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We study the exclusive leptonic and semileptonic B decays B — ¢~ 0, and B — D¢~ 0, in the
framework of the covariant quark model with built-in infrared confinement. We compute the relevant form
factors in the full kinematical momentum transfer region. The calculated form factors are used to evaluate
branching fractions and polarization observables of the above transitions. We compare our results with

experimental data and results from other theoretical studies.
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I. INTRODUCTION

The decays B — ¢ D and B — D(*)K‘D(f =e, 1)
play a prominent role in testing the Standard Model
(SM) and looking for hints of New Physics (NP) in
charged-current interactions. In the SM scenario a meas-
urement of these decays provides a direct route to deter-
mining values of the B-meson decay constant fp and the
semileptonic form factors. They also help to determine
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
|V.s| and |V ;]| to a better precision. A puzzling feature of
these decays is that there have been some recent hints that
lepton universality is broken in the tauonic modes of these
decays.

The leptonic and semileptonic modes are difficult to
measure experimentally due to the presence of a neutrino
in the final state. Ideal in this regard are B factories where
a B-meson pair is generated from the process ete” —
Y(4S) — BB. One of the B mesons (Byag) 1s then recon-
structed in hadronic or semileptonic modes, while signal
decays of the other B meson (By;,) are identified. A new
player has entered the game in that the LHCb Collaboration
has been able to identify the semileptonic decays B® —
D*z™0, and B’ — D*u~1, in hadronic collisions [1].

Since the first evidence reported by the Belle
Collaboration in 2006 [2], many measurements of the
branching fraction B(B~ — 777,) have been reported by
both the Belle and BABAR collaborations. There had
been a consistent excess compared to the SM prediction
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until Belle published their result of B(B~ — t77,) =
[(7.2451 (stat) + 1.1(syst))] x 107> with a significance of
3.06 [3]. This result reduced the tension between theory
and experiment and decreased the world average of the
measured branching fraction to the recent value of
B(B~ =17 1,)=(11.442.2)x 107> [4], which is slightly
larger than the SM expectation (8.1 £ 0.7) x 107> obtained
from a global fit to CKM matrix elements [4]. Note that the
most recent result of B(B~ — 77 7,) = [12.5 £ 2.8(stat)
2.7(syst)] x 107> [5] reported by Belle in September 2014
is in good agreement with its previous result.

The SM calculation of the leptonic decays suffers from
uncertainties in the input values of fz and V,;,. One can
eliminate the V,;, dependence by calculating the ratio of
branching fractions

Re B B_(B_ - 1_17,_) ’ ()
" 13-B(B > ntt o)

where £ = u, e. The ratio is measured to be (0.73 £ 0.15)
[6], which exceeds the SM prediction of R, = 0.31 £ 0.06
[6] by more than a factor of 2, while the measured value of
B(B® - ¢ 1,) = (14.6 £0.7) x 107 [7-9] is consis-
tent with the SM expectation.

The semileptonic decays B — D*)£v have a much richer
structure than the leptonic decays. There is a large number
of observables in these decays, e.g., the forward-backward
asymmetry of the charged lepton. Recently there has been
much interest in the ratios of branching fractions

B(B° - D% 1,)
#)) = 4
R(D™) = B(B® —» DW¢p,) @)
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In taking these ratios, some of the uncertainties in the form factors are reduced. Furthermore, the dependence on the
poorly known CKM matrix element |V | drops out in the ratio. Recently, three groups have reported measurements of

these ratios[1,10,11]:

R(D)|gprg = 0.375 + 0.069,

where the statistical and systematic uncertainties have been
combined in quadrature. These measurements were com-
bined in [12]

R(D)]eyp = 0.388 £ 0.047,

R(D*)|axp = 0.321 £ 0.021 (3)
and compared with the SM expectations given
in [10,13-15]

R(D)|gy = 0.297 +0.017,
R(D*)|gy = 0.252 £ 0.003. (4)

It is seen that there is a discrepancy of 1.8¢ for R(D) and
3.3¢ for R(D*).

The deviation of leptonic and semileptonic tauonic
B-meson decays from SM expectations has been the
motivation of many theoretical studies in search for NP
effects, including the two-Higgs-doublet models (2HDMs)
[16-19], the minimal supersymmetric standard model
(MSSM) [20], and leptoquark models [21,22]. In many
studies, a general effective Lagrangian for the b — ufv
and the b — ¢Zv transitions in the presence of NP is
imposed to investigate various NP operators and their
coupling, together with their correlations [14,23-25].

In this paper we focus on these decays within the SM
framework, using results from our covariant constituent
quark model for the dynamics of the transitions. Most of the
theoretical studies on the semileptonic decays have been
relying on elements of the heavy quark effective theory
(HQET) [26,27], based on a systematic 1/m expansion of
the QCD Lagrangian. The leading order of the HQET-
expansion corresponds to the heavy quark symmetry when
the heavy quark mass tends to infinity, simplifying the
structure of the weak current transitions. The form factors
of these transitions are then expressed through only a few
universal functions. Unfortunately, HQET can give pre-
dictions only for the normalization of the form factors at
zero recoil. As one moves away from the zero-recoil point,
one has to take recourse to full nonperturbative calcula-
tions. In this paper, we present a description of these decays
that does not rely on HQET. We employ the covariant
constituent quark model (CQM) with built-in infrared
confinement which has been developed in several previous
papers by our group (see Refs. [28,29] and references

|

therein). In the CQM approach, the entire physical range
of momentum transfer is accessible. This is one of those
features that make the CQM different from other model
approaches for the calculation of hadronic quantities. We
mention that a similar study was done by the authors of
Refs. [30-32] in the framework of a relativistic quark
model based on the quasipotential approach, in which the
full range of momentum transfer is also achievable. Our
aim is to give an independent calculation of these decays
including the ¢ behavior of the transition form factors,
the leptonic decay constants of the B and D mesons, the
forward-backward asymmetry of the lepton and other
polarization observables, as well as ratios of branching
fractions.

II. MODEL

The CQM is based on an effective Lagrangian describing
the coupling of a hadron H to its constituent quarks, the
coupling strength of which is determined by the compos-
iteness condition Z; = 0 [33,34], where Zj is the wave
function renormalization constant of the hadron H. Here

Z},/z is the matrix element between a physical particle state
and the corresponding bare state. For Zy =0 it then
follows that the physical state does not contain the bare
one and is therefore described as a bound state. This does
not mean that we can solve the QCD bound state equations,
but we are able to show that the compositeness condition
provides an effective and self-consistent way to describe
the coupling of a particle to its constituents.

One starts with an effective Lagrangian written down
in terms of quark and hadron variables [35,36]. Then, by
using Feynman rules, the S-matrix elements describing
hadronic interactions are derived from a set of quark
diagrams. In particular, the compositeness condition ena-
bles one to avoid a double counting of hadronic degrees of
freedom. This approach is self-consistent, and all calcu-
lations of physical observables are straightforward. There
is a small set of model parameters: the constituent quark
masses, the scale parameters that define the size of the
constituent quarks distribution inside a given hadron, and
the infrared cutoff parameter A.

The coupling of a meson M to its constituent quarks ¢,
and ¢, is given by the Lagrangian

Lin(x) = gyM(x) - Jyy(x) + Hee., (5)
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where g,, denotes the coupling strength of the meson with
its constituent quarks. The interpolating quark current in (5)
is taken to be

Iy (x) :/dxl/deFM(X;xleZ)‘_]Z(x2)FMQ1(xl)’ (6)

where the Dirac matrix I}, projects onto the relevant meson
state, i.e., I'y; =1 for a scalar meson, I'}, = y5 for a
pseudoscalar meson, and I'); = y* for a vector meson.
The vertex function F, is related to the scalar part of the
Bethe-Salpeter amplitude and characterizes the finite size
of the meson. We adopt the following form for the vertex
function:

1~ xz)z)» (7)

where w; =m,_/(m, +m,,) so that w; +w, = 1. This form
of Fy, is invariant under the translation Fj(x + a;x; +
a,x, +a) = Fy(x;x1, x,), which is a necessary condition
to provide the Lorentz invariance of the Lagrangian (5).
In order to simplify the calculations, we adopt a
Gaussian form for the vertex function as follows:

Fag(x;x1, %) = 6(x — wixy — wyxy )@y ((x

Bu(-p") = [ drem by () = e (8)
where the parameter A,, characterizes the meson size.
Calculations of Feynman diagrams proceed in the
Euclidean region where p?> = —p%, in which the vertex
function has the appropriate falloff behavior to provide for
the ultraviolet convergence of the loop integral.

In the evaluation of the quark-loop diagrams we use the
free local fermion propagator of the constituent quark

1 m, +k
S, (k) = = 4 9
a(K) m, —k — ie m?,—kz—ie ©)

with an effective constituent quark mass m,.

For the evaluation of the compositeness condition, we
consider the meson mass function defined by the diagram
in Fig. 1. One has

I:[P(PZ) = NcQ%/

d'k -~
(2—)41' (I)%(—kz)tr(ﬁSl (k+wip)

<Pk —wap), (10
17(77) = N, | ot B8, (k-4 1)
X 7Sy (k = wap)). (11)

where N, = 3 is the number of colors. Since the vector
meson is on its mass shell, one has ¢y, - p = 0, and one
needs only the part of the vector meson function propor-
tional to g,,. It is given by
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FIG. 1. One-loop self-energy diagram for a meson.

= 1 Pul
() =5 (90 - 25) ). (2)
p

The coupling constant g,, in Eq. (5) is determined by the

compositeness condition, which is written in the form
Zy =1 =Ty (m3 ) =0, (13)

where ITj;(p?) is the derivative of the mass operator taken

on the mass shell p> = m3,. It is convenient to calculate

the derivatives of the meson mass functions by using the
following identities:

d - 1 d - )
= 2P”d—p,,HM(P )s

d
P! d—p”S(k +wp) =wS(k+wp)pS(k+wp). (14)

Accordingly, the derivatives of the meson mass functions
can be written as

My (p?)
1 3¢ [ dk ~,

_ 2% B2 (12
2p? 47;2/471 i p(=K)

x {wytr[Sy (k + wi p)pS; (k+wi p)r° Sy (k — wop)y”]
— wott[Sy (k +w p)yr°Sa(k — wap) pSy(k — wap)r]},
(15)

LE)E [ e

x Aw e[Sy (k +wy p)pSi (k +wip)y,Sy(k = waop)y,]

— wotr[Sy (k + w1 )y, Sa(k = wap) pSo(k = wap)y, |}
(16)

The loop integrations in Eqgs. (15) and (16) are done

with the help of the Fock-Schwinger representation of
quark propagators:

114022-3



M. A. IVANOV, JURGEN G. KORNER, and C.T. TRAN

1 my +k+wp

Sq(k+Wp):m —k- wp_mq (k+wp)?

= (m, + k+wp) / dae~olmi=(ktwp)’]
0

(17)

As will be described later, the use of the Fock-Schwinger
representation allows one to do tensor loop integrals in a
very efficient way, since one can convert loop momenta
into derivatives of the exponent function (see, e.g.,
Refs. [37-39]).

As mentioned above, all loop integrations are carried out
in Euclidean space. The transition from Minkowski space
to Euclidean space is performed by using the Wick rotation

kO = €l77[k4 = lk4 (18)

so that k2 =kZ—k’ = —k2 —k’ = —k% <0. Simultaneously,
one has to rotate all external momenta, i.e. py — ipy,
so that p? = —p2 < 0. Then the quadratic form in Eq. (17)
becomes positive definite,

my — (k+wp)? = m + (kg +wpg)* > 0,

and the integral over a is absolutely convergent. We will
keep the Minkowski notation to avoid excessive relabeling.
We simply imply that k> <0 and p? < 0.

Collecting the representations of the vertex functions and
quark propagators given by Egs. (8) and (17), respectively,
one can perform the Gaussian integration in the derivatives
of the mass functions in Eqs. (10) and (11). The exponent
has the form ak® + 2kr + z,, where r = bp. Using the
properties (where k is the loop momentum)

k# exp(ak?® 4 2kr+zq) = 152

xp(ak? +2kr+zy)

k' k¥ exp(ak® 4 2kr + zp) =12 %diexp(ak2 +2kr+z9) (>

etc.

(19)

one can replace £ with 9, = y”% which allows one to
"

exchange the tensor integrations for a differentiation of the
Gaussian exponent. For example, Eq. (10) now has the form

~ 2) 39]) / /ood(lld(lz
1672

xtrly’ (my +0, +w p)y

>(my+0,=wyp)] e,
(20)
The r-dependent Gaussian exponent ¢~/ can be moved to

the left through the differential operator 9, by using the
following properties:

PHYSICAL REVIEW D 92, 114022 (2015)
D e_,z/a[ w0 }

or, or
0 0 2r# 0 2rY 0
— -rla _ ,—r*fa|_Z0 ¥ | |_Z Y
dr, or, ¢ ¢ [ + arj [ a + 8ry] - te.

(21)

Finally, one has to move the derivatives to the right by using the
commutation relation

2] o

The last step has been done by using a FORM code which
works for any numbers of loops and propagators. In the
remaining integrals over the Fock-Schwinger parameters
0 < a; < o0, we introduce an additional integration which
converts the set of Fock-Schwinger parameters into a
simplex. Using the transformation

lljlwda,-f(al,...,an)
:/Ooodtt”"il_[/da5< > >f(ta1,...,ta,,),

(23)
one finds
P?) 3gM/ dtt/ dae™"tam £ (1, ),
o =ami +(1—a)ml —a(l —a)p?,
iy = ;;Mi ((a—wa)?p?,
ay =2sy+t.b=(a—w)t. (24)

The function f),(z,«) arises from the trace evaluation.
Further, we have introduced the parameter sy = 1/A32,.
It is readily seen that the integral over ¢ in Eq. (24) is well
defined and convergent if z, > 0, i.e. below the threshold
p* < (m,, +m, ) The convergence of the integral in the
case of negative values of z; <0, i.e. above threshold
p* > (m,, + m,,)?, is guaranteed by the addition of a small
imaginary to the quark mass, i.e. m, - m, — ie, € > 0 in
the quark propagator Eq. (9). It allows one to rotate the
integration variable ¢ to the imaginary axis t — it. As a
result, the integral Eq. (24) becomes convergent but obtains
an imaginary part corresponding to quark pair production.
However, by cutting the scale integration at the upper
limit corresponding to the introduction of an infrared cutoff
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/0°° dr(..) — K”Z dr(..),

one can remove all possible thresholds present in the initial
quark diagram [28]. Thus the infrared cutoff parameter 1
effectively guarantees the confinement of quarks within
hadrons. This method is quite general and can be used for
diagrams with an arbitrary number of loops and propa-
gators. In the CQM, the infrared cutoff parameter 4 is taken
to be universal for all physical processes.

(25)

III. LEPTONIC B-MESON DECAYS

The model parameters are determined by fitting calcu-
lated quantities of basic processes to available experi-
mental data or lattice simulations (for details, see
Ref. [28], where a different set of weak and electromag-
netic decays has been used). In this paper we will use the
updated least-squares fit performed in Refs. [40-42]. In
this fit we have also updated some of the theoretical/
experimental input values. The infrared cutoff parameter
A of the model has been kept fixed. The numerical values
of the constituent quark masses and the parameter A are
given by (all in GeV)

m, my m, my A

0.241 0.428 1.67 504 0.181° (26)

Our prime goal is to study the pure leptonic B-meson
decays as well as the semileptonic B — D*)£7, decays.
The most recent results of the fit for those parameters
involved in this paper are taken from our papers,
Refs. [40-42] (all in GeV):

Ap- Ap: Ap Ap Ap Agp A Ap  Ap
1.53 1.56 1.60 1.75 1.79 1.81

(27)

The matrix elements of the leptonic decays are described
by the Feynman diagram shown in Fig. 2. The leptonic
decay constants of the pseudoscalar and vector mesons are
defined by

d'k -
N.gp / (— @P(—kz)tr[O”Sl (k + wlp)ySSz(k - sz)]

27)%i
= frp",
&~
N.gy m‘bv(—k J[OF S, (k 4wy p)éy Sy (k —w,p)]
= mvae"l/, (28)

where N. = 3 is the number of colors, and O* =y#(1 —ys)
is the weak Dirac matrix with left chirality. The mesons are

1.96 205 2.73.

PHYSICAL REVIEW D 92, 114022 (2015)
k+p

<I

k

FIG. 2. Quark model diagram for the B-meson leptonic decay.

taken on their mass shells. The calculation of the matrix
elements (28) proceeds in a way similar to the case of the
mass functions.

Our results for the leptonic decay constants of BE:))
D)
list the values of these constants obtained from experi-
ments, lattice, and QCD sum rules. Our results show good
agreement (within 10%) with results of the other studies.
We mention that early attempts to account for flavor
symmetry breaking in pseudoscalar meson decay constants
were made in Refs. [43,44].

In the SM, the purely leptonic decays B~ — £ 0,
proceed via the annihilation of the quark pair into an
off-shell W boson. The branching fraction for the leptonic
decays is given by

and

mesons are given in Table I. For comparison, we also

TABLE I. Results for the leptonic decay constants fy (in
MeV).
This work Other Reference
s 193.1 190.6 £4.7 PDG [45]
fs, 238.7 242.009.5) LAT [46]
259(32) HPQCD LAT [47]
193(7) LAT [48]
I, 489.0 489 +£4+3 LAT [49]
fs 196.0 196(24)5° LAT [50]
1864 £3.2 QCDSR [51]
Is: 229.0 229(20) LAT [50]
2152 +3.0 QCD SR [51]
fs./f5 1.236 1.20(3)(1) HPQCD LAT [47]
1.229(26) LAT [46]
fo 206.1 204.6 £5.0 PDG [45]
fo 2443 278 £ 13 £ 10 LAT [52]
245(20)*3 LAT [50]
2522 +223+4 QCD SR [53]
I, 257.5 257.5+4.6 PDG [45]
fo: 272.0 311 +9 LAT [52]
272(16)%3, LAT [50]
305.5+268+5 QCD SR [53]
fo,/fp 1.249 1.258 £0.038 PDG [45]
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G2 m2\?
BB — ¢75,) = gm3m§<1 - m_%> FalVaslizs (29)
where G is the Fermi coupling constant, mp and m, are
the B-meson and lepton masses, respectively, and zp is
the B-meson lifetime. The expected branching fractions
are 0(107*), 0(1077), and O(10~"1) for £ = 7, u, and e,
respectively. The different lepton masses affect the values
of the branching fractions through the helicity flip factor

(1= mZ/m3)2.

IV. FORM FACTORS OF SEMILEPTONIC
B-MESON DECAYS

The invariant matrix element of the semileptonic decays
B — D¥)¢~p, can be written as

M(B - DW¢ i) = Sr

V2

V. < DW[cO"b|B > £0,v,,
(30)

where the matrix elements of the semileptonic B — D)
transitions in the covariant quark model are defined by the
diagram in Fig. 3 and are written as

T" = (D(p,)|c0"b|B(p,))

Ik - )
= N.989p W(I)B(_(k +wi3p1)°)

X @ (=(k + w3p2)?)
x tr[O#S, (k + p1)y’S3(k)y Sy (k + p))]
FA(@)P +F_()¢#, and &)

€§aT’“’ = (D*(p2.€,)[cO"b|B(py))
k-
= N.9p9p* /WCI)B(—(/C +wi3p1)?)

X éo*(—(k + wp2)?)
x tr[O"S (k + p1)r S5 (k)€LSy (k + py)]

+

€2a o 2 o 2
= —*—(—g""PgA + PHP*A
: 2( q O(Q) +(Q>

+q'P*A_(q) + ie"*"1V (q?)). (32)

Here, P = p; + p», ¢ = p1 — P2, and ¢, is the polarization
vector of the D* meson, so that eg - p» = 0. The particles
are on their mass shells: p? = m? = m% and p3 = m} =
mZD(*). Altogether there are three flavors of quarks involved
in these processes. We therefore introduce a notation with
two subscripts w;; = mq.//(mqi + mql_) (i, j=1,2,3) such
that w;; +wj; = 1. In our case, one has ¢, = b, g, = c,
and g3 =d.

PHYSICAL REVIEW D 92, 114022 (2015)

OF =11 —5)

Q1 k+p k+ps a2

B(p1) D) (po)

| |

Sp(— (k+wizp1)?) Ppw(— (k+wazp2)?)

FIG. 3 (color online).
semileptonic decay.

Quark model diagram for B-meson

Our numerical results for the form factors are well
represented by a double-pole parametrization

F(0) =T @y

F(¢*) = ——F—,
(°) 1 —as + bs? m

—o

The double-pole approximation is quite accurate. The error
relative to the exact results is less than 1% over the entire ¢>
range. For the B — D™ transition, the parameters of the
dipole approximation are given by

| E F_ Ay AL A 14
F(O) | 078 —-036 | 162 067 —-077 0.77
a 074 076 | 034 087 089 090
b | 0038 0046 | —0.16 0.057 0.070 0.075.

(34)

Since b/a is quite small for the form factors F,, F_, A,
A_, and V, these form factors show a monopole-like falloff
behavior, whereas A has a substantial (g?)~2 contribution.
In Fig. 4 we present our results for the semileptonic form
factors within the full range of momentum transfer
0 < ¢* < @G> Where g2, = (mg —mp)?. The results
of the exact calculations are shown by solid lines, whereas
the results obtained in the heavy quark limit are shown by
dashed lines. We will discuss the heavy quark limit in the
next section. It is interesting to note that the QCD counting
rules prescribe a (¢*)~! and a (¢*)~? falloff behavior for the
form factors F,, FF_, Ag and A,, A_, V, respectively.

As recently noticed in Ref. [54], the ratio Fy(q*)/
F_(g*) exhibits a linear ¢g*> behavior

Fo(qz):F+(q2)+—qF_(q2), . =l-aq* (35)

where the slope a = 0.020(1) GeV~> was determined
precisely based on lattice values of the two form factors.
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FIG. 4 (color online).

We also plot the g> dependence of the ratio F(q?)/F ., (q?)
in Fig. 5, which shows a linear behavior as mentioned. Our
value for the slope is @ = 0.019 GeV~2, which very well
agrees with the lattice result.

1.00F

0.95}

0.90

0.85}

0.80

0 2 4 6 8 10
7% (GeV?)

FIG. 5. Ratio Fy(q*)/F(¢?).

Form factors of the decays B — D*)£v. The solid lines are the results of exact calculations in our approach; the
dashed lines are the form factors obtained in the heavy quark limit.

V. HEAVY QUARK LIMIT

It is instructive to explore the heavy quark limit (HQL)
in the heavy-to-heavy transition B — D(D*). In the HQL,
one takes the limit mp = my, + E, m;, - oo and mp =
mp = m, + E, m. — oo in the expressions for the cou-
pling constants and form factors. In this limit the heavy
quark propagators are reduced to the static form

1 1+ !
S k _ 0 D K
»(k+ p1) my, —k — p, - —2kv; — 2E+ (mb)

| 1+, 1
S k _ 0 I Y
(k+ p) m, —k—p, - —2kv, = 2E N (rm)

(36)

where p; and v; = p;/m; (i = 1, 2) are the momenta and
the four-velocities of the initial and final states. Moreover,
we have to keep the size parameters of heavy hadrons equal
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to each other in order to provide the correct normalization
of the Isgur-Wise function at zero recoil. By using the
technique developed in our previous papers—see, for
instance, Refs. [55,56]—one can arrive at the following
expressions for the semileptonic heavy-to-heavy transitions
defined by Egs. (31) and (32):

Thow = &08) - {01+ 8,) (1 +4)]
= £w) - (V) + %), (37)

v 1
€;uT’IfIQL =¢&(w) -Ztr[O"(l +41)7° € (14 8,)]

= £(w) €, (=g (1+w) + oy 040 = o).
(38)

Here, w = v;v,, and the Isgur-Wise function is equal to

clw) = 22,
J3(E,w) = A 1% A " dud?(2) (as(z) 4 \/gav(z))

(39)
where W = 1+27(1 —7)(w—1),z=u—2E+\/u/W, and

d(z) = exp(—z/A2),

m,
Gs(Z) = m2 Tz )
u
1
UV(Z) = m2 4z
u

By using the definition of the form factors given by
Egs. (31) and (32), one can easily obtain the expressions
of the form factors in the HQL. One finds

mlzl:m2

Fi(q?) = im\f(w),
Ao(g?) = T (1 wEw),
ML) = =A-(q) = V() = 2 E(w). (40)

where w = (m? + m3 — ¢*)/(2m;m,). We use the physical
masses of the heavy hadrons in the numerical calculations.
For the size parameter we adopt the average value
A= (Ag+Ap+Ap)/3 =170 GeV. The parameter E
characterizes the difference in mass between the heavy
hadron and the corresponding heavy quark. We use its
minimal value E = mp —m, = 0.20 GeV in order to avoid
the complication with confinement.

PHYSICAL REVIEW D 92, 114022 (2015)

In Fig. 4 we display the heavy-to-heavy transition form
factors calculated in the HQL and compare them with the
results of exact calculations. One can see that the two
results obtained with and without use of the HQL behave
very similar to each other, which demonstrates the fidelity
of HQET.

One can also consider the near zero-recoil behavior of
the form factors in a similar way as we did in our paper on
the semileptonic decay A, — A, + 7o, [40]. The standard
parametrization of the (w — 1) expansion takes the form

F(q*(w)) = Fgma)[1 = p*(w = 1) + c(w—1)° + -],

where p? is called the slope parameter and ¢ the convexity
parameter. The numerical results are given below:

| F. F| A A, AV
F(As) | 112 —052 | 191 099 —1.15 1.16
P 072 074 | 042 093 095 0.96
c 049 051 | 028 0.82 085 0.86
(41)

which may be compared with the results obtained for
the monopole form factor of a B,.-resonance contribution:
p?> =0.71 and ¢ = 0.51.

It is interesting to compare the zero-recoil values of
our exact form factors with the predictions of leading-order
HQET at w = 1 where (1) = 1. One has

my +my my —ny
F,=——=—=1.138, F_=———==-0.543,
+ 2,/m1m2 2 mpymy

m1+m2

A, =—A_ =V=—-—-=1.119,
+ 2,/m1m2

2./
Ay = VM2 g3, (42)

nmy —niy

The zero-recoil values of our model form factors can be
seen to be quite close to the corresponding HQET values,
except for the form factor A, where our form factor value
exceeds the HQET result by ~13%.

VI. HELICITY AMPLITUDES AND
TWO-FOLD DISTRIBUTIONS

Let us first consider the polar angle differential decay
distribution in the momentum transfer squared, g>. The
polar angle is defined by the angle between ¢ = p; — p»

and the three-momentum of the charged lepton 7c'1 in the
(¢ v,) rest frame as shown in Fig. 6. One has
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-
De,_/ ;V/ %
T

] 7

Definition of angles 0, 6%, and y in the
D0ﬂ+)bﬂ_17,f.

FIG. 6 (color online).
cascade decay B® — D**(—

d’T p2|v

= . M|?
dg*dcos® (27)332m73 ;' |

Glzf 2 |p2|1}
3 Ve
(27) 64m

where |p,| = 1/2(m2, m3, ¢*)/2m, is the momentum of
the daughter meson and where we have introduced the
velocity-type parameter v = 1 —m2/q?, as well as the
contraction of hadron and lepton tensors H*'L,,

As discussed in some detail in Ref. [40], the covariant
contraction H*“L,, can be converted to a sum of bilinear
products of hadronic and leptonic helicity amplitudes using
the completeness relation for the polarization four-vectors
of the process. A synopsis of the necessary steps in this
transformation is provided in the Appendix.

One needs to relate the mesonic helicity amplitudes to
the invariant form factors defined in Egs. (31) and (32). To
do so, one requires explicit representations of the polari-
zation four-vectors €”(4y). They read

o L (43)

(1) = ﬁwo,o, 0. ).
e () :\%(o,q: 1,—i,0),
(0) = ——( ). (44)

3

The linear relations between the two sets of form factors
can then be calculated in the following way.

A. B — D transition:

The helicity amplitudes are defined by H, =€™ ()T,
One obtains

PHYSICAL REVIEW D 92, 114022 (2015)

2m|py|

Ve

H,=

(PgF,+¢*F_), H,=0, Hy=

1
F..
v
(45)

Note the zero-recoil relation Hy = 0. At the other end of
the spectrum, at maximal recoil g> = 0, one has H, = H,,.
In the Appendix we describe how to obtain the differential
(g%, cos ) distribution. One has

dT(B g Df_ljf>
dq’dcos @

G| Vel P2lg?v?
32(27)3m?

x {2sin®0H; + 26,(2cos*0H; + 2Hs — 4 cos OHg; )},
(46)

where we have introduced the helicity flip penalty factor
8, = m%/2q¢* and the helicity structure functions H; =
|Ho?, %, and Mg, = Re(HH]).

B. B — D* transition:
The helicity amplitudes are defined by H, ;. =

et (/Iw)e;"(/lD*)TW. In addition to the W g qen polariza-
tion four-vectors e#(1y ), one needs the polarization four-
vectors €5(Ap-) of the D*. They read (E, = m; — q)

1

V2
1

eg(o) :m_2(|p2 s U, U,

es(£) = —(0,£1,~i,0),

)- (47)
One obtains

Hy = €"(1)e}(0)T q
1 my |P2|
ml my +my my\/q
= €M(£)e;" (£) Ty
B 1
n my +my
HOO = €Tﬂ (0)62(1(0) T/m
B 1 1
my +my2my\/q?

2 (—PCI(ml m2

(Pq(=Ag+Ay) +q°AL),

H:i:l:tl

(—PC]A() +2m |P2|V)’

q*)Ag+4mi|py|*AL).  (48)

Note the zero-recoil relations H,y = 0 and Hy, 1, = Hp.
At maximal recoil g> = 0, the dominating helicity ampli-
tudes are H,y and Hy, with H,, = H.
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The differential (¢, cos @) distribution finally reads (see the Appendix)

dr(B = D'¢5)
dq*d(cos 6)

G2 \% 2 2,2
= F|326<bz| |)I;j1|12 v {(1 + cos?0)Hy + 2sin*0H; — 2 cos OHp
)

+28,(sin0Hy + 2cos*0H; + 2Hg — 4cos OHg; ) }. (49)

The relevant bilinear combinations of the helicity amplitudes are defined in Table II. We have dropped a factor of 3 in the
definition of Hg and H;s compared to our paper [57]. Note that the helicity structure functions satisfy the zero-recoil
relations 2Hy = H;, = Hy = Hyand Hp = Hy = Hg = Hgy = Hsr = Hg = 0. Similar relations hold for the imaginary
parts. At maximal recoil, one has H; = Hg = Hg; for the dominating helicity structure functions.

Let us begin discussing the cos @ distribution for the B — D*#~ 1, case. The distribution (46) is described by a tilted
parabola whose normalized form reads

~ a + bcosO + ccos?f
9 =
W) 2(a tc/3)

(50)

The linear coefficient b/2(a + ¢/3) can be projected out by defining a forward-backward asymmetry given by [58]

-AFB(qz) =

dU(F)—dU'(B) [y dcos@dl'/dcosf — [° dcosOdl'/dcos6 b

_ EHP + 45gHSL

In the 7 mode there are two sources of the parity-odd
forward-backward asymmetry, namely a purely parity-
violating source from the VA interaction leading to the
‘Hp contribution, and a parity-conserving source from the
VV and AA interactions leading to the Hg; contribution.
The parity-conserving parity-odd contribution Hgy; arises
from the interference of the (0";17) and (07; 1) compo-
nents of the VV and AA products of currents, respectively.
In the case of the B — D transition, the forward-backward
asymmetry arises solely from the (0™; 17) interference term
of the VV product of currents.

The coefficient ¢/2(a + ¢/3) of the quadratic contribu-
tion is obtained by taking the second derivative of W(0).
Accordingly, we define a convexity parameter by writing

d2W(6) ¢ 3
Cf 2\ — — —
Pla) d(cos0)> a-+c/3 4

Hy — 2H,,
Hoo
(52)

(1 —268;)

When calculating the ¢ averages of the forward-
backward asymmetry and the convexity parameter, one
has to multiply the numerator and denominator of (51) and
(52) by the g*-dependent piece of the phase-space factor
in (46) given by C(q?) = |p2|¢*v>. For example, the mean
forward-backward asymmetry can then be calculated
according to

3 [da*C(q*)(Hp + 46, Hsy)

Mes) = = T d ) e

(53)

dl(F)+d[(B) [} dcosOdl'/dcosO + [° dcos@dl/dcos® 2(a+c/3) 4 Hiot

(51)

|
Finally, integrating Eq. (46) over cos #, one obtains

dr(B - DOt i,)
dg?

_ GV Plpal?v?
12(27)3m?

. Htot’ (54)

where Htot = HU + HL + 5/(HU + HL + 3HS)

The discussion of the cos@ distribution for the B —
D¢~ v, case proceeds in a similar way, except that one
has to drop the contributions of the helicity structure
functions ‘Hy and Hp.

VII. FOUR-FOLD ANGULAR
DECAY DISTRIBUTION

The lepton-hadron correlation function L, H"" reveals
even more structures when one uses the cascade decay
B - D**(— D°z*)¢~ 1, to analyze the polarization of
the D* meson. The derivation of the four-fold angular
decay distribution is detailed in the Appendix. One has

dU(B° - D** (= Dz ¢ 1y)
dq*dcosOd(y/2r)dcos O

Gy |V PIpalg®v? . .
= (2;)3 ”12’;2 Br(D* —» Dz)W(0*.0.y).  (55)
1

where
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9 9 9 9
W(6*,0,y) = % (1 + cos?0)sin0* Hy + 3 sin’0cos’0*H; — 1608 Osin’0* Hp — 6 sin?0sin®0* cos 2y Hy

9 9 9 9
-3 sin 6 sin 20" cos y H, + T6 sin 26 sin 26 cos yH; + 3 sin 6 sin 26" sin yH;; — T sin 20 sin 20" sin y'H ;4

9 9 9 9 9
+7e sin?0sin’0* sin 2y’ H,;r + 6, 1 cos’0* Hg — 508 Ocos’0* Hyg, + 1C052900329*HL +16 sin®0sin’0*'H,,

9 9 9 9
+ 3 sin?0sin’0* cos 2y Hr + 1 sin @sin 20" cos y Hgr — 3 sin 26 sin 26" cos y'H; — 1 sin @ sin 260" sin yH g4

9 9
+3 sin 26 sin 26" sin yH;, — 3 sin®@sin’6* sin 2;(7-[,4 : (56)

In our quark model all helicity amplitudes are real, which
implies the vanishing of all terms proportional to sin y and
sin2y. The angular decay distribution for the remaining
terms agrees with the results of Refs. [S9-61] when one
takes into account the different definition of the polar angle
0 used in Refs. [59-61] such that & — 180° — 0.

The four-fold distribution allows one to define a number
of physical observables which can be measured experi-
mentally. By integrating Eq. (56) over cos#* and y, one
recovers the two-fold (g2, cos@) distribution of Eq. (46)
that gives rise to the lepton-side forward-backward
asymmetry parameter App and the convexity parameter
C%(q?). By integrating Eq. (56) over cosf and y, one
obtains the hadron-side cos@* distribution described
by an untilted parabola (without a linear term). The
normalized form of the cos @* distribution reads W(6*) =
(@' + ¢’ cos? 6*)/2(a’ + ¢’/3), which can again be charac-
terized by its convexity parameter, given by

LWE)
d(cos0*)>  d +c'/3
_3Hy—2H, + S,(Hy —2H; — 6Hy)

= . (57
2 Hiot 57)

Ch(q?) =

We define a normalized angular decay distribution
W(6*,0.x) through

(58)

The normalized angular decay distribution W(6*,0,y)
obviously integrates to 1 after cos@*, cos6, and y/2x
integration.

The remaining coefficient functions Hy(1 —25,),
Hr(1 =26,), and (H,4 —26,Hgr) in Eq. (56) can be
projected from the three-fold angular decay distribution of
Eq. (56) by taking the appropriate trigonometric moments
of the normalized decay distribution W(6*,6,y). The
trigonometric moments are defined by

|
W, = /dcosGdcosQ*d(;(/Zﬂ)M,-(H*,6,)()1717(9*,9,;()

= (M;(6%,6.y)). (59)

where M;(6*, 0, y) defines the trigonometric moment that is
being taken. One finds

1 H
W1 (q?) = (cos2y) = —5(1 —25f)HT ,

tot
972(1-268,) H,

512 Hy
3rH, —28,Hgr
16 Mo

W;(g?) = (cosOcos 0 cos y) =

W4(q?) = (sin@cos O cosy) = (60)

The coefficient functions Hy(1 —25,), Hr(1 —26,), and
(H4 —26,Hgr) can also be projected out by taking piece-
wise sums and differences of different sectors of the angular
phase space [60].

Finally, we consider the longitudinal and transverse
polarizations of the lepton, where we consider only the
angular average of the two polarization states. For the
longitudinal polarization one obtains

OsHyr —H
PL(g2) = Z1tht nf
Z(q ) 5thf +an
My +Hy = 5,(Hy + Hy + 3Hs)

= . (61
Hiot (61)

The transverse polarization can be calculated using the
representation of the polarized lepton tensor written down
in the appendix of Ref. [40]. One obtains

37m./6 -2
Pilq) = - V2T =2 (g

4/2 Mo
For the decay B — D¢~ v,, one has to drop the transverse
contributions H;; and Hp in Eqgs. (61) and (62). It is
interesting to note that for this decay there exists a very
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simple relation connecting P%(g?) and Agg(g®) which
reads

T,

Pi(q*) = - E

(4% (63)
The polarization of the lepton depends on the frame in
which it is defined. The polarization components PZ and P4
in (61) and (62) are calculated in the (£~ 7,) rest frame. The
corresponding polarization components in the B rest frame
have been calculated in Ref. [62].

VIII. RESULTS AND DISCUSSION

The values of the lepton and meson masses and their
lifetimes are taken from Ref. [45]. We also adopt
the following values for the CKM matrix elements:
V.| =0.00413 and |V,.|=0.0411. In Fig. 7 we

PHYSICAL REVIEW D 92, 114022 (2015)

represent our results for the differential branching fractions
of the decays B — D™ ¢y within the full range of the
momentum transfer squared. For comparison, we also
display the form factors calculated in the heavy
quark limit. It is readily seen that the two forms are very
close to each other. It confirms that HQET works very well
in the leading order for b-c transitions. In what follows, we
will not display the curves for observables obtained in
the HQL.

In Fig. 8 we represent our results for the forward-
backward asymmetries of the decays B — D™y within
the full range of the momentum transfer squared. The
forward-backward asymmetry for the decay B — D777, is
quite large in the lower half of the ¢ spectrum, which can
be understood from the fact that App = —36,H; and that
35(q?) is large in the threshold region. It is quite interesting
that the forward-backward asymmetry for the decay
B — D*t"p, goes through zero at ¢g> = 6.25 GeV>.

0.5

Fr T T -k
0.8 ”—— -~\

0.4F 10?> B(B-Dey) 0.6}
0.3
0.4
0.2F
0.2
0.1f
0.05. . 0.0L.
0 2 4 6 8 10
7’ (GeV?)
0.5}
0.4F 10? B(B-Dpuv)
0.3F
0.2F
0.1}
0.0t ,
0 2 4 6 8 10
7’ (GeV?)
0.12f
0.10f
0.08}
0.06} 10> B(B-D1v)

0.04}
0.021
0.00k& . . . .
4 6 8 10
7* (GeV?)

4* (GeV?)

FIG. 7 (color online).  Differential branching fractions of the decays B — D™ £u. The solid lines are the results of exact calculations in
our approach; the dashed lines are the form factors obtained in the heavy quark limit.

114022-12



EXCLUSIVE DECAYS B — ¢~v AND ...

—0.10f
—0.15}
—0.20f
—0.25}
~0.30f
—0.35}
—0.40f
~0.45L

10° Agg(B-Dev)

0.000F
-0.005¢
-0.010¢ Apg(B->Dpuv)

-0.015¢

0 2 4 6 8 10

77 (GeV?)
0.0F
0.1}
-0.2} Apg(B-D1v)

4 6 8 10
g7 (GeV?)

0.25
0.20¢
0.15¢
0.10
0.05}

0.00

-0.05¢

0.25
0.20}
0.15¢
0.10¢
0.05}

0.00

-0.05¢
-0.10"~

0.05¢

0.00

-0.05¢
-0.10}
-0.15¢}
-0.20¢
-0.25¢

PHYSICAL REVIEW D 92, 114022 (2015)

Apg(B-D *ev)

2 4 6 8 10
g2 (GeV?)

Apg(B-D *uv)

2 4 6 8 10
77 (GeV?)
App(B-D *1v)

4 5 6 7 8 9 10
77 (GeV?)

FIG. 8. Forward-backward asymmetries of the decays B — D¢,

TABLE II. Definition of helicity structure functions and their parity properties for the case B — D*£0,.

Parity-conserving (p.c.)

Parity-violating (p.v.)

Hy = [Hin |+ |Ho

Hy = [Hool?

Hr = RC(H+1+1H:1—1)

Hyp =Im(Hyy 4 HL )

H; = 3Re(H . Hyy + H_j_ H}y)
Hyp = 3Im(H y Hiy + H_y_ H{y)
Hs = |HOt|2

Hsr = 3Re(H . Hi, + H_i_ H,)
Hisr = $Im(H .y Hy, + H_y_ H{),)
Hse = Re(HooH(T)t)

Hysp = Im(HooH},)

Hi =Hy +Hp +6,(Hy + Hp + 3Hs)

Hp = |Hy > = [Ho

Ha =3Re(H 1 HYy — H_i_1HY,)

Hia = 3Im(H Hiy — H__ Hy)
Hsa = %RS(HHHH& - H—l—lHSz)

Hisa = %Im(HHHH(ng - H—I—IH:)z)
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TABLE III. Leptonic B-decay branching fractions.

This work Data Reference
B —e 0, 1.16x1071 <9.8x 1077 PGD [45]
(0.88+0.12) x 10-1! UTfit [4]

(0.85+0.27) x 107! CKMfitter [63]

B~ —u0, 049x107° <1.0x 107  PGD [45]
(0.3840.05)x 107 UTfit [4]
(0.37+£0.02) x 10~®  CKMfitter [63]

B~ =77, 1.10x10™* (1.144£027)x10"*  PGD [45]

The branching fractions of the decays B — £7p,
B - DW¢=p, and B — n¢7 0, as well as the ratios of
branching fractions R(D*)) are presented in Tables III, IV,
and V. The branching fractions B(B — £7 1), (£ = e, u)
satisfy the experimental constraints and show good agree-
ment with the CKMfitter results, while the branching
fraction B(B — 771, is consistent with experimental data,
giving more constraints on NP effects that may contribute
to the transitions. The situation is different for the semi-
leptonic decays. The results for B(B — D*)¢~p) are
slightly larger, while the results for B(B — D"z 1,) are
slightly smaller in comparison with experimental data. As a
result, the calculated ratios R(D™)) are slightly smaller
than the SM expectation, which means they deviate from
the experimental values even more. This may imply the
appearance of NP.

TABLE IV. Semileptonic decay branching fractions of B
mesons. The values obtained in the HQL are given in brackets.
The experimental errors are combined in quadrature.

Unit This work Data Reference
B - DVt/~p 1072 2.74(2.65) 2.17+0.12 HFAG [9]
2.21 £0.16 BABAR [64]
B - Dtrp, 1072 0.73(0.71) 1.024+0.17 BABAR [10]
B = D** ¢~ 1072 6.64(7.21) 5.054+0.12 HFAG [9]
5.49 +0.30 BABAR [64]
B - D**r7p, 1072 1.57(1.70) 1.76 £0.18 BABAR [10]
B - ztev 107 1.69 1.41 £0.09 BABAR [7]
1.49 4+ 0.08 Belle [8]

B> ztr7p,  107% 1.01

TABLE V. Ratios of branching fractions R(D) and R(D*)
calculated in our model (the values obtained in the HQL are
given in brackets) and compared with the SM expectations and
experimental data.

This work SM Data
R(D) 0.265(0.268) 0.297 £0.017 0.388 +0.047
R(D*) 0.237(0.235) 0.252 £ 0.003 0.321 £ 0.021

PHYSICAL REVIEW D 92, 114022 (2015)

Next, we define the partial helicity rates by

dly _ Gp |V p2lg’?

= Hy,
d¢* (2xn)? 12m? X
dly _ dly
Pk s (64)

where X = U, L, P, .... In Figs. 9 and 10 we display the ¢*
dependence of the partial differential rates dI';/dq?,
dr; /dq?, and the total differential rate dT'y.;/dq* for
the e mode. The transverse rate dominates in the low-recoil
region, while the longitudinal rate dominates in the large-
recoil region. The longitudinal, and thereby the total, rate
shows a steplike behavior near the threshold g¢> = m2.
Figures 11 and 12 show the corresponding plots for the =
mode, including the partial flip rates dr v.r/dg* and
3dl s/dq>. We also show the total differential rate
dUy../dg* + dr vsr13s/dq*. The helicity flip rates are
smaller than the helicity nonflip rates but contribute
significantly to the total rate.

In Figs. 13, 14, and 15 we display the ¢* dependence of
the convexity parameters Cf; and C" for the lepton and
hadron sides defined in Egs. (52) and (57). In the B - D
case, the cos @ distribution is described by a downward
open parabola which becomes much flatter for the  mode.
We do not plot the hadron-side convexity parameter C/(g?)
for the B — D transition, since it trivially reads Cfé =3
following from the definition (57). For the B — D*
transition, the lepton-side cos@ distribution is again
described by a downward open parabola which becomes
almost flat for the 7 mode. The hadron-side cos&* dis-
tribution is described by an upward open parabola which
does not become flat at the zero-recoil point. Lepton mass
effects are not very pronounced.

In Figs. 16, 17, and 18 we show plots of the ¢°
dependence of the longitudinal, transverse, and total
polarization of the lepton for the B — D£~ v, transition.
In the case of the electron, the curves reflect the chiral limit

2.0 A

1.5§ ]

|

0.5! i

00k
0 2 4 6 8 10

77 (GeV?)

FIG.9. B — D transition: The g*> dependence of the partial rate
dl'; /dq? for the e~ mode (in units of 10715 GeV~!).
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0.0 . . ¢

6 8 10
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FIG. 10 (color online). B — D* transition: The ¢*> depend-
ence of the partial rates dI'y/dg*> (dashed), dI';/dg* (dot-
dashed) and their sum dl"y,; /dq* (solid) for the e~ mode (in
units of 1071 GeV~!).

of a massless lepton in which the lepton is purely left-
handed, i.e. one has P{ = —1, P{ = 0, and |73f| = 1. For
¢ = t the transverse polarization is large and positive and
dominates the total polarization. The transverse polariza-
tion of the r drops out after the appropriate azimuthal
averaging, as has been done in Ref. [13]. Note that the

g% (GeV?)
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transverse polarization in the 7 mode results solely from
the scalar-longitudinal interference contribution Hgy; . The
longitudinal polarization has switched its sign relative to
the m, = 0 case.

The corresponding curves for the B — D*¢~v, transi-
tion are shown in Figs. 19,20, and 21. The longitudinal and
transverse polarization components are distinctly different
from their m, =0 values P{ =—1 and P%=0. The
longitudinal component becomes larger in magnitude when
g* increases, while the transverse polarization becomes
smaller as g® increases. At zero recoil, the transverse
polarization of the charged lepton P} tends to zero in
agreement with the vanishing of Hp and Hg; at zero recoil.
The total polarization of the 7 shown in Fig. 21 has an
almost flat behavior with |P”| ~ 0.7. The overall picture is
that the polarization is mostly transverse at threshold and
turns to longitudinal as g* reaches the zero-recoil point.

In Figs. 22,23, and 24 we display the ¢ dependence of
the three trigonometric moments W,;(i =7,1,A) of the
normalized three-fold angular function W(G*, 0, y) defined
in Eq. (60). Lepton mass effects can be seen to be quite
large for all three moments.

Finally, in Figs. 25 and 26 we present the ¢> dependence
of the rate ratios (£ = e, u)

0.30
0.25¢
0.20¢
0.15¢
0.10
0.05¢

0.00kE

FIG. 11 (color online). B — D transition: The ¢* dependence of the partial nonflip rates dI"; /dq?, and the flip rates Iy, ; /dg? and
3dl'g/dqg? for the 7 mode (in units of 107> GeV~!). Also shown is the total rate d'; /dg® + aff“,‘/dq2 + 3dfs/dq2.
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FIG. 12 (color online). B — D* transition: The q*> dependence of the partial nonflip rates dT"y, ; /dg?, and the flip rates dr v/ dq? and
3dlg/dg* for the z~ mode (in units of 10! GeV~!). Also shown is the total rate dT'y,; /dg* + dUy/dg* + 3dTs/dg>.
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FIG. 13 (color online). B — D transition: The g*> dependence
of the lepton convexity parameter C%(g?) for the e~-mode (solid)
and 7~-mode (dashed).
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FIG. 14 (color online). B — D* transition: The ¢*> dependence
of the lepton convexity parameter C% (g?) for the e~-mode (solid)
and 7~-mode (dashed).
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FIG. 15 (color online). B — D* transition: The g*> dependence
of the hadron convexity parameter C%(g?) for the e”-mode
(solid) and 7~ -mode (dashed).
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FIG. 16 (color online). B — D transition: The ¢> dependence
of the longitudinal polarization component PZ(g?) for the
charged leptons e™-mode (solid) and 7~-mode (dashed).
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FIG. 17 (color online). B — D transition: The ¢*> dependence
of the transverse polarization component P%(g?) for the charged
leptons e~-mode (solid) and z~-mode (dashed).
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FIG. 18 (color online).

of the total lepton polarization |P’|(¢?) =
the e”-mode (solid) and z~-mode (dashed).

B — D transition: The g*> dependence
(PY)? + (P?)? for
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FIG. 19 (color online). B — D* transition: The g*> dependence
of the longitudinal polarization component PZ(g?) for the
charged leptons e~ -mode (solid) and 7~-mode (dashed).
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FIG. 20 (color online). B — D* transition: The g*> dependence
of the transverse polarization component P%(g?) for the charged
leptons e~-mode (solid) and z7-mode (dashed).
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FIG. 21 (color online).

of the total lepton polarization |P’|(¢%) =
the e”-mode (solid) and 7~-mode (dashed).

B — D* transition: The ¢q*> dependence
(PL)? + (PZ)? for
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FIG. 22 (color online). B — D* transition: The ¢*> dependence
of the trigonometric moment Wy defined in Eq. (60) for the e~-
mode (solid) and z~-mode (dashed).
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FIG. 23 (color online). B — D* transition: The ¢*> dependence
of the trigonometric moment W; defined in Eq. (60) for the e~-
mode (solid) and z~-mode (dashed).
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FIG. 24 (color online). B — D* transition: The ¢*> dependence
of the trigonometric moment W, defined in Eq. (60) for the ¢™-
mode (solid) and z~-mode (dashed).
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FIG. 25. The ¢*> dependence of the ratio R(D).
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FIG. 26. The ¢* dependence of the ratio R(D*).

Ry (6?) = dl'(B - D¥z~p,) /dU'(B — D¥¢p,) '
dq? dg?
(65)

Hopefully there will be enough data in the future to explore
the apparent flavor violation in the tauonic semileptonic

TABLE VI. ¢4° averages of the rate functions in units of
10715 GeV. We do not display the helicity flip results for the
e mode, because they are of the order of 107°~10~7 in the above
units.

B—>D
I,
e 11.9

T 1.05
Iy [g Iy

z 025 062 038

B - D*
Iy I, Iy I, I'p |
e 13.2 156 535 894 742 -3.01

3.02 2.08 1.32 1.70 —-1.42 —-0.44
'y r, 'y Iy Iy Iy Cgr

r 064 046 027 037 0.20 0.29 0.22

PHYSICAL REVIEW D 92, 114022 (2015)

TABLE VII. ¢*> averages of polarization observables. For
comparison with results from the HQL, we add in brackets the
corresponding HQL values.

B — D
(A%p) (c%) (Ch)

e —1.17(-1.16) x 107 ~1.5(=1.5) 3(3)

T —0.36(—0.36) ~0.26(—0.26) 3(3)
(P?) (P%) (7))

e —1(=1) 0(0) 1(1)

T 0.33(0.33) 0.84(0.84) 0.91(0.91)

B — D*
(A%p) (C%) (CF)

e 0.19(0.18) —0.47(=0.44) 0.93(0.88)

z 0.027(0.021) —0.062(=0.057)  0.58(0.52)
(P%) (P) ()

e ~1(~=1) 0(0) 1(1)

—0.50(—0.51) 0.46(0.43) 0.71(0.71)

(Wr) (Wp) (Wa)

e —0.093(—TO.O98) 0.054(01.055) 0.062(3.059)

T —0.057(=0.059) 0.025(0.025)  0.077(0.074)

B — D) transitions in more detail by measuring the rate
ratios in different ¢° bins.

Next, we present our model results for the average values
of the rate functions in Table VI. And in Table VII we show
the average values of the polarization observables: the
forward-backward asymmetry (A ), the convexity param-
eter (Cr), the leptonic (P% ) polarization components, and
the three trigonometric moments < W;(i =T,1,A).
Lepton mass effects can be seen to be quite large for the
average values of the polarization observables.

IX. SUMMARY AND CONCLUSIONS

We have provided a detailed analysis of the pure leptonic
and semileptonic decays B — #~0, and B — D" ¢,
(£ = e,p,7) within the SM in the framework of our
covariant quark model with built-in quark confinement.
We have described in some detail how to compute the one-
loop quark contributions needed for the calculation of the
transition form factors, including a discussion of how
the confinement of the constituent quarks is achieved in
the covariant quark model. In the light of the recent
experimental indications for a possible breaking of lepton
universality in the 7 sector, we have put particular emphasis
on how to isolate heavy lepton mass effects in the semi-
leptonic decays.

We have described how to obtain the full angular decay
distributions for B — D¢~ v, and the cascade decay proc-
ess B — D*(— Dr){ by, as well as the corresponding
angular decay distributions for their charge-conjugate
processes. The coefficients multiplying the angular factors
in the angular decay distributions have been given in terms
of helicity structure functions for which we have provided
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simple expressions for the maximal recoil g> = 0 and the
minimal (zero) recoil ¢> = (m; — m,)?. Starting from the
angular decay distributions, we have defined a multitude
of polarization observables, for which we have provided
numerical results on their ¢ spectra and their ¢> averages
for zero and nonzero lepton masses. The polarization
observables include the transverse and longitudinal polar-
izations of the charged 7~ which considerably deviate from
their simple m, = 0 left-chiral structure.

We are looking forward to a wealth of data on these
decays expected in the near future which will allow us to
deeply probe into their decay structure, in particular for
the tauonic mode. Such an analysis will reveal possible
deviations from the SM predictions not only in the
branching fractions of the processes but also in the
multitude of polarization observables and their ¢ spectra.
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APPENDIX: SPIN KINEMATICS

In this appendix we provide a synopsis of how to obtain
the angular decay distributions for the decays B —
D¥ ¢, following the description in Refs. [40,65]. The
covariant representation of the angular decay distribution is
given by
W'(0°,0.) = hoy P{*PI H o 1 Pl P Ly (Al)

W'

where /4 is the hadronic decay tensor for the decay D* —

D+ (with h = p2ph/|ps ], HWH/,D is the tensor
describing the decay B — D* + Wiy o, and L, is
the lepton tensor describing the decay W;fffshe“ -
¢~ 4+ v,. The tensors are connected by the appropriate
spin-1 and spin (0 ® 1) propagator projectors Pi"(q) =
—g" + q*q*/q* and P{g,(q) which, in the unitary gauge,
read [66]

B
q° q
Piei(9) = =0 +°
W
L4 q‘q" q?
() (-8). w
(] q My,
spin 1 spin 0
v q2 7/
=Plg) - (1= ) P (). (A3)
w

PHYSICAL REVIEW D 92, 114022 (2015)

where P}’(q) = ¢"q"/q* is the spin-0 propagator. The
factor (1 — ¢*>/m3,) multiplying the spin-0 propagator in
Eq. (A2) is usually set to 1 in low-energy applications, as in
the decay B — D*/~1,. For example, at the highest ¢>
value at ¢> = (mp — mp-)?, the correction amounts to a
mere 0.17% and will therefore be dropped in the following.
In order to convert the covariant representation of the
angular decay distribution Eq. (A1) to the helicity repre-
sentation, one makes use of the completeness relations

vl
oS

w m,m'=t,+,0

ngal( ) =—g" +

e (m)STD (m/)gmm’ s

(A4)

P(q) =—g" +q'q /¢ = Y &' (m)e(m'). (AS)

m,m'=+,0

where the tensor g,,,, = diag(+, —, —, —) is the spherical
representation of the metric tensor whose components are
ordered in the sequence m,m’ = t,+,0, —. With the help
of the completeness relation (AS5), one can convert the
covariant form of the angular decay distribution Eq. (A1)
into the helicity form

W(0%,0,y) = (-1 )J+J/512/1W S, iy (07)
Ty oy 2

X Hj ., (J)H}krzyw (I)Lyyu, (. T, 0,%).
(A6)

In (A6) we have chosen a representation of the helicity
amplitudes which is particularly well suited for computer
processing. Compared to the helicity amplitudes introduced
in the main text, we have used H,, (/= 0)= H,,
and Ho115,—0+(J = 1) = Hy +10.41-

The helicity representation of the hadronic decay tensor
ha3(0%) describing the decay D* — Dz is given by

hy (07) = doy, (0)dy, (67)
1sin?0" 5 \/- sin20*  —1sin%¢"
=| +5 \/- sin 20* cos2@* —ﬁzsin 20*
—1sin’g* - #5 sin26*  }sin’0"
(A7)

For the helicity representation of the lepton tensor, one
obtains (v =1 —m2/q?) [40]
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(1 F cos 0)? ¥ % (1 F cos @) sin e sin’@e*
(Zqzv)_lldlwi@,(l’ L0.y)=| F \%(1 F cos 0) sin Qe 2sin26 ¥ %(1 + cos @) sin fe”
sin?Qe=2% F % (1 + cos @) sin e~ % (1 +cosB)?
2sin%0 - % sin20e”  —2sin20e%
+5,| - % sin20e~ 4c0s%0 \/% sin20e” | . (A8)
—2sin%Qe =2 \% sin 20e~% 2sin%0

The upper/lower signs in the nonflip part of (A8) stand for
the (£~D,) case relevant for the decays B — D"+¢-p,
and B~ — D¢, and the (£*v,) case relevant for the
decays BT — D")0¢*y, and B - D"~¢*v,. The spin-0/
spin-1 interference contribution is given by

(2¢°v)™'Lo,, (0, 1.0, 1)
= (2q2v)‘1Lj{W_0(1, 0,0,y)

=4, ( - % sinfe~* 4cos0 % sin Qe ) . (A9)

A4y =1,0,-1) and

(2¢*v) ™" Lp(0,0,6, x) = 45,. (A10)
For the cos @ distribution of the decay B — D*¢~ 1, written
down in Eq. (46), one needs the integrated form of Eq. (A6).
One obtains

W' (0) = / d cos 0" dy/2aW' (6.0, %)

=2 Z (=1)"'8,, Hypo (1) H (1)
1.0 Do

XLlWlW(Jv‘I/’g)v (All)

where

Lﬂwlw(‘]“]/’e):/d)(/zﬂLﬁ‘ylW(Jv‘]/?g?)()' (AIZ)

The integration (A12) is easily done. The result is given by
Egs. (A8) and (A9), where all terms proportional to e*,
e 2% have been dropped. The cos@ distribution for
B — D¢"v, written down in Eq. (46) is obtained from
(All) by omitting &, ,, and dropping the label 4,.
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