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We demonstrate that the entirety of the data on proton-proton and antiproton-proton scattering between
6 GeVand 57 TeV center-of-mass energy—the measured scattering cross sections, ρ values, and the forward
slope parameters B for the differential cross sections—is sufficient to show that σelas=σtot → 1=2 and
8πB=σtot → 1 at very high energies. These relations demonstrate convincingly that the asymptotic pp and
p̄p scattering amplitudes approach those of scattering from a black disk. This result obviously introduces a
constraint on any physics beyond the Standard Model that modifies the forward scattering amplitudes.
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I. INTRODUCTION

Proton-proton (pp) and antiproton-proton (p̄p) scattering
have been studied for many decades. A persistent question
since the advent of high-energy accelerators has concerned
the behavior of the cross sections at very high energies. They
are bounded theoretically to increase no more rapidly than
ln2 s, the Froissart bound [1–3], where s ¼ W2 is the square
of the total energy in the center-of-mass system. Block and
Halzen [4] and Igi and Ishida [5,6] showed convincingly that
the ln2 s behavior, in fact, held for the pp and p̄p cross
sections measured up to Tevatron energies, with this behav-
ior leading to successful predictions for the cross sections at
the Large Hadron Collider (LHC). For a review, see [7].
Block and Halzen [8,9] and Schegelsky and Ryskin

[10] also presented tentative evidence that the pp and
p̄p scattering amplitudes may asymptotically approach
those for scattering from a completely absorptive or “black”
disk—the “black-disk” limit—at ultrahigh energies, but the
results of those analyses were not definitive. This result,
and the common assumption that hadronic scattering is
dominated at high energies by the interactions between
gluons in the two hadrons, together imply that all hadron-
hadron cross sections should approach a common black-
disk limit as s → ∞, a very interesting result.

In the present paper, we present the results of a
comprehensive analysis of the forward pp and p̄p scatter-
ing data for center-of–mass energies from 6 GeV to 57 TeV.
We discuss various constraints on the cross sections which
are essential in tying down the parametrizations of the low-
energy cross sections, and present a fit to the data on

σppðp̄pÞtot , σppðp̄pÞelas , and σppðp̄pÞinel , the forward slope parameters
Bpp and Bp̄p, and the ratios of the real to imaginary parts of
the forward scattering amplitudes ρpp and ρp̄p, using
parametrizations which reflect the established ln2 s behav-
ior of the cross sections at high energies.
We find that the fit to the entirety of the data gives

convincing evidence that the pp and p̄p scattering ampli-
tudes approach the black-disk limit at very high energies.
We use this result to obtain a final, essentially identical, fit
with the black-disk constraints σelas=σtot → 1=2 and
8πB=σtot → 1 imposed from the outset. The results give
predictions with only small uncertainties for the cross
sections, ρ, and B at the higher energies which may
become accessible in the future. The present results agree
well with the predictions of earlier fits.

II. PARAMETRIZATIONS AND CONSTRAINTS

A. Parametrization of the cross sections, the real-to-
imaginary ratio ρ, and the slope parameter B

We will be concerned here with global fits to the high-
energy total, elastic, and inelastic pp and p̄p scattering
cross sections, the ratios ρ ¼ Refðs; 0Þ=Imfðs; 0Þ of the
real to the imaginary parts of the forward elastic scattering
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amplitudes fðs; tÞ, and the forward slope parameter B ¼
dðln σðs; tÞÞ=dtjt¼0 for the differential cross sections dσ=dt.
We will use the parametrizations of σtot and ρ introduced by
Block and Cahn [11] and used by Block and Halzen [4,7] in
their earlier fit to the pp and p̄p data up to a center-of-mass
energy W ¼ ffiffiffi

s
p ¼ 1800 GeV. That fit was excellent and

gave successful predictions of the more recent, higher-
energy data from the Large Hadron Collider (LHC) and
cosmic ray experiments [8,9].
The Block-Cahn analysis assumed a ln2 s bound on the

growth of the cross sections at high energy as implied by
the Froissart bound [1–3] and parametrized σpptot and σp̄ptot as
quadratic expressions in the s—dependent variable ν=m ¼
ðs − 2m2Þ=2m2 with additional falling Regge-like terms
important at lower energies. The phase of the scattering
amplitude at high energies and the corresponding expres-
sion for ρ then followed from the constraints imposed by
analyticity and crossing symmetry under the transformation
ν → −ν [7,11].
We will extend the parametrizations here to the elastic

and inelastic cross sections and the B parameter, with
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where the upper and lower signs are for pp and p̄p
scattering, respectively. Here ν is the laboratory energy of
the incident particle, with 2mν ¼ s − 2m2 ¼ W2 − 2m2

where W is the center-of-mass energy and m is the proton
mass. The inelastic cross sections are given by the
differences between the total and elastic cross sections,
σ�inel ¼ σ�tot − σ�elas. They are therefore parametrized simply
as the differences of the expressions in Eqs. (2) and (3); no
new parameters appear.

It is not obvious that the very simple parametrizations
above should be adequate to describe the cross sections, ρ,
and B over the entire energy range we will consider. It is
also not clear that the coefficients of these terms can be
determined well enough from fits in the extant energy range
to extrapolate properly into the ultrahigh energy region
where the ln2ðν=mÞ terms become dominant. We have
studied these questions quantitatively using a detailed
eikonal model which provides a very good description
of the data from 4 GeV to 57 TeV [12]. In that analysis, we
used the expressions above to fit “data” for the cross
sections, ρ, and B derived from the eikonal model. The fits
are excellent, with errors typically smaller than the real
experimental uncertainties, and those fits over the “exper-
imental” region continue to hold to ultrahigh energies.
Small correction terms would certainly be present analyti-
cally in the expressions in Eqs. (1)–(5), but these are clearly
unimportant in the fitting and extrapolation.
We emphasize also that the presence of the ln2ðν=mÞ

terms in the parametrizations is not connected directly with
the Froissart bound: these terms are consistent with the
bound, but follow in the eikonal model from the power-law
growth of the imaginary part of the eikonal function
coupled with its exponentially bounded behavior in impact
parameter space. This leads to a effective radius of
interaction between the nucleons that grows logarithmically
with increasing energy, and within which the scattering is
nearly completely absorptive. As a result, the scattering
approaches the black-disk limit at very high energies, with
consequences we discuss below. Finally, as noted in [12],
the coefficients of the ln2ðν=mÞ terms depend on properties
of the eikonal function that are not well determined. We
therefore argued that the best extrapolations of cross
sections and other parameters to ultrahigh energies are
those based on direct fits to the data using the para-
metrization above. We carry out those fits here.
We turn next to a discussion of the known constraints on

the parameters in Eqs. (1)–(5).

B. Constraints

1. Low-energy constraints

There are nominally 18 parameters [a0, a1, a2, b0, b1, b2,
c0, c1, c2, β, βe, βB, δ, δe, δB, α, μ, and fþð0Þ] in the model,
but these are not all independent and must satisfy certain
constraints. When these are imposed, we will end up with
only 12 independent parameters in our final fit.
Both the “analyticity constraints” of Block and Halzen,

derived in [13] and discussed in detail in [4], and the finite
energy sum rule (FESR2) of Igi and Ishida [5,7] impose
constraints on the parameters. The first requires that the fits
reproduce the values of the total cross sections at a
transition point ν0 far enough above the resonance region
that the high-energy parametrizations may be expected to
hold, but where the cross sections can still be evaluated
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accurately using the dense low-energy data. The second
approach obtains equivalent results through a matching of
the FESR integrals at ν0. Following [4], we take ν0 ¼
7.59 GeV corresponding to W ¼ ffiffiffi

s
p ¼ 4 GeV. Their low-

energy analysis gives σpptot ¼ 40.18 mb, σp̄ptot ¼ 56.99 mb.
In the case of the crossing-even combination of cross

sections σ0 ¼ ðσpptot þ σp̄ptot Þ=2 ¼ ðσþtot þ σ−totÞ=2, this match-
ing gives the constraint

c0 þ c1 lnðν0=mÞ þ c2 ln2ðν0=mÞ þ βðν0=mÞμ−1
¼ σ0ðν0Þ ¼ 48.58 mb: ð6Þ

An essentially equivalent result numerically follows from
the finite-energy sum rules of Igi and Ishida [5–7] relating
the low- and high-energy regions [7].
A second constraint holds for the crossing-odd combi-

nation of cross sections Δσ ¼ ðσþtot − σ−totÞ=2. Matching the
theoretical and experimental results, we find that

δðν0=mÞα−1 ¼ Δσðν0Þ ¼ −8.405 mb: ð7Þ

Two further analyticity constraints hold if one matches
the derivatives of the cross sections with respect to ν=m to
their experimental values at ν0 [4]. We will not use these
because they are less reliable numerically and are more
sensitive than the cross sections themselves to small
deviations of the high-energy expressions in Eqs. (1)
and (2) from the actual cross sections at the rather low
matching energy of 4 GeV.
A rather subtle constraint holds for the coefficients β, βe,

δ, δe of the Regge-like terms. These cannot be entirely
independent since a descending power-law term in the
eikonal function in a general impact-parameter representa-
tion of the scattering amplitudes f�ðs; tÞ affects σ�elas and
σ�inel as well as σ

�
tot. We have investigated these aspects of

the scattering using our detailed eikonal model for pp and
p̄p scattering [12], which gives an accurate description of
the data over the region where the Regge-like effects are
important.
The cross sections are described in the eikonal model in

terms of the integrals

σtotðsÞ ¼ ð4π=pÞ Imfðs; 0Þ ¼ 4π

Z
∞

0
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ð8Þ
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∞
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Z
∞

0
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σinelðsÞ ¼ σtot − σelas ¼ 2π

Z
∞

0

dbbð1 − e−2χIÞ; ð10Þ

where p is the laboratory momentum and χ ¼ χR þ iχI is
the complex eikonal function written in terms of crossing-
even and crossing-odd parts.
Writing χ as χ ¼ χ0 þ χRegge, we can isolate the con-

tributions of the Regge-like terms to the crossing-even and
crossing-odd cross sections σ0ðνÞ andΔσðνÞ by subtracting
the expression for the cross section for χRegge ¼ 0 from the
full result. The effect of the factor cos χR in Eq. (2) is small
enough that we can neglect it for this purpose. If we do so,
the contribution of the crossing-even Regge term to the
total cross section σ0ðνÞ is given by the expression

4π

Z
∞

0

dbb coshðχRegge;oddI Þe−χ0;evenI ð1 − e−χ
Regge;even
I Þ: ð11Þ

We note that the contribution of χRegge;oddI through the cosh
function is second order in that quantity and can be dropped
without significant loss of accuracy. Similar expressions
hold for the other cross sections.
Despite the somewhat different effects of the energy-

dependent eikonalization in the different cross sections, we
find that the input power in a Regge-like term ðm=νÞγ in the
eikonal function χRegge is reproduced to a percent or better
in output power-law fits to the various integrals over the
energy interval 6–1000 GeV, where those outputs are to be
identified with the Regge-like terms in Eqs. (1)–(5). The
powers are therefore stable across the expressions in
Eqs. (1)–(5), as assumed.
Importantly, we find that the ratios of the crossing-even

and crossing-odd Regge-like contributions to σinel to the
corresponding contributions to σtot vary only slowly over
the most important important energy range, 6 to 100 GeV
(and beyond), with the even ratio in the range 0.684–0.657
and the odd ratio in the range 0.802–0.787. Averages
weighted by the even and odd cross sections give ratios
0.678 and 0.797.
Converting these results on the Regge-like terms to the

elastic and total cross sections Eq. (2) and Eq. (3), we find
that

βe ¼ 0.302β; δe ¼ 0.203δ ð12Þ

as averaged over the interval 6–100 GeV, with only very
small variations from these values. These relations give our
new, and not-very-obvious, constraints on the β and δ
parameters in Eqs. (1) and (3). The smallness of the elastic-
to-total ratios is easily understood: the Regge-like terms
enter the elastic cross section in Eq. (3) only in second order
in χRegge, but appear to first order in σtot and σinel.
With the imposition of the four low-energy constraints in

Eqs. (6), (7), and (12), 14 parameters are left to fit all data
using the parametrizations introduced above. These con-
straints are quite important: the results anchor the total
cross sections accurately at the starting energies and in the
Regge region, removing extra parameters which can

COMPREHENSIVE FITS TO HIGH ENERGY DATA FOR … PHYSICAL REVIEW D 92, 114021 (2015)

114021-3



otherwise mix with and affect the values of the high-energy
parameters of primary interest. We note that only nine of
the remaining parameters appear in the expressions for the
total, elastic, and inelastic cross sections and ρ; the
remaining five are in the expression for B.

2. High-energy constraints

As noted above, we expect the pp and p̄p scattering
amplitudes to approach the black-disk limit at ultrahigh
energies, with the scattering amplitudes approaching those
for scattering from a completely absorbing disk with a
radius R which increases logarithmically with energy. In
that limit, χR → 0 while e−χI vanishes for impact param-
eters 0 ≤ b ≤ R and is equal to 1 for b > R. As a result,
from Eq. (8), σtot → 2πR2 up to edge effects of order R
[12], while from Eq. (8), σelas → πR2, also up to edge
effects, and σelas=σtot → 1=2.
The real part of the forward scattering amplitude fðs; 0Þ

is associated at high energies with peripheral scattering
outside the region of strong absorption and, as an edge
effect, is proportional to R for finite-range forces. It,
therefore, decreases as 1=R relative to the imaginary part
which is proportional to σtot ∝ R2, and ρ ∝ 1=R ∝
1= lnW → 0 at high energies.
Finally, for Refðs; 0Þ ≪ Imfðs; 0Þ, the slope parameter

B can be written as [12]

B ¼ 1

2

Z
∞

0

dbb3ð1 − e−χIÞ
.Z

∞

0

dbbð1 − e−χIÞ: ð13Þ

With the conditions above, the integrals can be evaluated
simply in the black-disk limit, and we find that

B → R2=4 ¼ σtot=8π: ð14Þ
The same result for B can be derived less rigorously if it

is assumed that the differential scattering cross section is
purely exponential in t, with dσelas=dt ¼ πjfðs; 0Þj2eBt.
Integrating over t from −∞ to 0, then using the relation
jfðs; 0Þj2 ¼ 16π2ð1þ ρ2Þσ2tot and rearranging, we find that
[11] B ¼ σ2totð1þ ρ2Þ=16π2σelas, or, with ρ → 0 and
σelas=σtot → 1=2, B → σtot=8π.
It is an important question as to whether there is evidence

of an approach to the black-disk limit in present data. If so,
it is reasonable to impose the black-disk constraints
σinel=σtot → 1=2 and B → σtot=8π in a final fit to the data.
This leads in the parametrization above to the constraints

b2 ¼ c2=2; a2 ¼ c2=0.3894 × 8π; ð15Þ

where the numerical factor arises from the conversion of c2
in mb to units of GeV−2. This leaves 12 free parameters.
The approach to the black-disk limit was investigated for

σtot and σinel in [9] using a hybrid approach in which the
parametrization for σinel was determined from that for σtot
by multiplying the latter by the ratio σinel=σtot found in an

earlier eikonal model [14] and fitting the result to an
expression of the form in Eq. (2). The result agreed very
well with the measured high-energy inelastic cross sec-
tions. The ratio of the coefficients of the ln2ðν=mÞ terms
gave a value 0.509� 0.021 in agreement with the expect-
ation 1=2 for black-disk scattering, and was interpreted as
evidence for this limit. This result can be questioned
because the ratio σinel=σtot has the asymptotic value 1=2
automatically in the eikonal model used to get the para-
metrization for σinel from that for σtot. However, the
excellent agreement of the predicted and measured inelastic
scattering cross sections suggests that the same ratio should
be found in a free fit to the data using the parametrization
which follows from Eqs. (2) and (3). We will examine this
in the next section.
The asymptotic behavior of Bwas studied by Schegelsky

and Ryskin [10] who used a simple aþ b ln2ðs=s0Þ form
with s0 ¼ 1 GeV2 to fit the high-energy data. The coef-
ficient in their result, equivalent to a2 ¼ 0.0286�
0.0005 GeV−2 in Eq. (5), and the relation in Eq. (15)
predicted the value c2 ¼ 0.294� 0.005 mb for the leading
coefficient in σtot, closely matching the value c2 ¼
0.2817� 0.0064 mb found in the analysis of [4]. This is
again evidence for the expected black-disk behavior of the
scattering at high energies. We note, however, that the fit in
[10] is not tied down at low energies, with the result that
those authors had to drop a more flexible parametrization to
get their final result, even then with a χ2 per degree for
freedom of 1.5, not a remarkably good fit. We will
reexamine the fit to B in the following section.

III. FITS TO HIGH ENERGY PROTON-PROTON
AND ANTIPROTON-PROTON DATA

A. Data and method of fitting

The data we will use in our analysis consists of results on
σtot for W ≥ 6 GeV, σinel for W ≥ 540 GeV, σelas for
W ≥ 30 GeV, and ρ and B for W ≥ 10 GeV. The energy
ranges for σtot, σinel, and ρ are the same as used in the
Block-Halzen fits [4,7,8], but we include the newer data at
very high energies from the LHC [15–17] and the Auger
[18] and HiRes [19] collaborations. As noted, we include
the extensive data on σelas and B in our fits; these quantities
have not been used before in fits of this type. The data on
σelas can be extended to 10 GeVor below without changing
the final results significantly, but the data are somewhat less
accurate in that region, and we prefer to emphasize the
higher energies given our focus on the behavior of the cross
sections and B at ultrahigh energies.
We used the sieve algorithm [4,20] to identify outlying

points and remove them from the data set used in the final
fits. There are two underlying assumptions in this pro-
cedure. We assume, first, that the parametrization used in
the fit, with the parameter set α ¼ fa0; a1;…; fþð0Þg, can
give a good description of theory, a point checked
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theoretically in [12] for the present case. Second, we
assume that the complete data set consists mostly of datum
points which have a normal Gaussian distribution with
respect to the actual theoretical distribution, plus some
outlying points which have a much broader distribution
than reflected in their quoted (Gaussian) uncertainties, the
result of unknown experimental problems. These outlying
points can unduly influence a χ2 fit based on Gaussian
statistics, but have much-reduced impact in a fit based on a
broader statistical distribution.
The sieve procedure is based on a Lorentzian probability

distribution adjusted to give results that agree very well
with those from a Gaussian distribution in the absence of
outliers, but which still eliminates the latter efficiently
when they are present. The details of the analysis are given
in the appendix to [20].
We first make a fit to the complete data set by

minimizing Λ2
0, the Lorentzian squared with respect to

the parameter set α in the fit function over the datum points
yi at the set W of center-of-mass energies Wi at which the
observations are made,

Λ2
0ðα;WÞ ¼

XN
i¼1

ln ½1þ 0.179Δχ2i ðWi;αÞ�: ð16Þ

HereΔχ2i ðWi;αÞ ¼ ½yi − yiðWi;αÞ�2=σiðWÞwhere yi is the
value of the quantity of interest measured at energy Wi,
yiðWi;αÞ is the theoretical value of that quantity for the
parameters α, and σi is the experimental error. Because of
the intrinsically long tails of the Lorentzian distribution,
this fit should be robust in the sense that points that lie far
from the fitted distribution are accorded relatively little
weight in the fitting, and do not influence the fit unduly.
We next eliminate datum points for which Δχ2i ðWi;αÞ is

“too large,” with a value larger than a chosen Δmax, taken
here as Δmax ¼ 6 [20]. These points lie well away from the
theoretical fit and are presumed to be outliers relative to the
“good” Gaussian-distributed data. We then make a conven-
tional Gaussian χ2 fit to the remaining points. If our
assumptions about the nature of the distribution are correct,
the parameters α should not change significantly in this
second fit, and the points identified as outliers should not
change relative to the fit except possibly for those on the
boundary with Δχ2i ðWi;αÞ ≈ Δmax.
We note that 98.6% (99.7%) of the points in a normal

Gaussian distribution would survive cuts with Δmax ¼ 6
(9). However, the normal points eliminated would contrib-
ute significantly to the Gaussian χ2, and we must renorm-
alize the result χ2fit found for the fit by a factor R ¼ 1.110
(1.027) forΔmax ¼ 6 (9) to get the expected Gaussian result
χ2 ¼ R × χ2fit. This renormalized χ2 has the usual statistical
interpretation.
Our original data set contained 167 datum points. In the

analyses discussed in the next sections, we found the same 8
outlying points in fits performed with and without the

high-energy constraints in Eq. (15). Only 2.3 points with
Δχ2i ðWi;αÞ > 6 would be expected for a Gaussian distri-
bution of the data. The contribution of the outlying points to
the total χ2 was essentially the same in the two cases. These
outliers, if included, would increase the final χ2 of the fits by
about 57% relative to that of the points retained. For
example, for the final 12 parameter fit using the high-energy
constraints, χ2fit ¼ 161.2 with an average χ2 per point of
1.01. The extra contribution of the outlying points in the
original Lorentzian fit was 91.5, an average χ2 per point of
11.4 with actual values ranging from 6.6, slightly above the
cutoff, to 28. We note finally that the outlying points are not
concentrated in a way likely to affect our conclusions about
high-energy scattering, with one point each in ρ for pp and
p̄p scattering and three points in Bpp distributed over the
range 6.9 ≤ W ≤ 62.5 GeV, one in σp̄ptot at 8.76 GeV, one in
σp̄pelas at 900 GeV, and one in σppinel at 1800 GeV.

B. Fit without high-energy constraints

We first consider the results of a global fit to the data on
σtot, σelas, σinel, ρ, and B which is not constrained by the
black-disk conditions in Eq. (15) at very high energies. We
did use the low-energy constraints on the cross sections in
Eqs. (6) and (7), and the new ratio constraints on the
coefficients of the Regge-like terms in Eq. (12); these
constraints are essential in tying down the cross sections at
low energies. The sieve algorithm was used to filter the data
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FIG. 1 (color online). Fits, top to bottom, to the total, inelastic,
and elastic scattering cross sections using the low-energy ana-
lyticity constraints in Eq. (6) and Eq. (7) and the ratio constraints
on the Regge-like contributions to the low-energy cross sections
in Eq. (12): σp̄ptot and σp̄pelas (red) squares and dashed (red) line; σpptot
and σppelas (blue) dots and solid (blue) line; σp̄pinel (black) diamonds
and line; σppinel (purple) triangles. The fit used only data on σtot for
W ≥ 6 GeV, σelas for W ≥ 30 GeV, and σinel for W ≥ 540 GeV.
The curve for σelas includes data down to 10 GeV to show how the
cross section is tied down at lower energies. Outlying points not
used in the fit are shown with large open symbols surrounding the
central points; the size of those symbols does not reflect the
quoted errors of the measurement.
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resulting in the elimination of 8 outliers among 167 datum
points as noted above. Combined plots of the cross sections
from the fit are shown in Fig. 1. We do not show the fits to ρ
and B; the curves are nearly indistinguishable from those in
Fig. 4 shown later.
Table I shows the results of this 14-parameter χ2 fit. As

seen from the table, the raw χ2 per degree of freedom is
1.11, while the renormalized χ2 per degree of freedom is
1.23. This is a very good fit, especially considering the
amount of data used.
It is very interesting to use the results from this fit,

constrained only at low energies, to examine the very-high-
energy behavior projected for the cross sections and B. We
find from Table I that

σelas
σtot

→
b2
c2

¼ 0.1230
0.2328

¼ 0.528� 0.108; as s→∞: ð17Þ

The deviation of this value of the ratio from the expected
value 1=2 for black-disk scattering at infinity energy is well
within the uncertainty of the fit.
We find that the ratio of the fitted value of the ratio of B

to its black-disk value σtot=8π also agrees very well with its
expected value of 1 at high energies,

ð0.3894Þ8π a2
c2

¼ 0.990� 0.415; as s → ∞: ð18Þ

We conclude that these results, obtained from a fit which
used only the low-energy constraints in Eqs. (6), (7),
and (12), give strong evidence both that pp and p̄p
scattering can be described asymptotically as black-disk
scattering, and that the limiting ln2 s behavior is already
evident at present energies. The use of the constraints ties
down the low-energy part of the fit, fixing the values of the
total cross sections at 4 GeVand the ratios of the coefficients
of the Regge-like terms in the cross sections. The low energy
fit is excellent, and gives slopes of the total cross sections
with respect to ν=m at 4 GeV which agree reasonably well
with those estimated from lower energy data [7] even though
the data used in the fit was confined to energies above 6 GeV.

C. Fit using the black-disk constraints

Wehaveused thegeneral parametrizations inEqs. (2)–(5),
with the low-energy constraints in Eqs. (6), (7), and (12), and
the high-energy black-disk constraints Eq. (15) all imposed,
to fit the combined pp and p̄p data over the same energy
ranges as above. The sieve algorithm was again used to
eliminate the same8 outliers among167datumpoints. There
are now only 12 parameters.
The result of the fit is excellent as seen in the last lines in

Table II, with a χ2 of 161 for 147 degrees of freedom for a
raw χ2 per d.o.f. of 1.10, and a renormalized χ2=d:o:f: of
1.22. As would be expected, the parameters of the fit have
smaller uncertainties than in the previous fit using only the
low-energy constraints, and with the exception of a1,
change only within the previous uncertainties.
We give combined plots of the total, inelastic, and elastic

cross sections at high energies in Fig. 2 and show the lower-
energy behavior of σtot in Fig. 3. The fitted curves for ρ and
B are compared with those data in Fig. 4. All the data are
shown, including the two cross section points, the two
values of ρ, and the three values of B dropped in the sieve
analysis. We also show the statistical error bands for the fit;
these show that the fit is very tightly constrained over the
region of the data. The consistency with the fit without the
high-energy constraints and the rather small 11% uncer-
tainty in c2 ¼ 0.2425� 0.0268 mb indicate that the
asymptotic cross sections are also well-determined.
As shown in Fig. 3, we fit the total cross sections very

well at energies down the 6 GeV, the lower limit used in our
analysis. The curves match the data and extend smoothly to
the fixed values at 4 GeVused in the low-energy constrains
in Eq. (6) and Eq. (7). Even though the slopes
dσtot=dðν=mÞ ¼ ðm2=WÞdσtot=dW at ν0 ¼ 7.59 GeV or
W0 ¼ 4 GeV were not used in the fitting by imposing
the second set of analyticity constraints in [4,13], the
calculated slopes, respectively, −1.38 ð−0.169Þ mb for
p̄p (pp), match well with the slopes −1.45 (−0.231)
determined from the dense data around 4 GeV [7].

TABLE I. The results for our 14-parameter χ2 fit to the p̄p and
pp total, elastic, and inelastic cross sections, ρ values, and slope
parameters B using expressions in Eqs. (1)–(5), the low-energy
constraints in Eqs. (6), (7), and (12), and the cut Δχ2i max ¼ 6 in
the sieve analysis of the data. The renormalized χ2min=d:o:f:,
taking into account the effects of the Δχ2i max cut, is given in the
row labeled R × χ2min=d:o:f:, with Rð6Þ ¼ 1.110.

Parameters Δχ2i max ¼ 6

c0 (mb) 23.54� 4.94
c1 (mb) 0.2043� 1.023
c2 (mb) 0.2328� 0.0381
b0 (mb) 7.436� 2.330
b1 (mb) −1.036� 0.354
b2 (mb) 0.1230� 0.015
a0 (GeV−2) 10.38� 1.27
a1 (GeV−2) 0.1304� 0.2190
a2 (GeV−2) 0.02356� 0.0091
β (mb) 45.05� 6.42
βe (mb) 14.51� 2.07
βB (GeV−2) 0.4634� 2.110
fð0Þ (mb GeV) 2.095� 0.569
δ (GeV−2) −29.05� 0.90
δe (GeV−2) −5.897� 0.182
δB (GeV−2) −8.115� 0.513
α 0.4069� 0.006
μ 0.6593� 0.0449
χ2min 160.864
R × χ2min 178.483
Degrees of freedom (d.o.f). 145
R × χ2min=d:o:f: 1.231
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The present fits agree well with those of earlier work
based on more limited data. The results of Block and
Halzen [4,9] used only the total cross sections and ρ values
up to 1.8 TeV, without including the elastic or inelastic
cross sections or measured values of B. Their results gave
c2 ¼ 0.2817� 0.0064 mb and predicted total cross sec-
tions of 95.4� 1.1 mb, 97.6� 1.1 mb, and 134.8�
4.5 mb at W ¼ 7, 8, and 57 TeV, in substantial agreement
with the values 98.6� 2.2 mb, 101� 2.1 mb, and 133�
13 ðstatÞ þ 17ð−20ÞðsysÞ � 16ðGlauberÞ mb found by
TOTEM [16,21] and AUGER [18].
Our results for the completely constrained fit using the

total, elastic, and inelastic cross sections, ρ, and B give
c2 ¼ 0.2425� 0.0268 mb, σtot ¼ 97.27� 0.86 mb and
99.49� 0.97 mb at 7 and 8 TeV, and 136.1� 5.2 mb at
57 TeV. We conclude that the fits are consistent and stable.
An important reason for this stability is our imposition of
the low-energy constraints: the nonleading terms in the
parametrizations in Eqs. (1)–(5) are less well determined if
the constraints are ignored, indirectly affecting the high-
energy terms and the asymptotic behavior for W large.
The crossing-even high energy inelastic cross section

σ0inelðνÞ, valid in the energy domain
ffiffiffi
s

p
≥ 100 GeV where

10 100 1000 104 105
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120

140

W, GeV

,m
b

FIG. 2 (color online). Fits, top to bottom, to the total, inelastic,
and elastic scattering cross sections using high-energy black-disk
constraints in Eq. (15) as well as the low-energy analyticity
constraints in Eq. (6) and Eq. (7) and the ratio constraints on the
Regge-like contributions to the low-energy cross sections in
Eq. (12): σp̄ptot and σp̄pelas (red) squares and dashed (red) line; σpptot
and σppelas (blue) dots and solid (blue) line; σp̄pinel (black) diamonds
and line; σppinel (purple) triangles. The fit used only data on σtot for
W ≥ 6 GeV, σelas for W ≥ 30 GeV, and σinel for W ≥ 540 GeV.
The curve for σelas includes data down to 10 GeV to show how the
cross section is tied down at lower energies. Outlying points
identified in the sieve analysis and not used in the fit are shown
with large open symbols surrounding the central points; the size
of those symbols is not connected to the quoted errors. The
statistical error bands determined by the error analysis are shown.
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FIG. 3 (color online). Curves showing the fits to σpptot , (blue)
dots and solid (blue) line, and σp̄ptot , (red) squares and dashed (red)
line, at low energies, extending the curves for the total cross
sections in Fig. 2. The fits used the low-energy analyticity
constraints in Eqs. (6) and (7), the ratio constraints on the
Regge-like contributions to the low-energy cross sections in
Eq. (12), and the black-disk high-energy constraints in Eq. (15).
The p̄p outlier eliminated in the sieve analysis is shown with a
large open symbol surrounding the central point; the size of the
symbol does not reflect the quoted accuracy of the measured
value. The fixed values of the cross sections at 4 GeV from the
low-energy data are also shown.

TABLE II. The results for our 12-parameter χ2 fit to the p̄p and
pp total, elastic, and inelastic cross sections, ρ values, and slope
parameters B using expressions in Eqs. (1)–(5), the low-energy
constraints in Eqs. (6), (7), and (12), the black-disk constraints in
Eq. (15), and the cut Δχ2i max ¼ 6 in the sieve filtering of the data
which eliminated eight outlying points. The renormalized
χ2min=d:o:f:, taking into account the effects of the Δχ2i max cut,
is given in the row labeled R × χ2min=d:o:f:, with Rð6Þ ¼ 1.110.

Parameters Δχ2i max ¼ 6

c0 (mb) 26.76� 3.49
c1 (mb) −0.049� 0.715
c2 (mb) 0.2425� 0.0268
b0 (mb) 7.565� 2.011
b1 (mb) −1.022� 0.322
b2 (mb) 0.1213� 0.0134
a0 (GeV−2) 10.55� 0.44
a1 (GeV−2) 1.013� 0.069
a2 GeV−2) 0.02478� 0.0027
β (mb) 43.49� 3.49
βe (mb) 14.00� 1.12
βB (GeV−2) −0.1632� 0.8759
fð0Þ (mb GeV) 2.137� 0.561
δ (mb) −29.05� 0.90
δe (mb) −5.897� 0.182
δB (GeV−2) −8.157� 0.511
α 0.4068� 0.0060
μ 0.6486� 0.0353
χ2min 161.15
R × χ2min 178.80
Degrees of freedom (d.o.f). 147
R × χ2min=d:o:f: 1.216
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the odd Regge-like terms are very small and σpptot and σp̄ptot
are essentially equal, is given by

σ0inelðνÞ ¼ ð19.20� 4.03Þ þ ð0.9729� 0.784Þ ln
�
ν

m

�

þ ð0.1212� 0.0300Þln2
�
ν

m

�

þ ð29.49� 3.66Þ
�
ν

m

�
−0.3514

mb; ð19Þ

the difference of the expressions for σtot and σelas with the
coefficients in Table II.
For the convenience of the reader, we give the numerical

predictions from the fit for the high-energy pp (or p̄p)
total, inelastic, and elastic cross sections, ρ, and B in
Table III.
We remark finally that, although the pp and p̄p

scattering amplitudes approach the black-disk limit at very
high energies in the sense that σelas=σtot → 1=2 and
B → σtot=8π, there is not a sharp cutoff in those distribu-
tions in impact parameter space as in the classic black-disk

10 50 100 500 1000 5000 1 104

0.2

0.1

0.0

0.1

0.2

W, GeV

10 50 100 500 1000 5000 1 104
8
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14

16

18

20

W, GeV

B
,

G
eV

c
2

FIG. 4 (color online). Top panel: fits to the ratios ρ of the real to
the imaginary parts of the forward scattering amplitudes for pp
(blue dots and solid blue line), and p̄p scattering (red squares and
dashed red line). Lower panel: fits to the logarithmic slope
parameters for the elastic differential scattering cross sections
dσ=dt for pp (blue dots and solid line) and p̄p (red squares and
dashed line) scattering. The fits to ρ and B used only data above
6 GeV, and imposed the low-energy constraints on the parameters
in Eqs. (6), (7), and (12), and the high-energy asymptotic black-
disk constraints in Eq. (15). In both cases, the datum points
eliminated in the sieve analysis are shown with large open
symbols surrounding the central point; the size of the open
symbols does not reflect the quoted accuracy of the measurement.
The error bands estimated from the uncertainties in the param-
eters are too narrow to show in the figure.

TABLE III. Predictions of high-energy pp total, inelastic, and elastic cross sections, ρ values, and B, using the parameters of Table II
in the expressions in Eqs. (1)–(5).
ffiffiffi
s

p
(GeV) σtot;pp (mb) σinel;pp (mb) σelas;pp (mb) ρpp Bpp ðGeV=cÞ−2

540 61.81� 0.10 48.83� 0.10 12.99� 0.03 0.140� 0.000 15.34� 0.01
900 67.78� 0.15 52.80� 0.15 14.99� 0.05 0.141� 0.000 16.08� 0.01
1,800 76.78� 0.26 58.65� 0.24 18.13� 0.09 0.140� 0.000 17.17� 0.02
7,000 97.27� 0.86 71.57� 0.52 25.70� 0.32 0.133� 0.000 19.57� 0.04
8,000 99.49� 0.97 72.94� 0.56 26.54� 0.36 0.132� 0.000 19.82� 0.04
13,000 107.8� 1.5 78.08� 0.72 29.75� 0.56 0.129� 0.000 20.78� 0.05
14,000 109.2� 1.6 78.89� 0.75 30.26� 0.60 0.128� 0.000 20.93� 0.06
57,000 136.1� 5.2 95.16� 1.63 40.95� 1.87 0.119� 0.000 23.99� 0.127
100,000 148.0� 7.8 102.2� 2.21 45.77� 2.77 0.115� 0.000 25.32� 0.173
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FIG. 5 (color online). Solid curve: plot of the width tedge of the
soft edge in the crossing-even part of the pp and p̄p scattering
amplitudes as a function of energy from 10 to 1010 GeV. The
horizontal dashed line is a tedge ¼ 1 fm.
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model with unit amplitudes for b < R and zero amplitudes
for b > R, R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σtot=2π
p

. Rather, as observed in [22] and
studied in detail in [12], the scattering amplitudes have a
smooth edge region of approximately constant width
tedge ≈ 1 fm in impact parameter space, with

tedge ≈ ð2σinel − σtotÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσtot=2

p
: ð20Þ

We show this in Fig. 5 using the parameters in Table II for
the fit with the black-disk constraints imposed. Given the
accuracy of the fit, we conclude that there is no evidence in
the present data that the edge width shrinks significantly at
very high energies, with tedge → 1.018 fm for s → ∞.

IV. CONCLUSIONS

We have shown that we can obtain a very good fit to all
the high-energy data on the total, elastic, and inelastic pp
and p̄p scattering cross sections, the ratios ρ of the real to
the imaginary parts of the forward scattering amplitudes,
and the logarithmic slopes B of the elastic scattering cross
sections, using expressions quadratic in ln s with added
falling Regge-like terms at low energies. The use of these
expressions, introduced in [11] on the basis of the Froissart
bound, was justified in [12] for detailed eikonal descrip-
tions of the scattering in which the eikonal function grows
as a power of s. The Froissart bound is satisfied but is not an
input in that analysis, nor is it directly a motivation for the
forms chosen here for the cross sections, ρ, and B in
Eqs. (1)–(5).
The initial fit we presented here used constraints on the

values of the cross sections at W ¼ 4 GeV, and new
relations for the ratios of coefficients of the Regge-like
terms in the cross sections, to fix the fit at low energies. The
results show that the cross sections and values of B
obtained using the present data satisfy the conditions
σelas=σtot → 1=2 and B → σtot=8π expected for black-disk
scattering within the uncertainties in the fit. We regard these
results as, first, a demonstration that data at the energies
currently accessible already reflect the asymptotic ln2 s
behavior of the cross sections and, second, as convincing
evidence for black-disk behavior of the pp and p̄p
scattering amplitudes at very high energies.

We then presented a second fit in which we imposed the
black-disk behavior as a constraint at high energies. This
gives nearly identical results, provides predictions for the
cross sections at energies higher than those accessible now,
and sharpens the analysis of results on the soft edge region
in the scattering amplitudes discussed earlier [12,22].
It is known from the proton structure functions of deep

inelastic scattering, and theoretically, that the proton
interactions at high energies are determined mainly by
the gluonic and associated flavor-independent sea quark
structure of the proton. We expect the same asymptotic
structure for other hadrons, with a universal color confine-
ment volume, implying that all hadronic cross sections,
e.g., the π�p and K�p cross sections, should approach the
same black-disk limit as found for the pp and p̄p cross
sections. This picture is supported by the analysis of Ishida
and Barger [23] who fit the π�p and K�p cross sections
and ρ values using a parametrization equivalent to that used
here and with the fitted cross sections similarly constrained
to agree with the low-energy data through continuous
moment sum rules. Their results and those here are
consistent with the existence of a universal black-disk
limit. For extensive references on the possible theoretical
origin of the universality, beginning with L. L. Jenkovszky,
B. V. Struminsky, and A. N. Vall [24], see [23,25].
These results could be modified with the advent of new

physics at higher energies which significantly changes the
nature of the hadronic interactions. There is no evidence of
such changes in the present scattering data.
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