÞ1;2;3, ðm∂ · AÞ1;2 and mG ~G. The
renormalization of the pseudoscalar and tensor densities,
and axial current has been studied in many papers, and the
conversion between MS-NDR and RI-SMOM to one loop
was addressed in Ref. [59]. The renormalization of G ~G in
MS was studied in Ref. [60]. Here we provide one-loop 1PI
results for the Green’s functions in MS-HV and MS-NDR.
The relevant projection of the quark-quark-photon 1PI

three-point function (this is essentially a quark-quark
function) with insertion of the quark EDM operator,
evaluated at the symmetric point gives

Γð3;γÞ
E ¼ −efQ; tag αs

4π
σðε�; kÞγ5

×

�
ð1 − ξÞCF

�
1

ε
þ log

μ2

Λ2

�
þ kT

�
þ � � � ð79Þ

kT ¼ CFð1 − ξÞ
�
2 −

5

6
ψ

�
; ð80Þ

both in HV and NDR.
At one loop, the 1PI quark two-point functions with

insertions of the operators ∂2P and ðm2PÞ1;2;3, evaluated at
the symmetric point, are given by

Γð2Þ
∂2P;ðm2PÞ1;2;3

¼ iγ5

�
−q2ta;

1

2
fM2; tag;Tr½M2ta�1;Tr½Mta�M

	

×
αs
4π

�
kP þ ð3þ ξÞCF

�
1

ε
þ log

μ2

Λ2

�

þ CF
1 − ξ

3Λ2
iσαβpαp0

β þO

�
mq

Λ

��
; ð81Þ

where kP depends on the d-dimensional definition of γ5,
namely,

kHVP ¼ CF

�
2ð6þ ξÞ − 3þ ξ

2
ψ

�
; kNDRP ¼ kHVP − 8CF:

ð82Þ

The gluon and photon two-point functions with insertions
of P are finite, and not needed for renormalization. Eq. (81)
is in agreement with the result of Ref. [59], where the
calculation was carried out in the NDR scheme.
The 1PI quark two-point function with insertion of

the operators proportional to the divergence of the axial
current is
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Γð2Þ
ðm∂·AÞ1;ðm∂·AÞ2 ¼ iqγ5

�
Tr½Mta�1;1

2
fM; tag−1

3
Tr½Mta�1

	

×
αs
4π

�
kAþCFξ

�
1

ε
þ log

μ2

Λ2

��
kHVA ¼CFðξþ4Þ kNDRA ¼CFξ: ð83Þ

The gluon two-point function with insertion of the
operator ðm∂ · AÞ1 is finite, and we find,

Γð2Þμν
ðm∂·AÞ1 ¼ Tr½Mta� αsnF

4π
4eμναβpαp0

β; ð84Þ

where nF ¼ 3 is the number of flavors we are considering.
The insertion of the operator ðm∂ · AÞ2 vanishes.
Finally, the gluon and quark two-point functions with

insertion of ðmG ~GÞ are given by

Γð2Þμν
ðmG ~GÞ ¼ 4Tr½Mta�εμναβpαp0

β

αs
4π

×

�
CA

3þ ξ

2

�
1

ε
þ log

μ2

Λ2

�
þ kG

	
ð85Þ

Γð2Þ
ðmG ~GÞ ¼ iTr½Mta�qγ5

αs
4π

�
6CF

�
1

ε
þ log

μ2

Λ2

�
þ ~kG

�
þOðM2Þ ð86Þ

kG ¼ CA

2

�
17 − ξ2 −

4

3
ð3þ ξÞψ

�
ð87Þ

~kG ¼ CFð16 − 4ψÞ: ð88Þ

These results determine the self-renormalization of ðmG ~GÞ
and its mixing with ðm∂ · AÞ1.

V. RENORMALIZATION MATRIX
IN MS SCHEME

In this section we provide one-loop results for the ZO
block of the renormalization matrix given in Eq. (49). At
various stages of the calculation we need the one-loop
results for the mass, couplings, and field renormalization
constants in general covariant gauge (recall d ¼ 4 − 2ϵ):

Zm ¼ 1 −
1

ϵ

αs
4π

3CF ð89Þ

Zq ¼ 1 −
1

ϵ

αs
4π

ξCF ð90Þ

ZG ¼ 1þ 1

ϵ

αs
4π

�
−
4

3
nFTF þ CA

�
13

6
−
ξ

2

��
ð91Þ

Zg ¼ 1 −
1

ϵ

αs
4π

11CA − 4TFnF
6

; ð92Þ

where the color factors are CF, CA, and TF are given in
Eq. (60). We will also need the renormalization constants
for the pseudoscalar ψ̄γ5ψ and tensor ψ̄σμνψ densities,
defined by Oð0Þ

Γ ¼ ZΓOΓ:

ZP ¼ Z−1
m ¼ 1þ 1

ϵ

αs
4π

3CF ð93Þ

ZT ¼ 1 −
1

ϵ

αs
4π

CF: ð94Þ

For the mixing of dimension-five operators, specializing
Eq. (48) to the MS scheme at one loop one finds

OMS
i ¼ ðZ−1ÞMS

ij Oð0Þ
j ; ZMS

ij ≡ δij −
1

ϵ

αs
4π

zij: ð95Þ

Note that in the above expressions αs denotes the
d-dimensional renormalized coupling defined in Sec. III B,
satisfying dαs=dðlog μÞ ¼ −2ϵαs þOðα2sÞ. So to OðαsÞ the
anomalous dimension matrix γ ≡ dðlogZÞ=dðlog μÞ can be
immediately read off Eq. (95): γij ¼ 2αs=ð4πÞzij.
The various entries of the renormalization matrix are

determined as follows:
(i) Finiteness of the quark two-point function Γð2Þ

C ,
gluon two-point function Γμν

C , quark-quark-gluon

Γð3Þ
C and quark-quark-photon Γð3;γÞ

C three-point func-
tions implies a set of conditions for z1n,
n ¼ 1;…; 14. Note that only the results for n ¼
1;…; 10 affect physical observables, the rest are
given for completeness.

(ii) The operator Oð5Þ
2 ¼ ∂2P renormalizes diagonally

with constant ZP.
(iii) The quark EDM operator Oð5Þ

3 ≡ E renormalizes
diagonally (to zeroth order in the fine structure
constant) in the same way as the tensor quark
bilinear, i.e., ðZ−1Þ33 ¼ Z−1

T .
(iv) To zeroth order in the electromagnetic couplings,

Oð5Þ
4 ¼ mF ~F renormalizes diagonally with the re-

normalization constant ðZ−1Þ44 ¼ Z−1
m .

(v) The subset of operators Oð5Þ
5;6;10 related to the axial

anomaly renormalize, to one loop, as follows [60]
(recall ZmZP ¼ 1):

0
B@

mG ~G

ðm∂ · AÞ1
ðm2PÞ3

1
CA

MS

¼

0
B@

Z−1
m Z2

g − 1
ϵ
αs
4π 6CF 0

0 Z−1
m 0

0 0 Z−1
m

1
CA

×

0
B@

mG ~G

ðm∂ · AÞ1
ðm2PÞ3

1
CA

ð0Þ

: ð96Þ

To explicitly check Eq. (96) at one loop use
Eqs. (81), (83), (85) and (86).
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(vi) Finally, Oð5Þ
7 ¼ ðm∂ · AÞ2 renormalizes as ðm∂ · AÞ1

and Oð5Þ
8;9 ¼ ðm2PÞ1;2 renormalize as ðm2PÞ3, thus

leading to ðZ−1Þ77;88;99 ¼ Z−1
m .

In summary, the entries in the first row in Eq. (49) are:

z11 ¼ 5CF − 2CA ð97aÞ

z12 ¼ 0 ð97bÞ

z13 ¼ 4CF ð97cÞ

z14 ¼ 0 ð97dÞ

z15 ¼ −2 ð97eÞ

z16 ¼ CF −
1

4
CA ð97fÞ

z17 ¼ 3CF −
3

4
CA ð97gÞ

z18 ¼ 6CF þ 3

2
CA ð97hÞ

z19 ¼ 0 ð97iÞ

z1;10 ¼ 0 ð97jÞ

z1;11 ¼ 6CF −
3

2
CA ð97kÞ

z1;12 ¼ −3CF þ 3

4
CA ð97lÞ

z1;13 ¼
3

4
CA ð97mÞ

z1;14 ¼
3

4
CA: ð97nÞ

For the remaining nonzero entries we have:

z22 ¼ −3CF ð98aÞ

z33 ¼ CF ð98bÞ

z44 ¼ 3CF ð98cÞ

z55 ¼ −
11CA − 4TFnF

3
þ 3CF ð98dÞ

z56 ¼ −6CF ð98eÞ

z66 ¼ z77 ¼ z88 ¼ z99 ¼ z10;10 ¼ 3CF: ð98fÞ

The submatrix z11, z13 and z33 agrees with the original
calculation of Refs. [61–65].

VI. DEFINITION OF RI- ~SMOM OPERATORS
AND MATCHING TO MS

A consistent phenomenological analysis of BSM-induced
CP violation in hadronic systems requires computation of
the effect of theCP-odd operators in Eq. (26) on couplings at
the hadronic scale, such as the nucleon EDM and the T-odd
πNN couplings. This is an intrinsically nonperturbative
problem. The first step in this program involves defining
UV finite operators in a suitable renormalization scheme,
whose matrix elements can be then computed nonperturba-
tively within lattice QCD. Here we will define finite
operators within a class of regularization-independent (RI)
momentum subtraction (MOM) schemes [49,59]. Next, one
converts the matrix elements in the RI-MOM scheme to the
MS scheme, commonly adopted to compute the Wilson
coefficients and their renormalization-group evolution down
to the hadronic scale, using continuum perturbation theory.
In this section we address the following issues:
(1) We provide a set of regularization independent

normalization conditions for the amputated Green’s
functions Γ

Oð5Þ
i

that subtract all the UV divergences
and fix the finite parts of the renormalization
constants for the gauge-invariant CP-odd operators
Oð5Þ

1;…;10. Since we will use subtraction conditions for
the three-point functions at a nonsymmetric mo-
mentum point, we call this scheme RI- ~SMOM, as
opposed to RI-SMOM [59].

(2) We provide the finite matching matrix that relates the
RI- ~SMOM and MS operators to one loop in pertur-
bation theory:

ORI- ~SMOM
i ¼ CijOMS

j : ð99Þ

In practice this amounts to finding a linear combi-

nation of MS operators OMS
i such that the Green’s

functions with insertions of ORI- ~SMOM
i satisfy the

normalization conditions that define the scheme (see
item 1. above).

A. Defining the RI- ~SMOM scheme

We follow the strategy outlined in Refs. [49,59], with
appropriate modifications related to the operators we are
dealing with. The content of this scheme can be summa-
rized as follows:

(i) We require that the quark and gluon two-point
functions with insertion of the quark CEDM operator

Γð2Þ
C ðp; p0Þ and Γð2Þμν

C ðp; p0Þ vanish at the symmetric
kinematic point S defined by p2 ¼ p02 ¼ q2 ¼ −Λ2.

(ii) We require that certain projections of the three-point

functions with quark CEDM insertion Γð3Þ
C and Γð3;γÞ

C
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take the tree-level value at the nonsymmetric
kinematic point ~S (involving only nonexceptional
momenta) characterized by p2 ¼ p02 ¼ k2 ¼ q2 ¼
s ¼ u ¼ t=2 ¼ −Λ2.
With this choice, and by virtue of the normalization

condition imposed on Γð2Þ
C ðp; p0Þ, the non-1PI dia-

grams [see Eq. (59)] contributing to the three-point

function with insertion of Oð5Þ
1 ¼ C on the quark

external legs vanish. In other words, the amputated
Green’s function coincide with the 1PI Green’s
functions up to a non-1PI term arising from operator
insertion on the gluon external leg. This non-1PI term
does not project on the spin/Lorentz structures that we
use to impose the normalization conditions, so for all
practical purposes the renormalization conditions can
be imposed on the 1PI vertices.

(iii) We require that the gluon and quark two-point
functions with insertion Oð5Þ

5 ¼ ðmG ~GÞ take their
tree-level value at the symmetric point S given by
p2 ¼ p02 ¼ q2 ¼ −Λ2. The condition on the gluon
two-point function involves overall factors of the
quark masses. While one can use quark masses in
any scheme, we choose to use the quark masses in
the MS scheme. This leads to the simplest matching
factors, and corresponds to imposing the subtraction
conditions on the operator G ~G, ignoring the mass
factors.

(iv) The remaining operators are related to quark bi-

linears: Oð5Þ
2;8−10 are related to the pseudoscalar

density, Oð5Þ
3 is related to the tensor density, and

Oð5Þ
6−7 are related to the divergence of the axial

current. We exploit this factorized structure and
impose the “standard” RI-SMOM conditions [59]
on the quark bilinear part. The subtraction condition

for Oð5Þ
6−10 involves again overall factors of the quark

masses, for which we choose the MS values. This is
equivalent to imposing the conditions on the quark
bilinears, ignoring the overall quark mass factors.

Throughout, we impose the normalization conditions in
the chiral limit mq → 0. This is achieved as follows: (i) We
expand two- and three-point Green’s functions in spin-
flavor structures, keeping explicit powers of the quark
mass. (ii) Through appropriate projections we then isolate
the coefficients of the various spin-flavor structures, which
are defined for any value of the quark mass. (iii) Finally, we
impose normalization conditions on these coefficient func-
tions in the chiral limit. This procedure defines a mass-
independent renormalization scheme.
This RI scheme, defined in terms of gauge fixed corre-

lation functions of quark and gluon states in the deep
Euclidean region, serves as a useful intermediary for
converting nonperturbative results to those required for
phenomenology. In this work, we only discuss the matching

of this RI scheme to the perturbative MS scheme in covariant
gauges. To complete the program of connecting the MS to a
lattice scheme, we also need to calculate the matching
between lattice and this RI scheme. Among the covariant
gauges, the Landau gauge is the most convenient for lattice
calculations. The calculation of the corresponding matrix
elements on the lattice can be done either using lattice
perturbation theory, or nonperturbatively. In fact, matrix
elements with quark external states are used extensively
nowadays for renormalizing lattice operators [49]. However,
renormalization of the CEDM operator needs extension of
such calculations to include gluon external states. Even
though gluonic correlators have long been studied on the
lattice [66], they are typically noisy. In addition, the matrix
elements with two quarks and a gluon external state gives
rise to “four-point” functions,8 and there is little experience
with calculating these in the lattice community.
Apart from these difficulties, however, the nonperturba-

tive evaluation of the matrix elements is theoretically
straightforward. The large number of off-shell operators
does not pose a significant challenge either. In particular,
since these operators explicitly involve the equation of
motion, an nþ 1-point function involving them is straight-
forwardly related to a n-point function obtained by exactly
canceling an external propagator using the equation of
motion. With such reductions, the number of correlation
functions that need to be evaluated nonperturbatively are
much fewer than the number of operators in the basis.

1. Subtraction conditions on the quark CEDM

We now give explicitly the 14 conditions needed to
determine ZRI- ~SMOM

1n .9 We begin with the conditions on the
two-point functions with external gluons and photons:

ϵμναβpαp0βΓμν
C ðp; p0ÞjS ¼ 0 ð100aÞ

ϵμναβpαp0βΓμνðγÞ
C ðp; p0ÞjS ¼ 0: ð100bÞ

The quark-quark Green’s function has the following
spin-flavor structures,

Γð2Þ
C ¼ α1γ5ta þ α2σðp; p0Þγ5ta þ α3Mtaqγ5

þ α4Tr½Mta�qγ5
þ α5M2taγ5 þ α6Tr½M2�γ5ta
þ α7Tr½Mta�Mγ5; ð101Þ

where the αi are functions of the kinematic invariants.
We impose the RI- ~SMOM condition that all the αi vanish at

8It is conventional in the lattice literature to count the point of
operator insertion.

9This is in addition to the condition for eliminating possible
power divergences (see Sec. III A 1).
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the symmetric kinematic point S in the chiral limitmq → 0.
This can be achieved with the following projections (traces
are over color, spin, and flavor indices):

Tr½Γð2Þ
C γ5ta�S ¼ 0 ð102aÞ

Tr½Γð2Þ
C γ5σμνta�S ¼ 0 ð102bÞ

M−1
2

 
Tr½Γð2Þ

C γ5qMta�
Tr½Γð2Þ

C γ5q�Tr½Mta�

!
S

¼ 0 ð102cÞ

M−1
3

0
B@

Tr½Γð2Þ
C γ5M2ta�

Tr½Γð2Þ
C γ5ta�Tr½M2�

Tr½Γð2Þ
C γ5M�Tr½Mta�

1
CA

S

¼ 0; ð102dÞ

where the matrices M2 and M3 are given by (here TrF
denotes the trace over flavor indices only)

M2 ¼
�
TrF½ðMtaÞ2� ðTrF½Mta�Þ2
ðTrF½Mta�Þ2 nFðTrF½Mta�Þ2

�
ð103Þ

and

M3 ¼

0
B@

TrF½ðM2taÞ2� TrFM2TrF½M2ðtaÞ2� TrF½Mta�TrF½M3ta�
TrFM2TrF½M2ðtaÞ2� ðTrFM2Þ2TrF½tata� TrFM2ðTrF½Mta�Þ2
TrF½Mta�TrF½M3ta� TrFM2ðTrF½Mta�Þ2 TrFM2ðTrF½Mta�Þ2

1
CA: ð104Þ

The above projections work for nondegenerate quark
masses (mu ≠ md ≠ ms). In the isospin limit mu ¼ md,
the matrices M2 and M3 become singular. In Appendix D
we describe the projections needed in this case.
To express the subtraction conditions on the quark-

quark-gluon three-point function, we restore the color

and flavor indices of these objects. Recalling that Γð3Þ
C is

proportional to taTb where ta is a matrix in flavor space10

while Tb is a color generator, we will use the notation

Γð3Þ
C → Γð3Þ;ab

C . The conditions then read (there is no
summation over a and b)

1

iϵðϵ�; k; p; p0ÞTr½Γ
ð3Þ;ab
C σðp; p0ÞtaTb� ~S ¼ 2gMS ð105aÞ

Tr½Γð3Þ;ab
C σðk; pþ p0ÞtaTb� ~S ¼ 0 ð105bÞ

Tr½Γð3Þ;ab
C γ5taTb� ~S ¼ 0: ð105cÞ

Note that in the first condition above, we could have used
the renormalized value of the strong coupling constant in

any renormalization scheme. The use of gMS makes the
connection between RI- ~SMOM and MS schemes simpler.
Finally, we impose the following conditions on the

quark-quark-photon three-point function:

Tr½Γð3;γÞ
C σðp; p0ÞQta� ~S ¼ 0 ð106aÞ

Tr½Γð3;γÞ
C γ5Qta� ~S ¼ 0: ð106bÞ

2. Subtraction conditions on the remaining operators

We give here the subtraction conditions needed to
determine the remaining entries of ZRI- ~SMOM

ij . For the
operator Oð5Þ

5 ¼ ðmG ~GÞ, we prescribe

−
1

6Λ4
ϵμναβpαp0βΓμν

Oð5Þ
5

ðp; p0ÞjS ¼ TrF½MM̄Sta� ð107aÞ

Tr½Γð2Þ
Oð5Þ

5

γ5q�
S
¼ 0: ð107bÞ

The remaining operators Oð5Þ
2;3;6−10 are related to quark

bilinears, and we wish to impose the “standard” RI-SMOM
conditions [59]. Oð5Þ

2;6−10 have a simple factorized form, and
the normalization conditions of Ref. [59] are equivalent to

i
6q2

Tr½Γð2Þ
Oð5Þ

2

γ5ta�
S
¼ 1 ð107cÞ

1

12q2
Tr½Γð2Þ

Oð5Þ
6

γ5q�
S
¼ nFTrF½MMSta� ð107dÞ

1

12q2
Tr½Γð2Þ

Oð5Þ
7

γ5qM�
S

¼ TrF½ðM2ÞMSta −
1

3
MMSTrF½MMSta�� ð107eÞ

1

12i
Tr½Γð2Þ

Oð5Þ
8

γ5�
S
¼ TrF½ðM2ÞMSta� ð107fÞ

1

12i
Tr½Γð2Þ

Oð5Þ
9

γ5ta�
S
¼ 1

2
TrF½ðM2ÞMS� ð107gÞ10We use t0 ¼ 1=

ffiffiffi
6

p
I3×3 so that TrFðtataÞ ¼ 1=2 for

a ¼ 0, 3, 8.

DIMENSION-5 CP-ODD OPERATORS: QCD MIXING … PHYSICAL REVIEW D 92, 114026 (2015)

114026-17



1

12i
Tr½Γð2Þ

Oð5Þ
10

γ5�
S
¼ TrF½MMSta�TrF½MMS�: ð107hÞ

The operator Oð5Þ
3 is related to the tensor density but

contains an explicit photon field strength. One would be
tempted to impose the following condition on the quark-
quark-photon matrix element,

1

12iϵðϵ�; k; p; p0ÞTr½ðQtaÞ2�Tr½Γ
ð3;γÞ
Oð5Þ

3

σðp; p0ÞQta�
S
¼ 2eMS;

ð108Þ

which effectively fixes the projection on the structure
σðϵ�; kÞγ5 to its tree-level value. However, in terms of
matrix elements of the tensor density, this prescription
corresponds to

Tr½Γμν
T ðp; p0Þγ5σðp; p0Þ�S ¼ 12iϵμναβpαp0

β; ð109Þ

which differs from the standard one [59],

Tr½Γμν
T ðp; p0Þσμν�S ¼ 144; ð110Þ

and would lead to a finite difference in the renormalization
factors.11 In our analysis we stick to the standard normali-
zation condition Eq. (110). This can be obtained by
imposing Eq. (108) while performing a finite shift δkT
in the loop factor kT given in Eq. (80), namely,

δkT ¼ CFð1 − ξÞ
�
2

3
−
1

3
ψ

�
: ð111Þ

B. Matching RI- ~SMOM and MS operators

We now determine the conversion matrix appearing in
Eq. (99),

Cij ¼ ððZRI- ~SMOMÞ−1 · ZMSÞij; ð112Þ

to first order in αs. Denoting field renormalization and
renormalized amputated Green’s functions of any operator
O in the RI- ~SMOM scheme with ~Zq;G and ~ΓO, respectively,
and the corresponding quantities in the MS scheme with
Zq;G and ΓO, the matching conditions take the form

~Γð2Þ
Oi

¼
~Zq

Zq

X
j

CijΓ
ð2Þ
Oj

ð113aÞ

~Γμν
Oi

¼
~ZG

ZG

X
j

CijΓ
μν
Oj

ð113bÞ

~Γð3Þ
Oi

¼
~Zq

~Z1=2
G

ZqZ
1=2
G

X
j

CijΓ
ð3Þ
Oj

ð113cÞ

~Γð3;γÞ
Oi

¼
~Zq

Zq

X
j

CijΓ
ð3;γÞ
Oj

: ð113dÞ

When one imposes that the ~ΓOi
satisfy the RI- ~SMOM

subtraction conditions given in subsections VIA1 and
VIA2, one obtains a system of linear equations for the
Cij matching factors.
Using the explicit one-loop results of Secs. IV B

and IV C and the ratios of wave-function renormalization
factors,

~Zq

Zq
≡ 1þ αs

4π
rq ¼ 1 −

αs
4π

CFξ

�
1þ log

μ2

Λ2

�
ð114Þ

~ZG

ZG
≡ 1þ αs

4π
rG

¼ 1þ αs
4π

�
CA

�
97

36
þ ξ

2
þ ξ2

4

�
−
20

9
nFTF

þ
�
CA

�
13

6
−
ξ

2

�
−
4

3
nFTF

�
log

μ2

Λ2

�
; ð115Þ

we solve for the Cij.
To OðαsÞ, the matching coefficients have the structure

Cij ≡ δij þ
αs
4π

�
cij þ zij log

μ2

Λ2

�
; ð116Þ

corresponding to the RI- ~SMOM renormalization matrix

ZRI- ~SMOM
ij ¼ δij −

αs
4π

�
zij

�
1

ϵ
þ log

μ2

Λ2

�
þ cij

�
: ð117Þ

We have given the pole terms zij in Sec. V, while the
constants cij can be expressed in terms of the loop factors
rq;G defined above and f0;1;2, k1;2;3, k

ðγÞ
1;3, kG, ~kG, and kA;P;T

defined in Secs. IVB and IVC. We find for the first row c1n:

c11 ¼ −k1 −
1

2
k2 þ

1

2
k3 − rq −

1

2
rG ð118aÞ

c12 ¼ 2f0 þ k2 − k3 ð118bÞ

c13 ¼ −kðγÞ1 þ k3 − k2
2

ð118cÞ

c14 ¼ 0 ð118dÞ

11Note that in the free theory (Γμν
T → σμν), both Eq. (109) and

Eq. (110) hold. However, when including interactions a differ-
ence arises: the projection Eq. (109) selects the σμν component of
Γμν
T , while the projection Eq. (110) picks up not only σμν but also

additional terms in Γμν
T , such as σαβpαp0

βðpμp0ν − pνp0μÞ.
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c15 ¼ −4 ð118eÞ

c16 ¼
k2 − 2f1

3
ð118fÞ

c17 ¼ k2 − 2f1 ð118gÞ

c18 ¼ −2f2 − k2 − k3 ð118hÞ

c19 ¼ 0 ð118iÞ

c1;10 ¼ 0 ð118jÞ

c1;11 ¼ k2 þ k3 ð118kÞ

c1;12 ¼ −
k2 þ k3

2
ð118lÞ

c1;13 ¼ −k2 ð118mÞ

c1;14 ¼ kðγÞ3 − k3: ð118nÞ

For the remaining nonzero entries of cij, we find

c22 ¼ −kP − rq ð118oÞ

c33 ¼ −kT − δkT − rq ð118pÞ

c55 ¼ −κG − rG ð118qÞ

c56 ¼ −~κG ð118rÞ

c66 ¼ c77 ¼ −kA − rq ð118sÞ

c88 ¼ c99 ¼ c10;10 ¼ −kP − rq: ð118tÞ

In Appendix E, we report explicit results for the
matching coefficients cij using both the HV and NDR
prescriptions for γ5.

VII. RENORMALIZATION AND THE AXIAL
WARD IDENTITIES

In the previous section we have imposed a set of
subtraction conditions on CP-odd operators of dimension

five, some of which are related to the axial current (Oð5Þ
6−7),

the pseudoscalar density (Oð5Þ
8−10), and G ~G (Oð5Þ

5 ). So far we
have not discussed whether the resulting finite operators
satisfy the nonsinglet and singlet axial Ward identities
(WIs). In particular, the normalization conditions on the
singlet A, P, and G ~G may be inconsistent with the singlet
WIs. For the nonsinglet case, RI-SMOM subtraction
conditions have been shown to be consistent with the
WIs [59].

In general, one can obtain properly normalized sym-
metry currents through theWard identity method, discussed
in Refs. [67,68]. Moreover, in Ref. [59] the RI-SMOM
conditions were suitably chosen so that they are consistent
with the nonsinglet axial WIs. Here we take a different
point of view: we discuss how to define renormalized
(singlet and nonsinglet) axial current and pseudoscalar
density operators that satisfy the axial WIs, starting from an
arbitrary subtraction scheme, such as MS or the RI- ~SMOM
scheme defined in Sec. VI A. We put forward a two-step
approach:
(1) Using any regulator and any subtraction scheme,

define renormalized (finite) axial (Aμ), pseudoscalar
(P) and G ~G operators.

(2) Starting from any of the above schemes, perform a
finite renormalization that leads to operators Aμ, P
and G ~G that obey properly normalized WIs. The
resulting Aμ is the “symmetry current” associated
with axial transformations. We may call this new
scheme the “WI scheme.”

In the case of MS and the RI- ~SMOM scheme defined in the
previous section, we provide the explicit matching factors
to the WI scheme to OðαsÞ. We will also describe the
procedure to obtain nonperturbative matching factors con-
necting the RI- ~SMOM and WI schemes.
Our discussion is inspired by the analysis of

Refs. [53,69] for a dimensionally regulated theory and
of Refs. [70,71] for a lattice regulated theory. While we give
details pertaining to the dimensionally regulated theory, our
aim is to point out that the general features of the analysis
are “RI,” i.e., regularization independent. Therefore, we
will draw parallels with discussions of the axial current in
various lattice QCD formulations [70,72,73] in appropriate
places.

A. PCAC relation in terms of bare operators

We focus on the singlet axial current for concreteness.
A discussion of the nonsinglet current in the context of
dimensional regularization and minimal subtraction is
presented in Ref. [53], and the relevant results are a special
case of the analysis presented below. In terms of suitably
regularized operators, the PCAC relation takes the form

∂ · A ¼ 2ðmPÞ þ PE þ X: ð119Þ
In dimensional regularization the bare operators take
the form Aμ ¼ ψ̄ð1=2Þ½γμ; γ5�ψ , ðmPÞ≡ ψ̄Miγ5ψ , PE ¼
ψ̄Eiγ5ψ þ ψ̄ iγ5ψE. X is the anomaly operator, whose tree-
level insertions in Green’s functions vanish as one removes
the regulator (d → 4 in dimensional regularization or a →
0 in the lattice theory). In the dimensionally regulated
theory, with HV prescription for the γ5, one has

X ¼ 1

2
ψ̄fγ5; D⃗ − D⃖gψ ; ð120Þ
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which clearly vanishes at the classical level in d ¼ 4 due to
the anticommutation properties of γ5. For d ≠ 4 this
operator is nonvanishing and through divergent quantum
corrections it can leave a finite remnant in Green’s
functions, including anomalous terms in the axial current
conservation equation. In NDR,X always vanishes. For this
reason, NDR does not “see” the axial anomaly and cannot
consistently be used for the discussion of the singlet axial
current. In the lattice theory with Wilson fermion discre-
tization, X is the variation of the Wilson term under axial
transformation [70,72], and its properties are similar to
those of X in the HV scheme.
The anomalous term X can be expressed as a linear

combination of other regulated operators with same quan-
tum numbers and an evanescent operator X̄, whose inser-
tions in Green’s functions with arbitrary number of fields
vanish at the quantum level as one removes the regulator.
To perform the projection on nonevanescent operators one
defines [70]

X̄ ¼ X þ α∂ · Aþ β2ðmPÞ þ γG ~G; ð121Þ

and determines the coefficients α, β, γ perturbatively or
nonperturbatively by requiring that appropriate projections
of matrix elements of X̄ in quark and gluon states (and their
derivative with respect to the mass) vanish12

hqjX̄jqijqγ5 ¼ 0 ð122Þ

∂
∂m hqjX̄jqijγ5 ¼ 0 ð123Þ

hgjX̄jgi ¼ 0: ð124Þ

Analyzing Green’s functions of X with two quarks and
with two gluons to one loop in perturbation theory in the
MS-HV scheme, we find

Γð2Þ
X ¼ αs

4π
4CF½iqγ5 − 4iMγ5� ð125Þ

Γð2Þμν
X ¼ nF

αs
4π

4ϵμναβpαp0
β; ð126Þ

leading to

α ¼ −4CF
αs
4π

ð127Þ

β ¼ 8CF
αs
4π

ð128Þ

γ ¼ −nF
αs
4π

: ð129Þ

Using Eq. (121) into Eq. (119), one gets the final result

ð1þ αÞ∂ · A ¼ 2ð1 − βÞðmPÞ þ PE − γG ~Gþ X̄; ð130Þ

which is still expressed in terms of bare operators and
couplings. The nonsinglet case is now straightforward:
one finds the same values of α and β, and the nonsinglet
anomalous operator X̄a does not have a G ~G component.

B. PCAC relation in terms of
renormalized operators

We next express the PCAC relation in terms of renor-
malized operators ½O�i, related to bare operators Oj via
[note that in this section we use a different notation
compared to Eq. (48)],

Oi ¼ Zij½O�j; ð131Þ

with Zij given in an arbitrary scheme. For the operators of
interest, we have the mixing structure13

0
B@

G ~G

∂ · A

ðmPÞ

1
CA ¼

0
B@

ZG ~G ZG ~G;∂A 0

0 ZA 0

0 0 ZmZP

1
CA
0
B@

½G ~G�
½∂ · A�
½mP�

1
CA:

ð132Þ

Using Eqs. (127), (128), (129), and (130) leads to the
renormalized PCAC relation,

C̄1ðg2Þ½∂ · A� ¼ C̄2ðg2Þ2½mP� þ C̄3ðg2Þ
nF
16π2

½g2G ~G�
þ PE þ X̄; ð133Þ

with coefficients, in terms of the bare coupling g,

C̄1ðg2Þ ¼ ZAð1þ αÞ þ γZG ~G;∂A ð134aÞ

C̄2ðg2Þ ¼ ZPZmð1 − βÞ ð134bÞ

C̄3ðg2Þ ¼ −
16π2γ

nFg2
Z2
gZG ~G; ð134cÞ

satisfying C̄1;2;3ð0Þ ¼ 1. As a consequence of the finiteness
of the EOM operator, ½PE� ¼ PE, and of the independence
of the operators ½∂ · A�, ½mP� and ½G ~G�, C̄1;2;3ðg2Þ must be
finite.

12Insertions of X can give nonvanishing results only in Green’s
functions with positive superficial degree of divergence. Of these,
one needs to analyze only the one with two quarks and the one
with two gluons, as the others do not provide independent
information.

13This is valid in schemes in which mu;d;s are multiplicatively
renormalized with the same constant Zm.
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C. Finite renormalization and WIs

Equation (133) shows that in a given renormalization
scheme (i.e., a choice of ZA;P, Zm, ZG ~G, ZG ~G;∂·A that makes
the operator insertions finite) the renormalized quantities
do not necessarily satisfy properly normalized (anomalous)
WIs: the MS-HV scheme is one example. However, given
the scheme-dependent C̄1;2;3ðg2Þ, through a finite renorm-
alization one can restore the WIs, as seen from Eq. (133).
Operators in the “WI scheme” are defined by

½Aμ�WI ¼ C̄1ðg2Þ½Aμ� ð135Þ

½mP�WI ¼ C̄2ðg2Þ½mP� ð136Þ

½g2G ~G�WI ¼ C̄3ðg2Þ½g2G ~G�: ð137Þ

Applying the operator d=dðlog μÞ to both sides of
Eq. (133), using the finiteness of PE and the independence
of the remaining operators, one obtains a set of differential
equations for C̄1;2;3ðg2Þ. The solution reveals that the
coefficients C̄2;3ðg2Þ are such that ½mP�WI and ½g2G ~G�WI
have vanishing diagonal anomalous dimension to all
orders. On the other hand, C̄1ðg2Þ is such that ½Aμ�WI
has an anomalous dimension starting at Oðg4Þ, related to
the off-diagonal anomalous dimension γG ~G;∂·A¼−ðZ−1dZ=
dðlogμÞÞG ~G;∂·A, namely, γAWI

¼ γG ~G;∂·A · αs=ð4πÞ. The
rescaled operators satisfy the properly normalized PCAC
relation:

∂ · ½A�WI ¼ 2½mP�WI þ
nF
16π2

½g2G ~G�WI þ iPE þ X̄: ð138Þ

The coefficients needed to reach the “WI” scheme from the
MS-HV scheme to Oðg2Þ are14

C̄1 ¼ 1 − 4CF
αs
4π

C̄2 ¼ 1 − 8CF
αs
4π

C̄3 ¼ 1þOðα2sÞ:
ð139Þ

In the case of the RI- ~SMOM scheme defined in
Sec. VI A, the perturbative values of α, β and γ are still
given by Eqs. (127), (128) and (129). In HV, the conditions
given in Eqs. (107c), (107d), and (107e), which are the
equivalent to the RI-SMOM condition of Ref. [59], give

ZA ¼ 1þ αs
4π

ð4CFÞ ð140Þ

ZPZm ¼ 1þ αs
4π

ð8CFÞ; ð141Þ

where we used the value of Zm obtained in Ref. [59]:

Zm ¼ 1 −
αsCF

4π

�
4þ ξ − ð3þ ξÞψ

2

�
: ð142Þ

This leads to C̄1ðg2Þ ¼ 1þOðg4Þ and C̄2ðg2Þ¼ 1þOðg4Þ,
thus showing that singlet and nonsinglet axial currents
and pseudoscalar densities are already correctly normal-
ized, up to corrections of Oðg4Þ. The RI- ~SMOM condition
Eq. (107a) leads to aG ~Gwhich is not correctly normalized.
However, once a definition of Zg is given, for example, by
fixing the three-gluon or quark-gluon vertex at the sym-
metric point to its tree-level value [74,75], Eq. (134) allows
one to define ½G ~G�WI.
Equations (140) and (141) differ by a finite piece from

the results in Ref. [59], which are obtained using NDR
and found ZA ¼ ZPZm ¼ 1. The finite pieces in ZA and
ZPZm are crucial in compensating the anomalous dimen-
sion of the axial current and pseudoscalar density arising
from divergences in the MS-HV two-loop calculation, as
can be explicitly verified from the results of Ref. [76].
For the nonsinglet axial current, the cancellation is exact,
and the RI- ~SMOM axial current does not have anomalous
dimension at Oðα2sÞ. In the singlet case, the OðαsÞ finite
piece ensures that the relation γA ¼ γG ~G;∂·Aαs=ð4πÞ is
respected.
While we have given explicit results in perturbation

theory within the MS-HV and RI- ~SMOM scheme, the
above discussion provides the steps needed to determine
the coefficients α, β, γ starting from any regulator and any
scheme. These, in turn, in combination with the renorm-
alization factors of Eq. (132) determine the finite rescaling
factors C̄1;2;3 in Eqs. (134) needed to obtain renormalized
operators that satisfy the axial Ward identities.

VIII. RELATION TO THE ΔS ¼ 1
CHROMOMAGNETIC OPERATOR

In a recent article [38], the renormalization of the
strangeness changing quark chromomagnetic dipole
moment (CMDM) operator has been studied. In our
notation the P- and CP-even operator studied in [38]
reads

OCM ¼ gψ̄tΔSσμνGμνψ ;

tΔS ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA: ð143Þ

Ref. [38] studies the mixing of OCM with lower-dimen-
sional operators nonperturbatively on the lattice, and the
mixing of OCM with other dimension-five operators in
perturbation theory both in the lattice and in MS schemes.
Clearly, a number of common issues arise in our study and
in Ref. [38], so a closer comparison of operator basis and
mixing results is desirable.

14To determine C̄3 we rely on the two-loop calculations of
Ref. [69].

DIMENSION-5 CP-ODD OPERATORS: QCD MIXING … PHYSICAL REVIEW D 92, 114026 (2015)

114026-21



A. Operator basis

First, let us focus on the operator basis. Note that our
operator basis was constructed assuming diagonal flavor
structures, so that ½M; ta� ¼ ½Q; ta� ¼ 0 and TrðMtaÞ ≠ 0.
In the case of flavor off-diagonal generators, such as tΔS, a
number of new operators appears at dimension five, while
all the operators involving TrðMtaÞ vanish. In what follows
we provide (i) the basis of dimension-five operators mixing
with the P- and CP-odd CEDM operator OCE ≡ C defined
in Eq. (30), with off-diagonal flavor structure ta → tΔS and
(ii) the corresponding basis for the P- and CP-even sector
(mixing with OCM), to be compared with Ref. [38].
For ease of comparison with Ref. [38] we omit the

operators involving the electromagnetic field, i.e., Oð5Þ
3 and

Oð5Þ
14 of Sec. III A 3. With this in mind, for the ΔS ¼ 1

sector we find ten independent CP-odd operators. In the
notation of Sec. III A 3 (with ta → tΔS), we find
C; ∂2P; ðm∂ · AÞ2; ðm2PÞ1;2; PEE; ∂ · AE; A∂ and two new
structures that vanish for diagonal flavor generators,
namely, ðm2PÞ4 ¼ ψ̄iγ5½M; ½M; tΔS��ψ and ðmPEÞ1 ¼
ψ̄Eiγ5½M; tΔS�ψ − ψ̄iγ5½M; tΔS�ψE. In order to match
more closely the operator basis of Ref. [38] we can trade
the operator ðm∂ · AÞ2 involving derivatives of the axial
current in favor of ðmPEÞ2 ¼ ψ̄Eiγ5fM; tΔSgψ þ ψ̄iγ5
fM; tΔSgψE, via the relation

2ðm∂ · AÞ2 ¼ 4ðm2PÞ1 − ðm2PÞ4 þ ðmPEÞ2: ð144Þ

So we end up with the dimension-five basis in the P- and
CP-odd sector reported in the left column of Table V.
The corresponding P- and CP-even sector operators can be
obtained from the above ones with the substitution iγ5 → 1
and are given explicitly in the right column of Table V.
We can now compare our basis to the one in Ref. [38],

which consists of ten dimension-five operators O1;…;10:
(i) For the gauge-invariant operators that do not vanish

by the EOM, after converting the operators in [38]
from Euclidean to Minkowski metric, we find the

correspondence: O1 ¼ OCM, O2 ¼ 2ðm2SÞ1, O3 ¼
ðm2SÞ1 − 1=2ðm2SÞ4, O4 ¼ −∂2S.

(ii) For the operators vanishing by the EOM we find:
O5 ¼ SEE,O7¼ 1=2½ðmSEÞ1− ðmSEÞ2�,O8 ¼−1=2
½ðmSEÞ1þðmSEÞ2�, O9¼−ð∂ ·VEþV∂Þ, O10¼V∂ .

(iii) There is no operator in our basis corresponding to
O6 in [38]. The CP-odd counterpart of O6 is
~PEE ¼ ψ̄iγ5tΔSψEE þ ψ̄EEiγ5tΔSψ , and it can be
expressed in terms of operators already present in
the basis, via:

∂ · AE ¼ ~PEE þ 2PEE þ ðmPEÞ2; ð145Þ

A similar linear dependence relation holds in the
P- and CP-even sector. Ref. [38] finds at one loop
that O6 is not needed to renormalize OCM. This is
consistent with our finding that O6 is not linearly
independent.

(iv) In Ref. [38] the operator ðm2SÞ2 ¼ ðm2
u þm2

d þ
m2

sÞs̄d is absent. This operator is allowed by the
symmetries of the problem. In perturbation theory it
can mix with OCM starting at two-loop order, so its
omission does not affect the results of Ref. [38].
However, the operator should be included in non-
perturbative renormalization treatments.

B. One-loop renormalization factors

Using the CP-odd operator basis of Table V, we have
extended our analysis of the two- and three-point functions
to include off-diagonal flavor structures and have found the
mixing to the additional operators (in the MS scheme)

ZOCE;ðm2PÞ4 ¼ −ZOCE;ðmPEÞ1 ¼
1

ϵ

αs
4π

3

8
ðCA − 4CFÞ: ð146Þ

Using (i) the results given in Sec. V for the operator mixing
in our original basis [extended to the new structures
through Eq. (146)] and (ii) the change of basis implied

TABLE V. Operator basis in the CP-odd and CP-even sectors.

CP-odd CP-even

OCE ¼ igψ̄σμνγ5GμνtΔSψ OCM ¼ gψ̄σμνGμνtΔSψ

∂2P ¼ ∂2ðψ̄iγ5tΔSψÞ ∂2S ¼ ∂2ðψ̄tΔSψÞ
ðm2PÞ1 ¼ 1

2
ψ̄ iγ5fM2; tΔSgψ ðm2SÞ1 ¼ 1

2
ψ̄fM2; tΔSgψ

ðm2PÞ2 ¼ Tr½M2�ψ̄iγ5tΔSψ ðm2SÞ2 ¼ Tr½M2�ψ̄ tΔSψ
ðm2PÞ4 ¼ ψ̄iγ5½M; ½M; tΔS��ψ ðm2SÞ4 ¼ ψ̄ ½M; ½M; tΔS��ψ
PEE ¼ iψ̄Eγ5tΔSψE SEE ¼ ψ̄EtΔSψE

ðmPEÞ1 ¼ ψ̄Eiγ5½M; tΔS�ψ − ψ̄iγ5½M; tΔS�ψE ðmSEÞ1 ¼ ψ̄E½M; tΔS�ψ − ψ̄ ½M; tΔS�ψE

ðmPEÞ2 ¼ ψ̄Eiγ5fM; tΔSgψ þ ψ̄ iγ5fM; tΔSgψE ðmSEÞ2 ¼ ψ̄EfM; tΔSgψ þ ψ̄fM; tΔSgψE

∂ · AE ¼ ∂μ½ψ̄Eγ
μγ5tΔSψ − ψ̄γ5γ

μtΔSψE� ∂ · VE ¼ i∂μ½ψ̄Eγ
μtΔSψ − ψ̄γμtΔSψE�

A∂ ¼ ψ̄γ5∂tΔSψE − ψ̄E← ∂γ5tΔSψ V∂ ¼ ψ̄i∂tΔSψE − ψ̄Ei← ∂tΔSψ
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by Eq. (144), we have computed the renormalization matrix
relevant to the CP-odd operators in Table V.
In order to compare to Ref. [38], we need the relation

between the divergence structure of the CP-even and
CP-odd sectors. At one loop we have verified that the
divergences of two- and three-point functions with inser-
tion of OCM and OCE are related by a simple operation τ̂:

ΓOCM
¼ τ̂½ΓOCE

�;
τ̂∶fiγ5 → 1; tΔSMn → ð−1ÞntΔSMnðn ¼ 0; 1; 2Þg:

ð147Þ

Similarly, the tree-level insertions of the CP-even (Oþ) and
CP-odd (O−) operators appearing in each line of Table V
are related by ΓOþ ¼ τ̂½ΓO−

�, except for the following cases:

ΓðmSEÞ1;2 ¼ τ̂½ΓðmPEÞ2;1 � ð148aÞ

ΓSEE ¼ −τ̂½ΓPEE
� ð148bÞ

Γ∂·VE
¼ −τ̂½Γ∂·AE

� ð148cÞ

ΓV∂ ¼ −τ̂½ΓA∂ � ð148dÞ

From the renormalization matrix in the CP-odd sector and
the relations (148), we have computed the renormalization
factors in theCP-even sector, in the basis of Table V. Finally,
converting to the basis O1;…;10 of Ref [38] (using the
relations given in Sec. VIII A), we find our results for the
renormalization coefficients to agree with Eqs. (66)–(75)
of Ref. [38].

IX. CONCLUSIONS

In this work we have studied the off-shell renormaliza-
tion and mixing of CP-odd dimension-five operators in
QCD in both the MS and RI- ~SMOM schemes (the latter
amenable to implementation in lattice QCD), providing the
matching matrix between operators in RI- ~SMOM and MS
to OðαsÞ.
We have paid special attention to the definition of a finite

quark CEDM operator in the RI- ~SMOM scheme, identify-
ing all the needed subtractions. This is the first step towards
a lattice QCD calculation of the impact of the quark CEDM
on the nucleon EDM, which is currently afflicted by one
order of magnitude uncertainty. This paper sets the stage to
perform nonperturbative renormalization of the CEDM.
The next steps in the program involve (i) performing
exploratory computations of the needed CEDM quark
and gluon Green’s functions on the lattice, and comparing
this method to lattice perturbation theory; (ii) performing
exploratory calculation of the CEDM insertion in the
neutron state, correlated with the electromagnetic current
or in external electric field [34].

Besides inducing nucleon EDM, the quark CEDM
induces T-odd P-odd pion-nucleon couplings that are a
key input in the computation of EDMs of both light and
heavy nuclei. Chiral symmetry implies that the T-odd pion-
nucleon coupling induced by the quark CEDM can be
extracted (up to chiral corrections) by calculating the
baryon mass splittings induced by the quark chromomag-
netic dipole moment (CMDM) operator [14]. In a future
publication we will explore the nonperturbative renormal-
ization and mixing in the flavor-diagonal CMDM sector
and its relation to the CEDM.
Finally, a desirable extension of this work involves

studying the nonperturbative renormalization and mixing
structure of CP-odd dimension-six operators, such as
Weinberg’s operator [77] and four-quark operators.
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APPENDIX A: CP TRANSFORMATION

In this Appendix we review the definition and properties
of the CP transformation. On the fermion fields ψ , CP is
defined as the linear operator CP:

CP−1ψCP ≡ ψCP ¼ ieiϕγ2γ0ψ�

¼ −ieiϕðψ̄γ�2ÞT ¼ ieiϕγ2ψ̄T; ðA1Þ

where ψ� ≡ ψ†T , ϕ is an arbitrary phase, and we are using
the convention that γ2 is an anti-Hermitian matrix.15 Note
that the CP transformation for the Uð1Þ-transformed
fermion field ~ψ ¼ eiθψ looks like Eq. (A1) with ψ → ~ψ
and ϕ → ϕþ 2θ.
In addition to this, the CP transformation changes all

vector operators vμ to vμ in the metric with signature
(þ − −−), and changes every charge generator Ta to ðTaÞT .
Let ΓM denote a gamma structure withM Lorentz indices

and ON denote an operator involving derivatives with N
Lorentz indices. Then

ðχ̄ΓMONψÞCP ¼ −ðψTONΓT
Mγ

T
0 χ

�ÞCP
¼−½ð−ieiϕψ ψ̄γ�2ÞONΓT

Mγ
T
0 ð−ie−iϕχ γ�2γ

�
0χÞ�

¼ eiΔϕ½ψ̄ðγ†0γ†2γ0ΓMγ
†
2ÞTONχ�

¼ eiΔϕ½ψ̄ð−γ2ΓMγ2ÞTONχ�
¼ eiΔϕψ̄ΓCP

M ONχ; ðA2Þ

15Whenever we need an explicit representation for the γ
matrices, we use that one provided in Ref. [57].
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where ΓCP
M ≡ ð−γ2ΓMγ2ÞT and we have used the

Hermiticity of γ0, anti-Hermiticity of γ2, and γ20 ¼ 1.
Using γT2 ¼ γ†�2 ¼ γ2, we can now write the simpler
expression ΓCP

M ≡ −γ2Γ
†�
M γ2. For the 16 Clifford matrices,

we then have

1CP ¼ 1 ðA3aÞ

γCP5 ¼ −γ5 ðA3bÞ

γCPμ ¼ −γμ ðA3cÞ

ðγμγ5ÞCP ¼ γ5γ
μ ¼ −γμγ5 ðA3dÞ

σCPμν ¼ σνμ ¼ −σμν: ðA3eÞ

For the equation of motion field ψE ¼ ðiDμγμ −mÞψ ,
the transformation is

ψCP
E ≡ ðiDμCPγμ −mÞψCP

¼ ieiϕðiD�
μγμ −mÞγ2γ0ψ�

¼ ieiϕγ2ð−iD�
μγ

�
μ −mÞγ0ψ�

¼ ieiϕγ2γ0ð−iD�
μγ

T
μ −mÞψ�

¼ ieiϕγ2γ0ð−iD�
μγ

μ� −mÞψ�

¼ ieiϕγ2γ0ð−iD�
μγ

μ� −mÞψ�

¼ ieiϕγ2γ0½ðiDμγ
μ −mÞψ ��

¼ ieiϕγ2γ0ψ�
E; ðA4Þ

where the conjugate of Dμ ¼ ∂μ − igAa
μTa is defined as

D�
μ ¼ ∂μ þ igAa

μTa� to take into account the opposite gauge
charge of the antiparticle. One way to state this result is that
the CP phase is the same for the fields ψ and ψE, i.e.,
ϕψE

¼ ϕψ .
Finally, note that the CP transformation on chiral fields

ψL;R ¼ ð1 ∓ γ5Þ=2ψ

CP−1ψLCP ¼ ieiϕγ2ψL
T

CP−1ψRCP ¼ ieiϕγ2ψR
T: ðA5Þ

APPENDIX B: BRST SYMMETRY AND
OPERATOR BASIS

A given gauge invariant operator O mixes under
renormalization with two classes of operators of same
(or lower) dimension [52,53]: (i) ghost-free gauge-invariant
operators with the same symmetry properties of O that
do not vanish by the equations of motion (EOM) and
(ii) “nuisance” operators allowed by the solution to the
Ward identities associated with the BRST symmetry. These
include non-gauge-invariant operators. For completeness,

we sketch below the procedure to obtain the “nuisance”
operators, paraphrasing Ref. [52].
The gauge and fermion Lagrangian density for the

SUð3ÞC ×Uð1ÞEM group is expressed in terms of physical
fields Aa

μ, A
γ
μ, ψ , ψ̄ , the dynamical ghosts ca, c̄a, cγ , c̄γ , and

the nonpropagating sources for BRST transformations M,
M̄, Jaμ, Ka, Jγμ, whose properties are summarized in
Table VI. This Lagrangian is

L0 ¼ −
1

4
Ga

μνGaμν −
1

2ξ
ð∂ · AaÞ2 − ðJaμ − ∂μc̄aÞDμ;abcb

þ 1

2
gfabcKacbcc ðB1Þ

−
1

4
FμνFμν −

1

2ξγ
ð∂ · AγÞ2 − ðJγμ − ∂μc̄γÞ∂μcγ ðB2Þ

þ ψ̄ðiD −mÞψ þ M̄ð−igcaTa − iecγÞψ
þ ψ̄ð−igcaTa − iecγÞM; ðB3Þ

where

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν ðB4Þ

Fa
μν ¼ ∂μA

γ
ν − ∂νA

γ
μ ðB5Þ

Dab
μ cb ¼ ∂μca þ gfabcAb

μcc ðB6Þ
Dμψ ¼ ð∂μ − igAa

μTa − ieQAγ
μÞψ : ðB7Þ

The action S obtained by adding to the Lagrangian density
a set of infinitesimal sources Φ for gauge-invariant ghost-
free operators O

S¼
Z

d4xL0ðxÞ þ
Z

d4xΦðxÞOðxÞ≡ S0 þΦ ·O; ðB8Þ

is invariant under the BRST transformations given by:

ΔAa
μ ¼ −

δS
δJaμ

δλ ΔAγ
μ ¼ −

δS
δJγμ

δλ ðB9Þ

TABLE VI. Properties for dynamical fields and BRST sources.
The first row indicates whether the variable is commuting (þ) or
anticommuting (−). The second and third row list the trans-
formation under Lorentz and color groups. The fourth row gives
the ghost number assignments and the fifth row lists the mass
dimension.

M M̄ Jμ − ∂μc̄ K ψ ψ̄ Aμ c c̄ ∂μ

Comm. þ þ − þ − − þ − − þ
Lorentz 1

2
1̄
2

1 0 1
2

1̄
2

1 0 0 1
Color 3 3� 8 8 3 3� 8 8 8 0
Ghost −1 −1 −1 −2 0 0 0 1 −1 0
Dim. 5

2
5
2

3 4 3
2

3
2

1 0 2 1
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Δca ¼ δS
δKa δλ Δcγ ¼ 0 ðB10Þ

Δc̄a ¼ 1

ξ
∂ · Aaδλ Δc̄γ ¼ 1

ξγ
∂ · Aγδλ ðB11Þ

Δψ i ¼
δS
δM̄i

δλ ðB12Þ

Δψ̄ i ¼
δS
δMi

δλ; ðB13Þ

with δλ an anticommuting infinitesimal parameter. This
invariance leads to the Ward identities for the generating
functional of 1PI Green’s functions, that in particular imply
the following identity for Ŝ≡ Sþ R d4x½1=ð2ξÞð∂ · AaÞ2þ
1=ð2ξγÞð∂ · AγÞ2�:
Z

d4x

�
δŜ
δAγ

μ

δŜ
δJγμ

þ δŜ
δAa

μ

δŜ
δJaμ

þ δŜ
δca

δŜ
δKaþ

δŜ
δψ i

δŜ
δM̄i

þ δŜ
δψ̄ i

δŜ
δMi

�

¼ 0: ðB14Þ

While S ¼ S0 þ Φ ·O satisfies the Ward identity Eq. (B14),
the general solution involves additional terms. Writing the
general solution symbolically as

S ¼ S0 þ Φ ·Oþ Φ · N; ðB15Þ

and working to first order in the external sources (one
operator insertion), one finds that the nuisance operators N
must satisfy

ŴðΦ · NÞ ¼ 0; ðB16Þ

with the operator

Ŵ ¼ δŜ0
δAγ

μ

δ

δJγμ
þ δŜ0
δJγμ

δ

δAγ
μ
þ δŜ0
δAa

μ

δ

δJaμ
þ δŜ0
δJaμ

δ

δAa
μ
þ δŜ0

δca
δ

δKa

þ δŜ0
δKa

δ

δca
þ δŜ0
δψ i

δ

δM̄i
þ δŜ0
δM̄i

δ

δψ i
þ δŜ0
δψ̄ i

δ

δMi

þ δŜ0
δMi

δ

δψ̄ i
: ðB17Þ

Since Ŵ Ŵ ¼ 0, it turns out that

Φ · N ¼ ŴðΦ · FÞ; ðB18Þ

where F is a set of operators with the same Lorentz property
of O, same dimension, and ghost number −1. After acting
with Ŵ one sets the sources M, M̄, K to zero, and Jμ
to −∂μc̄.
We are now ready to classify the F operators and

resulting nuisance operators N:

(i) At dimension five, the only Lorentz scalars of ghost
number −1 that we can write down are: ψ̄χ�AM,
ψ̄χ�AγM, M̄Aχ�ψ , M̄Aγχ�ψ , ψ̄χ�∂M, M̄∂χ�ψ ,
M̄cM, M̄cγM, where χ� ¼ ð1� γ5Þ=2 is a chiral
projector. Acting on these structures with Ŵ pro-
duces the terms ψ̄EAχ�ψ , ψ̄EAγχ�ψ , ψ̄E∂χ�ψ ,
ψ̄Aχ�ψE, ψ̄Aγχ�ψE, ψ̄∂χ�ψE.

In addition, we have the gauge-invariant ghost-
free terms that are not zero by equations of motion in
the massless limit: ψ̄σμνGμνχ�ψ , ψ̄σμνFμνχ�ψ ,∂2ðψ̄χ�ψÞ, ∂μðψ̄σμνD�

νχ�ψÞ, ∂μðψ̄σμνDνχ�ψÞ.
(ii) At dimension four, the only Lorentz scalars of ghost

number −1 are: M̄χ�ψ , ψ̄χ�M, JaμAa
μ, JγμA

γ
μ, and

Kc. The variation of these produce ψ̄Eχ�ψ , ψ̄χ�ψE,
ðDνGνμAμ þ gψ̄AψÞ − g½∂μc̄; c�Aμ, ð∂νDνμAγ

μþ
eψ̄AγψÞ, ð∂μc̄ÞDμc, ðDμ∂μc̄Þc.

The only gauge-invariant ghost-free operators not
zero by equation of motion in the mass-less limit are:
GμνGμν and Gμν

~Gμν.
(iii) At dimension three and below, there are no ghost

number −1 scalars, so the only operators we need to
consider are the gauge-invariant ghost-free operators
that are not zero by the massless equation of motion.
The only possible such terms are ψ̄χ�ψ .

Selecting the T-odd and P-odd structures, including gauge-
invariant ghost-free operators that do not vanish by the
EOM, and eliminating linearly dependent operators16 we
arrive at the basis presented in Sec. III A.

APPENDIX C: AXION MECHANISM

A very elegant way to dynamically set θ̄ to zero is the
Peccei-Quinn (PQ) mechanism [46], which predicts the
existence of a new light particle, the axion [78,79]. We
follow here the discussion of the PQ mechanism in the EFT
framework of Ref. [80]. A common feature of axion models
is the existence of a UPQð1Þ symmetry, which is sponta-
neously broken at high energy. The axion is the Goldstone
boson of the symmetry, and, under UPQð1Þ, it changes by an
additive constant, a → aþ c, while the SM fields are chosen
to be invariant. At low energy, around the QCD scale, the
Lagrangian includes derivative couplings of the axion to the
quarks, which respectUPQð1Þ. Furthermore, the symmetry is
explicitly broken by the anomalous coupling to G ~G [80], so
that the quark-axion Lagrangian has the form

L ¼ ψ̄iDψ þ 1

2
∂μa∂μaþ ψ̄ðC0 þ C1τ3Þγ5γμψ∂μ

a
fa

− caγγ
e2

32π2
a
fa

F ~F −
g2

32π2

�
θ þ a

fa

�
G ~G

− eiρψ̄LMψR − e−iρψ̄RMψL; ðC1Þ

16We used the relation ∂μðψ̄ ~σμνD
↔

νψÞ ¼ −ð∂2 þ 4m2ÞP − ∂·
AE − 2mPE, to eliminate one T-odd, P-odd structure. Moreover,
there are no T-odd and P-odd operators containing the ghost
fields up to dimension five.
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where fa is the axion decay constant. The couplingsC0;1 and
caγγ are model dependent, while the coupling to gluons is
fixed by the UAð1Þ anomaly.
As in Sec. II, the G ~G term can be eliminated in favor of a

complex mass term, with the difference that the UAð1Þ
rotation depends on the axion field. The rotation has the
effect of modifying the couplings C0;1 and caγγ , and, more
importantly, affects themass sector.Thediscussionofvacuum
alignment of Sec. II can be immediately generalized, by
replacing θwith θ̄ þ a=fa. In this context, vacuumalignment
achieves the diagonalization of the pion-axion mass term.
After imposing the vacuum alignment condition, the

quark-axion Lagrangian becomes

δL ¼ −ψ̄
�
M −M−1m

2�
2

�
θ̄ þ a

fa

�
2
�
ψ

þ ψ̄iγ5ψm�

�
θ̄ þ a

fa

�
; ðC2Þ

where we have kept terms quadratic in θ̄ þ a=fa. When
chiral symmetry is spontaneously broken, ψ̄ψ acquires a
nonvanishing vacuum expectation value, −ðmu þmdÞ
hψ̄ψi ¼ 3m2

πf2π, and the CP-even quark mass term in
Eq. (C2) generates an axion potential

V0

�
θ̄ þ a

fa

�
¼ 1

3
hψ̄ψiTr

�
M −M−1 m

2�
2

�
θ̄ þ a

fa

�
2
�

¼ −
m2

πf2π
ðmu þmdÞ

×

�
ms þmd þms −m�

1

2

�
θ̄ þ a

fa

�
2
�
:

ðC3Þ

V0 is an even function of θ̄ þ a=fa, and it is minimized by

θ̄ þ hai
fa

¼ 0; ðC4Þ

thus canceling the CP-violating effects of the θ̄ term.
Oscillations around the minimum determine the axion mass
in terms of the pion mass and decay constant, and of the
axion decay constant

m2
a ¼

m2
πf2π
f2a

mumd

ðmu þmdÞ2
; ðC5Þ

where we neglected small corrections ∼mu;d=ms.
The presence of additional, chiral symmetry breaking

sources of CP violation has the effect of shifting the
minimum of the axion potential, inducing a residual θ̄ term,
proportional to the amount of CP violation. As an example,
we discuss the case of CP violation from a quark CEDM.
Performing vacuum alignment, as discussed in Sec. II,
induces a CP-even axion-quark Lagrangian of the form

δL ¼ −
g
2
m�

�
θ̄ þ a

fa

�
ψ̄σμνGμνM−1½dCE�ψ

þ r
2
m�

�
θ̄ þ a

fa

�
ψ̄fM−1½dCE�

−m�M−1Tr½M−1dCE�gψ þOðθ̄2Þ: ðC6Þ
When chiral symmetry is broken, the isoscalar components
in Eq. (C6) give a correction to the axion potential Eq. (C3).
Up to terms of ½dCM� × ðθ̄ þ a=faÞ2 that affect the value of
the axion mass but do not change the minimum of the
potential, the shifted potential reads:

V

�
θ̄ þ a

fa

�
¼ 1

6
m�

�
θ̄ þ a

fa

�
2

hψ̄ψi

−
1

6
m�

�
θ̄ þ a

fa

�
Tr½M−1½dCE��

× hψ̄σμνgGμνψi: ðC7Þ
The term proportional to ½dCE�, odd in θ̄ þ a=fa, causes the
potential to be minimized at a nonzero value of the θ̄ angle,

θ̄ þ hai
fa

¼ θ̄ind ¼
r
2
Tr½M−1½dC��;

r ¼ hψ̄σμνgGμνψi
hψ̄ψi ; ðC8Þ

where, by chiral symmetry, r is the same ratio defined
in Sec. II.

APPENDIX D: PROJECTIONS IN THE
ISOSPIN LIMIT

We now discuss the projections needed to extract
α3;…; α7 in Eq. (101) in the isospin limit mu ¼ md ≡m,
in which the matrices M2 and M3 defined in Eq. (103) and
Eq. (104) become singular.
In the case a ¼ 3, the operators Oð5Þ

6 and Oð5Þ
10 (and the

structures multiplying α4 and α7) vanish. To isolate α3, it is
sufficient to impose

Tr½Γð2Þ
C γ5qMt3�S ¼ 0: ðD1Þ

In the isospin limit, for a ¼ 3, α5 and α6 are both propor-
tional to t3, and cannot be disentangled with a flavor
projection. However, the different dependence on m2 and
m2

s can be exploited, by imposing

Tr

�� ∂2

∂m2
− 2

∂2

∂m2
s

�
Γð2Þ
C γ5t3

�
S
¼ 0 ðD2aÞ

Tr

� ∂2

∂m2
s
Γð2Þ
C γ5t3

�
S
¼ 0: ðD2bÞ

The first (second) trace above isolates α5 (α6).
For a ¼ 0 and 8, M2 is not singular even in the isospin

limit, and the mixing of the CEDM with the divergence
of the axial current is found by imposing Eq. (102c).
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The structures multiplying α5, α6 and α7 can be projected
on the two flavor matrices t0 and t8, so that the flavor
projections in M3 are not independent, and the matrix is
singular. Also in this case, one can take advantage of the
different dependence on m2

s , m2 and msm. Defining tl ¼
ðt8 þ

ffiffiffi
2

p
t0Þ and ts ¼ ðt8 − 1ffiffi

2
p t0Þ, α5, α6 and α7 can be

disentangled by the following projections:

Tr

�� ∂2

∂m2
− 2

∂2

∂m2
s
− 4

∂2

∂ms∂m
�
Γð2Þ
C γ5tl;s

�
¼ 0 ðD3aÞ

Tr

� ∂2

∂m2
s
Γð2Þ
C γ5tl

�
¼ 0 ðD3bÞ

Tr

� ∂2

∂ms∂mΓð2Þ
C γ5ts

�
¼ 0; ðD3cÞ

where in Eq. (D3a) tl (ts) is to be used for a ¼ 0 (a ¼ 8).

APPENDIX E: MATCHING COEFFICIENTS

In this appendix we give explicit results for the matching
coefficients from RI- ~SMOM to the MS-HV scheme (where
ψ is defined in Eq. (67), K in Eq. (68), CA, CF and TF in
Eq. (60), ξ is the gauge parameter and nF are the number of
flavors).

c11 ¼
CAð23þ 9ξÞ − 32CF

12
ψ þ CA − 2CF

2
ð1 − ξÞK

−
CA − 2CF

2
ð1þ ξÞ log 2

þ 10

9
nFTF þ CF

�
31

3
−
1

2
ξ

�

þ CA

72
ð−646 − 36ξþ 9ξ2Þ ðE1aÞ

c12 ¼
�
4CF −

CA

6
ð3þ ξÞ

�
ψ þ ðCA − 2CFÞð1 − ξÞK

þ ðCA − 2CFÞð1þ ξÞ log 2

þ CFð2 − ξÞ þ CA

4
ð−5þ 2ξÞ ðE1bÞ

c13 ¼
�
−
8

3
CF þ CA

12
ð3þ ξÞ

�
ψ −

1

2
ðCA − 2CFÞð1 − ξÞK

−
1

2
ðCA − 2CFÞð1þ ξÞ log 2

þ CF

�
25

3
þ 1

2
ξ

�
þ CA

8
ð5 − 2ξÞ ðE1cÞ

c14 ¼ 0 ðE1dÞ
c15 ¼ −4 ðE1eÞ
c16 ¼ 3c17 ðE1fÞ

c17 ¼
CAξ

6
ψ þ ðCA − 2CFÞð1 − ξÞK

−
1

2
ðCA − 2CFÞð1 − ξÞ log 2

þ CFð8 − ξÞ þ CA

�
−
13

4
þ 1

2
ξ

�
ðE1gÞ

c18 ¼
8CF − CAð1þ ξÞ

2
ψ − ðCA − 2CFÞð1 − ξÞK

þ 2ðCA − 2CFÞ log 2

þ CF

�
10

3
þ ξ

�
þ CA

�
21

4
−
1

2
ξ

�
ðE1hÞ

c19 ¼ 0 ðE1iÞ

c1;10 ¼ 0 ðE1jÞ

c22 ¼ c88 ¼ c99 ¼ c10;10 ¼
CF

2
ð3þ ξÞψ − CFð12þ ξÞ

ðE1kÞ

c33 ¼ CF

�
ð1 − ξÞ

�
4

3
−
1

2
ψ

�
þ ξ

�
ðE1lÞ

c55 ¼ 2CA

�
1þ 1

3
ξ

�
ψ þ CA

36
ð−403 − 18ξþ 9ξ2Þ

þ 20

9
nFTF ðE1mÞ

c56 ¼ −4CFð4 − ψÞ ðE1nÞ

c66 ¼ c77 ¼ −4CF: ðE1oÞ

The coefficients in the NDR scheme are given by (we
report only the cases where cNDRij ≠ cHVij )

cNDR11 ¼ cHV11 þ 2CA −
4

3
CF ðE2aÞ

cNDR13 ¼ cHV13 −
4

3
CF ðE2bÞ

cNDR16 ¼ cHV16 þ CA − 4CF

6
ðE2cÞ

cNDR17 ¼ cHV17 þ CA − 4CF

2
ðE2dÞ

cNDR18 ¼ cHV18 − CA −
28

3
CF ðE2eÞ

cNDR66 ¼ cNDR77 ¼ 0 ðE2fÞ

cNDR22 ¼ cNDR88 ¼ cNDR99 ¼ cNDR10;10 ¼
CF

2
ð3þ ξÞψ −CFð4þ ξÞ:

ðE2gÞ
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