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Dimension-5 CP-odd operators: QCD mixing and renormalization
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We study the off-shell mixing and renormalization of flavor-diagonal dimension-five 7- and P-odd
operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole
operators. We present the renormalization matrix to one loop in the MS scheme. We also provide a
definition of the quark chromoelectric dipole operator in a regularization-independent momentum-
subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients
with the MS scheme to one loop in perturbation theory, using both the naive dimensional regularization

and 't Hooft—Veltman prescriptions for ys.
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I. INTRODUCTION

Permanent electric dipole moments (EDMs) of non-
degenerate systems violate invariance under parity (P) and
time reversal (T) or, equivalently [1], CP, the combination
of charge conjugation and parity. Given the smallness of
Standard Model (SM) CP-violating (CPV) contributions
induced by quark mixing [2] (for a review see [3]), nucleon,
nuclear, and atomic/molecular EDMs [4-8] are very deep
probes of the SM @ term (already constrained at the level
of @ ~ 107'%) and of possible new sources of CP violation
beyond the Standard Model (BSM).

In fact, EDMs at the sensitivity level of ongoing and
planned experiments probe BSM CPV interactions origi-
nating at the TeV scale or above (up to hundreds of TeV
depending on assumptions about the BSM scenario). These
new CPV interactions may be a key ingredient of relatively
low-scale baryogenesis mechanisms such as electroweak
baryogenesis (see [9] and references therein), making the
study of EDMs all the more interesting. EDMs of the
nucleon, nuclei, and atoms are sensitive to a number of new
sources of CP violation, in a complementary way [10], so
that a broad experimental program to search for EDMs in
various systems is called for (a summary of current status
and prospects can be found in Refs. [11,12]).

Extracting robust information on the new CPV sources
from the (non)observation of EDMs is a challenging
theoretical problem that involves physics at scales ranging
from the TeV (or higher) down to the hadronic, nuclear, and
atomic scales, depending on the system under consider-
ation. The relevant physics at the hadronic and nuclear
scale involves strong interactions, and requires the calcu-
lation of nonperturbative matrix elements. While interest-
ing model-independent statements can be made within a
nucleon-level chiral effective theory approach [13-18],
ultimately the computation of a number of hadronic matrix
elements is necessary. Existing calculations of the impact
of BSM operators on hadronic EDMs typically rely on
modeling the strong dynamics in ways consistent with the
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quantum chromodynamics (QCD) symmetries, using meth-
ods such as QCD sum rules [19-22] and the Dyson-
Schwinger equations [23,24] (see Refs. [3,12] for reviews).
Since models do not rely on systematic approximations to
the strong dynamics of quarks and gluons in the nucleons,
current results represent in some cases only crude esti-
mates, with different model calculations differing by up to
an order of magnitude, depending on the operator under
study [12]. Needless to say, this state of affairs greatly
dilutes the impact of EDM experimental searches in
probing short-distance physics. Moreover, the uncertainties
affect the robustness of the phenomenological studies
relating new sources of CP violation to baryogenesis
mechanisms (depending on what is the dominant mecha-
nism and operator generating the EDM).

In this context, lattice QCD calculations offer the
opportunity to perform systematically improvable calcu-
lations of the CPV hadronic dynamics. Historically, lattice
QCD efforts have mostly focused on the determination of
the nucleon EDM induced by the SM @ term [25-33]. Only
recently there has been interest in studying the impact of the
leading CP-odd operators on the nucleon EDM [34-36]
and the 7T-odd pion nucleon couplings [37].

This program, however, comes with several challenges,
ranging from controlling the signal-to-noise ratio on the
lattice to studying operator mixing, and matching suitably
renormalized lattice operators to the minimally subtracted
operators typically used in phenomenological applications.
In this paper we focus on defining UV finite CP-odd
operators of dimension five and lower, using a renormal-
ization scheme suitable for implementation on the lattice,
and matching this scheme to the perturbative MS scheme to
one loop.

The paper is organized as follows. In Sec. II, we describe
the effective theory framework parametrizing BSM effects
at low-energy and identify the leading dimension-five CPV
operators. In Sec. III, we construct the basis of operators
needed to study the renormalization of the quark chromo-
electric dipole moment (CEDM) operator in an off-shell
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momentum subtraction scheme with nonexceptional
momenta. In Sec. IV, we present the one-loop calculations
needed to determine the full mixing matrix to O(a;) for the
operator basis discussed in Sec. III. In Sec. V, we give our
results for the matrix of renormalization constants in the
MS scheme, while in Sec. VI we specify the renormaliza-
tion conditions that define a regularization-independent
(RI) momentum subtraction scheme and provide the O(«,)
matching coefficients to the MS scheme. In Sec. VII, we
discuss the consistency of our renormalization conditions
with the singlet axial Ward identities. In Sec. VIII, we
compare our results to recent related work [38] that studies
the renormalization of the strangeness changing chromo-
magnetic quark operator. We end with our conclusions and
outlook in Sec. IX.

A number of technical issues are discussed in the
Appendixes. In Appendix A we summarize our choice
of phase convention used to define the CP transformations.
The regularization-independent calculation is done using
off-shell matrix elements with quarks and gluons as
external states in a fixed gauge. In Appendix B we derive
the constraints on the mixing with gauge dependent and
off-shell operators imposed by BRST symmetry. The
Peccei-Quinn mechanism and its implications for CPV
operators are discussed in Appendix C. In Appendix D we
discuss the subtleties that arise in the isospin symmetry
limit. Finally, in Appendix E, we summarize the matching
coefficients between the MS and the RI scheme.

II. FRAMEWORK

In this section we describe in some detail the hadronic-
scale CPV effective Lagrangian induced by BSM physics at
the high scale. The identification of the CPV combinations
of short-distance parameters involves several steps. We start
our discussion in Sec. I A by classifying the leading
BSM-induced operators that can lead to CPV effects at
the quark and gluon level. We then discuss in Sec. II B the
relation between CP and chiral symmetry in presence of
operators that explicitly break chiral symmetry: the CP
symmetry that remains unbroken by the vacuum takes the
standard form given in Appendix A only after performing an
appropriate chiral rotation of the fields (“vacuum align-
ment”) that eliminates pion tadpoles [39-41]. In Sec. IIC
we implement the vacuum alignment in presence of higher-
dimensional operators induced by BSM physics and in
Sec. IID we summarize the vacuum-aligned effective
Lagrangian including operators up to dimension five.

A. CP violation in the Standard Model and beyond

Assuming the existence of new physics beyond the
Standard Model (BSM) at a scale Aggy > vey, WE can
parametrize the BSM effects in terms of local operators of
dimension five and higher, suppressed by powers of the
scale Aggy. The new operators are built out of SM fields
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and respect the SU(3)- x SU(2)y, x U(1), gauge sym-
metries of the SM. The leading CP-violating operators
appear only at dimension six [42,43]. Their renormalization
group evolution from the new physics scale down to the
hadronic scale has been studied in several papers, most
recently in Refs. [44,45], and the resulting effective chiral
Lagrangian at the hadronic level has been discussed in
Refs. [14,16] (for a review see Ref. [12]).

In this work, we are primarily interested in the structure
of the effective Lagrangian including new sources of CP
violation below the weak scale. After integrating out the top
quark, the Higgs boson, and the W* and Z gauge bosons,
the needed operators are invariant under the SU(3). x
U(1)gy gauge group. At a scale u < My 7, the effective
Lagrangian including the leading (i.e., originating at
dimension six) flavor-conserving CP-violating effects at
the quark- and gluon-level can be written as follows':

Lett = Lsmlm,—0 = MW@ LiWri — MiWriWei — 0GG
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where e and g are the electric and color charges, v, is
the Higgs VEV (vacuum expectation value), the index i
runs over the active quark flavors (at 4 ~ 1 GeV one has
i €{u,d,s}), and G = 8‘“’“ﬂGgﬂ/2.

The first line in Eq. (1) contains the Standard Model
dimension-four operators, including the mass matrix put in
the standard diagonal form and a common phase, and the
QCD 6 term. Because of the anomalous Ward identity, a
choice of fermion phases can be used to rotate the 6 term
into a CP-odd pseudoscalar quark mass term, instead.

The second and third lines in Eq. (1) contain the BSM
contribution due to the quark magnetic (MDM) and electric
dipole moment (EDM), and chromomagnetic (CMDM) and
chromoelectric dipole moment (CEDM) operators, respec-
tively. Below the weak scale these operators are of mass-
dimension five: their origin as dimension-six operators at
the high scale is hidden in the overall dimensionless factor
of vey/Agsy. It is important to note that the physical

'"Without loss of generality, we have performed a SU(ny), x
SU(np)g transformation to put the quark mass matrix in diagonal
form, with complex masses sharing a common phase p, namely,
m; = |m;|e’. Moreover, note that the masses m; and € include
(i) possible threshold corrections, i.e., effects that originate from
higher-dimensional operators, such as H' HGG and H'Hg, g, H,
and (ii) corrections induced by mixing with the chromoelectric
dipole moment at finite quark mass.
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meaning of these operators as CP-violating electric or
CP-conserving magnetic moments relies on an implicit
chiral phase convention. Similar to the quark mass terms,
however, these operators explicitly break chiral symmetry,
thus contributing to vacuum alignment [39]. As discussed
in Sec. II B, the vacuum alignment, in turn, determines
the unbroken CP symmetry, and a chiral rotation—which
mixes the EDM and MDM, as well as CEDM and CMDM
operators—may be needed to put the symmetry trans-
formation in the standard form. If no complex phases
appear in the Lagrangian after such a rotation, no physical
CP violation can arise. In Sec. II C we, therefore, discuss
the combinations of m;, 6, dl(.y), and dEg) that are indepen-
dent of such phase choices, and give CP-violating con-
tributions to observables.

Finally, the fourth line in Eq. (1) contains the CP-odd
BSM operators that are genuinely of mass-dimension six at
low energy, such as the Weinberg three-gluon operator and
four-quark operators.

In order to convert experimental results on nucleon and
nuclear EDMs into bounds or ranges for the short-distance
CP-odd couplings, one needs to compute the effect of the
CP-odd operators in Eq. (1) on hadronic observables, such
as the nucleon EDM and the T-odd zNN couplings. One
essential step in connecting the short-distance physics to
hadronic observables involves defining UV finite operators
in a suitable scheme, whose matrix elements can then be
computed nonperturbatively using lattice QCD. In this
work, we focus on the ultraviolet divergences and mixing
structure of the leading gauge-invariant CP-odd dimension-
five operators, namely, the quark CEDM and EDM. These
operators are of great phenomenological interest, being the
leading sources of flavor-diagonal CP violation in several
extensions of the SM [3,12]. Moreover, since dimension-
five operators can mix only with operators of dimension up
to five (mixing with lower-dimensional operators occurs in
mass-dependent renormalization schemes), we can consis-
tently ignore operators of dimension six and higher, which
we leave for future work.

B. CP symmetry and chiral symmetry breaking

In this subsection we discuss the connection between CP
and chiral symmetries. The main point is that explicit chiral
symmetry breaking selects the vacuum of the theory [39], as
well as the unbroken CP symmetry. The unbroken CP
symmetry takes the standard form given in Appendix A only
after a chiral rotation that eliminates pion tadpoles, i.e., after
implementing vacuum alignment [39] discussed in Sec. II C.

The CP transformation interchanges left-chiral particles
with right-chiral antiparticles. It is implemented on chiral
fermion fields by

CP~ Yy, CP = iy’
CP'wgCP = iy ypg” (2)
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where CP is the CP operator (see Appendix A for details).
The CP operation does not commute with chiral rotations,
so we can consider its outer automorphisms. In fact,
defining the chiral rotation operator } via (i labels quark
flavors)

>

_IWL,J? = e_i)“/zllfL,i
)?_IWR,i)? = ei)("/zl//R,n (3)

one finds

CP;IU/LJCPX = ieiX’yZWjT
CP'wr,CP, = ie "y g (4)

where CP, = j7"'CP7. If chiral symmetry is a good
symmetry of the Lagrangian L, then each of these is an
equivalent CP symmetry.

Because of the spontaneous breaking of chiral symmetry,
almost all the CP, are spontaneously broken by the vacuum
of the theory. In this case, it is convenient to make a chiral
phase choice such that the vacuum has a zero expectation
value for all the flavor bilinears of the form (;ysy;). In
fact, it is only with this phase choice that the pions, the
Goldstone modes of the broken chiral symmetry, corre-
spond to the operator y;ysy ;. With this choice of phases, in
the “reference vacuum,” the CP symmetry CP, stays
unbroken by the vacuum; we implicitly make this choice
throughout this paper.

We next consider the effect of explicit chiral symmetry
breaking. For a small explicit breaking of chiral symmetry,
encoded in a new term 6L in the Lagrangian £ = L + 0L
(with € <« 1), chiral perturbation theory is expected to be a
good guide to understanding the structure of the theory.
But, because of the explicit breaking of the chiral sym-
metry, the vacuum is no longer degenerate: the explicit
breaking chooses a direction in chiral space with which the
vacuum aligns [39]. If this does not match the “reference
vacuum”, large corrections appear due to degenerate
perturbation theory.

To avoid this problem, it is convenient to perform a chiral
transformation ¥ so that the explicit chiral symmetry break-
ing 6L selects the reference vacuum, in which the unbroken
CP symmetry takes the standard form, namely, CP,. The
way to do this is to impose the condition that the vacuum
state does not mix with the Goldstone state [39-41], i.e.,

(2]6L]Q) = 0, (5)

where 6L are the chiral breaking terms after such a rotation
and |Q) and |z) are the reference vacuum and Goldstone
pion states respectively. If the only chiral breaking comes
from the mass terms, this can be accomplished by rotating
away the flavor nonsinglet CP-violating mass terms in
Eq. (1) by the appropriate chiral transformation j.
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C. Vacuum alignment in presence of
higher-dimensional operators

We now discuss the vacuum alignment in presence of
higher-dimensional operators induced by BSM physics.
After a general discussion of the chiral transformation
needed to enforce Eq. (5), we specialize to the case in
which the dominant source of chiral symmetry breaking is
provided by the quark masses, and the dominant BSM
operators are the quark (C)EDM and (C)MDM. In this case
we present the vacuum-aligned effective Lagrangian in
both scenarios with and without the Peccei-Quinn (PQ)
mechanism [46].

Except for GG, all terms of dimension five and lower in
the Lagrangian defined in Eq. (1) that violate CP are
fermion bilinears that also violate chiral symmetry. Each of
these terms mixes with a CP-conserving one under chiral
rotation, and it is conventional to treat the two as real and
imaginary parts of a single operator. Generalizing Eq. (1)
let us write the chiral and CP-violating part of the
Lagrangian involving quark bilinears as

5L =-) [d0¢ + Hcl

ia

—> [Red?Re0f + ImdiIm 0%  (6)
where
Of =y Mg
Re 0f = 07 + O],
Im 0% = i[0% — 0%7], (7)

i is a flavor index and «a parametrizes the different
operators, characterized by the structure I'*. The first
few operators are the mass term (a =0), the quark
CEDM (a = 1) and the quark EDM (a = 2)

Q00 + He. = (Remy) + illmm)yshy;  (8)

d'0! + He. ~_ gw,[(Red o, G
2‘/\BSM
+i(md;”),, G sl )
B0? +He. = —2 o, [(Redo,, F*
2A%su !
+i(Imd")o,, Fysly,. (10)

In this notation, under a chiral rotation }y (parametrized
by xi)
ds — d?e'i

0—0+x1+ 4 A, (11)
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and we seek a chiral rotation such that Eq. (5) holds and at
the same time 6 — O.

To implement Eq. (5), we need to introduce the non-
perturbative matrix elements

Afj = (7;|ImOf|Q) (12)

where the state |7;) is interpolated by the field i ;iysy;.
Then the mixing of the vacuum with the neutral Goldstone
modes (|z;) — |n;))/V2 is proportional to 3 Imd?
(A% — A%). The condition in Eq. (5) for each neutral

Goldstone mode (|7;) = |m))/ V2 becomes
> Im(dgeri)[ay — A% =0,  k=1.j=2,...np.

| (13)
Since the unperturbed Lagrangian £, is SU(ngp), sym-

metric, the matrix elements can be written in terms of
two constants, the diagonal A§ and the off-diagonal Af,

defined by Af; = AS6;; + A% (1 = 6;;). Eq. (13) implies, for
each flavor i =1, ..., np,

ZIm(d;’e"*f)rW) =K (14)
where r(@ = (A¢ — A})/(AY — AY)) (we divided out the

matrix elements of the dimension-three operator Im0Y =
W;iysy;) and « is a flavor-independent constant. Defining

= |dife = dirl®, (15)
a
the chiral rotation we want needs to satisty, for each i,

|d;| sin(y; + ¢;) = k. (16)

Moreover, to implement & — 0, one needs 6 + > ,y; = 0,
or, equivalently, the constant x needs to satisfy

9—Z¢i+ZSin_l(K|di|_l) =0. (17)

Egs. (16) and (17) provide a system of equations for y; and
k, which does not have a closed form solution for np > 2.
On making the chiral transformation dictated by Eqgs. (16)
and (17) we find that CP violation is proportional to

de d°
5£CPV—Z[KRed +1/1d; |2—K21md}lm0"

~Z[ (0 ot )R

where d~' =Y".|d;|™" and ¢ = > ,¢;, and the second
line is obtained by solving Eq. (17) for small /|d;|, which
is appropriate when @ is small and the dominant chiral

+d; |Imd ]ImO“ (18)
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violation comes from a real mass term (the latter condition
implies ¢; < 1).

Notice that if there is a single operator O that is the only
source of CP violation, then d; « d?, and the second term is
zero. This is because in this case this term is also the only
term that explicitly breaks the chiral symmetry and the
vacuum aligns itself with this direction. As a result,
performing a chiral rotation to make the vacuum have
the conventional chiral phase removes any imaginary part
from the operator, and CP violation can only come from the
anomalous chiral rotations. In this case, however, the CP
violation is proportional to the harmonic sum of the chiral
violations from each flavor, and therefore vanishes if any
flavor remains chirally symmetric.

In what follows, we will instead consider the situation
where the dominant chiral breaking is always due to the
a = 0 mass term, i.e., d; « d? approximately, and consider
the case where all flavors are massive. Only in this case, the
dominant source of CP violation is proportional to Imd¢.
Consistent with this assumption, when studying mixing and
renormalization we will keep in the operator basis terms
proportional to the quark mass matrix.

With these assumptions and after vacuum alignment, the
explicit form of Eq. (18), specialized to the case of a
Lagrangian containing a mass term, quark EDM, and quark
CEDM, is

OLcpy =yiysym, (9 —éTf[M_] ([dcg)—m.OM™ d ey )])

r_. ~
+§l/_/175([dCE] —m.OM ™ [deul)w

ig _ ’ s
—EWUWVSG” ([dCE]—m*eM l[dCMDl//

ie _ 20—
_EWGW}’SFW(ME] -m,O0M l[dM])’//’ (19)
where we defined r=rll) = (A} — Al)/(A — A)) and
neglected r? = O(ag)y,r'"). We further defined

u m, 0 O
w=1d|, M= 0 my O [, (20
s 0 0 my

and the matrix-valued CEDM and CMDM couplings as

md? 0 0
vew
[dCE] = A2— 0 Idef) 0 s
BSM ( )
0 0  ImdY
Red? 0 0
UCW
[dew] === 0 Red? 0 |, (21)
BSM
0 0  Red?
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with analogous definitions for the electric [dg| and mag-
netic [dy] couplings. Finally, 6 = 0 — npp with npp the
phase of the determinant of the mass matrix before
the anomalous chiral rotation renders it real, and m, is

the reduced quark mass

mgmgm,,
mg(m, +my) + m,my’

(22)

m, =

The first term in Eq. (19) is the familiar @ term, shifted by a
correction proportional to the quark CEDM and a second
correction, proportional to the coefficients of the CMDM
multiplied by 6. The third and fourth lines of Eq. (19)
contains the quark (C)EDM operators, which after vacuum
alignment receive a correction proportional to the (C)MDM
coefficient multiplied by 6. Moreover, vacuum alignment
causes the appearance of a complex mass term, propor-
tional to the same combination of the CEDM and CMDM
coefficients [second line of Eq. (19)].

The above discussion is valid in absence of PQ mecha-
nism [46]. As we review in Appendix C, if CP violation
arises only from the mass term, the PQ mechanism
dynamically relaxes 6 to zero. In the presence of other
CP-violating sources, like the quark CEDM, the Peccei-
Quinn (PQ) mechanism causes 0 to relax to a nonzero
value 6,4, proportional to the new source of CP violation.
In particular, as we discuss in further detail in Appendix C,
in the presence of the quark CEDM

Oina = %TT[M_l [dcl]s (23)

thus enforcing a cancellation between the first two terms in
Eq. (19). Since 6,4 is suppressed by two powers of Aggy,
terms proportional to 8]d,,] in Eq. (19) become effectively
dimension eight and can be neglected. Thus, if the PQ
mechanism is at work, the first line of Eq. (19) vanishes and
the terms proportional to @ in the second and third line of
Eq. (19) can be neglected, leading to

r_. ig _ .
5523\/ = 51/1175 [dCE]V/ - Ellfa;w}’SGﬂ [dCEh//

e
- Ell_/%u}’sF”D [dely, (24)
with both CEDM and pseudoscalar quark density with
flavor structure dictated by [dcg].

Equation (19) and Eq. (24) provide the vacuum-aligned
low-energy Lagrangians, in presence of BSM sources of
CP and chiral symmetry violation. They are particularly
useful within the chiral perturbation theory framework, as
they guarantee the cancellation of tadpole diagrams in
which Goldstone modes are absorbed by the vacuum. This
form of the CP-violating perturbation allows one to
identify what nonperturbative matrix elements are needed
in order to address the impact of a BSM-induced CEDM
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operator on the nucleon EDM, i.e., the dependence of d,, on
[dcg]. Both with and without PQ mechanism the effective
Lagrangian involves the CEDM operator as well as flavor
singlet and nonsinglet pseudoscalar quark operators.
Moreover, at the lowest order, the effect of flavor nonsinglet
wiyst>®y operators is proportional to insertions of the
flavor-singlet density wiysy. This is very simple to see
within the functional integral approach, in which iyst> 3y
can be eliminated through a nonanomalous axial rotation.
The same result can be obtained within an operator
approach. In this framework, using soft-pion techniques,
one can show that a cancellation occurs between nontad-
pole and tadpole diagrams with insertion of iyst>Sy,
leaving a term proportional to the insertion of yiysy. In
absence of PQ mechanism, the resulting flavor-singlet
pseudoscalar insertion proportional to [dx] cancels exactly
the existing singlet term in Eq. (19). If the PQ mechanism is
operative, the resulting flavor-singlet pseudoscalar inser-
tion is proportional to m,6,,4. The net effect is equivalent
to replacing Egs. (19) and (24) with

_— ig _ 5
OLcpy = m, Oy iysy — —II/GMSG” ([dCE}

2
= m,OM ™ dey))w
ie _ -
= S VoursF ([de] = mOM M dy))w  (25a)
- lg _ )
5['23\/ = m,OpaWiysy — EW%D%G” [dCE]W
ie _
- _l//amzySFlw [dE]l// (25b)

2

These can be regarded as partially aligned effective
Lagrangians, in which only the dominant mass term has
been aligned to eliminate pion tadpoles, while the BSM
perturbation is not aligned. While the physics cannot depend
on the choice of equivalent parametrization of Eq. (19),
Eq. (24) and Eq. (25), use of different effective Lagrangians
is a matter of convenience, depending on the nonperturbative
approach employed to study hadronic physics. Starting from
the Lagrangian in Eq. (25), in the chiral effective theory
approach tadpole diagrams arise, that can be dealt within
perturbation theory [14]. On the other hand, in a non-
perturbative approach based on the functional integral, such
as lattice QCD, the partially aligned Lagrangian can be more
convenient: it shows that the only needed nonperturbative
matrix elements involve the (C)EDM operator and the
singlet pseudoscalar density (or equivalently GG).

D. CP-violating effective Lagrangian
at the hadronic scale

To summarize the above discussion, at the hadronic scale
(u ~ 1 GeV) the vacuum-aligned flavor-conserving effec-
tive Lagrangian including the leading BSM sources of
CP violation (up to dimension five) can be written as
follows,

PHYSICAL REVIEW D 92, 114026 (2015)

L = Locp+qep — My — p[dMliysy

ie _ . ig _ .
- EWU;M’SF” [DE]QW - EWUﬂDySGﬂ [DCE]V/’
(26)
where
9., 0 0
Q=10 g4 0 [. (27)
0 0 g,

Here we are neglecting operators that are total derivatives
and/or vanish by using the equations of motion (EOM),
needed later on when we impose off-shell renormalization
conditions at finite momentum insertion. The matrix-valued
CP-violating couplings [M], [D¢g], [Dg] are related to the
short-distance couplings of Eq. (1) via Eq. (21) and Eq. (19)
or Eq. (24), depending on whether or not the PQ mechanism
is assumed. The pseudoscalar mass term [5M] in general has
a nonsinglet structure in flavor space, though at leading
order, its physical effects can be related to a flavor-singlet
mass term as discussed in Sec. IIC [see Egs. (25)].

III. CP-ODD OPERATOR OF DIMENSION <5

The only 7-odd and P-odd operators of dimension five
appearing in the low-energy effective Lagrangian Eq. (26)
are the quark EDM and CEDM, whose mixing and
renormalization we wish to discuss.

The analysis of the quark EDM is relatively simple: this
operator is a quark bilinear from the point of view of strong
interactions, and it is simply related to the tensor density.
Knowledge of the nucleon tensor charges immediately
allows one to extract the contribution of the quark EDM to
the nucleon EDM [47,48]. To lowest (zeroth) order in
electroweak interactions, this operator renormalizes diago-
nally, precisely as the tensor density. Since we are not
interested in the hadronic matrix elements to a precision of
order agy /7 < 1%, we neglect the quark EDM mixing
with any other operator.

On the other hand, the quark CEDM operator does not
renormalize diagonally: it mixes with the quark EDM and
other operators of dimension five or lower. The mixing
structure is particularly rich if one considers renormalization
within a so-called regularization-independent (RI), momen-
tum subtraction (MOM) scheme, amenable to nonperturba-
tive calculations in lattice QCD [49]. In this family of
schemes, the renormalization conditions are imposed on off-
shell quark matrix elements in a fixed gauge, thus requiring
the inclusion of operators that do not contribute to physical
matrix elements, such as total derivatives and operators that
vanish on-shell by using the equations of motion (EOM). We
next discuss the relevant operator basis, the mixing structure,
and the strategy to determine the renormalization matrix.
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A. Operator basis

The implementation of RI momentum subtraction
schemes requires working in a fixed gauge. With gauge
fixing, full gauge invariance is lost and the action is only
invariant under BRST transformations [50,51]. A given
gauge invariant operator O (we have in mind the quark
CEDM) mixes under renormalization with two classes of
operators of the same (or lower) dimension [52,53]:
(i) gauge-invariant and ghost-free operators with the same
symmetry properties as O (Lorentz, CP, P) that do not
vanish by the EOM and (ii) “nuisance” operators allowed
by the solution to the Ward identities associated with the
BRST symmetry: these vanish by the EOM and need not be
gauge invariant. The ‘“nuisance” operators can be con-
structed as off-shell BRST variation of operators that have
ghost number —1, but otherwise with same symmetry
properties as O, as discussed in Ref. [52] and detailed in
Appendix B.

Following the above general prescription, we have con-
structed the basis of CP-odd (T- and P-odd) operators that
mix with the quark CEDM operator (the CP transformation
properties of fields are reviewed in Appendix A). We present
our results for np = 3. To restrict the possible structures in
flavor space we use the spurion method. While the effective
Lagrangian in Eq. (26) is not invariant under chiral trans-
formations on the quark fields w; x — Uy gy g With
Upr € SU(3), g, one can formally recover chiral invari-
ance by assigning spurion transformation properties to the
CEDM coupling matrix ([D¢g] = Up[Dcg|Ug), the mass
matrix (M - U, M U;Q), and the charge matrix
Q- Uy RQU,T_, »)- One then includes in the basis operators
that are chirally invariant in the spurion sense, and are linear
in the CEDM spurion [Dg|. Eventually, we set [Dcg] — 4
(a =0, 3, 8), where 1° = 1//615,; is proportional to the
identity matrix in flavor space, while for a =3, 8,
1 = 1%/2, with 44 the SU(3) Gell-Mann matrices (normal-
izations are such that Trp(t“r*) = 1/2 for a = 0, 3, 8).

In our basis we include operators proportional to the
quark mass matrix for two reasons: (i) the identification of
the CPV terms in Eq. (26) assumed the quark mass to be the
dominant source of explicit chiral symmetry breaking, and
(i1) we wish to include the effect of the strange quark, for
which m/Aqcp is not a big suppression parameter.

Finally, in order to present the operators that vanish by the
EOM in a compact form, we introduce the combinations:

wg = (iD'y, — M)y,
D, = 8, — igAST* — ieQA}’ (28)

’See Ref. [54] for an application of this formalism to the
CP-even sector of QCD. There is a one-to-one correspondence
between our operator basis and the one of Ref. [54], provided we
drop the total-derivative operators from our basis and set m = 0,
as done in Ref. [54].

PHYSICAL REVIEW D 92, 114026 (2015)
yg=—p(iD"y, + M),
D, =, + igAT* + ieQAY. (29)

Note that y g transforms under CP in the same way as y
(see Appendix A).

Next, we enumerate the operators of dimension five and
lower that can mix with the quark CEDM:

C = igpt*c™ysGuw. (30)

labeled by the flavor-diagonal structure # (a = 0, 3, 8). We
will use the notation 0,@ to indicate the i operator of
dimension d. If the regularization breaks chiral symmetry,
i.e., an additional left-right spurion (proportional to the
identity in the case of Wilson fermions) is present in the
effective Lagrangian, the CEDM operator can mix with
additional operators. While we will restrict our analysis to
the case of good chiral symmetry (which can be attained on
the lattice by using domain-wall [55] or overlap [56]
fermions), we will nonetheless identify the additional
operators appearing at a given dimensionality. Finally,
note that there are no CP-odd operators containing
ghost-antighost fields up to and including dimension five.

1. Dimension three

At dimension three there is only one operator allowed by
the symmetries:

00®) = P = yriysty. (31)

This operator mixes with the quark CEDM even in the
absence of other sources of chiral symmetry breaking, such
as mass terms or regularization artifacts. Therefore, the
lattice operator C; requires subtraction of power divergen-
ces due to mixing with the lower-dimensional operator P Lo
Defining the subtracted operator C = C; — ZPL, one can
determine Z by requiring that the quark two-point function

F(Cz) defined in Eq. (52) vanishes at a given symmetric
kinematic point p? = p? =¢* =—-A} for m, -0,

namely, Tr(l“(cz)yst“) A, =0

2. Dimension four

Assuming good chiral symmetry, there are no dimen-
sion-four operators that mix with the quark CEDM oper-
ator. If the regularization breaks chiral symmetry in a flavor
blind fashion, the CEDM can mix with the following
operators:

3Since dimensionally regularized operators do not mix with
lower-dimensional operators at any finite order in perturbation
theory, we will, when necessary, use a subscript L for operators
regularized in a scheme, like the lattice, that includes a hard
cutoff.
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GG,  0,(r'yst'y),  wirs{M. 1}y,
Te[MeWpiysy, — Tr[Mlpiyst®y. (32)

3. Dimension five

At dimension five, 14 Hermitian operators are present.
The first ten operators are gauge-invariant and do not
vanish by the EOM. The latter four are ‘“nuisance”
operators. To all operators we assign a number and also
a more suggestive name:

1

0y = C = igpa" Gty " =3 (0"r5 +7150™)
(33)
S = 2P = P (wiyst®y) (34)
oY =E = %wa" W01 (35)

. 1
0 = (mFF) = TrMQ?] S FFup  (36)

0% = (mGG) = Trl M) 5 eﬂWﬁGb ,Ghy  (37)

0 = (md-A); = Te[ M0, (Fr*ysy)  (38)

) = (md- )y = 5 (57 (M. 1))
— S THME, () (39)
O = (P, = wirst Mty (40
05 = (m*P), = T M?]giysi‘y (41)
Oy = (m?P)y = TeM)piys My (42)
0(151> = Pgpr = iWWgyst“ve (43)

0)=0-Ap= OulWerysty +wytyst®yg]  (44)
055; = Ay = pysOt'yp — yedysty (45)

ie  _ _ u
0254) =A, ZE(W{QJa}A(y)YsWE—II/E{QJ A ysu).

(40)

With a flavor blind breaking of chiral symmetry, the
CEDM can mix with additional dimension-five operators,
namely,

PHYSICAL REVIEW D 92, 114026 (2015)
Tr[M]O, (priyst'y),  Tr[Mpiys My,
(TeM)piysty, T M*“Ypiysy,
Tr[M]Tr[M*griysy. (47)

In the perturbative analysis presented below, we will
use dimensional regularization. For ys we will present
results for both the naive anticommuting scheme known as
naive dimensional regularization (NDR) and the consistent
’t Hooft—Veltman (HV) scheme (see [53] and references
therein). It is important that the regulator does not break the
Hermiticity of the operator basis: when considering oper-
ator insertions in the dimensionally regulated theory, care
must be taken to ensure that the operators remain Hermitian
for arbitrary spacetime dimension d. This is essential in
order to obtain correct results for the finite parts of the
diagrams. In what follows we will need to insert 0( Jin loop
diagrams, so we provide in Eq. (33) the explicit Hermluan
form of 05 ), valid both in HV and NDR schemes.

B. Mixing structure and Renormalization
Conventions

The relation between renormalized operators (O;) in any
given scheme and bare operators (0( )) (expressed in terms
of the bare fields) can be written as:

(0) _
0\ =z;0;.

(48)

The renormalization mixing matrix Z;; is scheme-
dependent and has the general structure given in
Table I.* This structure is dictated by several consider-
ations, including (i) power-counting (some operators are
effectively of dimension three and four with either factors
of masses or external derivatives and cannot mix with
genuinely dimension-five operators), (i) BRST invariance
[52], and (iii) vanishing by EOM or at zero four-momentum
injection. Indicating the gauge-invariant operators that do
not vanish on using the EOM (0( ) fori = I,...,10) by O

and the “nuisance” operators (0(5) for i = 11 . 14) by
N,, the renormalization matrix has the block-structure

(0)
(o) =(5 2)() @
N© 0 Zy N
The divergent part of Z, (proportional to 1/(d —4) in
dimensional regularization or log A> in a cutoff theory),
controlling the physical anomalous dimension, is indepen-
dent of the gauge-fixing choice [52].

In the following we will provide Z, in the MS scheme
and in a momentum subtraction scheme to one-loop order.

*Working to first order in insertions of the new physics
operator, each sector labeled by the diagonal flavor structure
t* (a =0, 3, 8) renormalizes independently, so that the renorm-
alization matrix has a block-diagonal form in flavor space.
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TABLE L.
proportional to the electroweak coupling agy.

[Tal)

Mixing structure of the dimension-fivee operators, with “x

PHYSICAL REVIEW D 92, 114026 (2015)

representing nonzero entries. Throughout, we neglect effects

C 0P E mFF mGG

(mo - A),

(md-A),

(m*P),

(m2p)2

(mZP)3

Per

Ay

AA<7)

X

X

X

X

X

X

X

X

X

We will perform the calculations in dimensional regulari-
zation (d = 4 — 2¢) and will present results in both the HV
and NDR schemes [53] for y5 and the y-matrix algebra
(we use the definition of ys and €% given in Ref. [57]).
To extract the operator renormalization matrix we define
the field, coupling, and mass renormalization constants as

y O =\/Z,w (50a)

AV = \/ZgA, (50b)
(0) . e}’E/Z

9" = Zy9gs  Mus = MW (50¢)

m® =27z, m. (50d)

Here, as usual, u denotes an arbitrary parameter with
dimensions of mass, introduced to keep the renormalized
coupling ¢ dimensionless ([g] =0), while [m]=1,
[w] =3/2—¢, and [A,] =1 —e. Note that g and a, =
¢*/(4r) depend on both u and e, so that da,/
d(logp) = =2ea, + O(a?).

Finally, let us discuss different conventions for the
renormalization factors for fields, couplings, masses, and
operators, generically denoted by Z. Our definitions in
Egs. (48) and (50) follow the notation typically used in the
perturbative QCD literature (see for example [58]).
However, we warn the reader that the lattice community
typically uses a different convention (fleshed out explicitly
in Ref. [59]), which is related to the one followed here by
replacing everywhere Z — Z~!.

IV. GREEN’S FUNCTION CALCULATIONS

In order to determine Z;; and the relation between MS
and the RI-SMOM scheme to be defined in Sec. VI below,

we will study amputated two- and three-point functions’
with operator insertion. These are shown in Fig. 1 and
defined as follows:

/ dxeme(g(pf )| 0(x) g(p. €))

= (27)*W (g + p — pe; (P (p. p)e,(p)  (51)
/ dhxe= (g ()| 0()la(p))
= 20)*6W (g + p - pa(p' )Ty (p, p)ulp)  (52)

/ d*xe=15(q(p'), g(k, €)|0(x)|q(p))

= 2a)*sW (g + p - p' = K)a(p )T (p, p' K)u(p).
(53)

To minimize notational clutter in the above equations and
throughout the paper we will suppress the color indices,
which can be restored as follows. The gluon two-point
function F’g carries the color structure 5°¢, where ¢, ¢ are
the octet color indices labeling the two amputated gluon
external legs. The quark two-point function F(Oz) carries the
color structure §;;, where i, j are the color indices labeling
the two amputated quark external legs. The quark-quark-
gluon three-point function F<03) carries the color structure
T f’] where b is the octet color index labeling the amputated
glﬁon external leg and i, j are the color indices labeling the
amputated quark external legs. Moreover, in our notation

>Since the terminology of lattice simulations also counts the
points at which the operator is inserted, these correspond to three-
and four- point functions in that terminology.
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q k
O, O
/Oi.\
/pvp’ /p'p\‘ /va‘

FIG. 1. Momentum flow of generic diagrams contributing to
the quark-quark, gluon-gluon, and quark-quark-gluon Green’s
functions with operator insertion. The shaded blob represents the
operator insertion with incoming 4-momentum ¢ and higher
order corrections. In the four-point function, the gluon (photon)
momentum is labeled by k.

FS) is linear in the gluon polarization vector, i.e., FS) =

e,’j*(k)l“g)” . Analogous definitions exist for the photon
two-point function and the quark-quark-photon three-point

function, which we will denote by I') ) (p,p') and

Fg’y)(p, p'. k) (the latter carries color structure &;;). The
assignment of momentum flow in these two- and
three-point functions with operator insertion is shown
in Fig. 1.

In any scheme, the renormalization factors Z;; intro-
duced in Eq. (48) can then be determined by imposing
conditions on the two- and three-point functions defined
above. Working to first order in «y, the needed Green’s

functions with insertion of 055) = ( read:
@ _ (2)’ -1 (2)
r.->=r Z I 4
c | ytoop +;( )1 0 |ee (54)
3 3 _ 3
re) = rQ’H + (2,2, Zg(27 )y, = 1)TY)
-loop tree
_ 3
3@ (55)
J#1 J
/A 11 v
FC o FC 1-loop + Z ]]FO tree (56)

The simplest perturbative scheme is MS, in which one
determines the (Z7'),; by requiring cancellation of the
poles in € = (4 — d)/2. Similar relations involving inser-
tions of Oii1 allow one to determine the remaining entries
Z;; of the renormalization matrix. This program requires
computing the tree-level and one-loop results for the
two- and three-point functions, to which we turn next.

A. Tree level matrix elements

In this section we give tree-level results for the gluon two-
point functions Iy (p, p), the quark two-point functions

Fg) (p,p'), the gluon-quark-quark three-point functions

FS) (k, p, p'), and the photon-quark-quark three-point func-

tions Fg‘” (k, p, p'), for all the relevant operators 05’1) .

The only operator with nonzero two-gluon matrix
element at tree level is Ogs) = mGG:

PHYSICAL REVIEW D 92, 114026 (2015)
F’;25) (p, p') = Tr[Mr?] x 4€”’““ﬂpap’ﬁ. (57)

An analogous result holds for the photon two-point

function l"””(g )(p ).

In Tables H III, and IV, we give the tree- level 1-particle
irreducible (1PI) matrix elements F(O) (p,p),T 0 (k, p.p),

and F(037)(k, p, p') for each operator. Throughout, we use
the notation:

TABLE II. Nonvanishing tree-level 2-point functions with
operator insertion. For notational conventions and momentum
flow, see discussion below Eq. (53).

0 ry

o® =p iyst?

0&5) = 0P —ig?yst°

05 = (mo- A), T M) igys

07 = (md- A), (M. 1) = STl M))igys

0y = (m*P), LM, Y iys

0y = (m2P), Tr[M2tiys

o) = (m*P), Tr[M]iMys

Of) = P =ilp - p't* =3 {M?, 1} +ia(p, p')1°
+5{M. 1 }elys

0 =0 Ag ilg*t — {M.1}q = 2io(p. p')t)rs

o) = A —il(p? + p")1" = L{M. 1}y

TABLE III. Nonvanishing tree-level 1PI quark-quark-gluon

3-point functions. For notational conventions and momentum
flow, see discussion below Eq. (53).

0 ' (1pr

o =c 2g6(e*, k)yst?

o) = Py —igle* - (p+ p') —io(e*, p = p')lyst”
0(152) =0-Ag 2ga(e*, q)yst®

o =4 —igle - (p + p') +io(e", p — p’' = 2k)]yst”

TABLE IV. Nonvanishing tree-level 1PI quark-quark-photon
3-point functions. For notational conventions and momentum
flow, see discussion below Eq. (53).

0 ') (1p1)

Ogs) =F e{Q,1}o(e*, k)ys

o) = Py -5{0.}e - (p+p') —io(e, p—P)lys
o) =0-Ag e{Q,1"}a(e*, q)1s

0 =40 —%{0.1Ye - (p+p) +iole’ p—p' = 2K)]rs
0 =Aw  —5{0.1Ye" (p+p) —iole’.p = P)lrs
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2
: bt

FIG. 2. Non-1PI diagrams contributing to the quark three-point
function. The shaded blob represents the 1PI contribution to the
relevant two-point function with operator insertion.

©

st

00000000

o(a,b) = a,c"b,

€(a. b, c) = €4p,,a"bP el (58)

Finally, for a given operator O, non-1PI tree level
contributions to the three-point functions (see Fig. 2) can
be expressed in terms of quark and gluon two-point
functions as follows,

Ky 4+ m
2

2 (p.k+p')
S—m

I (p.p' k) = —ge

*

p—k+m
— gy (p—kp) e
u—m

g v *
=1l (P =P ke, (59)
where s = (p’ + k)z, u= (P - k)z, 1= (P/ - P)z-

B. One-loop Green’s functions with
CEDM insertion

At one-loop level, we regulate the diagrams with dimen-
sional regularization, following the notation introduced in
Sec. III B. Working in general covariant gauge (with gauge
fixing parameter £),° we have computed both the divergent
and finite parts of the Green’s functions at generic kin-
ematic points, before specializing to nonexceptional
momentum configurations needed to define the operators
in the RI-SMOM scheme (see Sec. VI). Specifically, for
the two-point functions (with p + g = p’) we work at the
symmetric point p> = p'?> = g> = —A?. For the three-point
functions (p + g = p’ + k) we work at the nonsymmetric
point S characterized by p> = p? =k =g* =s=u=
t/2 = —A>. We will provide the motivation behind this
choice in Sec. VL

Throughout this work we will denote the SU(N) color
factors as follows:

N2 -1
Cp=—5—,
2N¢

1
CA :Nc, TF:E (60)

(’Feynman gauge corresponds to £ = 1, while Landau gauge
corresponds to £ = 0.

PHYSICAL REVIEW D 92, 114026 (2015)
1. Quark two-point function

At one loop, F(Cz >( p, p') receives contributions from the
diagrams in Fig. 3 and reads:

iag . 1 12
e (p.p') = ™ {(p2 + p)yst [3CF <E + logp> +f0]

3Cp (1 2
+{M. 1 }qys {—TF (‘ + log %)

€
mg
+fi+o(2s
/12
+ {MZ, la}j/j |:—6CF (_ + IOg P)
m2
+fz+0<—§>]}, (61)
where
22 4
V=T x3Ck AP =2x3C, (62)
2
fI]{V = _3CF7 fII\IDR = —3 X 3CF (63)
10 2
12-1\7 = —? X SCF, IZ\IDR = —g X 3CF (64)

2. Gluon two-point function

As illustrated in Fig. 4, at one-loop level three diagrams
contribute to the gluon two-point function with insertion
of the CEDM operator, I (p, p’), defined in Eq. (51). The
third diagram vanishes due to the antisymmetry of o,,,
while the other two contribute

(04
e (p.p') = - TiMET (. ')

1 u? m2
X [Z(E—l-logp) +4 4+ O(A—g>], (65)

I S i U

FIG. 3. Diagrams contributing to the quark two-point function.
The dot denotes the insertion of the CEDM operator.

ot L

FIG. 4. Diagrams contributing to the gluon two-point function.
The dot denotes the insertion of the CEDM operator.

114026-11



TANMOY BHATTACHARYA et al.

PHYSICAL REVIEW D 92, 114026 (2015)

T

£

o
£

¥
A~

FIG. 5.

where F’gé( p.p') = 4e"¥p, pj; [see Eq. (57)]. This result
allows us to identify the mixing between the CEDM
operator C and the operator Ogs) = mGG.

3. Quark-quark-gluon three-point function

We now turn to the quark-quark-gluon three-point func-
tion with insertion of the chromoelectric operator,
F(C3) (p,p', k), defined in Eq. (53). In all diagrams we
chose to eliminate the four-momentum ¢* in favor of
(k+ p' — p)*. The amputated three-point function receives
contributions from 1PI diagrams (see Fig. 5), non-1PI
diagrams (see Fig. 2), and quark and gluon wave-function
renormalization. In this section we summarize our results for
the 1PI diagrams and note that the non-1PI contributions of
Fig. 2 are determined by the one-loop results for the quark
and gluon two-point functions F(Cz) and 'Y presented in
Egs. (61) and (65), as detailed in Eq. (59). As we will discuss
in Sec. VI, we can choose a kinematic point and appropriate
conditions so that the non-1PI diagrams are not needed to
determine the RI-SMOM renormalization constants.

Fg (p, p', k) can be decomposed in terms of 16 spinor
structures and is characterized by 16 scalar coefficients

1ﬂ<c3) = [c17s + c26(e", k, p. p') + c3€7ys + cakys + csprs
+ cep'ys + cr€,(€7, k, p)y* + cse, (€7 k. p)r”
+ co, (€%, p. PV + cro€, (k. p. P')Y*
+ cno(€”, k)ys + co(e”, p)ys + cizo(€”. p')rs
+ cuo(k, p)rs + ciso(k. p')rs + ciso(p. p')rs).
(66)
|

1PI diagrams contributing to the quark three-point function. The dot denotes the insertion of the CEDM operator.

The coefficients ¢; are functions of the invariants p?, p'?,
k*, ¢, s, t, u, and €* - (p £ p'). The ¢;’s can be expressed
in terms of triangle and bubble scalar integrals and their
derivatives with respect to the invariants they depend on.
For a generic kinematic configuration, the result involves
logarithms and dilogarithms of ratios of invariants, and
logarithms of ratios of the invariants to the renormalization
scale u. Working at the RI-SMOM kinematic point
pP=p?*=k=¢=s=u=1t/2=-A% and in the
massless limit, greatly simplifies the integrals, reducing
them to single-scale integrals. At this point, the triangle
scalar integrals collapse to constants, and contribute in two
forms. First, triangles that are functions of three invariants
that become equal at the renormalization point, like p?, k?
and s, or p’?, k* and u, are proportional to the constant

2 1 2
— M)y =2
v 3("" (3) 3”)’

called C, in Ref. [59]. Here w(!) denotes the first derivative
of the digamma function. Second, triangles that depend on
the invariants p2, p’> and ¢ are proportional to the Catalan
constant, which can also be expressed in terms of the first
derivative of the digamma function

0 ()<)

The only other nonrational number occurring in the result is
log(2), which originates from the choice t = —2A2.

Next, we give the UV divergent parts of the diagrams in
Fig. 5, and the finite pieces of those Dirac structures that give
nonvanishing contributions to the projections used to define
the quark CEDM operator in the RI-SMOM scheme (see
Sec. VI). The quark-quark-gluon three-point function is

(67)

(68)

, 11 1 2
r (010 =g f2ater s (o= € (G 5) ) (3 el )+

3C,

+o(e,p—p)rs [—T (8

e
+ log P) + kz}

. 3 1 2
+i(p+p')-€s [<6CF - ZCA> <g + log%) + k3} }t" + - (69)
7Hermiticity of the operator implies constraints among the various coefficients, such as ¢, = —c3, which we have used to check our

calculation.
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where, here and later, ... denotes the contribution of the
Dirac structures that are not relevant to defining the quark
CEDM in RI-SMOM scheme. The constants k;, k, and k5
depend on the definition of y5 in d-dimension. In the ’t
Hooft—Veltman scheme, they are given by

33-¢ 2 542
Y =-2Cp(2-¢) + 45 CA+<§CF— —; §CA>U/
+(2Cr = Cy)(1 - 5K (70)
13-2
BV = Cp(2-) - ( . 5—§w>

ecs-c)-9)(3le -K) (1)

44 3+2
k?v = ?CF - 2CA + <—4CF + écA)l//

6
3+¢
- )P g2) (72)
while in NDR
kII\IDR — kll_lv - 2(CF + CA) (73)
NDR __ 7 HV 1
KPR = KV +2Cy (74)
20
JYDR — pHV _ S Crts CA (75)

4. Quark-quark-photon three-point functions

The quark-quark-photon three-point function with inser-
tion of the quark CEDM gives

1 2
—‘{Q ’“} {26(8 k))’s[ Cr <g+1og%>+k§”}
+Cra(e',p=p')rs

1 2
+i(p+p')-€ys {6Cp <€+logx2) +k<37>] } +

with

P =y (<44 3v) 77)

44
k;y)HV —C, (_ _ 41//> kg}')NDR = Cp(8 —4y). (78)

PHYSICAL REVIEW D 92, 114026 (2015)

C. One-loop Green’s functions with
insertions of E, P, 0-A, and GG

The determination of the physical block Z, of the
mixing matrix in Eq. (49) requires the calculation of quark
and/or gluon two-point functions with insertions of the
operators E, 9*P, (m*P), 5, (md-A),, and mGG. The
renormalization of the pseudoscalar and tensor densities,
and axial current has been studied in many papers, and the
conversion between MS-NDR and RI-SMOM to one loop
was addressed in Ref. [59]. The renormalization of GG in
MS was studied in Ref. [60]. Here we provide one-loop 1PI
results for the Green’s functions in MS-HV and MS-NDR.

The relevant projection of the quark-quark-photon 1PI
three-point function (this is essentially a quark-quark
function) with insertion of the quark EDM operator,
evaluated at the symmetric point gives

aY k
FS’Y) — _e{Q,;a}—47‘TU(€ k)rs
| u
« [(1 —&)Cr ( +1°gA2> *kT} "

kT=CF(1—é)(2—§w),

(79)

(80)

both in HV and NDR.

At one loop, the 1PI quark two-point functions with
insertions of the operators 9>P and (m*P), , 5, evaluated at
the symmetric point, are given by '

()
Fazps(mzp)l,z.,%

1
= iys { —q*t, 5 {M?2, 1}, Te[M?19)1, Tr[M 14| M }

a 1 u?
e kp+(3+¢&)Cr +10gA2

-¢.
N ic” pap/,—FO(A)],

where kp depends on the d-dimensional definition of ys,
namely,

—I—CF

(81)

KNPR = KBV 8.

’

k?V:cF{2<6+é>—¥ ]

(82)

The gluon and photon two-point functions with insertions
of P are finite, and not needed for renormalization. Eq. (81)
is in agreement with the result of Ref. [59], where the
calculation was carried out in the NDR scheme.

The 1PI quark two-point function with insertion of
the operators proportional to the divergence of the axial
current is
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1 1
Fgfn)a.A) (md-A), = igy’ {Tf[Mf“]“,E{M,t”}—gTr[/\/lt“]ﬂ}

e
x4— {kA—l—Cpif( —HogAz)]
KV =Cp(é+4) K\PR=Cpé. (83)
The gluon two-point function with insertion of the
operator (md - A), is finite, and we find,

2
I“Em)g;)l = Tr[M1] 2 F4e”’“"‘ﬁpap/,, (84)
where ny = 3 is the number of flavors we are considering.
The insertion of the operator (m0 - A), vanishes.

Finally, the gluon and quark two-point functions with

insertion of (mGG) are given by

O™ — 4T Mya]emvabp, Py

(mGG) 4

2
x{CA3—2H:( +1lo gxz) +kG} (85)

g 1 2 -
szn)Gé) = iTr[Mt‘]gys 4%1’ [6CF (g + log %) + kG}
+ O(M?) (86)
CA 5 4_1
kg = ) <17 & - 3 B+ oy > (87)
I;G - CF(16—41//), (88)

These results determine the self-renormalization of (mGG)
and its mixing with (md - A),.

V. RENORMALIZATION MATRIX
IN MS SCHEME

In this section we provide one-loop results for the Z,
block of the renormalization matrix given in Eq. (49). At
various stages of the calculation we need the one-loop
results for the mass, couplings, and field renormalization
constants in general covariant gauge (recall d = 4 — 2e):

1 ag

Zy=1-—223C; (89)
€4
1 oy
Z,=1--35¢C; (90)
lag| 4 13 ¢
Zo=14-53|-Zn.T e 1
G +€4ﬂ[ 3 F+CA(6 2)] (91)
la‘ lch —4TFnF
z, =1 % AT rE 92
g edr 6 (92)
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where the color factors are Cr, Cy, and Ty are given in
Eq. (60). We will also need the renormalization constants
for the pseudoscalar wysy and tensor yo,w densities,
defined by O<r0> = ZrOr:

1l a
1 a;
Zr=1-—--2 4
T 647ZCF (9 )

For the mixing of dimension-five operators, specializing
Eq. (48) to the MS scheme at one loop one finds

< Y vy 1
Oli\/IS — (Z_l)%!50§-0), ZI[\;[S = 51’] _ EZ_;ZU' (95)
Note that in the above expressions a, denotes the
d-dimensional renormalized coupling defined in Sec. III B,
satisfying da,/d(log u) = —2ea, + O(a?). So to O(ay) the
anomalous dimension matrix y = d(log Z)/d(log ) can be
immediately read off Eq. (95): y;; = 2a,/(47)z;;.

The various entries of the renormalization matrix are
determined as follows:

(i) Finiteness of the quark two-point function F(CZ>,

gluon two-point function I'%, quark-quark-gluon

F<C3) and quark-quark-photon F(g 1) three-point func-

tions implies a set of conditions for zj,,
n=1,...,14. Note that only the results for n =
1,...,10 affect physical observables, the rest are
given for completeness

(i) The operator 0< ) = 9P renormalizes diagonally
with constant Zp.

(iii) The quark EDM operator 03) E renormalizes
diagonally (to zeroth order in the fine structure
constant) in the same way as the tensor quark
bilinear, i.e., (Z71); = Z7.

(iv) To zeroth order in the electromagnetic couplings,
OEP = mFF renormalizes diagonally with the re-
normalization constant (Z7'),, = Z;!.

(v) The subset of operators 022,10 related to the axial
anomaly renormalize, to one loop, as follows [60]
(recall Z,,Zp = 1):

mGG \™  [7;'22 -1%6C. 0

T
(mo-A), = 0 zZ)! 0
(m?P), 0 0 zZ)!
mGG )
x | (md-A), (96)
(mP)s

To explicitly check Eq. (96) at one loop use
Egs. (81), (83), (85) and (86).
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(vi) Finally, 055) = (md - A), renormalizes as (md - A),
and 05(53 = (m?P), , renormalize as (m*P);, thus

leading to (Z7')77 4500 = Zp/".
In summary, the entries in the first row in Eq. (49) are:

11 = SCF - 2CA (978_)
z2=0 (97b)
213 = 4Cr (97¢)
314 = 0 (97d)
215 = =2 (97¢)
1

216 — CF — ZCA (97f)

3
217 = 3Cp — ZCA (97¢)

3
218 — 6CF + ECA (97h)
219 = 0 (971)
Z110=0 (97j)

3
z11 = 6Cp — ECA (97k)

3
z112 = —3Cr + ZCA (971)
3
21,13 :ZCA (97m)
3
2114 = ZCA- (97n)
For the remaining nonzero entries we have:
Zp = —3Cp (98a)
733 =Crp (98b)
44 = 3CF (980)
11C4 — 4T pn

255 = —% +3Cr (98d)
756 = —6Cp (98e)
Z66 = 277 = 288 = 299 = 210,10 = ICF- (98f)

PHYSICAL REVIEW D 92, 114026 (2015)

The submatrix z;;, z;3 and z33 agrees with the original
calculation of Refs. [61-65].

VI. DEFINITION OF RI-SMOM OPERATORS
AND MATCHING TO MS

A consistent phenomenological analysis of BSM-induced
CP violation in hadronic systems requires computation of
the effect of the CP-odd operators in Eq. (26) on couplings at
the hadronic scale, such as the nucleon EDM and the T-odd
zNN couplings. This is an intrinsically nonperturbative
problem. The first step in this program involves defining
UV finite operators in a suitable renormalization scheme,
whose matrix elements can be then computed nonperturba-
tively within lattice QCD. Here we will define finite
operators within a class of regularization-independent (RI)
momentum subtraction (MOM) schemes [49,59]. Next, one
converts the matrix elements in the RI-MOM scheme to the
MS scheme, commonly adopted to compute the Wilson
coefficients and their renormalization-group evolution down
to the hadronic scale, using continuum perturbation theory.

In this section we address the following issues:

(1) We provide a set of regularization independent
normalization conditions for the amputated Green’s
functions I s) that subtract all the UV divergences
and fix the' finite parts of the renormalization
constants for the gauge-invariant CP-odd operators

..... 10- Since we will use subtraction conditions for
the three-point functions at a nonsymmetric mo-
mentum point, we call this scheme RI-SMOM, as
opposed to RI-SMOM [59].

(2) We provide the finite matching matrix that relates the
RI-SMOM and MS operators to one loop in pertur-
bation theory:

ORLSMOM — ¢, OMS (99)

In practice this amounts to finding a linear combi-
nation of MS operators OMS such that the Green’s
functions with insertions of ORFSMOM gatisfy the

normalization conditions that define the scheme (see
item 1. above).

A. Defining the RI-SMOM scheme

We follow the strategy outlined in Refs. [49,59], with
appropriate modifications related to the operators we are
dealing with. The content of this scheme can be summa-
rized as follows:

(i) We require that the quark and gluon two-point

functions with insertion of the quark CEDM operator

Fg) (p,p') and l“(c2 n “(p., p') vanish at the symmetric
kinematic point S defined by p? = p’? = ¢*> = —AZ.
(i) We require that certain projections of the three-point

functions with quark CEDM insertion F(C3 ) and F(C3 7)
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take the tree-level value at the nonsymmetric

kinematic point S (involving only nonexceptional

momenta) characterized by p? = p'? = k> = ¢> =
s=u=1/2=-A\.

With this choice, and by virtue of the normalization
condition imposed on F(Cz) (p,p'), the non-1PI dia-
grams [see Eq. (59)] contributing to the three-point
function with insertion of 0(15) = C on the quark

external legs vanish. In other words, the amputated
Green’s function coincide with the 1PI Green’s
functions up to a non-1PI term arising from operator
insertion on the gluon external leg. This non-1PI term
does not project on the spin/Lorentz structures that we
use to impose the normalization conditions, so for all
practical purposes the renormalization conditions can
be imposed on the 1PI vertices.

(iii) We require that the gluon and quark two-point
functions with insertion Ogs) = (mGQG) take their
tree-level value at the symmetric point S given by
p*> = p'?> = ¢*> = —A?%. The condition on the gluon
two-point function involves overall factors of the
quark masses. While one can use quark masses in
any scheme, we choose to use the quark masses in
the MS scheme. This leads to the simplest matching
factors, and corresponds to imposing the subtraction
conditions on the operator GG, ignoring the mass
factors.

(iv) The remaining operators are related to quark bi-
linears: 0%_10 are related to the pseudoscalar

(5)

density, O3’ is related to the tensor density, and

025_)7 are related to the divergence of the axial
current. We exploit this factorized structure and
impose the “standard” RI-SMOM conditions [59]
on the quark bilinear part. The subtraction condition

for 025_)10 involves again overall factors of the quark
masses, for which we choose the MS values. This is
equivalent to imposing the conditions on the quark
bilinears, ignoring the overall quark mass factors.

Throughout, we impose the normalization conditions in
the chiral limit m, — 0. This is achieved as follows: (i) We
expand two- and three-point Green’s functions in spin-
flavor structures, keeping explicit powers of the quark
mass. (ii) Through appropriate projections we then isolate
the coefficients of the various spin-flavor structures, which
are defined for any value of the quark mass. (iii) Finally, we
impose normalization conditions on these coefficient func-
tions in the chiral limit. This procedure defines a mass-
independent renormalization scheme.

This RI scheme, defined in terms of gauge fixed corre-
lation functions of quark and gluon states in the deep
Euclidean region, serves as a useful intermediary for
converting nonperturbative results to those required for
phenomenology. In this work, we only discuss the matching

PHYSICAL REVIEW D 92, 114026 (2015)

of this RI scheme to the perturbative MS scheme in covariant
gauges. To complete the program of connecting the MS to a
lattice scheme, we also need to calculate the matching
between lattice and this RI scheme. Among the covariant
gauges, the Landau gauge is the most convenient for lattice
calculations. The calculation of the corresponding matrix
elements on the lattice can be done either using lattice
perturbation theory, or nonperturbatively. In fact, matrix
elements with quark external states are used extensively
nowadays for renormalizing lattice operators [49]. However,
renormalization of the CEDM operator needs extension of
such calculations to include gluon external states. Even
though gluonic correlators have long been studied on the
lattice [66], they are typically noisy. In addition, the matrix
elements with two quarks and a gluon external state gives
rise to “four-point” functions,8 and there is little experience
with calculating these in the lattice community.

Apart from these difficulties, however, the nonperturba-
tive evaluation of the matrix elements is theoretically
straightforward. The large number of off-shell operators
does not pose a significant challenge either. In particular,
since these operators explicitly involve the equation of
motion, an n + 1-point function involving them is straight-
forwardly related to a n-point function obtained by exactly
canceling an external propagator using the equation of
motion. With such reductions, the number of correlation
functions that need to be evaluated nonperturbatively are
much fewer than the number of operators in the basis.

1. Subtraction conditions on the quark CEDM

We now give explicitly the 14 conditions needed to

determine ZRISMOM ® We begin with the conditions on the
two-point functions with external gluons and photons:

€uwapP” P"’TE (p, p)ls =0 (100a)

€uapP" VT (p.p')]s = 0. (100b)

The quark-quark Green’s function has the following
spin-flavor structures,

T = a5t + ayo(p. p)yst® + as M4y
+ ay Tr[M 1?4y
+ asM>*t%s + agTr[M>]yst

+ a; Tr[ M| Mys, (101)

where the a; are functions of the kinematic invariants.
We impose the RI-SMOM condition that all the ; vanish at

*It is conventional in the lattice literature to count the point of
op%rator insertion.

This is in addition to the condition for eliminating possible
power divergences (see Sec. III A 1).
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the symmetric kinematic point S in the chiral limit m, — 0.
This can be achieved with the following projections (traces
are over color, spin, and flavor indices):

Tr[lys19] = 0 (102a)

T ys50,,1% = 0 (102b)

_1< e ysg M) ) o (102¢)
T ysgl T M) )

Trp[(M?19)?]
TrpM?Trp[M?(14)?]
Trp[M14]Trp[M319)

M3:

The above projections work for nondegenerate quark
masses (m, # my # my). In the isospin limit m, = my,
the matrices M, and M3 become singular. In Appendix D
we describe the projections needed in this case.

To express the subtraction conditions on the quark-
quark-gluon three-point function, we restore the color
and flavor indices of these objects. Recalling that Fg) is
proportional to 1“T? where 1% is a matrix in flavor space'®

while T? is a color generator, we will use the notation

I <C3) - F(C3)’“b. The conditions then read (there is no
summation over a and b)

1 (3).ab S
— TP s(p, p) T = 24 (105
i€(€*,k,p,p/) I"[ C 6([) p) }S g ( a)
T[T “o(k, p + p)i*T?s =0 (105b)
Tr[r “ysiT? = 0. (105¢)

Note that in the first condition above, we could have used
the renormalized value of the strong coupling constant in

any renormalization scheme. The use of ¢M5 makes the

connection between RI-SMOM and MS schemes simpler.

Finally, we impose the following conditions on the
quark-quark-photon three-point function:

(B

Tr[l”

'o(p, p') 015 = (106a)

"We use 1 =1/v6l5,; so that Trp(r"t%) =

a=0,3,8.

1/2 for

TrFMzTrF[./\/l2(t“)2]
(TTFMz)zTrF [lata]
Trp./\/l2(TrF [Mta])Z

PHYSICAL REVIEW D 92, 114026 (2015)
oy s M21e]
M3 T yseqTr M) | =0,
T s MITe M)/

(102d)

where the matrices M, and M5 are given by (here Trp
denotes the trace over flavor indices only)

Ted(MeR]  (Trp[Me])?
Mz&mwnzmmwwﬂ (103)
and
Trp[Mt4)Trp[M319]
Ty MR (T (Mr])? (104)
TrF/\/lz(TrF[./\/lt“])2
TEE 5015 — 0. (106b)

2. Subtraction conditions on the remaining operators

We give here the subtraction conditions needed to
determine the remaining entries of Z§" SMOM  For the
operator 0 = (mGG), we prescribe

1
_WeyU(lﬁp pﬁrﬂ (p p )|S - TrF[MMSta] (1073)

[ 0(5 754] =0. (107b)

The remaining operators 0&526 1o are related to quark

bilinears, and we wish to impose the “standard” RI-SMOM
conditions [59]. 0%2 10 have a simple factorized form, and
the normalization conditions of Ref. [59] are equivalent to

6_q2Tr{FO(25>y5ta] _1 (1070)
1
12 zTr{FS()sWSK[] = npTrp[MM31] (107d)
q 6
2)
12q2 Tr[FOgS)VSqM]S
1 _ N
= Trp[(M?)MSpa — §/\/lMSTrF[/\/lMSt“]] (107e)
1 R
3 T rs] = Tre[(M2)¥See] - (1074)
8 S
iTr[r@)yta] g [(M?2)MS] (107g)
120 ©oPf i T F
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1 — —
—Tr[F(OZ()S)ys]S = Trp[MMS)Tr, [MMS].  (107h)
10

12i

The operator 0( ) is related to the tensor density but
contains an exphclt photon field strength. One would be
tempted to impose the following condition on the quark-
quark-photon matrix element,

1
12ie(e*, k. p, p')Tr[(Q1%)?]

T o(p, p) 019 =26,
0; N

(108)

which effectively fixes the projection on the structure

o(e*, k)ys to its tree-level value. However, in terms of

matrix elements of the tensor density, this prescription
corresponds to

Te[l7 (p, p)yso(p. p')ls = 12ie*P papl,  (109)
which differs from the standard one [59],
e[ (p. p')o,]s = 144, (110)

and would lead to a finite difference in the renormalization
factors.'' In our analysis we stick to the standard normali-
zation condition Eq. (110). This can be obtained by
imposing Eq. (108) while performing a finite shift dkz
in the loop factor k7 given in Eq. (80), namely,

5kT=CF<1—5>(§—§ > (111)

B. Matching RI-SMOM and MS operators

We now determine the conversion matrix appearing in
Eq. (99),

C.. ( ( 7RI- SMOM) Zm )

g ij> (112)
to first order in «,. Denoting field renormalization and
renormalized amputated Green'’s functions of any operator
O in the RI-SMOM scheme with Z .G and FO, respectively,
and the corresponding quantities in the MS scheme with

Z,¢ and Ty, the matching conditions take the form

Z

2 2

Ty, = - > :Cijr(o,.)
a7

(113a)

""Note that in the free theory (I — 6#*), both Eq. (109) and
Eq. (110) hold. However, when including interactions a differ-
ence arises: the projection Eq. (109) selects the ¢ component of
I, while the projection Eq. (110) picks up not only 6** but also
additional terms in I}, such as 6% p, p(pp"” = p*p™").
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s Z
o =522 Cil, (113b)
G

N Z Zl/2
) re)
0,~ z, Z1/2Z ij (113c)

7 = éZc. ry” (113d)

' Z,% T 0;

When one imposes that the IN“O[ satisfy the RI-SMOM
subtraction conditions given in subsections VIA1l and
VIA2, one obtains a system of linear equations for the
C;; matching factors.

Using the explicit one-loop results of Secs. IVB
and IV C and the ratios of wave-function renormalization
factors,

2
R B R N PN 114
) +4 2, Cr¢ +ogA2 (114)
ZG (&2
Ze~ Tag’e
a, 97 & £\ 20
=1+2|C 0T
+477:|:A(36+2+4) o "FLF
13 &\ 4 U2
|:CA(6 5) —gnFTF:| logp 5 (115)

we solve for the Cj;.
To O(ay), the matching coefficients have the structure

Cij = 51} +

2
a, p
E|:Cij+zij10gpj|, (116)

corresponding to the RI-SMOM renormalization matrix

RI-SMOM Ay 1 s

We have given the pole terms z;; in Sec. V, while the
constants ¢;; can be expressed in terms of the loop factors

FoG defined above and For2s kioz k%, kg, kg, and ky pr
defined in Secs. IV B and IV C. We find for the first row ¢ ,,:

611:—k1—§k2 +§k3—rq—%rc (118a)
iy =2fo+ky — ks (118b)
¢y = —k +¥ (118c¢)
=0 (118d)
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c15=—4 (118e)

e =2 _32f1 (118f)

ci7 =ky—2fy (118g)

cig = —2f2—ky — k3 (118h)
c9=0 (118i)
cr0 =0 (118;)
crin =k +k; (118k)
Cl,lzz_kz_;]% (1181)
cr13 = —ky (118m)
ey =k — ks (118n)

For the remaining nonzero entries of ¢;;, we find

cn =—kp—r, (1180)
c33 = kg — Skp — 1, (118p)
Cs5 = —Kg — I (118q)
Cs56 = —Kg (118r)
Ceo = C77 = —kp — 1, (118s)
Cg3 = Cgg = C1,10 = —kp — 1. (118t)

In Appendix E, we report explicit results for the
matching coefficients ¢;; using both the HV and NDR
prescriptions for ys.

VII. RENORMALIZATION AND THE AXIAL
WARD IDENTITIES

In the previous section we have imposed a set of
subtraction conditions on CP-odd operators of dimension

five, some of which are related to the axial current (Oé‘:’_)7),

the pseudoscalar density (0%5_)10), and GG (0?)). So far we
have not discussed whether the resulting finite operators
satisfy the nonsinglet and singlet axial Ward identities
(WIs). In particular, the normalization conditions on the
singlet A, P, and GG may be inconsistent with the singlet
WIs. For the nonsinglet case, RI-SMOM subtraction
conditions have been shown to be consistent with the
WIs [59].

PHYSICAL REVIEW D 92, 114026 (2015)

In general, one can obtain properly normalized sym-
metry currents through the Ward identity method, discussed
in Refs. [67,68]. Moreover, in Ref. [59] the RI-SMOM
conditions were suitably chosen so that they are consistent
with the nonsinglet axial WIs. Here we take a different
point of view: we discuss how to define renormalized
(singlet and nonsinglet) axial current and pseudoscalar
density operators that satisfy the axial WIs, starting from an
arbitrary subtraction scheme, such as MS or the RI-SMOM
scheme defined in Sec. VI A. We put forward a two-step
approach:

(1) Using any regulator and any subtraction scheme,

define renormalized (finite) axial (A,), pseudoscalar
(P) and GG operators.

(2) Starting from any of the above schemes, perform a
finite renormalization that leads to operators A,, P
and GG that obey properly normalized WIs. The
resulting A, is the “symmetry current” associated
with axial transformations. We may call this new
scheme the “WI scheme.”

In the case of MS and the RI-SMOM scheme defined in the
previous section, we provide the explicit matching factors
to the WI scheme to O(a,). We will also describe the
procedure to obtain nonperturbative matching factors con-
necting the RI-SMOM and WI schemes.

Our discussion is inspired by the analysis of
Refs. [53,69] for a dimensionally regulated theory and
of Refs. [70,71] for a lattice regulated theory. While we give
details pertaining to the dimensionally regulated theory, our
aim is to point out that the general features of the analysis
are “RI,” i.e., regularization independent. Therefore, we
will draw parallels with discussions of the axial current in
various lattice QCD formulations [70,72,73] in appropriate
places.

A. PCAC relation in terms of bare operators

We focus on the singlet axial current for concreteness.
A discussion of the nonsinglet current in the context of
dimensional regularization and minimal subtraction is
presented in Ref. [53], and the relevant results are a special
case of the analysis presented below. In terms of suitably
regularized operators, the PCAC relation takes the form

0-A=2(mP)+ Pr+X. (119)
In dimensional regularization the bare operators take
the form A, = w(1/2)[r,.vsly, (mP) =yMiysy, P =
WElysw + wiysyp. X is the anomaly operator, whose tree-
level insertions in Green’s functions vanish as one removes
the regulator (d — 4 in dimensional regularization or a —
0 in the lattice theory). In the dimensionally regulated
theory, with HV prescription for the y5, one has

1. = -
X =5wlrs b~ Dlw. (120)
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which clearly vanishes at the classical level in d = 4 due to
the anticommutation properties of ys. For d # 4 this
operator is nonvanishing and through divergent quantum
corrections it can leave a finite remnant in Green’s
functions, including anomalous terms in the axial current
conservation equation. In NDR, X always vanishes. For this
reason, NDR does not “see” the axial anomaly and cannot
consistently be used for the discussion of the singlet axial
current. In the lattice theory with Wilson fermion discre-
tization, X is the variation of the Wilson term under axial
transformation [70,72], and its properties are similar to
those of X in the HV scheme.

The anomalous term X can be expressed as a linear
combination of other regulated operators with same quan-
tum numbers and an evanescent operator X, whose inser-
tions in Green’s functions with arbitrary number of fields
vanish at the quantum level as one removes the regulator.
To perform the projection on nonevanescent operators one
defines [70]

X =X+ad-A+p2(mP) +yGG, (121)
and determines the coefficients a, f, y perturbatively or
nonperturbatively by requiring that appropriate projections
of matrix elements of X in quark and gluon states (and their
derivative with respect to the mass) vanish'?

(alXla)l, =0 (122
I {glXla)l,, =0 (123
(g1X1) =0, (124)

Analyzing Green’s functions of X with two quarks and
with two gluons to one loop in perturbation theory in the
MS-HV scheme, we find

ay . .
Iy = 1 4C,ligys —4iMys] (125)
T = pp S5 gemab p pl (126)
X dr ath
leading to
a
= —4Cp 127
a Fan (127)
a
= 8Cp > 128
p=8Cr (128)

PInsertions of X can give nonvanishing results only in Green’s
functions with positive superficial degree of divergence. Of these,
one needs to analyze only the one with two quarks and the one
with two gluons, as the others do not provide independent
information.
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aS
y=-—-np—.

- (129)

Using Eq. (121) into Eq. (119), one gets the final result

(14+a)d-A=2(1-p)(mP)+Pr—yGG+X, (130)
which is still expressed in terms of bare operators and
couplings. The nonsinglet case is now straightforward:
one finds the same values of « and f, and the nonsinglet
anomalous operator X“ does not have a GG component.

B. PCAC relation in terms of
renormalized operators

We next express the PCAC relation in terms of renor-

malized operators [O];, related to bare operators O; via

[note that in this section we use a different notation
compared to Eq. (48)],

0, =Z;[0];, (131)

with Z;; given in an arbitrary scheme. For the operators of

. o . 3
interest, we have the mixing structure'

GG Zgg ZGG.@A 0 [GG]
0-A | = 0 Z4 0 [0 A]
(mP) 0 0 ZnZp [mP]

(132)

Using Egs. (127), (128), (129), and (130) leads to the
renormalized PCAC relation,

nr

Ci()[0- A] = Co(g)2lmP] + C5(9%) 3¢ [9°GG]

+PE+)_(3

(133)

with coefficients, in terms of the bare coupling g,

Ci(9?) = Za(1 4+ @) + vZg5 00 (134a)

Co(9%) = ZpZ,, (1 = p) (134b)

= 5 167%y »

C3(g ) = - ) ZgZGf;y (134C)
nrgg

satisfying C; ,3(0) = 1. As a consequence of the finiteness
of the EOM operator, [Px| = P, and of the independence
of the operators [0 - A], [mP] and [GG], C, ,3(¢g*) must be
finite.

YThis is valid in schemes in which m, 4. are multiplicatively
renormalized with the same constant Z,,,.
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C. Finite renormalization and WIs

Equation (133) shows that in a given renormalization
scheme (i.e., a choice of Z4 p, Z,,, Z ;. Z56.0.4 that makes
the operator insertions finite) the renormalized quantities
do not necessarily satisfy properly normalized (anomalous)
WIs: the MS-HV scheme is one example. However, given
the scheme-dependent C ,3(g?), through a finite renorm-
alization one can restore the WIs, as seen from Eq. (133).
Operators in the “WI scheme” are defined by

(A = Cl (92)[14”} (135)
[mPly; = Cy(g*)[mP] (136)
[*GGlyi = C3(4)[4*GG). (137)

Applying the operator d/d(logpu) to both sides of
Eq. (133), using the finiteness of Py and the independence
of the remaining operators, one obtains a set of differential
equations for C),3(g?). The solution reveals that the
coefficients C,3(g?) are such that [mPly; and [¢*GGly;
have vanishing diagonal anomalous dimension to all
orders. On the other hand, C;(¢*) is such that [A,]y,
has an anomalous dimension starting at O(g*), related to
the off-diagonal anomalous dimension y ;¢ 5.4 = —(z7'dz/
d(logu))gGo.4- DaMElY,  yay, = 76604 - A/ (47). The
rescaled operators satisfy the properly normalized PCAC
relation:

n ~ _
- [Aly = 2[mPly; + Fjﬂ [PGGy; + iPr + X.  (138)
T_he coefficients needed to reach the “WI” scheme from the
MS-HV scheme to O(g?) are'

A

C,=1-4C
! Fan

62:1—8Cp& C3:1+0(0{§)
4
(139)

In the case of the RI-SMOM scheme defined in
Sec. VI A, the perturbative values of a, f# and y are still
given by Eqs. (127), (128) and (129). In HV, the conditions
given in Egs. (107c), (107d), and (107e), which are the
equivalent to the RI-SMOM condition of Ref. [59], give

a,

Z,=1+2(4C 140

A +4”( F) (140)
aS

ZpZ, =1+ 25 (8Cy). (141)
Az

where we used the value of Z,, obtained in Ref. [59]:

“To determine C; we rely on the two-loop calculations of
Ref. [69].
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A CF

Z, =1 ?<4+§—(3+g)%>. (142)

This leads to C(¢?) = 1 + O(g*) and C,(¢*) =14+ O(g*),
thus showing that singlet and nonsinglet axial currents
and pseudoscalar densities are already correctly normal-
ized, up to corrections of O(g*). The RI-SMOM condition
Eq. (107a) leads to a GG which is not correctly normalized.
However, once a definition of Z, is given, for example, by
fixing the three-gluon or quark-gluon vertex at the sym-
metric point to its tree-level value [74,75], Eq. (134) allows
one to define [GGly;.

Equations (140) and (141) differ by a finite piece from
the results in Ref. [59], which are obtained using NDR
and found Z, = ZpZ,, = 1. The finite pieces in Z, and
ZpZ,, are crucial in compensating the anomalous dimen-
sion of the axial current and pseudoscalar density arising
from divergences in the MS-HV two-loop calculation, as
can be explicitly verified from the results of Ref. [76].
For the nonsinglet axial current, the cancellation is exact,
and the RI-SMOM axial current does not have anomalous
dimension at O(a?2). In the singlet case, the O(a;) finite
piece ensures that the relation y4 = y56 949/ (4r) is
respected.

While we have given explicit results in perturbation
theory within the MS-HV and RI-SMOM scheme, the
above discussion provides the steps needed to determine
the coefficients a, f, y starting from any regulator and any
scheme. These, in turn, in combination with the renorm-
alization factors of Eq. (132) determine the finite rescaling
factors C|,3 in Egs. (134) needed to obtain renormalized
operators that satisfy the axial Ward identities.

VIII. RELATION TO THE AS =1
CHROMOMAGNETIC OPERATOR

In a recent article [38], the renormalization of the
strangeness changing quark chromomagnetic dipole
moment (CMDM) operator has been studied. In our
notation the P- and CP-even operator studied in [38]
reads

Ocu = gl/_/tASG#yGﬂuwv

00 0
s=10 0 1 (143)
01 0

Ref. [38] studies the mixing of O¢y with lower-dimen-
sional operators nonperturbatively on the lattice, and the
mixing of O¢y, with other dimension-five operators in
perturbation theory both in the lattice and in MS schemes.
Clearly, a number of common issues arise in our study and
in Ref. [38], so a closer comparison of operator basis and
mixing results is desirable.
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A. Operator basis

First, let us focus on the operator basis. Note that our
operator basis was constructed assuming diagonal flavor
structures, so that [M, 1*] = [Q, 1*] = 0 and Tr(M1*) # 0.
In the case of flavor off-diagonal generators, such as 25, a
number of new operators appears at dimension five, while
all the operators involving Tr(M“) vanish. In what follows
we provide (i) the basis of dimension-five operators mixing
with the P- and CP-odd CEDM operator O = C defined
in Eq. (30), with off-diagonal flavor structure t — 25 and
(i1) the corresponding basis for the P- and CP-even sector
(mixing with O¢y,), to be compared with Ref. [38].

For ease of comparison with Ref. [38] we omit the
operators involving the electromagnetic field, i.e., Ogs) and
0\) of Sec. LA 3. With this in mind, for the AS = 1
sector we find ten independent CP-odd operators. In the
notation of Sec. IIIA3 (with ¢ — 125, we find
C.0°P,(md-A),,(m*P), 5, Pgp, 8- Ap. Ay and two new
structures that vanish for diagonal flavor generators,
namely, (m>P), = yriys|M, [M.t%]ly and (mPg), =
wpiys|IM, 125y — wiys|M, t*S]yg. In order to match
more closely the operator basis of Ref. [38] we can trade
the operator (md-A), involving derivatives of the axial
current in favor of (mPg), = Wgiys{ M, t*S}hy + iys
{M, 25}y, via the relation

2(md-A), = 4(m*P), — (m*P), + (mPg),.  (144)
So we end up with the dimension-five basis in the P- and
CP-odd sector reported in the left column of Table V.
The corresponding P- and CP-even sector operators can be
obtained from the above ones with the substitution iy; — 1
and are given explicitly in the right column of Table V.

We can now compare our basis to the one in Ref. [38],
which consists of ten dimension-five operators O; . o:

(i) For the gauge-invariant operators that do not vanish

by the EOM, after converting the operators in [38]
from Euclidean to Minkowski metric, we find the
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correspondence: O; = Oc¢y, O, = 2(m?S),, O3 =
(m?S), — 1/2(m*S),, Oy = —=0*S.

(i1) For the operators vanishing by the EOM we find:
Os = Sgp, 07 =1/2[(mSg), — (mSg),], Og =—1/2
[(mSg)1 4+ (mSg)y), Og==(0-VE+V,y), O19=V,.

(iii) There is no operator in our basis corresponding to
O in [38]. The CP-odd counterpart of O is
Prp = Wiyst®Swpp + Wepiyst®Sy, and it can be
expressed in terms of operators already present in
the basis, via:

0-Ag = Pgp + 2Pgp + (mPg),, (145)
A similar linear dependence relation holds in the
P- and CP-even sector. Ref. [38] finds at one loop
that O is not needed to renormalize O(y,. This is
consistent with our finding that Oy is not linearly
independent.

(iv) In Ref. [38] the operator (m>S), = (m%+ m%+
m?)3d is absent. This operator is allowed by the
symmetries of the problem. In perturbation theory it
can mix with O, starting at two-loop order, so its
omission does not affect the results of Ref. [38].
However, the operator should be included in non-
perturbative renormalization treatments.

B. One-loop renormalization factors

Using the CP-odd operator basis of Table V, we have
extended our analysis of the two- and three-point functions
to include off-diagonal flavor structures and have found the
mixing to the additional operators (in the MS scheme)

lag3
:_;_(CA _4CF)

146
c4r 8 (146)

ZOCE,(MZPM = _ZOCEs<mPE)1

Using (i) the results given in Sec. V for the operator mixing
in our original basis [extended to the new structures
through Eq. (146)] and (ii) the change of basis implied

TABLE V. Operator basis in the CP-odd and CP-even sectors.

CP-odd

CP-even

Ock = igpe*ysG,, t*5w

PP = P (wiyst*Sy)

(m*P), = Syiys{ M2, "5}y

(m*P), = Tr[M>|iystSy

(m*P)y = yriys[M, [M, 1>y

Ppp = ipgyst®Syg

(mPg), = wgiys[M. 1]y — yiys[M., i*ly
(mPg)y = yriys{M, t*yy + wiys{M, 1>}y
Q- Ap = 0, [wer'yst®Sy — rysy t®Sy ]

Ay = gysd®Syp — g Jyst™Sy

Ocy = g G, 1*y
S = O (w*Sy)
(m*S), = 3 {M?*, 1%}y
(m2S), = THM2)geSy
(m?S)y = yIM., [M. >y
Spp = W™y
(mSg), = WM. ]y — @ [M, 85y
(mSg), = wp{M, "5y + g {M, >}y
0 Vi = i0,[fey" ™Sy — gy t*5y ]
Vo = widt®Syp — ypie Sy
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by Eq. (144), we have computed the renormalization matrix
relevant to the CP-odd operators in Table V.

In order to compare to Ref. [38], we need the relation
between the divergence structure of the CP-even and
CP-odd sectors. At one loop we have verified that the
divergences of two- and three-point functions with inser-
tion of O¢y, and O are related by a simple operation 7:

FOCM = %[FOCE]’
2{iys = LIS M > (=1)"*2S M (n =0,1,2)}.
(147)
Similarly, the tree-level insertions of the CP-even (O, ) and

CP-odd (O_) operators appearing in each line of Table V
are related by I’y = 7[["_|, except for the following cases:

Cimsyyin = 2l mpp),, ] (148a)
T, = —#p,,] (148b)
Loy, = _%[FZ}AE] (148¢)

Iy, = —#[T,,] (148d)

From the renormalization matrix in the CP-odd sector and
the relations (148), we have computed the renormalization
factors in the C P-even sector, in the basis of Table V. Finally,
converting to the basis O; ;o of Ref [38] (using the
relations given in Sec. VIII A), we find our results for the
renormalization coefficients to agree with Egs. (66)—(75)
of Ref. [38].

IX. CONCLUSIONS

In this work we have studied the oft-shell renormaliza-
tion and mixing of CP-odd dimension-five operators in
QCD in both the MS and RI-SMOM schemes (the latter
amenable to implementation in lattice QCD), providing the
matching matrix between operators in RI-SMOM and MS
to O(ay).

We have paid special attention to the definition of a finite
quark CEDM operator in the RI-SMOM scheme, identify-
ing all the needed subtractions. This is the first step towards
a lattice QCD calculation of the impact of the quark CEDM
on the nucleon EDM, which is currently afflicted by one
order of magnitude uncertainty. This paper sets the stage to
perform nonperturbative renormalization of the CEDM.
The next steps in the program involve (i) performing
exploratory computations of the needed CEDM quark
and gluon Green’s functions on the lattice, and comparing
this method to lattice perturbation theory; (ii) performing
exploratory calculation of the CEDM insertion in the
neutron state, correlated with the electromagnetic current
or in external electric field [34].
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Besides inducing nucleon EDM, the quark CEDM
induces T-odd P-odd pion-nucleon couplings that are a
key input in the computation of EDMs of both light and
heavy nuclei. Chiral symmetry implies that the 7-odd pion-
nucleon coupling induced by the quark CEDM can be
extracted (up to chiral corrections) by calculating the
baryon mass splittings induced by the quark chromomag-
netic dipole moment (CMDM) operator [14]. In a future
publication we will explore the nonperturbative renormal-
ization and mixing in the flavor-diagonal CMDM sector
and its relation to the CEDM.

Finally, a desirable extension of this work involves
studying the nonperturbative renormalization and mixing
structure of CP-odd dimension-six operators, such as
Weinberg’s operator [77] and four-quark operators.
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APPENDIX A: CP TRANSFORMATION

In this Appendix we review the definition and properties
of the CP transformation. On the fermion fields y, CP is
defined as the linear operator CP:

CPWCP =y = ieyygp

= —ie?(yys)" = ieyp’, (Al
where y* = y'7, ¢ is an arbitrary phase, and we are using
the convention that y, is an anti-Hermitian matrix.”” Note
that the CP transformation for the U(1)-transformed
fermion field ¥ = ey looks like Eq. (A1) with y —
and ¢ — ¢ + 20.

In addition to this, the CP transformation changes all
vector operators v* to v, in the metric with signature
(+ — ——), and changes every charge generator T¢ to (T%)”.

LetI';; denote a gamma structure with M Lorentz indices
and OV denote an operator involving derivatives with N
Lorentz indices. Then

(FTy OV )CP = —(yT ONTT,yT*)CP
= —[(=ie"ipys) ONT s (—ie™ Prysyin)]
= e (ririroelur)) On]
= e[ (=y2Tyr2)" Ony]

— ST Oy, (A2)

“Whenever we need an explicit representation for the y
matrices, we use that one provided in Ref. [57].
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where T/ = (=y,I'y7,)T and we have used the
Hermiticity of y,, anti-Hermiticity of y,, and y§ = 1.
Using y7 :y;* =vy,, we can now write the simpler

expression I'{f = —;/21“};;/2. For the 16 Clifford matrices,
we then have

17 = 1 (A3a)
r§° =15 (A3b)
vk =-r (A3c)
(rurs)" = rsr' = =r*vs (A3d)
ol = o = —o". (A3e)

For the equation of motion field yy = (iD*y, — m)y,
the transformation is

i = (iD" Py, = my’

= ie'’(iD}y, — m)yayow”
= ie"y,(—iD}y; — m)yoy*

= ieyyyo(—iDyy) — m)y*

= ieyyyo(—iDjy** — m)y*

= ieyyyo(—iDjy"* — m)y*
[

= iew}’z?’o (iD;ﬂ’” — m)y]*

= ieiqﬁ}’z}’oll/*E, (A4)
where the conjugate of D, = 0, —igA;T* is defined as
D;, = 0, + igA;T*" to take into account the opposite gauge
charge of the antiparticle. One way to state this result is that
the CP phase is the same for the fields w and yp, i.e.,
by, = by

Finally, note that the CP transformation on chiral fields
wir = Frs)/ 2w

C'P_l WLCP = i€i¢Y2WT

CP 'ywrCP = iey,yrg”. (AS5)

APPENDIX B: BRST SYMMETRY AND
OPERATOR BASIS

A given gauge invariant operator O mixes under
renormalization with two classes of operators of same
(or lower) dimension [52,53]: (i) ghost-free gauge-invariant
operators with the same symmetry properties of O that
do not vanish by the equations of motion (EOM) and
(i1) “nuisance” operators allowed by the solution to the
Ward identities associated with the BRST symmetry. These
include non-gauge-invariant operators. For completeness,
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TABLE VI. Properties for dynamical fields and BRST sources.
The first row indicates whether the variable is commuting (4) or
anticommuting (—). The second and third row list the trans-
formation under Lorentz and color groups. The fourth row gives
the ghost number assignments and the fifth row lists the mass
dimension.

M M J,-9c K w w A, ¢ ¢ 9,
Comm. + + - + - - + - +
Lorentz % % 1 0 % % 1 0 1
Color 3 3 8 8§ 3 3 8 8 8 0
Ghost -1 -1 -1 -2 0 0 0 1 -1 0
Dim. 2 3 3 4 3 3 1 0 2 1

we sketch below the procedure to obtain the ‘“nuisance”
operators, paraphrasing Ref. [52].

The gauge and fermion Lagrangian density for the
SU(3)¢ x U(1) gy, group is expressed in terms of physical
fields Ay, A,J:, v, ¥, the dynamical ghosts ¢, ¢4, ¢’, ¢, and
the nonpropagating sources for BRST transformations M,
M, Ju, K4, J,yl, whose properties are summarized in
Table VI. This Lagrangian is

1 1 — B
EO = _ZGZDGaMD_z_f(a'Aa)z - (JIC: —8ﬂc )Dﬂ’ bC/,
1
+ ngathachcc (Bl)
! ! 2 v =
——F, F" ——(0-A")" = (J, — 0,c")0"c” (B2)
4 2¢,
+ (i —m)y + M(=igciT® — iec” )y
+y(=ige?T* —iec’)M, (B3)
where
Gy, = 0,A] — 0,A; + gf“h"AZA,‘/' (B4)
F4, = 0,A] — 0,4 (B3)
Dabeb = 9,¢* + gfebeAbee (B6)
Dy = (8, — igAST — ieQAL)y. (B7)

The action S obtained by adding to the Lagrangian density
a set of infinitesimal sources ® for gauge-invariant ghost-
free operators O

S—/d4x£0(x)+/d4x<1>(x)0(x)ESO—I—(I)-O, (B8)

is invariant under the BRST transformations given by:

58 58
AAS = -850 AAL=——
sJ,

YT

By (B9)
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oS

Act = —_5) A’ =0 B10
¢ T sKe ¢ (B10)
_ 1 _ 1
AGt =—0-A%)  A¥ =—0-A754 (BI11)
<4 [
5
Ay, = ———65) B12
Vi=sin (B12)
5
A, = — 5, B13
Vi s (B13)

with 64 an anticommuting infinitesimal parameter. This
invariance leads to the Ward identities for the generating
functional of 1PI Green’s functions, that in particular imply
the following identity for § = S + [ d*x[1/(2&)(9 - A%)*+
1/(28)(0- A7)

/d4x §§+§5§+5S 58 +5S 58 +5S 88
SALSTY, " SALSTY  ScSK® T Sy 6M,; ' 5 OM,
=0. (B14)

While § = Sy + @ - O satisfies the Ward identity Eq. (B14),
the general solution involves additional terms. Writing the
general solution symbolically as
S=S+®- 0+ N, (B15)
and working to first order in the external sources (one

operator insertion), one finds that the nuisance operators N
must satisfy

W(®-N) =0, (B16)
with the operator
. 88,86 685 &6 656 68 6 85, &
W=t smsmtsrasra T 5asaa T sasea
SAL ST T ST 8AL  SALSIY T SJYSAL T 5c 8K
88 6 88, 6 88, 5 88, &
oK% 6c* 61]/1 5Ml 5M, 51//1 61/_/1 6Ml
58y &
. B17
oM, oy, (BI7)
Since W W = 0, it turns out that
d-N=W(@-F), (B18)

where F is a set of operators with the same Lorentz property
of O, same dimension, and ghost number —1. After acting
with W one sets the sources M, M, K to zero, and Jy
to —0,c.

We are now ready to classify the F operators and
resulting nuisance operators N:
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(i) At dimension five, the only Lorentz scalars of ghost
number —1 that we can write down are: Wy AM,
Wy ATM, MAyyy, MAy y, wy OM, Mdy.y,
McM, Mc'M, where y. = (1 £y5)/2 is a chiral
projector. Acting on these structures with W pro-
duces the terms wpAy.y, WAy y, Wedyw,
WA W WATX W Es WX LY E.

In addition, we have the gauge-invariant ghost-
free terms that are not zero by equations of motion in
the massless limit: wo"' G, xiy, Wwo''F, x.y,
Py sw), 0,(Wo* Diy swr), 0,(o* Doy sw).

(i) At dimension four, the only Lorentz scalars of ghost
number —1 are: My_y, wy M, J*AS, J'*Aj, and
Kc. The variation of these produce Wy vy, Wy e,
(D,G*"A, + qwAy) — g0,c, c]A*,  (0,D"A}+
eyAry), (0#¢)D,c, (D,0"C)c.

The only gauge-invariant ghost-free operators not
zero by equation of motion in the mass-less limit are:
G,,G" and G, G".

(iii) At dimension three and below, there are no ghost
number —1 scalars, so the only operators we need to
consider are the gauge-invariant ghost-free operators
that are not zero by the massless equation of motion.
The only possible such terms are yy .

Selecting the 7T-odd and P-odd structures, including gauge-
invariant ghost-free operators that do not vanish b?f the
EOM, and eliminating linearly dependent operators % we
arrive at the basis presented in Sec. III A.

APPENDIX C: AXION MECHANISM

A very elegant way to dynamically set @ to zero is the
Peccei-Quinn (PQ) mechanism [46], which predicts the
existence of a new light particle, the axion [78,79]. We
follow here the discussion of the PQ mechanism in the EFT
framework of Ref. [80]. A common feature of axion models
is the existence of a Upg(1) symmetry, which is sponta-
neously broken at high energy. The axion is the Goldstone
boson of the symmetry, and, under Upq(1), it changes by an
additive constant, ¢ — a + ¢, while the SM fields are chosen
to be invariant. At low energy, around the QCD scale, the
Lagrangian includes derivative couplings of the axion to the
quarks, which respect Upq(1). Furthermore, the symmetry is
explicitly broken by the anomalous coupling to GG [80], so
that the quark-axion Lagrangian has the form

1
L =wiDy + Eaﬂaaﬂa +w(Co+ C113)]/5}’”l[/8ﬂ£

7.
62 a ~ 92 a ~

Py -y A (B Vo7

‘327, 32n2( +fa>

— e My — e P My, (C1)

""We used the relation 0, (5" D,y) = —(0* + 4m*)P — 0-
Ap —2mPp, to eliminate one T-odd, P-odd structure. Moreover,
there are no 7-odd and P-odd operators containing the ghost
fields up to dimension five.
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where f , is the axion decay constant. The couplings Cy ; and
Cqy, are model dependent, while the coupling to gluons is
fixed by the U, (1) anomaly.

As in Sec. II, the GG term can be eliminated in favor of a
complex mass term, with the difference that the U,(1)
rotation depends on the axion field. The rotation has the
effect of modifying the couplings Cy; and c,,,, and, more
importantly, affects the mass sector. The discussion of vacuum
alignment of Sec. Il can be immediately generalized, by
replacing @ with @ 4 a/ f,. In this context, vacuum alignment
achieves the diagonalization of the pion-axion mass term.

After imposing the vacuum alignment condition, the
quark-axion Lagrangian becomes

2
5£——z/7[/\/l—/\/l 1’"*( +“> :|l//

Ja
o (5+2)

where we have kept terms quadratic in 6 + a/f,. When
chiral symmetry is spontaneously broken, yy acquires a
nonvanishing vacuum expectation value, —(m, + my)
() = 3m2f2, and the CP-even quark mass term in
Eq. (C2) generates an axion potential

(C2)

(o) =stmla- s (04 2) ]
myfz
 (m, +my)
<[t mitmoms (04 2)).
mg + mg + mg; —m, 7
(C3)

V, is an even function of 6 + a/f,, and it is minimized by

5. (@)
0+~ =0,
fa

thus canceling the CP-violating effects of the 6 term.
Oscillations around the minimum determine the axion mass
in terms of the pion mass and decay constant, and of the
axion decay constant

(C4)

2 £2
2 mﬂfﬂ.’ m,mgy

m
o fa (gt mg)?

where we neglected small corrections ~m,, ;/m;.

The presence of additional, chiral symmetry breaking
sources of CP violation has the effect of shifting the
minimum of the axion potential, inducing a residual 6 term,
proportional to the amount of CP violation. As an example,
we discuss the case of CP violation from a quark CEDM.
Performing vacuum alignment, as discussed in Sec. II,
induces a CP-even axion-quark Lagrangian of the form

, (C5)
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SL — _gm* <9 4 3 >1//0"”G”U./\/l [dcelw

g (04 ) oM e
—m M Tr M deg] by + O(6%). (C6)

When chiral symmetry is broken, the isoscalar components
in Eq. (C6) give a correction to the axion potential Eq. (C3).
Up to terms of [d¢y] x (6 + a/f,)? that affect the value of
the axion mass but do not change the minimum of the
potential, the shifted potential reads:

1 _a\?%, _
foep) ooz o
1

(04 1) Ay

x <l//6"”gG,wl//>-

The term proportional to [d¢g], odd in 6 + a/ f,, causes the
potential to be minimized at a nonzero value of the 6 angle,

(C7)

0+ Gy =TT ],
_ (o 9G,p)
ST (C8)

where, by chiral symmetry, r is the same ratio defined
in Sec. II.

APPENDIX D: PROJECTIONS IN THE
ISOSPIN LIMIT

We now discuss the projections needed to extract
as, ...,y in Eq. (101) in the isospin limit m, = m,; = m,
in which the matrices M, and M5 defined in Eq. (103) and
Eq. (104) become singular.

In the case a = 3, the operators O( ) and 0(1%) (and the
structures multiplying a4 and ;) vamsh To isolate as, it is
sufficient to impose

iy sgMP)g = 0. (D1)

In the isospin limit, for a = 3, a5 and a4 are both propor-
tional to 73, and cannot be disentangled with a flavor
projection. However, the different dependence on m? and
m? can be exploited, by imposing

> P X
Tr|| =— -2 r = D2
G2t -0 o

82
T
{Mz

The first (second) trace above isolates a5 ().

For a = 0 and 8, M, is not singular even in the isospin
limit, and the mixing of the CEDM with the divergence
of the axial current is found by imposing Eq. (102c).

g)mﬂ =0. (D2b)
S
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The structures multiplying a5, ag and a; can be projected
on the two flavor matrices ° and 3, so that the flavor
projections in M5 are not independent, and the matrix is
singular. Also in this case, one can take advantage of the
different dependence on m2, m*> and m,m. Defining t, =
(g +v/2ty) and t, = (t5 — —=1,), as, ag and a7 can be
disentangled by the following projections:

P P P
Tr [<8m2 —2p =4 am> rgwst,,s] =0 (D3a)

2
r 2| <0 o3

om 2

2
Tr [Gma amr@yszs} =0, (D3c)

where in Eq. (D3a) ¢, (¢) is to be used for a = 0 (a = 8).

APPENDIX E: MATCHING COEFFICIENTS

In this appendix we give explicit results for the matching
coefficients from RI-SMOM to the MS-HV scheme (where
y is defined in Eq. (67), K in Eq. (68), C4, Cr and T in
Eq. (60), & is the gauge parameter and n are the number of
flavors).

Ca(23 +98) —32C;  Cy—2Cr
12 vt

(1-§K

¢ =

C,y—-2C
10 31 1
+3”FTF+CF<T‘5)

+C (—646 — 36 + 9£2) (Ela)

e = (4cF—— 3+5>) L (Ca—20)(1- 9K

—2Cp)(14¢)log2

Ca

+Cr(2- <§)+T( 5+2¢) (Elb)

8 C 1
cn=(-3Cr+ 536+ Ju-3 (G201 - 9K

3
25 1 Cy
Clg = 0 (Eld)
cis =—4 (Ele)
Clg — 3C17 (Elf)
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Caé

cly = ?lI/‘F (Ca—2Cp)(1=EK
1
—3(€a=2C5)(1-§) log2
13 1
+CF(8_§)+CA<_Z+§§> (Elg)
8Cr—Cy4(1
e = GUED, - acn( -0k
+2(Cy —2Cp)log2
+cF(9+§) +Cy (g__§> (Elh)
3 4
C19:0 (Ell)
c110="0 (Elj)

C
€y = Cgg = Cg9 = Cip,10 = {(3 +&w —Cp(12+¢)

(E1K)
4 1

¢33 = Cr [( -¢) <§—§ ) + f} (E11)

C 2

css = 2CA< ts 5)1//-1-%( 403 — 18& + 98
+?HFTF (Elm)
cse = —4Cp(4—y) (Eln)
Cee — C77 = _4CF (EIO)

The coefficients in the NDR scheme are given by (we

report only the cases where ¢j;°® # ¢jiV)
PR =y +2C, - §CF (E2a)
NDR _ v _ 4
3N = —ch (E2b)
c,—4C
R (E2c)
c,—-4C
e = oy + G074 E24)
28
CIl\g)R = CII—ISV — CA — ?CF (EZe)
cIPR = PR — (E2f)
N = e = P = g = TF(3+§)W Cr(4+8).

(E2g)
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