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We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential as an
incompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation spectrum
around the hydrostatic solution is gapped by a longitudinal Coulomb plasmon and exhibits a frictionless
odd viscosity. The stochastic relaxation time for the restoration or breaking of chiral symmetry is set by
twice the plasmon frequency. The leading droplet size correction to the relaxation time is fixed by a
universal odd viscosity to density ratio ηO=ρ0 ¼ ðβ − 2Þ=4 for the three Dyson ensembles β ¼ 1, 2, 4.
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I. INTRODUCTION

QCD spontaneously breaks chiral symmetry with the
emergence of an octet of light mesons that permeate most
of the hadronic processes at low energies [1]. Dedicated
lattice simulations are now in full support of this sponta-
neous breaking [2]. Fundamental light quarks become
constitutive and heavy, producing most of the mass of
the elements around us.
A remarkable feature of the spontaneous breaking of

chiral symmetry is the large accumulation of the eigenval-
ues of the Dirac operator near zero virtuality with the
formation of a finite vacuum chiral condensate [3]. Small
eigenvalue virtuality translates to large proper time, as light
quarks travel very long in proper time and delocalize. The
zero virtuality regime is ergodic, and its neighborhood is
diffusive [4]. This behavior is analogous to disordered
electrons in mesoscopic systems [5].
The ergodic regime of the QCD Dirac spectrum with its

universal spectral oscillation is described by a chiral
random matrix model [6]. In short, the model simplifies
the Dirac spectrum to its zero-mode zone (ZMZ). The Dirac
matrix is composed of hopping between N-zero modes and
N-antizero modes because of chirality, which are sampled
from Gaussian ensembles thanks to the central limit
theorem. The model was initially suggested as a null
dynamical limit of the instanton liquid model [7].
QCD at finite chemical potential μ is notoriously difficult

to sample on a lattice due to the sign problem [8]. A number

of chiral models have been proposed to describe the effects
of matter in QCD with light quarks [1]. In vacuum, the
chiral random matrix model simplifies the QCD Dirac
spectrum to its ZMZ. In matter, the light quark zero modes
are involved. Their chiral and cross-hopping in the ZMZ is
suppressed exponentially, and the corresponding Dirac
matrix is banded and not random. However, large matter
effects reduce the banded matrix to its diagonal, localizing
the quark zero modes into molecules. In the 1-matrix model
the chiral random ensemble is deformed by a constant
matrix, leading to a gapped spectrum at large μ [9,10]. In
the 2-matrix model the deformation is still random and only
generic for moderate μ with no strict banding at large μ
[11,12]. The 1-matrix approach to QCD at finite μ has been
discussed by many [1,13,14].
The purpose of this paper is to show that the 2-matrix

model eigenvalue droplet is amenable to a hydrodynamical
description. We will show that the droplet is characterized
by a plasmon excitation branch which defines the stochastic
relaxation time of the softest modes in the ZMZ. We
suggest that this time is dual to the relaxation time for the
breaking or restoration of chiral symmetry at finite μ. The
difference in details between the matrix models is not
important, as we will show that the plasmon branch only
depends on the mean density in the droplet and the quark
representation at large N.
The chief idea of the paper is to combine the ergodic

character of the chiral random matrix model for the low-
lying modes, with the universal character of the hydro-
dynamics approach for the description of the softest modes
of a fluid, to describe the relaxation of the QCD Dirac
eigenvalues in the ZMZ as a fluid at finite μ. We will obtain
the following new results: (1) a hydrodynamical description
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of the Dirac eigenvalues as a droplet in the complex
2-plane, (2) small amplitude deformations in the droplet
that are gapped by the emergence of a plasmon with an odd
viscosity, and (3) an estimate of the stochastic relaxation
time for breaking or restoring chiral symmetry in matter.
In Sec. II we briefly review the 2-matrix model at finite

μ. In Sec. III, we show that the joint eigenvalue distribution
of the 2-matrix model maps onto a pertinent many-body
Hamiltonian in the complex 2-plane. In Sec. IV, we use the
collective coordinate method, to rewrite the many-body
Hamiltonian in terms of the particle density and velocity as
collective and canonically conjugate variables. The ensuing
equations of motion are that of a two-dimensional fluid. In
Secs. V and VI, we show that the small amplitude
fluctuations in the fluid are plasmons with a frictionless
viscosity. In Sec. VII, we identify a tunneling minimum or
instanton to the fluid equation. We use it to characterize the
stochastic relaxation time of an initial droplet with a gapped
spectrum to a final hydrostatic droplet with ungapped
spectrum. We suggest that this stochastic time is dual to
the physical relaxation time from a phase with unbroken
chiral symmetry to a phase with broken chiral symmetry.
Our conclusions are in Sec. VIII.

II. THE MODEL

The random matrix approach has proven to be a useful
tool for understanding aspects of chiral symmetry directly
from the QCD Dirac spectra both in vacuum and in matter
[1,13,14]. The chief idea is the following: for the purpose of
analyzing the spontaneous breaking and/or restoration of
chiral symmetry, only the low lying eigenmodes of the
QCD Dirac operator are important. For this, the fluctua-
tions of the Dirac operator in the gauge background can be
approximated by purely random matrix elements which
are chiral (paired spectrum) and fixed by time-reversal
symmetry (Dyson ensembles).
Specifically, at finite μ the Dirac spectrum on the lattice

is complex [15]. The matrix models at finite μ [9,11]
capture this essential aspect of the lattice spectra and the
nature of the chiral phase transition [1,13,14]. For a
2-matrix model, the partition function is [11,12]

Z2½mf� ¼
Z

dAdBe−aNTrðA†AÞe−aNTrðB†BÞ

× det

� −imf A − iμB

A† − iμB† −imf

�Nf

ð1Þ

for equal quark masses mf in the complex representation.
Here A, B are CðNþνÞ×N valued. ν accounts for the differ-
ence between the number of zero modes and antizero
modes. At μ ¼ 0 the parameter

ffiffiffi
a

p ¼ jq†qj0=n is fixed by
the massless quark condensate in with n ¼ N=V4 the
density of zero modes, by the Banks-Casher formula [3].

The Dirac matrix in (1) has ν unpaired zero modes and N
paired eigenvalues �izj in the massless limit. The paired
eigenvalues delocalize and are represented by (1). The
unpaired zero modes decouple. In terms of the paired
eigenvalues and at large N, (1) simplifies [11]

Zβ½mf� ¼
Z YN

i¼1

d2zijzijα
YN
i<j

jz2i − z2j jβ

× ðz2i þm2
fÞNfe−WðziÞ; ð2Þ

with β ¼ 2 and α ¼ βðνþ 1Þ − 1. The potential is

WðzÞ ¼ Naβ
2l2

�
jzj2 − τ

2
ðz2 þ z̄2Þ

�
; ð3Þ

with l2 ≡ 1 − τ ¼ 2μ2=ð1þ μ2Þ. For μ → 0, τ ≈ 1 and
l2 ≈ 2μ2, so that WðzÞ ≈ −ðN=μ2Þðz − z̄Þ2, which restricts
the eigenvalues to the real axis. Throughout, the dimen-
sionful scale a will be set to 1 and reinstated when needed.
In Fig. 1 we display the distribution of eigenvalues

following from the 2-matrix model with A and B sampled
from a Gaussian ensemble of 200 × 200 matrices with
ν ¼ 0 and μ ¼ 0.3. The boundary curves follow from the
analysis in [13,16]. The domain is an ellipse x2=a2þ þ
y2=a2− ¼ 1 with semiaxes a2�=2l

2 ¼ 1� τ=1∓τ as shown
in Fig. 1. The ellipse remains un-split with area A ¼
πaþa− ¼ 2πl2 for all values of μ. For the other quark
representations with β ¼ 1, 4 the joint distribution in the
2-matrix model is more subtle [12]. Throughout, (2) will be
assumed for β ¼ 2, but all results extend to β ¼ 1, 2, 4 for
large N.
For comparison, Fig. 2 shows the distribution of the

eigenvalues from the 1-matrix model with B ¼ 1 and the
same Gaussian sampling for A. The boundary curves are
from [9,10]. The eigenvalues form a connected droplet in
the z plane for μ < μc and split to two symmetric droplets
for μ > μc, restoring chiral symmetry [9,10]. Similar
droplets follow from the QCD Dirac spectra at finite μ

FIG. 1 (color online). Eigenvalue distribution from a 2-matrix
model.
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on the lattice [15]. In the spontaneously broken phase, all
droplets are connected and symmetric about the real axis.

III. MANY-BODY SYSTEM

Equation (2) expressed in terms of the complex eigen-
values zi can be thought of as the partition function of N
charged particles in the complex 2-plane trapped in a
harmonic potential (Gaussian weight) with Coulomb-type
repulsions (Vandermonde term). Alternatively, Eq. (2) can
be written as

Zβ½mf� ¼
Z YN

i¼1

d2ziðz2i þm2
fÞNf jΨ0½z�j2; ð4Þ

which is now viewed as the normalization of an N-particle
wave function Ψ0½z� with a complex measure. Ψ0½z� is the
zero-mode solution to the Schrodinger equation H0Ψ0 ¼ 0
with the self-adjoint Hamiltonian,

H0 ≡ 1

2m

XN
i¼1

j∂i þ aij2: ð5Þ

Here ∂i ≡ ∂=∂zi and the potential is ai ≡ ∂iS with
S½z� ¼ − lnΨ0½z�. In (5) the mass parameter is m ¼ 1=2.
We note that the canonical dimensions of (5) and m follow
through a pertinent rescaling by reinstating the dimensions
of a.
Following [17,18], we observe that the Vandermonde

determinant Δ ¼ Q
i<jjz2ijjβ with zij ≡ zi − zj induces a

diverging 2-body part in H0. Using a similarity trans-
formation, we can reabsorb it in Ψ ¼ Ψ0=

ffiffiffiffi
Δ

p
, and the new

many-body Hamiltonian is

H ¼ 1ffiffiffiffi
Δ

p H0

ffiffiffiffi
Δ

p
: ð6Þ

We will refer to (6) as the “quenched” Hamiltonian
following from the omission of the Nf contribution in

deriving (6) from (4), which is not to be confused
with the standard denomination. The “phase-quenched”
Hamiltonian follows a similar reasoning by rewriting (4) as

Zβ½mf� ¼
Z YN

i¼1

d2zi

�
z2i þm2

f

z̄2i þm2
f

�Nf
2

jΨf½z�j2: ð7Þ

Below, we will note that the difference between Ψ0½z� and
Ψf½z� are subleading terms of order NfN0 in comparison to
the leading contribution of order N.

IV. HYDRODYNAMICS

In the limit of a large number of eigenvalues N, the
interacting and quantum many-body system described by
Eqs. (5)–(6) is characterized by collective as well as single
particle excitations. In the spirit of the liquid drop model in
nuclear physics [19], we can describe the low-lying
collective excitations of this many-body system by using
the collective coordinate method in [17,19]. The idea is to
map the Hamiltonian (6) onto the paired eigenvalues as a
collective variable ρðzÞ ¼ P

N
i¼1 δ

2ðz − ziÞ and its conju-
gate velocity πðzÞ. The result is a semiclassical fluid
description of the low-lying collective excitations of (6).
The details of the mapping of (6) onto the collective

variables following the construction in [17] are given in
Appendix A. The result for the collective Hamiltonian is

H ¼
Z

d2zρðzÞ 1

2m
ðð ~∇πÞ2 þ ð ~AÞ2Þ≡

Z
d2zh; ð8Þ

with the pair π, ρ canonically conjugate. Defining the even
density ρχðzÞ ¼ ρðzÞ þ ρð−zÞ, we have

~A ¼ ~Aþ 1

2
~∇ðβρχLðzÞ þ ðβ − 2Þ ln ffiffiffi

ρ
p Þ: ð9Þ

Here ρL is the logarithmic transform of ρ,

½ρ�L ≡ ρLðzÞ ¼
Z

dz0 ln jz − z0jρðz0Þ; ð10Þ

and the vector potential (τ� ¼ 1� τ),

~A≡ −
Nβ

2l2
ðτ−x; τþyÞ þ

α

2jzj2 ðx; yÞ: ð11Þ

We will restrict our discussion to the semiclassical
limit with the pair π, ρ obeying the Poisson brackets
fπðzÞ; ρðz0Þg ¼ δ2ðz − z0Þ. The semiclassical limit is exact
in leading order in 1=N and resums a class of subleading-
order effects in 1=N. Quantum corrections follow by
expanding around the semiclassical solution, say in one
loop.

FIG. 2 (color online). Eigenvalue distribution from a 1-matrix
model.
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The equation of motion for ρ yields the current con-
servation law and the Euler equation for ~v. Defining

m~v ¼ ~∇π, they are specifically given by

∂tρþ ~∇ · ðρ~vÞ ¼ 0

∂tπ þ 1

2
m~v2 þ

~A2

2m

−
β − 2

4mρ
~∇ · ðρ ~AÞ − β

2m
~∇ · ½ρχ ~A�L ¼ 0: ð12Þ

Current conservation follows from ∂tρ ¼ fρ; Hg. The
Euler equation follows from ∂tπ ¼ fπ; ; Hg, using

fH; πðzÞg ¼ ð ~∇πÞ2 þ j ~Aj2
2m

þ
Z

d2z0
ρðz0Þ
2m

2 ~Aðz0Þ · f ~Aðz0Þ; πðzÞg; ð13Þ

and the commutation rule

f ~Aðz0Þ; πðzÞg ¼ β

2
~∇z0 ln jz0 − zj þ β − 2

4
~∇z0

δ2ðz − z0Þ
ρ

:ð14Þ

The steady state flow from (12) corresponds to Bernoulli
law with ∂tπ ¼ C a fixed constant. The hydrostatic
solution is AðzÞ ¼ 0 and π ¼ 0. Using the formal identity
ρL ¼ ð2π=∇2Þρ, we have

ρðzÞ ¼ κN
A

−
α

2β
δ2ðzÞ − β − 2

8πβ
∇2 ln ρ; ð15Þ

where the integration constant κ ¼ 1þ α=ð2NβÞ is fixed by
the density in leading order, and A is the area of the
eigenvalue density. The resummed semiclassical contribu-
tions in (15) are of order N0.
In the “phase-quenched” approximation for β ¼ 2, the

vector potential (11) is shifted,

~A → ~Aþ Nf

2
~∇ ln jz2 þm2

fj; ð16Þ

with the hydrodynamical equations (12) unchanged. The
corresponding “phase-quenched” hydrostatic density (15)
is modified:

ρðzÞ → ρðzÞ − Nf

8πβ
∇2 ln jz2 þm2

fj: ð17Þ

As indicated earlier, the correction is of order NfN0.

V. PLASMONS

To characterize the low-lying collective excitations of the
hydrostatic droplet of eigenvalues, it is useful to analyze the
small deformations in the density and velocity profile by
linearizing the current conservation law in (12), i.e.
∂tδρþ ρ0∇2δπ ¼ 0, which is readily solved using δρ ¼
−ρ0∇2ϕ and δπ ¼ ∂tϕ. Inserting the latter in the canonical
action S ¼ R

d2zdtðπ∂tρ − hÞ yields, in the quadratic
approximation,

S ≈
Z

d2zdt
ρ0
2m

ðð∂t
~∇ϕÞ2 −W½ϕ�2Þ ð18Þ

with

W½ϕ� ¼
���� ~∇

�
β

2
½δρ�χL þ β − 2

4

δρ

ρ0

�����
2

: ð19Þ

Using again the formal identity fL ¼ ð2π=∇2Þf and

defining the small longitudinal field ~φ≡ ~∇ϕ, we obtain

S ≈ N
Z

d2zdt
ρ0
2m

×

�
ð∂t ~φÞ2 −

�
πβρ0
N

~φχ þ β − 2

4
∇2~φ

�
2
�

ð20Þ

after the rescaling Nt → t. The small longitudinal excita-
tions in ~φ are gapped by the plasmon frequency
ωp ¼ 2πβρ0=N. The emergence of a plasmon branch
was expected since the Vandermonde contribution in (2)
gives rise to Coulomb law in two dimensions.
For an elliptic droplet of large area A, (20) by Fourier

transform, leads to the quadratic dispersion law

ωðkÞ ≈�
����ωp −

β − 2

4
~k2
���� ð21Þ

Here jkj is conjugate to jzj. The gapped spectrum means
that the droplet is incompressible. For β ¼ 1, 2 with quarks
in the real and complex representation the branch (21)
describes a plasma fluid. For β ¼ 4 with quarks in the
quaternion representation, (21) shows the start of a roton-
like branch a possible indication of superfluidity [20].

VI. ODD VISCOSITY

There is an interesting analogy between the droplet of
Dirac eigenvalues at finite chemical potential, and the
quantum Hall effect as a fluid of neutralized charged
electrons in the plane [21,22]. To illustrate the analogy,
we first note that (11) sources the magnetic field

BðzÞ≡ ~∇ × ~A⋆ ≈ Nβ=l2, with the dual notation V⋆
i ¼

ϵijVj subsumed. Amusingly, (5) describes a Coulomb fluid
in a magnetic field. In large N the density of eigenvalues is
uniform
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ρðzÞ ≈ N
2πl2

≈
νB
2π

ð22Þ

which is the density of a quantum Hall droplet with
filling fraction ν ¼ 1=β. The plasmon frequency is the
cyclotron frequency ωp ≡ B=M with M ¼ N the ana-
logue of the effective mass. l identifies with the magnetic
length.
The k2 contribution in (21) is reminiscent of the odd

viscosity in the fractional quantum Hall effect. To show
this, let ~π ≡ iπ and define the collective velocity

m ~v ¼ ~∇ ~πþ ~A⋆, then (8) is a free-flow-like Hamiltonian
modulo ultralocal terms:

H →
Z

d2zρðzÞm
2
~vþ · ~v: ð23Þ

In our case ~vþ ≠ ~v but in the fractional quantum Hall
effect they are equal, making A⋆ a real gauge-field and
~~v a real and gauge-invariant flow velocity for flux-
riding quasiparticles [21,22]. In the semiclassical limit
~π and ρ are canonical and after some algebra, the Euler
equation following from (23) yields the momentum
conservation law ∂tðρm ~viÞ þ∇jTij ¼ 0, with the stress
tensor

Tij ¼ mρ~vi ~vj þ
β − 2

4
ρð∇i ~v⋆j þ∇⋆

i ~vjÞ: ð24Þ

This result is checked in details in Appendix B using
explicitly the equations of motion. The first contribu-
tion is the classical free fluid part. The second con-
tribution is the odd viscosity contribution following
from the breaking of parity in two dimensions [23],
with

ηO
ρ

¼ β − 2

4
→ −

1

4
; 0;

1

2
; ð25Þ

which is the coefficient of the k2 term in (21). A recent
and direct calculation confirms this interpretation [20].
We do not have a physical interpretation for why ηO ¼
0 for β ¼ 2.
In the fractional quantum Hall fluid, ηO originates from a

mixed gauge-gravitational anomaly [24]. We note that the
pair ~v, ~v⋆ are orthogonal. This explains that the k2

contribution in (21) acts as the even (shear) viscosity but
without the i for dissipation. No vorticity is therefore
expected.

VII. INSTANTON AND RELAXATION TIME

An interesting question regarding the droplet of Dirac
eigenvalues is the typical relaxation time for the formation
or disappearance of the spontaneous breaking of chiral
symmetry. In this section, we answer this question in two

steps. First, we identify an instanton or tunneling configu-
ration to the general equations of motion with minimum
energy. We then use it to estimate the time it takes for a
localized droplet to relax to its hydrostatic limit. Since the
relaxation time is a property of the fluid, it is independent of
the initial conditions. Indeed, we will show that it is fixed
by the plasmon branch.
With this in mind, we identify the zero energy

configuration in (8) as an instanton solution with
imaginary (tunneling) velocity π → iπ, and minimum

energy i.e. h → j ~∇πj2 − j ~Aj2 ¼ 0, that satisfies the
analytically continued in time conservation law
(t → −itE):

−∂tEρþ ~∇ · ðρ ~∇πÞ ¼ 0: ð26Þ

Without loss of generality and for simplicity we choose
τ ¼ 0 in (3) so that the hydrostatic droplet is circular. To
solve (26) we set ρð0; zÞ ¼ K=π ≫ ρ0, which corre-
sponds to all eigenvalues localized in a small disc
centered around the origin. (26) simplifies by radial
symmetry:

∂rρLðr; tEÞ ¼ fðr; tEÞ

r∂tEf þ r

�
βf −

Nβr
2l2

�
∂rf þ f

�
βf −

Nβr
2l2

�
¼ 0: ð27Þ

We note that similar nonlinear equations emerge from
the diffusion of non-Hermitian matrices [25].
The solution to (27) with a free boundary or large droplet

size A can be obtained using the method of characteristics.
Specifically,

dtE
ds

¼ −r

dr
ds

¼ −r
�
βf −

Nβr
2l2

�

df
ds

¼ f

�
βf −

Nβr
2l2

�
; ð28Þ

with the conditions tEðs ¼ 0Þ ¼ 0, rðs ¼ 0Þ ¼ r0 and
fðs ¼ 0Þ ¼ fðr0Þ. For fðr; tE ¼ 0Þ ¼ Kr, we obtain by
direct integration of (28):

tE ¼ −asþ l2

Nβ
ln

�
r0 þ a − ðr0 − aÞeNβ

l2
as

2a

�

r ¼ a
r0 þ aþ ðr0 − aÞeNβ

l2
as

r0 þ a − ðr0 − aÞeNβ

l2
as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kr20l

2=N
q

f ¼ Kr20
r

: ð29Þ
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For K ≫ ρ0 and large time, the first equation is approxi-
mated by tE ≈ −as. Inserting the latter in the second
equation and using the third equation, we obtain
r0 ¼ r0ðr; tEÞ. Substituting the result in the fourth equation
in (29), we find explicitly fðr; tEÞ. Its large time asymptotic
for s → −∞ is

fðr; tEÞ ≈
Nr
2l2

0
B@1þ

ffiffiffiffiffiffiffi
2Kl2
N

q
− ð1 −

ffiffiffiffiffiffiffi
2Kl2
N

q
Þe−Nβ

l2
tE

1þ
ffiffiffiffiffiffiffi
2Kl2
N

q
þ ð1 −

ffiffiffiffiffiffiffi
Kkl2
N

q
Þe−Nβ

l2
tE

1
CA

2

: ð30Þ

Equation (30) relaxes as e−2ωpNtE to fðr;∞Þ ¼ Nr=2l2,
leading to the hydrostatic density ρ0 ¼ N=ð2πl2Þ. We
identify TR ≈ 1=2ωp with the relaxation time after rescal-
ing NtE → tE.
Finally, we note that TR ≈ 1=2ωp translates to a

diffusive time with l2 ≡A=2π ≈ 2βTR. The diffusion
constant is D ¼ 2β. An estimate of the finite droplet
size corrections follows from (21) using the substitution
ωp → ωðk ≈ 1=

ffiffiffiffi
A

p Þ. The leading correction is controlled
by the odd viscosity to density ratio and is small.
So far, our description of the Dirac spectrum at finite μ is

mathematical, with TR ≈ 1=2ωp a characteristic of the
relaxation of the eigenvalues from an initial and localized
distribution of eigenvalues to a final distribution with
spontaneous chiral symmetry breaking at finite μ. The
choice of initial conditions is not important as the relaxation
time is fixed by the low-lying and collective plasmon
frequency.
We now suggest that this relaxation in eigenvalue space

is dual to a relaxation in physical space under the same
conditions. The physical relaxation time for the breaking or
restoration of chiral symmetry at finite μ in canonical
dimensions is then

TR ≈
1

2ωp
→

�
1þ Aa

2π

2β

� ffiffiffi
a

p ð31Þ

after reinstating 1≡ ffiffiffi
a

p ¼ jq†qj0=n, and adding the 1 to
reproduce the μ ¼ 0 result in [18]. A simple extension to
finite temperature amounts to a redefinition of units orffiffiffi
a

p
→

ffiffiffiffiffi
aT

p ¼ jq†qjT=nT as in [18,26].

VIII. CONCLUSIONS

The hydrodynamical reduction organizes the fluctua-
tions of the eigenvalues around the low-lying collective
modes. It supports an instanton that describes the stochastic
relaxation of the Dirac eigenvalues as a fluid. The fluid is
incompressible and exhibits nondissipative plasmon waves
that can be used to estimate the time it takes for a chirally
symmetric phase to relax to a chirally broken phase in
matter. The time estimate is nonperturbative and gauge
independent.

Our starting point was a 2-matrix model of 2N paired
Dirac eigenvalues in QCD at finite μ, followed by a
hydrodynamical reduction using the collective coordinate
method. Both the hydrostatic and hydrodynamical solu-
tions capture the large N effects exactly, and resum a class
of corrections in 1=N. Quantum corrections in 1=N can be
sought by expanding around these solutions say to one
loop. In general, these corrections form a trans-series with
edge oscillating contributions.
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APPENDIX A: COLLECTIVE HAMILTONIAN

The details for the derivation of the collective
Hamiltonian (8) follow the arguments presented in [17].
Here we provide the details for the derivation of (8).
Throughout, we will ignore ultralocal contributions. We
note that we can recast Ψ0½z� → e−S½ρ�=2 using the density
ρðzÞ by noting for instance that

X
i

f½zi� ¼
Z

dzρðzÞfðzÞ; ðA1Þ

for which (5) is formally

H0 ¼
X
i

ð−∇i þ∇iS=2Þð∇i þ∇iS=2Þ; ðA2Þ

with

−∇≡ −
X
i

d
dxi

¼ −
X
k;i

dρk
dxi

δ

δρk
¼

X
k

ikρk
δ

δρk
ðA3Þ

−∇2 ≡ −
X
i

∇2
i ¼

X
k

k2ρk
δ

δρk
þ
X
k;k0

k · k0ρkþk0
δ2

δρkδρk0
;

ðA4Þ

and the Fourier transform of the collective density,

ρk ¼
1

V

X
i

e−ikxi : ðA5Þ

The formal result is
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H0 ¼
X
i

ð−∇2
i Þ þ V

¼
X
i

�
−ð∇iÞ2 −

∇2
i S
2

þ ð∇iSÞ2
4

�

¼
Z

d2zρðð∇πÞ2 þ i∇π∇ρ −∇ · AþA2Þ

¼
Z

d2zρ

��
∇π þ i∇ρ

2ρ

�
2

þ ð∇ρÞ2
4ρ2

−∇ ·Aþ A2

�

¼
Z

d2zρ

�
ð∇π0Þ2 þ

�
Aþ∇ρ

2ρ

�
2
�
; ðA6Þ

with Ai ¼ ∂iS=2. (A6) is identical to the rhs of (8) with

A ¼ −A −∇ ln
ffiffiffi
ρ

p
: ðA7Þ

For (6), we have instead

H ¼ 1ffiffiffiffi
Δ

p
X
i

ð−∇2
i Þ

ffiffiffiffi
Δ

p
þ V

¼
X
i

−∇2
i − 2Bi∇i − B2

i −∇iBi þ V; ðA8Þ

with Bi ¼ 1ffiffiffi
Δ

p ∂i

ffiffiffiffi
Δ

p
. Using (A3) we have

−
X
i

2Bi∇i ¼ −2i
Z

d2zρðzÞBðzÞ · ∇πðzÞ; ðA9Þ

and

H ¼
Z

d2zðρð∇πÞ2 þ i∇ρ ·∇π − 2iρB ·∇πÞ

−
Z

d2zρðB2 þ∇ · BÞ þ
Z

d2zð−ρ∇ · AþA2Þ:

ðA10Þ

After completing the square, we obtain

H ¼
Z

d2z

�
ρð∇π00Þ2 þ ð∇ρ − 2BρÞ2

4ρ

�

−
Z

d2zρðB2 þ∇ · BÞ þ
Z

d2zð−ρ∇ · AþA2Þ

¼
Z

d2zρ

�
ð∇π00Þ2 þ ð∇ρÞ2

4ρ2
−∇ ·Aþ A2

�

¼
Z

d2zρ

�
ð∇π00Þ2 þ

�
−
∇ρ

2ρ
−A

�
2
�
; ðA11Þ

again in agreement with (8) after the relabeling π00 → π. We
observe that when reduced to the collective variables, both
H and H0 have the same form.

APPENDIX B: STRESS TENSOR

Here we check that the stress tensor (24) satisfies the
conservation law using only the Euler equation following
from (23) and the classical canonical rules. Throughout we
set in this section m ¼ 1, α ¼ ðβ − 2Þ=4 (not to be
confused with the one used in the text), and the tildes
are omitted for convenience. We recall from Sec. VI that

v ¼ ∇π þ∇⋆ðα ln ρþ βρLÞ: ðB1Þ

Current conservation and Euler equation follow from the
same arguments presented earlier with

∂tρþ∇ðρvÞ ¼ 0

∂tπ þ v2

2
−
�
α

ρ
þ 2πβ△−1

�
∇⋆ðρvÞ ¼ 0; ðB2Þ

with △ ¼ ∇2. We now need to verify the conservation law
for the stress tensor,

∂tðρviÞ þ ∂kðρvivk þ αρ∂iv⋆k þ αρ∂⋆
i vkÞ ¼ 0: ðB3Þ

By Oð2Þ symmetry, we only need to check it for the i ¼ 1
component. With this in mind, the first contribution in (B3)
can be reduced to

∂tρv1 þ ρ∂tv1 ¼ −v1ð∂1ðρv1Þ þ ∂2ðρv2ÞÞ
þ ρ∂tð∂1π þ α∂2 ln ρþ 2πβ∂2△

−1∂tρÞ:
ðB4Þ

The second line in (B4) can be further transformed to

ρ∂1

�
−
v2

2
þ
�
α

ρ
þ 2πβ△−1

�
∇⋆ðρvÞ

�

− αρ∂2

∂1ðρv1Þ þ ∂2ðρv2Þ
ρ

− 2πβρ△−1∂2ð∂1ðρv1Þ þ ∂2ðρv2ÞÞ: ðB5Þ

The term proportional to β can be reduced to

−2πρβ△−1ð∂2
1ðρv2Þ þ ∂2

2ðρv2ÞÞ ¼ −2πρ2βv2; ðB6Þ

so that (B4) now reads

∂tρv1 þ ρ∂tv1 ¼ −v1ð∂1ðρv1Þ þ ∂2ðρv2ÞÞ

− ρ∂1

v2

2
αρ∂1

∂2ðρv1Þ − ∂1ðρv2Þ
ρ

− αρ∂2

∂1ðρv1Þ þ ∂2ðρv2Þ
ρ

− 2πρ2βv2:

ðB7Þ
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This should cancel the second contribution in (B3),
which is

∂1ðρv21Þ þ ∂2ðρv1v2Þ þ α∂1ðρ∂1v2Þ − α∂2ðρ∂1v1Þ
α∂1ðρ∂2v1Þ þ α∂2ðρ∂2v2Þ: ðB8Þ

This can be proved as follows. First, the terms without any
α or β combine to

− v1ð∂1ðρv1Þ þ ∂2ðρv2ÞÞ − ρ∂1

v2

2

þ ∂1ðρv21Þ þ ∂2ðρv1v2Þ ¼ ρv2ð∂2v1 − ∂1v2Þ: ðB9Þ

By expanding v1; v2 in (B9), we note that the contributions∇π are zero. The contributions βρL give

ρv2ð∂2
1 þ ∂2

2ÞρL ¼ 2πρv2ρ ¼ 2πρ2v2; ðB10Þ

which cancel the last term in (B7). The contributions α
give αρv2△ ln ρ, which cancel the remainder, since

αρ∂1

∂2ðρv1Þ − ∂1ðρv2Þ
ρ

− αρ∂2

∂1ðρv1Þ þ ∂2ðρv2Þ
ρ

þ α∂1ðρ∂1v2Þ − α∂2ðρ∂1v1Þ
þ α∂1ðρ∂2v1Þ þ α∂2ðρ∂2v2Þ

¼ −αð∂2
1ρþ ∂2

2ρÞv2 þ α
ð∂1ρÞ2 þ ð∂2ρÞ2

ρ
v2 ðB11Þ

Thus, we have Eq. (B3).
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