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We construct a nonrelativistic effective field theory description of heavy quarkonium hybrids from QCD.
We identify the symmetries of the system made of a heavy quark, a heavy antiquark, and glue in the static
limit. Corrections to this limit can be obtained order by order in an expansion in the inverse of the massm of
the heavy quark. At order 1=m in the expansion, we obtain, at the level of potential nonrelativistic QCD, a
system of coupled Schrödinger equations that describes hybrid spin-symmetry multiplets, including the
mixing of different static energies into the hybrid states, an effect known as Λ doubling in molecular
physics. In the short distance, the static potentials depend on two nonperturbative parameters, the gluelump
mass and the quadratic slope, which can be determined from lattice calculations. We adopt a renormalon
subtraction scheme for the calculation of the perturbative part of the potential. We numerically solve the
coupled Schrödinger equations and obtain the masses for the lowest lying spin-symmetry multiplets for cc̄,
bc̄, and bb̄ hybrids. The Λ-doubling effect breaks the degeneracy between opposite-parity spin-symmetry
multiplets and lowers the mass of the multiplets that get mixed contributions of different static energies. We
compare our findings to the experimental data, direct lattice computations, and sum rule calculations, and
discuss the relation to the Born-Oppenheimer approximation.
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I. INTRODUCTION

During the last few years, experimental observations
have revealed the existence of a large number of unex-
pected states close to or above the open flavor thresholds
in the heavy quarkonium spectrum (see, e.g., the
reviews [1–3]), culminating recently with the observation
of a “charmonium-pentaquark” state at LHCb [4].
Reference [1] summarizes the situation at the time of the
review with two tables listing seven states with masses at
open flavor thresholds and 20 states with masses above the
open flavor threshold in the charmonium and bottomonium
sector. Since then, several additional states have been
observed. Most of these states display special features that
single them out as “exotic states.” They are indicated with
the X, Y, and Z labels. There is an ongoing significant
amount of experimental effort to study exotic quarkonium
by measuring new states, new production mechanisms,
decays, and transitions, and by obtaining precision and high
statistics data at BESIII, LHC experiments, and prospec-
tively at Belle2 and Panda at FAIR.
This experimental effort is matched by a correspondingly

intense theoretical activity. Exotic quarkonium states are
interesting, because they are candidates for nonconven-
tional hadronic states, for example, hadrons containing four

quarks or an excited gluon. Since these states are at or
above the strong decay threshold, heavy-light mesons and
light quark degrees of freedom should be explicitly taken
into account in the dynamics. At the moment there is no
direct QCD approach to study these states. In fact, even
though great progress has been made in the last few years
(see, e.g., Refs. [5–7]), the lattice QCD study of excited
states in the quarkonium sector is still challenging, par-
ticularly for states close to or above thresholds.
On the other hand, many phenomenological models for

exotics have been introduced and used in the meantime. A
phenomenological model is based on the choice of some
relevant degrees of freedom and a phenomenological
Hamiltonian that dictates the dynamics of the chosen
degrees of freedom. In this way, exotic states may be
interpreted as quarkonium tetraquarks (whose four quark
constituents can be clustered in several different ways up to
a molecular description), quarkonium hybrids, or hadro-
quarkonium depending on the model used (see, e.g.,
Refs. [1–3] for a review). Sum rules are also used to verify
the dominant composition of these states [8]. Only for
special states displaying exceptional features, like the
Xð3872Þ, which is precisely at a threshold, a kind of
universal effective field theory description can be devel-
oped based on the small energy of the state and the
correspondingly large scattering length [9].
The description of exotics should, however, be obtained

from QCD. One possibility is to work out a nonrelativistic
effective field theory description of these states in a way
similar to what has been done by potential nonrelativistic
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QCD (pNRQCD) for states away from threshold [10–14].
Also, for exotics the quark mass is still a large parameter of
expansion, and the first step entails a matching from QCD
to nonrelativistic QCD (NRQCD) by integrating out the
hard scale of the mass [15,16]. However, the second step,
i.e., arriving at an effective field theory of the type of
pNRQCD, whose matching coefficients are the interaction
potentials and the leading order dynamical equation is of
the Schrödinger type, is more difficult.
While in the case of quarkonium systems away from the

threshold a dynamically generated gap exists [12–14],
allowing us to integrate out the other degrees of freedom,
when we consider quarkonium systems at or above the
strong decay threshold, this is no longer the case. There is
no mass gap between the heavy quarkonium and the
creation of a heavy-light pair or a heavy quark pair with
gluonic excitations. Thus, constructing the effective field
theory entails considering, besides the heavy quark oper-
ators, all gauge invariant operators containing light quarks,
heavy quarks, and excited glue operators, e.g., pions, some
heavy-light mesons, quarkonium hybrids, and glueballs.
We discussed above how phenomenological models just
pick up some of these possible degrees of freedom and
attach to them some phenomenological interaction. In an
effective field theory description, one should identify an
appropriate expansion parameter and establish a power
counting weighting the operators. This is, at the moment,
still difficult.
In this paper we restrict ourselves to considering a heavy

quark, a heavy antiquark, and excited glue degrees of
freedom, aiming at a description of heavy quarkonium
hybrids under some special conditions. Heavy quarkonium
hybrids (for a review see, e.g., Ref. [17]) have traditionally
been described in models like the flux tube model [18], the
bag model [19], the constituent gluon model [20], or in the
so-called Born-Oppenheimer (BO) approximation applied
to QCD [17,21,22]. The adiabatic BO approximation has
been the standard method to describe the interaction
between electrons and nuclei in molecules bound by
electromagnetism since the early days of quantum mechan-
ics [23,24] up to now [25].1 The BO approximation
assumes that the lighter electrons adjust adiabatically to
the motion of the heavier nuclei. It exploits the fact that the
masses of the nuclei are much larger than the electron
masses and, consequently, the time scales for the dynamics
of the two types of particles are very different. It entails no
restriction on the strength of the coupling between the slow
and the fast degrees of freedom. In concrete terms, the BO
approximation provides a method to obtain the molecular
energies by solving the Schrödinger equation for the nuclei
with a potential given by the electronic static energies at
fixed nuclei positions. In particular, in the case of the

diatomic molecule the electronic static energies turn out to
be labeled by molecular quantum numbers corresponding
to the symmetries of the diatomic molecular system.
This procedure is rooted in the existence of two classes

of degrees of freedom, the “fast” and “slow” ones, and in
the symmetries of the diatomic molecular system. This is
the reason why the same framework can be used to describe
systems of different nature but with similar characteristics.
This turns out to be the case for heavy quarkonium hybrids,
systems formed by a heavy quark, a heavy antiquark, and
excited glue. The BO approximation has been used in this
case, identifying the slow and fast degrees of freedom with
the heavy quark-antiquark pair and the gluons, respectively
[17,21,22]. In the static limit the quark and the antiquark
serve as color source and sink at distance r, and the gluonic
field arranges itself in configurations described by the
quantum numbers fixed by the symmetry of the system.
The gluonic dynamics are, however, collective and non-
perturbative. Nevertheless, the gluonic static energies (that
are the analog of the electronic static energies) have been
extracted from the large time behavior of lattice evaluations
of generalized quark-antiquarkWilson loops at fixed spatial
distance with initial and final states of the appropriate
symmetry [21,22,27–32]. This method provides, in prin-
ciple, these gluonic static energies, but does not provide the
gluonic wave functions.
Then, relying on a kind of BO approximation, the

gluonic static energies have been introduced as potentials
in a Schrödinger-like equation [24] and some level structure
has been obtained [22,33]. The structure of the hybrid
multiplets has also been discussed in Ref. [34] using the
BO approximation and complementary information from
the lattice. These works relied on the adiabatic and single
channel BO approximation, meaning, respectively, that
only the static potential and no mixing between different
static energies have been considered. To our knowledge, up
to now no analytical description of quarkonium hybrids has
been worked out directly from QCD by constructing an
effective field theory that realizes the physical scale
hierarchy typical of the system.2 This is what we address
in the present paper.
The paper is organized as follows. In Sec. II we introduce

the nonrelativistic QCD Hamiltonian and discuss the
description of the heavy quarkonium hybrid systems in
NRQCD in the static limit, defining the Fock states, their
symmetries, and the corresponding static energies. In
Sec. III we give the same characterization using potential
NRQCD, i.e., integrating out the soft scale of the momen-
tum transfer and multipole expanding.
In particular, we match the NRQCD states and

Hamiltonian to the corresponding objects in pNRQCD.
In this way, glueballs and gluelumps naturally emerge in

1For an effective field theory description of the physics of the
BO approximation in QED, see [26].

2This refers to the hybrid spectroscopy. Applications of
NRQCD to hybrid production can be found in [35].
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pNRQCD, where the gluelumps are defined as the color
singlet combination of an octet color source coupled to a
gluonic field. The hybrid static potentials appear as
matching coefficients of pNRQCD. The higher degree of
symmetry of the lower energy EFT induces a pattern of
degeneracy in the gluelump multiplets.
In Sec. IV we introduce existing lattice evaluations of the

hybrid static energies and we relate them to the definitions
and the discussion given in the previous sections. In Sec. V
we add the first correction to the static limit, introducing
operators of order 1=m in NRQCD and pNRQCD. This
allows us to obtain the appropriate Schrödinger equations
as dynamical equations in pNRQCD. At this time we still
neglect the spin. We work out the radial Schrödinger
equations coupling the Σ−

u and the Πu gluonic states
(due to the so-called Λ-doubling term) in detail, as these
will generate all the lowest mass hybrid multiplets. We
characterize the hybrid multiplets by their JPC quantum
numbers, and we discuss the relation with the pattern of
hybrid multiplets obtained in the BO approximation and
other approaches.
In Sec. VI we solve the Schrödinger equation to get the

masses of the predicted hybrid multiplets. The static
potentials appearing in the Schrödinger equation have been
defined in pNRQCD in Sec. III; they depend, in the short
range, on two nonperturbative parameters. We fix the first
one from lattice determinations of the gluelump mass, and
we extract the second from a fit to the gluonic static
energies. Then, we define an appropriate renormalon-free
scheme (RS) and we obtain the heavy quarkonium hybrid
masses for cc̄, bc̄, and bb̄ systems.
In Sec. VII we compare our results for hybrid mass

multiplets to the existing experimental candidates and to
results obtained using the BO approximation, direct lattice
computations, and QCD sum rules. Section VIII contains
the conclusions and an outlook for future development. The
appendixes contain detailed information about the sym-
metry of the static system (Appendix A), the RS scheme
(Appendix B), the derivation of the radial Schrödinger
equation (Appendix C), and the numerical solution of
coupled Schrödinger equations (Appendix D).

II. STATIC NRQCD: SYMMETRIES OF THE
STATIC SYSTEM AND DEFINITION OF THE

GLUONIC STATIC ENERGIES

We are considering a bound system made by a heavy
quark Q, a heavy antiquark Q̄, and some gluonic excita-
tions: we generically call this a heavy hybrid state.3 Since
the quark mass m is much larger than the typical hadronic

scale ΛQCD, we can use NRQCD [15,16] to describe such a
system. NRQCD is obtained from QCD by integrating out
the hard scale of the quark mass, which corresponds to
expanding in inverse powers of the mass and including the
nonanalytic dependence on the quark mass inside some
matching coefficients.
The Hamiltonian of NRQCD for the one-quark–one-

antiquark sector of the Fock space reads

HNRQCD ¼ Hð0Þ þ 1

mQ
Hð1;0Þ þ 1

mQ̄
Hð0;1Þ þ � � � ; ð1Þ

Hð0Þ ¼
Z

d3x
1

2
ðEa · Ea þ Ba · BaÞ

−
Xnf
j¼1

Z
d3xq̄jiD · γqj; ð2Þ

Hð1;0Þ ¼ −
1

2

Z
d3xψ†ðD2 þ gcFσ · BÞψ ; ð3Þ

Hð0;1Þ ¼ 1

2

Z
d3xχ†ðD2 þ gcFσ · BÞχ; ð4Þ

where we have shown only terms up to order 1=m in the
quark mass expansion, ψ is the Pauli spinor field that
annihilates the heavy quark, χ is the Pauli spinor field that
creates the heavy antiquark, qj is the Dirac spinor field
that annihilates a massless quark of flavor j, iD0 ¼
i∂0 − gA0, iD ¼ i∇þ gA, and the matching coefficient
cF is equal to 1 up to loop corrections of order αs. The
physical states are constrained to satisfy the Gauss law4

ðD · EÞajphysi

¼ g

�
ψ†Taψ þ χ†Taχ þ

Xnf
j¼1

q̄jγ0Taqj

�
jphysi: ð5Þ

Even though we include the light quarks here in the
Hamiltonian and in the Gauss law, we will not consider
them as external dynamical sources in the rest of the paper,
in the sense that we exclude excitations with nonzero
isospin,5 transitions through light mesons, or decays into
heavy-light mesons, but we still allow for them to appear in
the form of sea quarks, as in light quark loops in
perturbation theory or unquenched lattice calculations.
The lowest gluonic excitations are stable under these
conditions, since the only remaining transitions require
the emission of a glueball, and this is only possible if the

3Usually the term hybrid identifies systems where QQ̄ is in a
color octet configuration. In the present treatment the distinction
between this type of hybrid and QQ̄ in a color singlet state plus a
glueball is often irrelevant; therefore, we will make it only when
necessary.

4Since Πa ¼ Ea þOð1=m2Þ we use the chromoelectric field
Ea instead of the canonical momentum Πa here and in the
Hamiltonian above.

5States induced by the inclusion of these light degrees of
freedom have been discussed in the BO approximation in [34].
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mass gap between the initial and final states is larger than
the glueball mass.
In the static limit mQ;mQ̄ → ∞, we have

HNRQCD ¼ Hð0Þ; ð6Þ

which still contains the kinetic terms associated with the
gluons, while the kinetic terms of the heavy quarks vanish.
In the static limit the one-quark–one-antiquark sector of the
Fock space is spanned by [12,13]

jn; x1; x2ið0Þ ¼ ψ†ðx1Þχðx2Þjn; x1; x2ið0Þ; ∀ x1; x2; ð7Þ

where jn; x1; x2ið0Þ is a gauge-invariant eigenstate of Hð0Þ
(defined up to a phase and satisfying the Gauss law) with

energy Eð0Þ
n ðx1; x2Þ; jn; x1; x2ið0Þ encodes the purely

gluonic content of the state, and it is annihilated by
χ†ðxÞ and ψðxÞ for any x. It transforms like 3x1 ⊗ 3�x2
under color SUð3Þ. The normalizations are taken as
follows:

ð0Þhn; x1; x2jm; x1; x2ið0Þ ¼ δnm; ð8Þ
ð0Þhn; x1; x2jm; y1; y2ið0Þ ¼ δnmδ

ð3Þðx1 − y1Þδð3Þðx2 − y2Þ:
ð9Þ

Notice that since Hð0Þ does not contain any heavy fermion
field, jn; x1; x2ið0Þ itself is also an eigenstate of Hð0Þ with
energy Eð0Þ

n ðx1; x2Þ. We have made it explicit that the
positions x1 and x2 of the quark and antiquark, respectively,
are good quantum numbers for the static solution
jn; x1; x2ið0Þ, while n generically denotes the remaining
quantum numbers.
In static NRQCD, the gluonic excitations between static

quarks have the same symmetries as the diatomic molecule
[24]. In the center-of-mass system, these correspond to the
symmetry group D∞h (substituting the parity operation by
CP). According to that symmetry, the mass eigenstates are
classified in terms of the angular momentum along the
quark-antiquark axis (Λ ¼ 0; 1; 2;…, to which one gives
the traditional names Σ;Π;Δ;…), CP (g for even or u for
odd), and the reflection properties with respect to a plane
that passes through the quark-antiquark axis (þ for even or
− for odd). Only the Σ states are not degenerate with respect
to the reflection symmetry. See Appendix A for more
details.
Translational invariance implies that Eð0Þ

n ðx1; x2Þ ¼
Eð0Þ
n ðrÞ, where r ¼ x1 − x2. This means that the gluonic

static energies are functions of r and of the only other scale
of the system in the static limit, ΛQCD. The ground-state

energy Eð0Þ
Σþ
g
ðrÞ is associated to the static quark-antiquark

energy, while the other gluonic static energies Eð0Þ
n ðrÞ,

n ≠ 0, are associated to gluonic excitations between static

quarks. Following the analogy with the diatomic molecule,

the Eð0Þ
n ðrÞ play the same role as the electronic static

energies. However, in the present case they are nonpertur-
bative quantities, which can be obtained in lattice QCD
from generalized static Wilson loops in the limit of large
interaction times T [21,22,27–32].
Since the static energies are eigenvalues of the static

Hamiltonian, one can exploit the following relation:

ð0Þhn; x1; x2; T=2jn; x1; x2;−T=2ið0Þ ¼ N exp ½−iEð0Þ
n ðrÞT�;

ð10Þ

whereN ¼ ½δð3Þð0Þ�2 is a normalization constant following
from (9). Since the static states jn; x1; x2ið0Þ form a
complete basis, any state jXni can be written as an
expansion in them:

jXni ¼ cnjn; x1; x2ið0Þ þ cn0 jn0; x1; x2ið0Þ þ � � � : ð11Þ

From Eq. (10), it then follows that

hXn; T=2jXn;−T=2i
¼ N jcnj2 exp ½−iEð0Þ

n ðrÞT�
þN jcn0 j2 exp ½−iEð0Þ

n0 ðrÞT� þ � � � : ð12Þ

For large T the exponentials will be highly oscillatory, or in
the Euclidean time of lattice QCD, highly suppressed, so
such a correlator will be dominated by the lowest static
energy. This allows us to obtain the lowest static energies
without knowing the static states explicitly

Eð0Þ
n ðrÞ ¼ lim

T→∞

i
T
loghXn; T=2jXn;−T=2i: ð13Þ

The only condition that jXni has to satisfy is that it needs to
have a nonvanishing overlap with the static state, cn ≠ 0.
This can be ensured by requiring jXni to have the same
quantum numbers n as the static state. Doing this also
allows us to not only get the ground state energy but also
the lowest static energy for any set of excited quantum
numbers n, because, if the quantum numbers of jXni are
fixed, then it can only have an overlap with static states of
the same quantum numbers.
A convenient choice for these jXni states gives the static

energies in terms of Wilson loops, so we define

jXni ¼ χðx2Þϕðx2;RÞTaPa
nðRÞϕðR; x1Þψ†ðx1Þjvaci: ð14Þ

Here the strings ϕðx2; x1Þ are Wilson lines from x1 to x2,
which are defined, in general, as

ϕðx2; x1Þ ¼ P exp

�
−ig

Z
x2

x1

dxμAμðxÞ
�
; ð15Þ
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where P denotes the path ordering operator. By jvaci we
mean the NRQCD vacuum, and Pn is some gluonic operator
that generates the right quantum numbers n. A list of
possible operators Pn is given in Table I. The large time
correlator of these states is given by a staticWilson loop with
insertions of Pn in the strings at the center of mass. These
generalized static Wilson loops are, in principle, the same
quantities as those that are used to obtain the gluonic static
energies on the lattice, but with suitable lattice definitions for
the operators Pn and allowing for further manipulations like
smearing. For more details see Sec. IV.

For the ground state energy Eð0Þ
Σþ
g
ðrÞ one has to insert a

color-neutral gluonic operator with JPC quantum numbers
0þþ instead of TaPa

n. For the simplest choice, i.e., the unit

matrix, this then coincides with the usual static Wilson loop
without insertions and gives the quark-antiquark static
energy. One can also replace TaPa

n by a color-neutral
gluonic operator with excited JPC quantum numbers. In this
case one selects the lowest mass singlet plus glueball states
consistent with those JPC quantum numbers. It is possible
to get additional information about and a characterization
of these gluonic static energies by using the lower energy
effective field theory called pNRQCD.

III. STATIC PNRQCD: CHARACTERIZATION
OF THE GLUONIC STATIC ENERGIES
AT SHORT DISTANCES AND FORM

OF THE POTENTIALS

In this section we discuss how it is possible to obtain a
model independent characterization of the gluonic static
energies at short distances and provide a definition of the
hybrid potential using a low energy effective field theory
called pNRQCD [10,11].
Potential NRQCD is obtained from NRQCD by inte-

grating out the soft scale of the relative momentum transfer
between the quark and the antiquark, which is of the order
of the inverse quark-antiquark distance 1=r. Therefore, the
matching coefficients of pNRQCD may have a nonanalytic
dependence on r and correspond to the quark-antiquark
potentials. For short quark-antiquark distances (i.e., in the
limit ΛQCD ≪ 1=r) the soft scale of the quark-antiquark
momentum transfer is still perturbative, and we can call that
effective theory weakly coupled pNRQCD (see [12] or [36]
for a review). The dynamical degrees of freedom of this
theory are heavy quark-antiquark pairs in a color singlet, S,
or in a color octet configuration, O, and low energy
(ultrasoft) gluons. To ensure that the gluons are charac-
terized by a length that is larger than the typical quark-
antiquark distance, the gluon fields are multipole expanded
with respect to r, which means that they only depend on the
center-of-mass coordinate R and time t.
In the static limit and at leading order in the multipole

expansion, the pNRQCD Hamiltonian is

Hð0Þ ¼
Z

d3Rd3rðVsðrÞS†ðr;RÞSðr;RÞ þ VoðrÞOa†ðr;RÞOaðr;RÞÞ þHYM þOðrÞ: ð16Þ

We will use the symbol H to distinguish pNRQCD
Hamiltonians from the NRQCD symbol H. We assume
that the theory has been quantized in an Aa

0 ¼ 0 gauge for
simplicity. The S and O fields depend on r, the center of
massR, and the time t (which is not displayed here, because
the Hamiltonian as a whole is time independent). At leading
order in the multipole expansion the singlet and octet
degrees of freedom decouple, but the octet is still coupled to
gluons because of the Gauss law. VsðrÞ and VoðrÞ are

pNRQCD matching coefficients corresponding to the static
quark-antiquark potential in a singlet and in an octet color
configuration, respectively. These potential terms are gen-
erated by soft gluons, which are still dynamical in NRQCD
but integrated out in pNRQCD, so their effect has to be
included explicitly in the Hamiltonian.
HYM has the same form as the pure Yang-Mills plus

light-quark part of the NRQCD Hamiltonian given in
Eq. (2), but all fields are now understood as ultrasoft.

TABLE I. Gluonic excitation operators at leading order in the
multipole expansion in pNRQCD up to mass dimension 3; r̂
denotes the unit vector in the direction of the quark-antiquark
distance r. Different projections of the same fields correspond to
different D∞h representations, which are degenerate in the small-
distance limit. The cross product with r̂ has two linearly
independent components, which correspond to the two compo-
nents of Λ ≥ 1 representations of D∞h; the same applies for the
symmetric tensor operators of the Δ representations. Note that
the KPC quantum numbers refer only to the gluon fields, not the
transformation properties of r̂, which is P and C odd. The Σþ

g is
not shown since it corresponds to the ground state. This table is
taken from [11].

Λσ
η KPC Pa

Σ−
u 1þ− r̂ · B, r̂ · ðD × EÞ

Πu 1þ− r̂ × B, r̂ × ðD × EÞ
Σþ0
g 1−− r̂ · E, r̂ · ðD × BÞ

Πg 1−− r̂ × E, r̂ × ðD × BÞ
Σ−
g 2−− ðr̂ · DÞðr̂ · BÞ

Π0
g 2−− r̂ × ððr̂ · DÞBþ Dðr̂ · BÞÞ

Δg 2−− ðr̂ × DÞiðr̂ × BÞj þ ðr̂ × DÞjðr̂ × BÞi
Σþ
u 2þ− ðr̂ · DÞðr̂ · EÞ

Π0
u 2þ− r̂ × ððr̂ · DÞEþ Dðr̂ · EÞÞ

Δu 2þ− ðr̂ × DÞiðr̂ × EÞj þ ðr̂ × DÞjðr̂ × EÞi
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The same conditions on the light quarks as discussed in the
previous chapter also apply here. The inclusion or omission
of light quarks as sea quarks does not seem to critically
affect the pattern of the lowest hybrid masses. This is
indicated by the few existing unquenched lattice calcula-
tions of the gluelump masses [37] and static energies [32].
In the r → 0 limit extra symmetries for the gluonic

excitations between static quarks appear. The glue dynam-
ics no longer involve the relative coordinate r; in particular,
there is no longer a special direction dictated by the quark-
antiquark axis. Therefore, the glue associated with a
gluonic excitation between static quarks acquires a spheri-
cal symmetry. So in the center-of-mass system, gluonic
excitations between static quarks are classified according to
representations of Oð3Þ ⊗ C [11], as opposed to the D∞h
group in NRQCD.Wewill indicate these quantum numbers
by KPC, where K is the angular-momentum operator of the
gluons.
Accordingly, in the short-distance limit the static states

have to be given through glueball and gluelump operators,
which we will call G and Ga, respectively. While a
gluelump itself consists of the color singlet combination
of a color octet source with gluons, here we will always use
the term “gluelump operator” to refer only to the gluonic
operator, since the source will always be given by the
quarkonium octet field. The glueball and gluelump oper-
ators are normalized as

h0jGm;iðRÞGn;jðRÞj0i ¼ δmnδij; and

h0jGa
m;iðRÞGb

n;jðRÞj0i ¼ δmnδijδ
ab: ð17Þ

Here the operators are assumed to be real. The first indices
m and n label different types of glueballs or gluelumps; the
second indices i and j label the different components of the
respective KPC representation.
We can then match the eigenstates of the static NRQCD

Hamiltonian to pNRQCD through

jn; x1; x2ið0Þ ≅ ðS†ðr;RÞn̂iGn;iðRÞ þOðrÞÞj0i ð18Þ

for the singlet plus glueball states and

jn; x1; x2ið0Þ ≅ ðOa†ðr;RÞn̂iGa
n;iðRÞ þOðrÞÞj0i ð19Þ

for the gluelump states, where n̂ is some unit projection
vector that fixes the D∞h quantum numbers. Higher order
terms in the multipole expansion will also be operators of
this form, so the states will no longer be purely singlet plus
glueball or gluelump, but a combination of all of these
states with the right D∞h quantum numbers. We use the
symbol ≅ to read “matches to,” meaning that, although the
states or operators on both sides are defined in different
Fock spaces, calculating amplitudes in either theory gives
the same results. In this case the matching condition is that
acting with the static Hamiltonian of either theory on the
respective state gives the same static energy.
Since the projection vector n̂ does not influence the static

energy at leading order in the multipole expansion, several
static energies are degenerate in the short-distance limit
r ≪ 1=ΛQCD. We can see this for the gluelump states by
calculating that

Hð0Þjn; x1; x2i ≅
�Z

d3R0d3r0Voðr0ÞOa0†ðr0;R0ÞOa0 ðr0;R0Þ; Oa†ðr;RÞ
�
n̂iGa

n;iðRÞj0i

þOa†ðr;RÞn̂i½HYM; Ga
n;iðRÞ�j0i þOðrÞ

¼ ðVoðrÞ þ ΛH þOðr2ÞÞðOa†ðr;RÞn̂iGa
n;iðRÞ þOðrÞÞj0i: ð20Þ

For the singlet plus glueball states the calculation goes
analogously. The glueball or gluelump mass ΛH is the
energy eigenvalue of the states generated by G or Ga under
the Yang-Mills Hamiltonian. It depends on n but it is the
same for any component ofG orGa, so the projections have
no influence on the leading order of the static energy. This
approximate degeneracy for small r is a direct consequence
of the extension of the D∞h symmetry group to Oð3Þ ⊗ C.
The glueball and gluelump masses ΛH are well defined

as eigenvalues of the Yang-Mills Hamiltonian; however, the
operators that create the corresponding eigenstates are
unknown. This situation is similar to the previous section,
where it is also unknown how to express the exact static
NRQCD states jn; x1; x2ið0Þ in terms of NRQCD fields. So
one can use the same approach here to determine the values

of ΛH: one uses operators with the same quantum numbers
as G or Ga and projects out the lowest energy eigenvalue
through the large time limit.
The NRQCD states jXni defined in (14) match in

pNRQCD at leading order in the multipole expansion to

jXni ≅ ðZnðrÞOa†ðr;RÞPa
nðr̂;RÞ þOðrÞÞj0i: ð21Þ

The matching constant Zn accounts for effects at the scale
1=r, which have been integrated out in pNRQCD, and so it
depends on r in a nonanalytic way. However, it gives a
vanishing term in the large time correlator (13), so it has no
influence on the static energies. Table I shows a set of
convenient gluon operators Pa

n corresponding to the
lowest hybrid quantum numbers. The expected pattern of
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degeneracies in the short-distance limit can also be read off
from this table:

Σ−
u ∼ Πu; Σ−

g ∼ Π0
g ∼ Δg;

Σþ0
g ∼ Πg; Σþ

u ∼ Π0
u ∼ Δu; ð22Þ

where a prime indicates an excited state [11] (see also [38]).
The large time correlators are then given by

hXn; T=2jXn;−T=2i
¼ N e−iVoðrÞTh0jPa

nðT=2Þϕab
adjðT=2;−T=2Þ

× Pb
nð−T=2Þj0i þOðr2Þ: ð23Þ

The temporal Wilson line in the gluonic correlator ensures
the gauge invariance of the expression. In Aa

0 ¼ 0 gauges,
which we assumed in the Hamiltonian, it can be replaced by
a Kronecker delta, but in other gauges it is needed. The
gluonic correlator can only be evaluated nonperturbatively,
since it contains no physical scale except for ΛQCD.
However, on general grounds we can argue that

h0jPa
nðT=2Þϕab

adjðT=2;−T=2ÞPb
nð−T=2Þj0i

¼ jcnj2e−iΛHT þ jcn0 j2e−iΛH0T þ � � � ; ð24Þ

so that we achieve the following matching condition

between the static energy Eð0Þ
n ðrÞ in NRQCD and the static

potential VoðrÞ in pNRQCD [cf. Eq. (13)]:

Eð0Þ
n ðrÞ ¼ lim

T→∞

i
T
loghXn; T=2jXn;−T=2i

¼ VoðrÞ þ ΛH þOðr2Þ: ð25Þ

Again, for the singlet plus glueball states the calculation is
analogous. The ground state corresponds to a singlet
without a glueball operator, so

Eð0Þ
Σþ
g
ðrÞ ¼ VsðrÞ þOðr2Þ: ð26Þ

At small distances, r ≪ 1=ΛQCD, Vs and Vo can be
calculated perturbatively. They are known at three loops
with some partial results at four loops [39–45]. For a
detailed comparison of Vs to the lattice data in the short
range, see [46–48].
Equations (25) and (26) can be systematically improved

by calculating higher orders in the multipole expansion. In
particular, one can look at how the Oð3Þ ⊗ C symmetry is
softly broken to D∞h in the short-distance limit. The
leading correction coming from the multipole expansion
to (25) and (26) is at Oðr2Þ and can be calculated in
pNRQCD in terms of nonperturbative correlators to even-
tually be evaluated on the lattice or in QCD vacuum

models. Such a correction is necessary in order to form
a bound state, since VoðrÞ itself is repulsive.
In this paper we consider only states of the lowest lying

symmetry multiplet, i.e., the Σ−
u and Πu states. They are

generated from a gluelump with quantum numbers 1þ−. A
good gluonic operator Pa overlapping with this gluelump,
which can be used in the large time correlator (25), is the
chromomagnetic field Ba, so we will call this gluelump
operator Ga

B.
For the projection on the Σ−

u state, the unit vector r̂ ¼
ðsin θ cosφ; sin θ sinφ; cos θÞT will be used, which gives
the direction of the quark-antiquark axis. The other two
projection vectors for the Πu states have to be orthogonal to
r̂ and each other, but apart from that we are free to take any
two convenient vectors. We will use r̂� ¼ ðθ̂� iφ̂Þ= ffiffiffi

2
p

,
where θ̂ ¼ ðcos θ cosφ; cos θ sinφ;− sin θÞT and φ̂ ¼
ð− sinφ; cosφ; 0ÞT are the usual local unit vectors in a
spherical coordinate system. The advantage of this choice is
that with these complex vectors the projections of the
gluelump operator transform as r̂� · Ga

B → e�iαr̂� · Ga
B

under rotations by an angle α around the quark-antiquark
axis.
The leading order matching condition is then given by

j1Σ−
u ; x1; x2ið0Þ ≅ Oa†ðr;RÞr̂ · Ga

BðRÞj0i þOðrÞ; ð27Þ

j1Π�
u ; x1; x2ið0Þ ≅ Oa†ðr;RÞr̂� · Ga

BðRÞj0i þOðrÞ: ð28Þ

Note that by this definition the index � on the Πu states
refers to the sign under rotations, while the index − of the
Σ−
u state refers to the sign under reflections.

IV. NRQCD LATTICE DETERMINATION
OF THE GLUONIC STATIC ENERGIES

The gluonic NRQCD static energies are calculated on the
lattice through the logarithm of large time generalized static
Wilson loops introduced in Eq. (13) divided by the
interaction time. The generalized static Wilson loops are
constructed using for the initial and final states NRQCD
operators with the quantum numbers needed to select the
desired static energy [see, for instance, Eq. (14)].
The static energies for heavy quark-antiquark pairs have

been computed in lattice QCD by several authors
[21,22,27–32]. In this section we review the latest available
data sets obtained by Juge, Kuti, and Morningstar in
[22,31] and by Bali and Pineda in [49], which have been
used in this paper.
Static energies were obtained in quenched lattice

QCD by Juge, Kuti, and Morningstar on anisotropic lattices
using an improved gauge action introduced in [50]. They
extracted the static energies from Monte Carlo estimates of
generalized large Wilson loops for a large set of operators
projected onto the different representations of the D∞h
group. The distance r between the heavy quark-antiquark
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pair is fixed in the starting time slice. The use of anisotropic
lattices with the temporal spacing much smaller than the
spatial spacing is crucial to resolve the gluon excitation
spectrum. The static energies for the Σ, Π and Δ gluonic
excitations were first computed in [22] and then in larger
lattice volumes in [31]. The lattice data from the latter
reference consist of four different runs with lattice volumes:
ð182 × 24Þ × 54, ð162 × 20Þ × 80, 143 × 56, and the final
one is a finite volume check. The corresponding lattice
spacings for these runs are ∼0.12 fm, ∼0.19 fm, ∼0.22 fm,
and ∼0.27 fm.
Lattice simulations were carried out by Bali and Pineda

in [49] focusing on the short-range static energies for the
Πu and Σ−

u potentials. They performed two sets of compu-
tations using a Wilson gauge action in the quenched
approximation. The first set was performed on an isotropic
lattice with volume 243 × 48 at β ¼ 6.2 and lattice spacing
≈0.07 fm, the second set on three anisotropic lattices with
spatial spacings ≈0.16, 0.11, 0.08 fm and temporal spacing
of one-fourth of the spatial spacing, with β ¼ 5.8, 6.0, 6.2,
respectively. The isotropic data were used as a consistency
check, and the anisotropic data were extrapolated to the
continuum limit.
The static energies computed on the lattice using

generalized static Wilson loops contain divergent self-
energy contributions in the temporal lines, associated to
the heavy quark mass. These self-energy contributions have
to be removed in order to obtain the absolute value of the
static energies. They could be removed by comparing the
ground state static energy Σþ

g with the Coulombic potential
computed in perturbation theory at very short distances. In
practice, however, lattice data are not available for such
short distances in which the perturbative regime is valid.
Instead, to remove the divergence, Juge, Kuti, and
Morningstar fitted the Σþ

g static energy to Λ0 þ ec=rþ
κr and subtracted the value Λ0, while Bali and Pineda chose
to give the values of the static energies relative to the value
of the Σþ

g static energy at r ¼ r0 ≈ 0.5 fm.
The ground state static energy Σþ

g and the first gluonic
excitation Πu have been computed in unquenched lattice
simulations in [32]. The light quarks have unphysically
large masses which are equivalent to a pion mass of
650 MeV. Two lattice volumes were used, 163 × 32 and
243 × 40 with β ¼ 5.6 and a lattice spacing of ≈0.076 fm.
Two quenched calculations were carried out in the same
work, and the results were found to agree within errors with
the unquenched Σþ

g and Πu static energies below the quark-
antiquark string breaking distance.
As explained in the previous section, in the short-

distance limit the heavy quark-antiquark pair gives origin
to a local octet source, and the spectrum of gluonic static
energies is related to the gluelump spectrum. In Fig. 1 the
lattice data from Ref. [31] are plotted and compared with
the gluelump spectrum, computed also on the lattice, of
Ref. [38]. We can see that the two lowest-lying hybrid static

energies are the Πu and Σ−
u states, and they clearly tend to

form a degenerate multiplet in the short range. The
Πg − Σþ0

g , Δg − Σ−
g − Π0

g and Δu − Πu
0 − Σþ

u multiplets
are also expected to be degenerate in the short range
[11], cf. Table I.

V. THE SCHRÖDINGER EQUATION:
MATCHING AT ORDER 1=m

A. Beyond the static limit

In this section we go beyond the static limit to obtain the
bound state equation that gives the hybrid masses.
Therefore, we consider the 1=m corrections to the
NRQCD static Hamiltonian [see Eqs. (3) and (4)]. We
then match the NRQCD states and Hamiltonian to
pNRQCD, obtaining the Schrödinger equation that
describes the hybrids and the corresponding eigenstates.
The spectrum of the static Hamiltonian Hð0Þ, as of any

Hermitian operator, provides a full basis of the correspond-
ing Fock space. Therefore, we can express any state, in
particular, also the eigenstates jNi of the full Hamiltonian
H, as a superposition of static states:

jNi ¼
X
n

Z
d3x1d3x2jn; x1; x2ið0Þψ ðNÞ

n ðx1; x2Þ: ð29Þ

FIG. 1 (color online). The lowest hybrid static energies [31] and
gluelump masses [38] in units of r0 ≈ 0.5 fm. The absolute values
have been fixed such that the ground state Σþ

g static energy (not
displayed) is zero at r0. The behavior of the static energies at short
distances becomes rather unreliable for some hybrids, especially
the higher excited ones. This is largely due to the difficulty in
lattice calculations to distinguish between states with the same
quantum numbers, which mix. For example, the Σþ00

g static energy
approaches the shape corresponding to a singlet plus 0þþ glueball
state (also displayed) instead of the 0þþ gluelump. This picture is
taken from [49].
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In this notation, N is a shorthand for all quantum numbers
of the system described by the full Hamiltonian, which are
generally different from the static quantum numbers n. The
relation in Eq. (29) is written in the most general way, but
quantum numbers that are incompatible with N do not, in
fact, appear in the sum over n. For example, if a certain
static quantum number is also a good quantum number in
the nonstatic system, then the sum in Eq. (29) can only
contain one value for it. By writing the integrations over x1
and x2 explicitly, we already anticipate that the heavy quark
and antiquark positions are not good quantum numbers,
which is natural in the nonstatic system of the full
Hamiltonian.
We want to use quantum mechanical perturbation theory

in order to determine the leading coefficients in (29) in the
1=m expansion. An important distinction to make here is
whether to use degenerate or nondegenerate perturbation
theory. In any quantum mechanical system with a
Hamiltonian Hð0Þ þ ΔH and a full set of unperturbed

eigenstates satisfying Hð0Þjnið0Þ ¼ Eð0Þ
n jnið0Þ, the first two

perturbative corrections to a nondegenerate energy eigen-
value of Hð0Þ are given by

En ¼ Eð0Þ
n þ ð0ÞhnjΔHjnið0Þ þ

X
n0≠n

jð0Þhn0jΔHjnið0Þj2
Eð0Þ
n − Eð0Þ

n0
þ � � � :

ð30Þ

The first correction to the leading term is usually small for a
suitably chosen ΔH, but the second correction term can
only be considered small if hΔHi=ΔEð0Þ ≪ 1; otherwise,
the second correction would be of the same order as the
first, and the perturbative series would break down. If there

is no degeneracy between the energies, i.e., ΔEð0Þ ∼ Eð0Þ
n ,

then this condition is satisfied. The corresponding full
eigenstate is given at leading order by exactly one unper-
turbed state.
However, if some of the energies are close enough or

even identical, then because of the vanishing denominator
in the second order term, this expansion cannot be valid.
Instead, one has to calculate the matrix elements of Hð0Þ þ
ΔH between all degenerate states and diagonalize the
result. The full eigenstates at leading order are then no
longer a single unperturbed state but a superposition of the
degenerate states, and the coefficients of this superposition
form the eigenvectors that diagonalize Hð0Þ þ ΔH in the
degenerate sector. The next correction to the energy is given
by a term similar to the second order in the nondegenerate
case. However, the sum over n0 now contains none of the
degenerate states (so there is no vanishing denominator),

and the single state jni and the energy Eð0Þ
n have to be

replaced by the superposition of degenerate states and the
corresponding energy eigenvalue, respectively.

In our case the static states are clearly degenerate
regarding the quark and antiquark positions x1 and x2.
The question of whether there are degeneracies related to
the other quantum numbers n of the static states is harder to
answer. We know that in the short-distance limit the states
belonging to the same gluelump multiplet are degenerate,
and we can assume a mass gap of order ΛQCD between the
lowest gluelump and higher excited multiplets as well as
the ground state (cf. Fig. 1 and Ref. [37]). Neglecting pion
contributions is crucial for this assumption. At larger
distances r ∼ Λ−1

QCD it is also reasonable to assume a mass
gap of order ΛQCD between the Πu and Σ−

u states, while at
even larger distances the Σ−

u static energy starts to cross
with higher excited states, although we do not expect those
crossover regions to be of importance to the low lying
hybrids. In any case, at very large distances, open flavor
channels that we neglect will also play a role. So depending
on the value of r the static energies may or may not be
degenerate, but since the lowest lying hybrids are expected
to be located around the minimum of the potential, which is
close to the short-distance part, we will use degenerate
perturbation theory with respect to the Πu and Σ−

u states.
The leading term for the energy in degenerate perturba-

tion theory is obtained by diagonalizing the matrix ele-
ments between the degenerate states. For the static plus
1=m Hamiltonian, this can be done in two steps. We can
write the matrix elements as

ð0Þhn0; x01; x02jHð0Þ þHð1Þjn; x1; x2ið0Þ

¼ ðδn0nEð0Þ
n þ Eð1Þ

n0nÞδð3Þðx01 − x1Þδð3Þðx02 − x2Þ; ð31Þ

where we use the abbreviation Hð1Þ ¼ Hð1;0Þ=mQ þ
Hð0;1Þ=mQ̄. The new energy term Eð1Þ

n0n in this expression
is a matrix-valued differential operator acting on the delta
functions. Diagonalizing the matrix elements corresponds

to finding the sets of eigenfunctions ψ ðNÞ
n of Eð0Þ þ Eð1Þ

satisfying

X
n

ðδn0nEð0Þ
n þ Eð1Þ

n0nÞψ ðNÞ
n ¼ ENψ

ðNÞ
n0 ; ð32Þ

where the eigenvalue EN gives the mass of the hybrid state
as mH ¼ mQ þmQ̄ þ EN up to corrections of order 1=m2.
So the first step corresponds to determining this differential
operator, the second to solving the resulting eigenvalue
problem.
We will first determine Eð1Þ

n0n in the short-distance limit,
since it is in this regime that we have a strong degeneracy
between the Σ−

u and Πu states. Accordingly, we will not
calculate the matrix elements for the full 1=m Hamiltonian,
but only for the leading order in the multipole expansion.
The importance of each term can be determined by the
standard power counting of weakly coupled pNRQCD. All
powers of 1=r including derivatives in r scale as mv with
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v ≪ 1, while all other dynamical fields scale as the next
lower energy scale, which can either be ΛQCD or mv2,
which is the scale of the potential terms. In this case the
hierarchy mv ≫ ΛQCD ≫ mv2 seems more appropriate.
In the octet sector the 1=m pNRQCD Hamiltonian is

given by

Hð1Þ ¼
Z

d3Rd3rOa†ðr;RÞ
�
−
∇2
rδ

ab

m
−
ðD2

RÞab
4m

þ Vð1ÞðrÞδab
m

þ � � �
�
Obðr;RÞ: ð33Þ

Here we have assumed for simplicity that the quark and the
antiquark have the same massm; otherwise, we would have
to distinguish between reduced and total mass, i.e., replace
the first denominator by 2mQmQ̄=ðmQ þmQ̄Þ and the
second by 2ðmQ þmQ̄Þ, etc. These are not all 1=m
operators; the dots contain other terms that involve the
gauge fields E and B at the same or higher orders in the
multipole expansion, including spin interactions.
According to the power counting, the first term of Hð1Þ,

which is the kinetic term for the relative distance, scales as
mv2, while all other terms scale at most as Λ2

QCD=m (in the

weak coupling regime Vð1Þ is of order m2v4 [13]). We will
include only the kinetic term, which means that our
calculation will be valid up to corrections of order
Λ2
QCD=m. The static Hamiltonian Hð0Þ itself is of order

mv2 in the heavy quark part, which contains the singlet and
octet potentials, and of order ΛQCD in the Yang-Mills part,
which gives rise to the gluelump mass. So we see that at

least the potential term of Hð0Þ and the kinetic term ofHð1Þ
are of the same order, which is in accordance with the virial
theorem of standard quantum mechanics.
In the long-distance limit, we cannot rely on the multi-

pole expansion. Both Eð0Þ
n and Eð1Þ

n0n may be expressed as the
expectation value of some generalized Wilson loop acting
on quark-antiquark color singlet states. These generalized
Wilson loops, involving the insertion of gauge fields in a
static Wilson loop, can, in principle, be determined from
lattice calculations. They have been determined in the case

of Eð0Þ
n (see Sec. IV), but they have not been in the case of

Eð1Þ
n0n. Hence, we will be able to use the full nonperturbative

information only for the static energies, while we will have
to rely on short-distance approximations, and, in particular,
on the leading order term in the multipole expansion, in the
case of the 1=m terms. This is a reasonable approximation
for the lowest hybrid states that are expected to lie near the
minimum of the potential, which is sufficiently close to the
origin (a quantitative analysis can be found in Sec. VI).
In summary, we will use nearly degenerate perturbation

theory for the static states Πu and Σ−
u belonging to the same

1þ− gluelump multiplet at short distances. We will use both
perturbative and nonperturbative information for the static

energies Eð0Þ
n , while we will evaluate Eð1Þ

n0n at short distances
at leading order in the multipole expansion.
We turn to the evaluation of the matrix elements of the

kinetic term in the short-distance limit, which will lead to a
coupled Schrödinger equation. The kinetic term acts on the
static states corresponding to the lowest gluelump in the
following way:

Hkinjn; x1; x2ið0Þ ≅ −
�Z

d3R0d3r0Oa0†ðr0;R0Þ∇
2
r0

m
Oa0 ðr0;R0Þ; Oa†ðr;RÞ

�
n̂ · Ga

BðRÞj0i

¼ −
�
∇2
r

m
Oa†ðr;RÞ

�
n̂ · Ga

BðRÞj0i; ð34Þ

where n̂ can be either r̂ or r̂� for Σ−
u or Πu, respectively. The matrix elements are then given by

ð0Þhn0; x01; x02jHkinjn; x1; x2ið0Þ ¼ −h0jn̂0 · Ga0
B ðR0Þ

�
Oa0 ðr0;R0Þ;

�
∇2
r

m
Oa†ðr;RÞ

��
n̂ · Ga

BðRÞj0i

¼ −h0jn̂0 · Ga
BðRÞn̂ · Ga

BðRÞj0i
∇2
r

m
δð3Þðr − r0Þδð3ÞðR − R0Þ

¼ −n̂0ðθ0;φ0Þ · n̂ðθ;φÞ∇
2
r

m
δð3Þðr − r0Þδð3ÞðR − R0Þ: ð35Þ

To evaluate the expectation value of the gluonic operators
we have used the fact that the gluelump operators create
orthonormal states. The dependence on the coordinates of
the projection vectors has been made explicit in the last
line.

If we now let the differential operator corresponding to
these matrix elements act on the wave functions, which is
equivalent to a convolution of Eq. (35) with ψ ðNÞ

n ðrÞ, then
we obtain the following differential equation (replacing r0
with r),
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X
n¼Σ;Π�

n̂0�ðθ;φÞ ·
�
−
∇2
r

m
þ Eð0Þ

n ðrÞ
�
n̂ðθ;φÞΨðNÞ

n ðrÞ

¼ ENΨ
ðNÞ
n0 ðrÞ: ð36Þ

Comparing this result with Eq. (32), the scalar product of n̂0
and n̂ gives the δn0n in front of the static energy, and the first

term gives the differential operator Eð1Þ
n0n, which will have a

more complicated expression because the derivatives act
not only on the wave function but also on n̂. The wave
functions only need to depend on r because we have
neglected the kinetic term for R, so the center-of-mass
coordinate is still a good quantum number. This corre-
sponds to a hybrid at rest without any recoil effects between
heavy quarks and gluons.

B. The radial Schrödinger equation

The Laplace operator ∇2
r can be split into a radial and an

angular part, such that

−
∇2
r

m
¼ −

1

mr2

�
∂rr2∂r þ ∂xð1 − x2Þ∂x þ

1

1 − x2
∂2
φ

�
;

ð37Þ

where we have replaced the angle θ by x ¼ cos θ. The
radial part ∂rr2∂r acts only on the wave functionΨnðrÞ, and
the scalar product of the projection vectors just gives a
Kronecker delta: n̂0 · n̂ ¼ δn0n.
The angular part usually has eigenfunctions in the

spherical harmonics; however, the presence of the projec-
tion vectors modifies the defining differential equations in
the diagonal entries n0 ¼ n to

−
�
∂xð1 − x2Þ∂x þ

1

1 − x2
ð∂2

φ − 2iλx∂φ − λ2Þ
�
vλl;mðx;φÞ ¼ lðlþ 1Þvλl;mðx;φÞ; ð38Þ

where λ labels the different projection vectors, λ ¼ 0 for r̂ and λ ¼ �1 for r̂�. An explicit solution for these orbital wave
functions can be given as

vλl;mðx;φÞ ¼
ð−1Þmþλ

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!ðl − λÞ!ðlþ λÞ!

s
Pλ
l;mðxÞeimφ; ð39Þ

Pλ
l;mðxÞ ¼ ð1 − xÞðm−λÞ=2ð1þ xÞðmþλÞ=2∂lþm

x ðx − 1Þlþλðxþ 1Þl−λ: ð40Þ

A derivation of these functions can be found in textbooks such as [24]. They are defined for jmj ≤ l and jλj ≤ l, and for
λ ¼ 0 they are identical to the spherical harmonics.
The quantum numbers l andm correspond to the eigenvalues of the angular momentum L ¼ LQQ̄ þ K, where LQQ̄ is the

angular-momentum operator of the heavy quarks, and K is the gluon angular-momentum operator. These eigenvalues
appear when the operator acts on the state, not only the wave function:

L2

Z
dΩðvλl;mr̂λ · Ga

BO
a†Þj0i ¼ lðlþ 1Þ

Z
dΩðvλl;mr̂λ · Ga

BO
a†Þj0i; ð41Þ

L3

Z
dΩðvλl;mr̂λ · Ga

BO
a†Þj0i ¼ m

Z
dΩðvλl;mr̂λ · Ga

BO
a†Þj0i: ð42Þ

The states with the orbital wave functions vλl;m are
eigenstates of the angular momentum, but not yet of parity
and charge conjugation because acting with P or C turns λ
into −λ. We list here the transformation properties of all
elements of the states:

vλl;m →
P ð−1Þlv−λl;m; vλl;m →

C ð−1Þlv−λl;m; ð43Þ

r̂λ →
P ð−1Þλþ1r̂−λ; r̂λ →

C ð−1Þλþ1r̂−λ; ð44Þ

Ga
B →

P
Ga

B; Ga
B →

C
− ð−ÞaGa

B; ð45Þ

Oa
s →

P
−Oa

s ; Oa
s →

C ð−1Þsð−ÞaOa
s : ð46Þ

The factor ð−Þa comes from Ta ¼ ð−ÞaðTaÞT , but since it
appears in front of the octet field and the gluelump operator,
it cancels for the gluelump states. The quantum number s
labels the total spin of the quark and the antiquark and can
have values 0 or 1.
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For λ ¼ 0 we already have parity and charge conjugation eigenstates:

v0l;mr̂ · G
a
BO

a†j0i→P ð−1Þlv0l;mr̂ · Ga
BO

a†j0i; ð47Þ

v0l;mr̂ · G
a
BO

a†j0i→C ð−1Þlþsv0l;mr̂ · G
a
BO

a†j0i: ð48Þ

For jλj ¼ 1 we can define even and odd parity or charge conjugation states:

1ffiffiffi
2

p ðv1l;mr̂þ � v−1l;mr̂
−Þ · Ga

BO
a†j0i→P ∓ð−1Þl 1ffiffiffi

2
p ðv1l;mr̂þ � v−1l;mr̂

−Þ · Ga
BO

a†j0i; ð49Þ

1ffiffiffi
2

p ðv1l;mr̂þ � v−1l;mr̂
−Þ · Ga

BO
a†j0i→C ∓ð−1Þlþs 1ffiffiffi

2
p ðv1l;mr̂þ � v−1l;mr̂

−Þ · Ga
BO

a†j0i: ð50Þ

We see that the combination with a relative minus sign has
the same P and C transformation properties as the λ ¼ 0
state, while the positive combination has the opposite
behavior.
Now the angular momentum L and the spin S can be

combined with the usual Clebsch-Gordan coefficients to
form eigenstates of the total angular momentum
J ¼ Lþ S. Since at this level of the approximation nothing
depends on the spin, all the different spin combinations
have the same energy and appear as degenerate multiplets.
The JPC quantum numbers are then fl��; ðl − 1Þ�∓;
l�∓; ðlþ 1Þ�∓g, where the first entry corresponds to the
spin 0 combination and the next three entries to the spin 1
combinations. For l ¼ 0 there is only one spin 1 combina-
tion as well as only one parity or charge conjugation state
(see below), so we have f0þþ; 1þ−g. In Table II the first five
degenerate multiplets that can be obtained are shown,
arranged according to their energy eigenvalues (see Sec. VI).
The λ ¼ 0 state will be convoluted with the radial wave

functions ψ ðNÞ
Σ ðrÞ, while the radial wave functions ψ ðNÞ

�ΠðrÞ
will be convoluted with the jλj ¼ 1 states that have the
relative � sign between the two projection vectors and
orbital wave functions. The differential term n̂0 · ∇2

r n̂ in the
coupled Schrödinger equation not only changes the differ-
ential equations for the orbital wave functions, it also adds

additional diagonal and off-diagonal terms. The off-diago-
nal terms change the radial Σ wave function to Π and vice
versa; however, they cannot change the parity of the states.

This means that ψ ðNÞ
Σ mixes only with ψ ðNÞ

−Π , and ψ ðNÞ
þΠ

decouples. We then have the following coupled radial
Schrödinger equation for one parity state,

�
−

1

mr2
∂rr2∂r þ

1

mr2

 
lðlþ 1Þ þ 2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

lðlþ 1Þ

!

þ
 
Eð0Þ
Σ 0

0 Eð0Þ
Π

!# 
ψ ðNÞ
Σ

ψ ðNÞ
−Π

!
¼ EN

 
ψ ðNÞ
Σ

ψ ðNÞ
−Π

!
; ð51Þ

and for the other we get the conventional radial Schrödinger
equation

�
−

1

mr2
∂rr2∂r þ

lðlþ 1Þ
mr2

þ Eð0Þ
Π

�
ψ ðNÞ
þΠ ¼ ENψ

ðNÞ
þΠ: ð52Þ

There is a special case for l ¼ 0 in that the off-diagonal
terms in the coupled equation vanish, so the radial

Schrödinger equations for ψ ðNÞ
Σ and ψ ðNÞ

−Π also decouple.

In fact, ψ ðNÞ
−Π is irrelevant, since there are no orbital wave

functions with jλj ¼ 1 for l ¼ 0. The same applies to ψ ðNÞ
þΠ .

So for l ¼ 0 there exists only one parity state, and its radial
wave function is given by an almost ordinary Schrödinger

equation with the Eð0Þ
Σ potential; the only unusual element is

that the angular part is 2=mr2 even though l ¼ 0.
In Appendix C we describe the derivation of the radial

Schrödinger equations in more detail. For the uncoupled
radial Schrödinger equations, there exist well-established
numerical methods to find the wave functions and eigen-
values. These can also be extended to the coupled case,
more details on the specific approach that we chose to get
the numerical results are given in Appendix D and [51].

TABLE II. JPC multiplets with l ≤ 2 for the Σ−
u and Πu gluonic

states. We follow the naming notation Hi used in [33,34], which
orders the multiplets from lower to higher mass. The last column
shows the gluonic static energies that appear in the Schrödinger
equation of the respective multiplet.

l JPCfs ¼ 0; s ¼ 1g Eð0Þ
n

H1 1 f1−−; ð0; 1; 2Þ−þg Σ−
u , Πu

H2 1 f1þþ; ð0; 1; 2Þþ−g Πu
H3 0 f0þþ; 1þ−g Σ−

u
H4 2 f2þþ; ð1; 2; 3Þþ−g Σ−

u , Πu
H5 2 f2−−; ð1; 2; 3Þ−þg Πu

BERWEIN MATTHIAS et al. PHYSICAL REVIEW D 92, 114019 (2015)

114019-12



C. Comparison with other descriptions of hybrids

We now compare the pattern of hybrid spin-symmetry
multiplets that we have obtained in our approach with the
one obtained in different pictures. The BO approximation
for hybrids, as it has been employed in Refs. [19,21,22,34],
produces spin-symmetry multiplets with the same JPC

constituents as our Hi multiplets in Table II; however, in
all the existing BO papers the masses of opposite parity
states are degenerate.
In Ref. [34] the underlying assumptions of the BO

approximation are given in more detail. Two main points
are identified, an adiabatic approximation and a single-
channel approximation. The adiabatic approximation states
that the time scales for heavy and light degrees of freedom
are very different, such that the light degrees of freedom
adapt instantaneously to changes in the quark and antiquark
positions and therefore always form a static eigenstate. This
is equivalent to the 1=m expansion we have used here,
where the hybrid states are expressed in terms of static
states. The single-channel approximation states that at
leading order the light degrees of freedom always remain
in the same static eigenstate, because transitions to other
states are suppressed by a mass gap of order ΛQCD. We
make the same assumption regarding transitions to static
states corresponding to excited gluelumps, but for the
lowest gluelump states we go beyond the single-channel
approximation since at short distances they are nearly
degenerate.
Consequently, we obtain terms that mix the static states

through a coupled Schrödinger equation, in a way that is
firmly based on QCD. Taking into account these mixing
terms, we find that the degeneracy between opposite parity
states is broken. In the BO approximation in the context of
atomic molecules this effect is also known as Λ doubling
[24]. In the context of hybrids,Λ doubling and the modified
orbital wave functions vλl;m have been discussed here for the
first time.
In the constituent gluon picture [20], hybrids are

assumed to be composed of a gluonic excitation bound
to a heavy quark-antiquark pair. The gluons are assumed to
appear in JPC representations unlike the case of pNRQCD
or BO descriptions, in which the gluonic states appear in Λσ

η

representations. The quantum numbers of the resulting
hybrid are obtained by adding those of the gluon and those
of the heavy quark-antiquark pair using the standard rules
for addition of angular momentum. In this way one gets the
same JPC quantum numbers as we do, but they are arranged
in larger multiplets.
If, in the constituent gluon picture, we couple a chro-

momagnetic (i.e., 1þ−) gluonic excitation with an S-wave
heavy quark-antiquark pair in a spin singlet f0−þg or spin
triplet f1−−g state, then we get exactly the quantum
numbers of H1. Similarly, for P-wave quarkonium with
quantum numbers f1þ−; ð0; 1; 2Þþþg (corresponding to
different spin states) we get H2 ∪H3 ∪H4. H5 would then

be included in the combination with the next quarkonium
quantum numbers. Since for pNRQCD in the limit r → 0
we recover spherical symmetry, we can see the constituent
gluon picture as the short-distance limit of the pNRQCD or
BO pictures. Furthermore, one can interpret the finer
multiplet structure of pNRQCD with respect to the con-
stituent gluon picture as the effect of the finite distance r
between the heavy-quark pair.
The flux tube model [18] (for a more recent comparison

of the flux tube model with the constituent gluon picture
see, e.g., Ref. [52]) arises from the idea that for QCD in the
strong-coupling regime one can think of the gluonic
degrees of freedom as having condensed into a collective
stringlike flux tube. In this picture the spectrum of gluonic
static energies can be interpreted as the vibrational exci-
tation levels of the string. The lowest excitations of such a
string will correspond to nonrelativistic, small, transverse
displacement oscillations and as such should be well
described by the Hamiltonian of a continuous string.
The eigenstates of such a Hamiltonian are characterized
by the phonon occupation number and their polarizations,
while the spectrum corresponds to the different phonon
occupation numbers.
The hybrid quantum numbers are constructed by speci-

fying the gluonic states via phonon operators. The value of
Λ corresponds to the number of phonons with clockwise
polarization minus the number of phonons with anticlock-
wise polarization. From here one can construct the JPC

quantum numbers of the hybrid states in an analogous way
to the BO picture. The first excited energy level is a one-
phonon state, which necessarily corresponds to a Λ ¼ 1
state, unlike in the pNRQCD case, where the first excited
energy level can be Λ ¼ 0; 1. Thus, the pattern of the spin-
symmetry multiplets emerging from the flux tube model in
the case of the first excited static energy is the one in
Table II except for the nonexistence of H3.

VI. SOLVING THE SCHRÖDINGER EQUATION:
HYBRID POTENTIALS AND MASSES

In order to obtain the hybrid masses, we have to identify
the specific form of the hybrid potentials EΣðrÞ and EΠðrÞ
to be used in the coupled Schrödinger equations in (51) and
(52). In Sec. III we have reviewed the EFT understanding of
these potentials arriving at the expression for the short-
distance hybrid potential in Eq. (20) and the matching
condition with the static energies given in Eq. (25).
It is well known that the quark mass depends on the

renormalon subtraction scheme used. This dependence is
canceled in standard quarkonium by the analogous depend-
ence of the singlet potentialVs [53], such that the total static
energy of the singlet, which corresponds to the physical
observable, remains scheme invariant. Similarly, the hybrid
static energies are scheme independent, but not Vo and ΛH,
which depend on the renormalon subtraction scheme used. It
has been shown that in the on-shell (OS) scheme the
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perturbative expansion of the octet potential has a poor
convergence. This bad behavior is due to the presence of
singularities in theBorel transform of the perturbative series.
These singularities are, however, artificial and cancel out in
physical observables such as the static energies.
One of several possible schemes to improve the con-

vergence of the matching coefficients is the so-called
renormalon subtracted (RS) scheme. In the RS scheme
the singularities in the Borel plane (renormalons) are
subtracted from the matching coefficients. In Ref. [54] this
scheme has been worked out for the heavy quark mass and
the static singlet potential; in Ref. [49] analogous work was
done for the octet potential and the lowest gluelump mass.
Note that, when working in the RS scheme for the octet
potential and gluelump mass, the quark mass in the hybrid
static energy also has to be taken in the RS scheme. We
have used the RS octet potential VRS

o ðrÞ up to order α3s in
perturbation theory and ΛRS

H at the subtraction scale
νf ¼ 1 GeV. We have summarized the necessary formulas
for the octet potential in the RS scheme in Appendix B.
The next-to-leading order corrections to the hybrid static

energies at short distances are proportional to r2. The
specific proportionality constant depends on nonperturba-
tive dynamics and can be expressed in terms of chromo-
electric and chromomagnetic field correlators in the EFT.
It could be calculated on the lattice, but no calculations of
these objects exist at the moment, or in QCD vacuum
models.6 We choose to fix this coefficient through a fit to
the lattice data for the static energies. We are going to
consider that this term takes different values for hybrid
static energies corresponding to different representations of
D∞h, thus breaking the degeneracy of the short-range
pNRQCD description of the Πu and Σ−

u static energies at
leading order in the multipole expansion. The final form for
the short-distance hybrid potential we are going to use is
then [cf. Eq. (25)]

EnðrÞ ¼ VRS
o ðνfÞ þ ΛRS

H ðνfÞ þ bnr2; νf ¼ 1 GeV;

ð53Þ

and the values of the heavy quark and the 1þ− gluelump
masses in the RS scheme at νf ¼ 1 GeV are mRS

c ¼
1.477ð40Þ GeV, mRS

b ¼ 4.863ð55Þ GeV, and ΛRS
H ¼

0.87ð15Þ GeV [49,54].
We have prepared two different fits for the hybrid

potentials to be used in the Schrödinger equations. The
first relies only on information from the short-distance
regime and fits the quadratic term to the lattice data only up
to distances where weakly coupled pNRQCD no longer
makes sense. Going to larger distances in this potential
is inconsistent. The second fit uses the short-distance

expression for the potential only for distances where
weakly coupled pNRQCD is expected to work well, and
it uses some generic fit function to describe the lattice data
of the static energies for larger distances. Comparing the
results obtained from both of these fits gives some idea of
the importance of the long-range regime for hybrids.
In order to obtain the short-range quadratic coefficients

bn of Eq. (53) in either case, we use lattice data from
Refs. [31,49] described in Sec. IV. To do these fits, it must
be taken into account that the two sources of lattice data
have different energy offsets with respect to the theoretical
hybrid potential due to the different methods for the
subtractions of the mass divergence of the lattice calcu-
lations. We extract bn and the energy offsets from both sets
of lattice data by fitting the function

VðrÞ ¼ VRS
o þ cþ bnr2; ð54Þ

with c and bn as free parameters.
The RS scheme does not affect the coefficient of the

quadratic term bn. The constant term c is affected both by
the RS scheme and by the subtraction scheme used in the
lattice calculation; however, at leading order in the multi-
pole expansion the Πu and Σ−

u potentials are degenerate.
Therefore, we perform a fit of both potentials of the form
(54) to the lattice data of both groups, restricting the value
of c to be the same for both potentials but different for each
group and, conversely, restricting the value of bn to be the
same for both groups but different for each potential.
We first give the results for the short-range fit. The

weakly coupled pNRQCD description of the hybrid static
energy of (53) is only valid up to r≲ 1=ΛQCD. Taking
perturbation theory up to its limit of validity, we fit (54) to
lattice data in the range of r ¼ 0–0.5 fm. We obtain the
following offsets for the two lattice data sources:

cBP ¼ 0.105 GeV; cKJM ¼ −0.471 GeV; ð55Þ

and the values for the coefficient of the quadratic term are

bð0.5ÞΣ ¼ 1.112 GeV=fm2; bð0.5ÞΠ ¼ 0.110 GeV=fm2:

ð56Þ

The potentials obtained from using the coefficients of the

quadratic terms of (56) in Eq. (53) will be called Vð0.5Þ
Π and

Vð0.5Þ
Σ , respectively (corresponding to the Πu and Σ−

u

configurations). We have plotted Vð0.5Þ
Π and Vð0.5Þ

Σ in
Fig. 2 with the lattice data corrected for the different
offsets using the values from (55).
For the second potential fit, which includes as much

information as possible from the long-range lattice data, we
proceed as follows. For r ≤ 0.25 fm we use the potential
from (53) with different bn factors for each of the low lying
hybrid static energies Πu and Σ−

u . Accordingly, we will call
6For a computation in the framework of the stochastic vacuum

model, see [55].
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the potentials from this fit Vð0.25Þ. The bn factors are obtained
through a fit of the function (54) for each potential to lattice
data up to r ¼ 0.25 fm from both sources with the offsets of
(55). The quadratic term factors resulting from this fit are

bð0.25ÞΣ ¼ 1.246 GeV=fm2; bð0.25ÞΠ ¼ 0.000 GeV=fm2:

ð57Þ
For r ≥ 0.25 fm we use a fit of the function

V 0ðrÞ ¼ a1
r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ a3

q
þ a4; ð58Þ

to all the lattice data with r ≥ 0.25 fm using the offsets of
(55). The particular form of (58) is not related to a specific
model, but approaches the generally expected behavior at
short and large distances. Indeed, in the long distance a
linear behavior in r is expected as a string picture emerges
[31,56–58]. The parameters have been left unconstrained
(e.g., no universal string tension or short-range coupling
has been imposed) to better reproduce the lattice data in the
distance region where it is available. To ensure a smooth
transition between the two pieces of the potential, we
impose continuity up to first derivatives. The parameters
obtained are

aΣ1 ¼ 0.000 GeV fm; aΣ2 ¼ 1.543 GeV2=fm2; aΣ3 ¼ 0.599 GeV2; aΣ4 ¼ 0.154 GeV;

aΠ1 ¼ 0.023 GeV fm; aΠ2 ¼ 2.716 GeV2=fm2; aΠ3 ¼ 11.091 GeV2; aΠ4 ¼ −2.536 GeV: ð59Þ

In Fig. 2 we can see both potential fits together with the
lattice data. The Vð0.25Þ potentials do a good job reproduc-
ing the whole range of lattice data; in fact, fitting with a
potential of the form (58) also for r < 0.25 fm does not
change the results significantly. The Vð0.5Þ potentials
describe the lattice data well up to r≲ 0.55–0.65 fm,
which corresponds to 1=r≳ 0.36–0.30 GeV.
We have solved the coupled Schrödinger equations with

both Vð0.5Þ and Vð0.25Þ potentials using the RS heavy quark
masses. The results are displayed in Table III. The states
obtained with Vð0.25Þ lie above the ones obtained using
Vð0.5Þ. The masses of the states with smaller sizes have a
better agreement, since both potentials agree in the short
range. The largest source of uncertainties for the hybrid
masses lies in the RS gluelump mass, which is known with
an uncertainty of �0.15 GeV.

If we look at the results obtained with Vð0.5Þ for the
average of the inverse distance h1=ri, which are
displayed in Table III, we see that for the lowest states
the condition that h1=ri falls inside the region where the
lattice data are well described by the fit is only marginally
fulfilled. The condition that h1=ri≳ Ekin, which is at the
base of the multipole expansion, is instead fulfilled by
almost all the states. Interestingly, adding a long-range
tail to the potential, as we do for Vð0.25Þ, pushes the
heavy quarks closer together, in this way better justifying
the short-distance expansion of the matrix element of Hkin

that we performed in (36). For this reason we will use the
Vð0.25Þ potential in the following section as our reference
potential for the comparison with data and other
approaches.

r fm

V r GeV

r fm

V r GeV

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
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2.5
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FIG. 2 (color online). Lattice data from Bali and Pineda [49] are represented by red squares, the data from Juge, Kuti, and Morningstar
[31] are represented by the green dots. In the left (right) figure we have plotted the data corresponding to Σ−

u (Πu). The lattice data

have been corrected by the offsets of (55). The black dashed line corresponds to Vð0.5Þ
Σ (Vð0.5Þ

Π ), the blue continuous line to

Vð0.25Þ
Σ (Vð0.25Þ

Π ) (see text).
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VII. COMPARISONWITH EXPERIMENTAL DATA
AND OTHER DETERMINATIONS OF THE

HYBRID MASSES

We compare our results for the hybrid masses with exper-
imental observations inSec.VII A,predictions obtainedusing
the leading Born-Oppenheimer approximation in Sec. VII B,

and direct lattice results and sum rule calculations in
Secs. VII C and VII D, respectively.

A. Identification of hybrids with experimental states

The list of candidates for heavy quark hybrids consists of
the neutral heavy quark mesons above the open flavor

TABLE III. Hybrid energies obtained from solving the Schrödinger equation with the RS heavy quark masses for the Vð0.5Þ potentials
(upper table) and for the Vð0.25Þ potentials (lower table). All values are given in units of GeV. The values of the heavy quark and the 1þ−

gluelump masses in the RS scheme at νf ¼ 1 GeV are mRS
c ¼ 1.477ð40Þ GeV, mRS

b ¼ 4.863ð55Þ GeV, and ΛRS
H ¼ 0.87ð15Þ GeV (see

[49,54]). For the bc̄ systems we have used the corresponding reduced mass in the Schrödinger equation. The first row for each multiplet
corresponds to the ground state; the second row corresponds to the first excited state. PΠ is the integral over the square of the wave
function associated with the Πu potential. It can be interpreted as the probability to find the hybrid in a Πu configuration; thus, it gives a
measure of the mixing effects.

cc̄ bc̄ bb̄

Multiplet JPC mH h1=ri Ekin PΠ mH h1=ri Ekin PΠ mH h1=ri Ekin PΠ

H1 f1−−; ð0; 1; 2Þ−þg 4.05 0.29 0.11 0.94 7.40 0.31 0.08 0.94 10.73 0.36 0.06 0.95
H1

0 4.23 0.27 0.20 0.91 7.54 0.30 0.16 0.91 10.83 0.36 0.11 0.92
H2 f1þþ; ð0; 1; 2Þþ−g 4.09 0.21 0.13 1.00 7.43 0.23 0.10 1.00 10.75 0.27 0.07 1.00
H2

0 4.30 0.19 0.24 1.00 7.60 0.21 0.19 1.00 10.87 0.25 0.13 1.00
H3 f0þþ; 1þ−g 4.69 0.37 0.42 0.00 7.92 0.42 0.34 0.00 11.09 0.50 0.23 0.00
H4 f2þþ; ð1; 2; 3Þþ−g 4.17 0.19 0.17 0.97 7.49 0.25 0.14 0.97 10.79 0.29 0.09 0.98
H5 f2−−; ð1; 2; 3Þ−þg 4.20 0.17 0.18 1.00 7.51 0.19 0.15 1.00 10.80 0.22 0.10 1.00

H1 f1−−; ð0; 1; 2Þ−þg 4.15 0.42 0.16 0.82 7.48 0.46 0.13 0.83 10.79 0.53 0.09 0.86
H1

0 4.51 0.34 0.34 0.87 7.76 0.38 0.27 0.87 10.98 0.47 0.19 0.87
H2 f1þþ; ð0; 1; 2Þþ−g 4.28 0.28 0.24 1.00 7.58 0.31 0.19 1.00 10.84 0.37 0.13 1.00
H2

0 4.67 0.25 0.42 1.00 7.89 0.28 0.34 1.00 11.06 0.34 0.23 1.00
H3 f0þþ; 1þ−g 4.59 0.32 0.32 0.00 7.85 0.37 0.27 0.00 11.06 0.46 0.19 0.00
H4 f2þþ; ð1; 2; 3Þþ−g 4.37 0.28 0.27 0.83 7.65 0.31 0.22 0.84 10.90 0.37 0.15 0.87
H5 f2−−; ð1; 2; 3Þ−þg 4.48 0.23 0.33 1.00 7.73 0.25 0.27 1.00 10.95 0.30 0.18 1.00
H6 f3−−; ð2; 3; 4Þ−þg 4.57 0.22 0.37 0.85 7.82 0.25 0.30 0.87 11.01 0.30 0.20 0.89
H7 f3þþ; ð2; 3; 4Þþ−g 4.67 0.19 0.43 1.00 7.89 0.22 0.35 1.00 11.05 0.26 0.24 1.00

H1

H4
H2

H1'

DD Threshold

DsDs Threshold

Y 4008 1 Y 4220 1 Y 4260 1 Y 4140 ??+ X 4160 ??+ X 4350 0 2 X 4360 1 X 4630 1 Y 4660 1
3.2
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3.6

3.8

4.0

4.2

4.4

4.6

Mass GeV

FIG. 3 (color online). Comparison of the experimental candidate masses for the charmonium sector with our results using the Vð0.25Þ
potential. The experimental states are plotted in solid blue lines with error bars corresponding to the average of the lower and upper mass
uncertainties (see Table IV). Our results for the H1, H2, H4 and H1

0 multiplets have been plotted in error bands corresponding to the
gluelump mass uncertainty of �0.15 GeV.

BERWEIN MATTHIAS et al. PHYSICAL REVIEW D 92, 114019 (2015)

114019-16



threshold. An updated list [1] of the states fulfilling these
conditions can be found in Table IV. Most of the candidates
have 1−− or 0þþ=2þþ, since the main observation channels
are production by eþe− or γγ annihilation, respectively,
which constrains the JPC quantum numbers. It is important
to keep in mind that the main source of uncertainty of our
results in Sec. VI is the uncertainty of the gluelump mass
ΛRS
H ¼ 0.87� 0.15 GeV. We have plotted the candidate

experimental states in Fig. 3, except for the single one
corresponding to the bottomonium sector, overlaid onto our
results using the Vð0.25Þ potential with error bands corre-
sponding to the uncertainty of the gluelump mass.
Three 1−− states fall close to our mass for the charmo-

nium hybrid from theH1 multiplet,7 the Yð4008Þ, Yð4230Þ,
and Yð4260Þ. The 1−− hybrid from the H1 multiplet is a
spin singlet state, and as such the decays to spin triplet
products are suppressed by one power of the heavy
quark mass due to heavy quark spin symmetry. All three
candidate states decay to spin triplet charmonium, which, in
principle, disfavors the hybrid interpretation. Nevertheless,
there might be enough heavy quark spin symmetry viola-
tion to explain those decays [59]. On the other hand, the
interpretation of these states as charmonium hybrids would
make the decay into two S-wave open charm mesons
forbidden [60], which would explain why such decays have
not been observed for the Yð4260Þ. Nevertheless, the recent
observation of the transition Yð4260Þ → Xð3872Þγ [61]

makes the identification of Yð4260Þ as a hybrid highly
unlikely.
The Yð4220Þ is a narrow structure proposed in [62] to fit

the line shape of the annihilation processes eþe− →
hcπþπ− observed by the BESIII and CLEO-c experiments.
Its mass is quite close to the one of the H1 multiplet. Like
the previous states, it is a 1−− state that would be identified
as a spin singlet hybrid. However, unlike the previous
states, the Yð4220Þ has been observed decaying to spin
singlet quarkonium, which makes it a very good candidate
for a charmonium hybrid. However, the Yð4220Þ falls very
close to the Yð4230Þ [63], and it is possible that they are the
same structure observed in different decay channels.
The JPC quantum numbers of the Yð4140Þ and Yð4160Þ

have not yet been fully determined; however, their charge
conjugation and mass suggest that they can be candidates
for the spin triplet 1−þ member of the H1 multiplet.
Nevertheless, their mass is also compatible within uncer-
tainties with the spin singlet 1þþ member of the H2

multiplet. In the case of the Yð4160Þ, it decays into
D�D̄�, which favors a molecular interpretation of this state.
If the Xð4350Þ turns out to be a 2þþ state, it can be a

candidate for the spin singlet charmonium state of the H4

multiplet, although its decay violates heavy quark spin
symmetry.
The three higher mass 1−− charmonia, the Xð4360Þ,

Xð4630Þ, and Yð4660Þ,8 have a mass that is compatible

TABLE IV. Neutral mesons above open flavor threshold, excluding isospin partners of charged states.

State M (MeV) Γ (MeV) JPC Decay modes First observation

Xð3823Þ 3823.1� 1.9 <24 ??− χc1γ Belle 2013
Xð3872Þ 3871.68� 0.17 <1.2 1þþ J=ψπþπ−, J=ψπþπ−π0, Belle 2003

D0D̄0π0, D0D̄0γ,
J=ψγ, ψð2SÞγ

Xð3915Þ 3917.5� 1.9 20� 5 0þþ J=ψω Belle 2004
χc2ð2PÞ 3927.2� 2.6 24� 6 2þþ DD̄ Belle 2005
Xð3940Þ 3942þ9

−8 37þ27
−17 ??þ D�D̄, DD̄� Belle 2007

Gð3900Þ 3943� 21 52� 11 1−− DD̄ BABAR 2007
Yð4008Þ 4008þ121

−49 226� 97 1−− J=ψπþπ− Belle 2007
Yð4140Þ 4144.5� 2.6 15þ11

−7 ??þ J=ψϕ CDF 2009
Xð4160Þ 4156þ29

−25 139þ113
−65 ??þ D�D̄� Belle 2007

Yð4220Þ 4216� 7 39� 17 1−− hcð1PÞπþπ− BESIII 2013
Yð4230Þ 4230� 14 38� 14 1−− χc0ω BESIII 2014
Yð4260Þ 4263þ8

−9 95� 14 1−− J=ψπþπ−, J=ψπ0π0, BABAR 2005
Zcð3900Þπ

Yð4274Þ 4293� 20 35� 16 ??þ J=ψϕ CDF 2010
Xð4350Þ 4350.6þ4.6

−5.1 13.3þ18.4
−10.0 0=2þþ J=ψϕ Belle 2009

Yð4360Þ 4354� 11 78� 16 1−− ψð2SÞπþπ− BABAR 2007
Xð4630Þ 4634þ9

−11 92þ41
−32 1−− Λþ

c Λ−
c Belle 2007

Yð4660Þ 4665� 10 53� 14 1−− ψð2SÞπþπ− Belle 2007
Ybð10890Þ 10888.4� 3.0 30.7þ8.9

−7.7 1−− ΥðnSÞπþπ− Belle 2010

7Note that our hybrid multiplets are spin degenerate; i.e., they
do not include corrections to the mass due to spin effects.

8It has been suggested that Xð4630Þ and Xð4660Þ might
actually be the same particle [64].
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with the excited spin singlet member of the H1 multiplet
within uncertainties, although none of them falls very close
to the central value. The Xð4360Þ and Yð4660Þ decay into a
spin triplet product, which violates heavy quark spin
symmetry.

So far, there is only one bottomonium candidate for a
hybrid state, the Ybð10890Þ, which can be identified with
the spin singlet 1−− state of the H1 bottomonium hybrid
multiplet. However, its decay to the Υ violates heavy quark
spin symmetry, which is expected to be a good symmetry
for bottomonium states.

B. Comparison with the leading
Born-Oppenheimer approximation

In a recently published paper Braaten, Langmack, and
Smith [34] used the BO approximation to obtain the hybrid
masses from the gluonic static energies computed on the
lattice. They did not consider the hybrid potential mixing in
the Schrödinger equation, which leads to the Λ-doubling
effect, cf. Sec. V C. Considering the mixing terms results in
the breaking of the degeneracy between the H1 and H2

multiplets as well as the H4 and H5 multiplets. In their

TABLE V. Predicted multiplet masses from [34] before adjust-
ing to lattice data. The prime on a multiplet stands for the first
excited state of that multiplet. All values are given in units of
GeV.

cgc̄ bgb̄

H1=2 4.246 10.864
H3 4.566 11.097
H4=5 4.428 10.964
H0

1=2 4.596 11.071
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H1 H2 H3 H4 H5 H1' H2'
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FIG. 4 (color online). Comparison of the hybrid multiplet masses in the charmonium (upper figure) and bottomonium (lower figure)
sectors obtained by Braaten et al. [34] (before adjusting to lattice data) with the results obtained using the Vð0.25Þ potential. The Braaten
et al. results correspond to the dashed lines, while the solid lines correspond to the results obtained using Vð0.25Þ. The degeneracy of the
masses of the H1=2 and H4=5 multiplets in Braaten et al. is broken by the introduction of the mixing terms in our approach.
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approach they account for the breaking of this degeneracy
by using different energy offsets for positive and negative
parity potentials. These offsets were set in the charmonium
sector to reproduce the spin averages of the hybrids from
the direct lattice calculations of Ref. [65] and in the
bottomonium sector to reproduce the mass splittings
between the 1−−, 1þþ, and 0þþ states from the NRQCD
lattice computations of Ref. [33].
We have listed the results from [34] suitable for com-

parison with our results in Table V, and we have plotted them
together with our results obtained using the Vð0.25Þ potential
in Fig. 4 for both charmonium and bottomonium hybrids.
The predicted H1=2 mass from Braaten et al. (before
adjusting to lattice data) should be compared with our H2

mass, since this multiplet is a pure Πu potential state.
Similarly, their H4=5 mass should be compared with our
H5 mass. The H3 multiplet is a pure Σ−

u potential state in
both approaches and can also be compared. We can see that
there is a good agreement with our results from Table III. If
we shift the masses by the difference in the H1=2 state
∼30 MeV, then the other states agree within 40 MeV. The
mass shift of 30 MeV should be accounted for through the
uncertainty of the gluelump mass and other systematic
errors, so we can take the 40 MeV discrepancy between
our results and those of [34] to be the uncertainty coming
from the fitting of the potentials and the solution of the
Schrödinger equation. Overall, comparing with the results
from [34], we can see that the effect of introducing the
Λ-doubling terms lowers the masses of the multiplets that
have mixed contributions from the two hybrid static
energies.

C. Comparison with direct lattice computations

The spectrum of hybrids in the charmonium sector has
recently been calculated by the Hadron Spectrum
Collaboration [65] using unquenched lattice QCD. The
calculations were done using an anisotropic lattice with
a Shekholeslami-Wohlert fermion action with tree-level
tadpole improvements and three-dimensional stout-link
smearing of the gauge fields. The calculations were
performed on two lattice volumes 163 × 128 and 243 ×
128 with a spatial spacing of ∼0.12 fm. The light quarks
were given unphysically heavy masses equivalent to a pion
mass of ≈400 MeV.
To interpret their results, the Hadron Spectrum

Collaboration organizes the hybrid states into spin-sym-
metry multiplets. They generate these spin-symmetry
multiplets in the constituent gluon picture. The spin-
symmetry multiplet resulting from combining a 1þ−

gluonic constituent with an S-wave heavy-quark pair
generates the JPC quantum numbers corresponding to
our H1 multiplet. The P-wave heavy-quark pair generates
a multiplet with the JPC quantum numbers corresponding
to the ones in our H2, H3 and H4 multiplets. Then the
lattice results can be assigned to the S-wave or P-wave

multiplets according to their JPC quantum numbers. The
Hadron Spectrum Collaboration then argues that the
closeness in the masses of the states of each multiplet
validates the constituent gluon picture.
Similarly, the direct lattice results can be assigned to the

pNRQCD (or BO) multiplets of Table II; however, this
assignment is ambiguous because some JPC quantum
numbers appear more than once in the H2, H3, and H4

multiplets. We choose to work with the same assignment as
was used in [34] (see Table VI), which assigns states to a
specific multiplet based on the closeness in mass. Looking
at Fig. 5, the direct lattice calculation seems to support the
result of the pNRQCD and BO approaches that the hybrid
states appear in three distinct multiplets (H2, H3, and H4),
as compared to the constituent gluon picture, where they
are assumed to form one supermultiplet together (cf. also
the discussion in [34]).
The results from [65] are given with the ηc mass

subtracted and are not extrapolated to the continuum limit.
In Table VI we list their results with the experimental value
of mηc ¼ 2.9837ð7Þ GeV added. In Fig. 5 the results from
[65] have been plotted together with our results using the
Vð0.25Þ potential. We have also computed the spin averaged
mass of each multiplet in order to compare with our results
from Table III.
Comparing the spin averages of the masses of the hybrid

states from [65] to our results, we see that the masses
obtained using the Vð0.25Þ potentials are closer to the direct
lattice calculations than the ones obtained using the Vð0.5Þ

potentials. For the states obtained from Vð0.25Þ our masses
are 0.1–0.14 GeV lower except for the H3 multiplet, which
is 0.11 GeV higher. It is interesting to note that the H3

multiplet is the only one dominated by the Σ−
u potential.

TABLE VI. Spectrum of charmonium hybrids calculated by the
Hadron Spectrum Collaboration [65]. We have added the ex-
perimental value mηc ¼ 2.9837ð7Þ GeV. All values are given in
units of GeV.

Multiplet JPC m Spin average

H1 1−− 4.285(14) 4.281(16)
0−þ 4.195(13)
1−þ 4.217(16)
2−þ 4.334(17)

H2 1þþ 4.399(14) 4.383(30)
0þ− 4.386(09)
1þ− 4.344(38)
2þ− 4.395(40)

H3 0þþ 4.472(30) 4.476(22)
1þ− 4.477(19)

H4 2þþ 4.492(21) 4.517(23)
1þ− 4.497(39)
2þ− 4.509(18)
3þ− 4.548(22)
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For the states obtained using Vð0.5Þ the differences roughly
double.
To further illustrate this comparison, we give the mass

splittings between the different multiplets in Table VII.
Again, we find a better agreement of the lattice data with
our calculation with the Vð0.25Þ potentials. In particular, the
mass difference between H1 and H2, which in our
calculation is directly related to the Λ-doubling effect, is
very close to our mass difference. The worst agreement is
again found for the H3 multiplet.
In the bottomonium sector direct lattice calculations have

been carried out by Juge, Kuti, andMorningstar [33] and by
Liao and Manke [66]. Juge, Kuti, and Morningstar per-
formed quenched simulations using anisotropic lattices
with improved gauge-field actions for the gluons. The
heavy quarks were treated in NRQCD for anisotropic
lattices containing just a covariant temporal derivative
term. Since the hybrid masses were expected to be large,
anisotropic lattices with the temporal lattice spacing much
smaller than the spatial spacing were used to reduce the
statistical fluctuations. Two lattice volumes were used,
153 × 45 with β ¼ 3.0 and 103 × 30 with β ¼ 2.6.

The authors of [33] studied the correlation functions of
five operators on the lattice, three of them corresponding to
hybrid operators. They identified three hybrid states cor-
responding to the ground states of the H1, H2, and H3

multiplets and one excited state of the H0
1 multiplet. Since

no spin (or any relativistic) effects were included, the
results given by Juge, Kuti, and Morningstar are the masses
of the degenerate multiplets, which correspond to the ones
in Table II.
In Ref. [33] the values of the multiplet mass splitting are

given in units of r0 relative to the mass of the 1S
bottomonium states. We have used the most up-to-date
value for r0 ¼ 0.486� 0.004 fm from [67]. Using this
value as well as the spin average of the 1S bottomonium
mass states, we have computed the values for the multiplet
masses from their largest lattice volume in Table VIII.
Liao and Manke [66] calculated the bottomonium

spectrum using quenched lattice QCD on an anisotropic
lattice. They were able to go beyond the nonrelativistic
approximation by using a very fine discretization in the
temporal spacing, which also allowed them to extrapolate
the results for the hyperfine splitting of the standard

TABLE VII. Mass splittings between H1, H2, H3, and H4

charmonium hybrid multiplets for the potentials Vð0.5Þ and Vð0.25Þ
compared with the spin averages from the direct lattice calcu-
lation of [65]. All values are given in units of GeV.

Splitting Reference [65] Vð0.5Þ Vð0.25Þ

δmH2−H1
0.10 0.04 0.13

δmH4−H1
0.24 0.12 0.22

δmH4−H2
0.13 0.08 0.09

δmH3−H1
0.20 0.64 0.44

δmH3−H2
0.09 0.60 0.31

TABLE VIII. Masses of the bottomonium hybrids from direct
lattice calculations. We present the results of the runs with size
103 × 30, β ¼ 3.0, and spatial lattice spacing a ≈ 1.13 fm of
Ref. [33] and with size 163 × 128, β ¼ 6.3, and a ≈ 0.0521 fm
from Ref. [66]. All values are given in units of GeV.

Multiplet Reference [33] JPC (multiplet) Reference [66]

H1 10.830(30) 1−þðH1Þ 11.39(15)
H2 10.865(54) 0þ−ðH2Þ 10.99(33)
H3 11.138(28) 2þ−ðH2Þ 12.16(14)
H1

0 11.216(37)
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H4
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FIG. 5 (color online). Comparison of the results from direct lattice computations of the masses for charmonium hybrids [65] with our
results using the Vð0.25Þ potential. The direct lattice mass predictions are plotted in solid lines with error bars corresponding to the mass
uncertainties. Our results for the H1, H2, H3, and H4 multiplets have been plotted in error bands corresponding to the gluelump mass
uncertainty of �0.15 GeV.
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bottomonium to the continuum. These authors used a
standard Wilson action for the gluons with various link
smearing, while for the heavy quarks in the gluonic
background they used an anisotropic clover action. Liao
and Manke explored five different lattice spacings from
0.04 fm to 0.17 fm and two anisotropy ratios.
They determined the masses for three bb̄ mesons with

explicit exotic quantum numbers. The results for the level
splittings are presented in an analogousway to the Juge, Kuti,
and Morningstar paper, and we have used the same spin
independent masses for the 1S and 1P bottomonium states in
order to generate the values displayed in Table VIII.
We have plotted the results from Juge, Kuti, and

Morningstar and the ones from Liao and Manke together
with our predictions for the masses of the bottomonium
hybrid multiplets in Fig. 6. If we compare our results from
Table III with the values from direct lattice calculations from
Table VIII, we observe that our results are systematically
lower by 0.05–0.15 GeVexcept for the excitedH1

0 state, for
which the deviation is larger: 0.4 GeVand 0.26 GeV for the
potentials Vð0.5Þ and Vð0.25Þ, respectively. To eliminate pos-
sible systematic uncertaintieswe can look at the level splitting
displayed in Table IX. The values of the level splitting show
considerable agreement, improving from using the Vð0.5Þ

potentials to using the Vð0.25Þ potentials, with the only
exception being the H1

0 state. In particular, the Λ-doubling
effects seen in the mass splitting between H2 and H1 agree
quite well with lattice predictions.
In general, the comparison of our results with direct

lattice computations of hybrid masses shows a systematic
energy offset but a reasonable agreement for the mass
splittings between multiplets, particularly for the lower
mass ones. The bottomonium sector results show more

consistency with direct lattice computations than the
charmonium sector, as expected.

D. Comparison with QCD sum rules

The method of QCD sum rules consists of a treatment in
which hadrons are represented by their interpolating quark
currents, taken at large virtualities, instead of in terms of
constituent quarks. The correlation function of these
currents is treated in the context of the operator product
expansion, where the short- and long-distance physics are
separated. The former is calculated using perturbation
theory, whereas the latter is parametrized in terms of
universal vacuum condensates or light-cone distribution
amplitudes. The result of the calculation can then be related
via dispersion relations to a sum over hadronic states.
A recent analysis of QCD sum rules for hybrid operators

has been performed by Chen et al. for bb̄ and cc̄ hybrids in
[68] and for bc̄ hybrids in [69]. Using hybrid operators and
computing correlation functions and spectral functions up
to dimension six condensates, they stabilized the sum rules
and gave mass predictions for the heavy quark hybrids.
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FIG. 6 (color online). Comparison of the results from direct lattice computations of the masses for bottomonium hybrids from Juge,
Kuti, and Morningstar (JKM) [33] and Liao and Manke (LM) [66] with our results using the Vð0.25Þ potential. The direct lattice mass
predictions are plotted in solid lines with error bars corresponding to the mass uncertainties. Orange lines correspond to the results of
JKM and blue lines to the ones of LM. The JPC quantum numbers in the figure correspond to the LM states. Our results for the H1, H2,
H3, and H1

0 multiplets have been plotted in error bands corresponding to the gluelump mass uncertainty of �0.15 GeV.

TABLE IX. Mass splittings between the H1, H2, H3, and H1
0

bottomonium hybrid multiplets for the potentials Vð0.5Þ and
Vð0.25Þ compared with the values from Ref. [33]. All values
are given in units of GeV.

Splitting Reference [33] Vð0.5Þ Vð0.25Þ

δmH2−H1
0.04 0.02 0.05

δmH3−H1
0.31 0.36 0.27

δmH3−H2
0.27 0.34 0.22

δmH1
0−H1

0.39 0.10 0.19
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The pattern of hybrid states encountered by Chen et al. in
[68], which we show in Table X and, plotted against our
results using the Vð0.25Þ potential, in Fig. 7, is the same for
cc̄ and bb̄ hybrid states. The lightest set of states they found

corresponds to our H1 multiplet. The next set of states
consists of 0þ−, 1þ−, and 1þþ, which belong to the H2

multiplet, 2þþ and 0þþ, which are part of the multipletsH3

andH4, respectively, and 0−−, which does not appear in any
of the multiplets we have considered.
For charmonium the masses of the H1 multiplet are

between 3.36 GeV and 4.04 GeV with a spin average of
3.75(20) GeV, which is lower than our result for the H1

multiplet (see Table III). The elements of H2 show an
important dispersion but overall tend to be larger than
our value for the mass of the H2 multiplet, like in the
case of the 2þþ and 0þþ masses when compared with
our results for H3 and H4. A similar pattern emerges for
bb̄ hybrids. The H1 multiplet ranges between 9.7 GeV
and 9.93 GeV with a spin average of 9.81(19) GeV,
which is about 1 GeV below our estimates.
Nevertheless, the 1þ−, 1þþ, 2þþ, and 0þþ states are
within errors of our results.
The bc̄ hybrids have also been studied with QCD sum

rules by Chen et al. in [69]. In this case, since the heavy
quark and antiquark are not the same, the interpolating
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FIG. 7 (color online). Comparison of the mass predictions for charmonium hybrids in the upper figure and for bottomonium hybrids in
the lower figure, obtained using QCD sum rules [68], with our results using the Vð0.25Þ potential. The solid lines correspond to the QCD
sum rule masses with error bars corresponding to their uncertainties. Our results for theH1,H2,H3, andH4 multiplets have been plotted
in error bands corresponding to the gluelump mass uncertainty of �0.15 GeV.

TABLE X. Middle columns: Masses of the cc̄ and bb̄ hybrids
obtained using QCD sum rules from [68]. Right column: Masses
of bc̄ hybrids from [69]. The quantum numbers in the last line
appear in none of the multiplets we have determined for a 1þ−

gluonic excitation. All values are given in units of GeV.

Multiplet JPC cc̄ bb̄ JP bc̄

H1 1−− 3.36(15) 9.70(12) 1− 6.83(16)
0−þ 3.61(21) 9.68(29) 0− 6.90(22)
1−þ 3.70(21) 9.79(22) 1− 6.95(22)
2−þ 4.04(23) 9.93(21) 2− 7.15(23)

H2 0þ− 4.09(23) 10.17(22) 0þ 7.37(31)
1þ− 4.53(23) 10.70(53) 1þ 7.77(24)
1þþ 5.06(44) 11.09(60) 1þ 8.28(37)

H4 2þþ 4.45(27) 10.64(33) 2þ 7.67(18)
H3 0þþ 5.34(45) 11.20(48) 0þ 8.55(44)
? 0−− 5.51(50) 11.48(75) 0− 8.48(67)
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currents that couple to the hybrids have no definite C parity.
The assignment of the bc̄ states to each multiplet has been
done by analogy of the interpolating currents that generate
these states in QQ̄ and bc̄. In Fig. 8 the results from Chen
et al. for bc̄ hybrids are plotted alongside our results using
theVð0.25Þ potential. The spin average for thebc̄H1multiplet
is 7.00(16)GeV,which falls about 0.5GeV below our result.

VIII. CONCLUSIONS

In this paper we have constructed a nonrelativistic
effective field theory description of heavy quarkonium
hybrids. We started from QCD, excluding light quark
degrees of freedom from our direct consideration, and
aiming at describing exotic states at or above the strong
decay threshold. Under these specifications we can restrict
ourselves to a Fock space comprising heavy quarkonium,
heavy quarkonium hybrids, and glueballs. We identify the
symmetries of the system of a heavy quark, a heavy
antiquark, and glue in the static limit. Corrections to this
limit can be obtained order by order in the 1=m expansion as
it is usually done in nonrelativistic effective field theories of
QCD. At order 1=m in the expansion we obtain at the level
of pNRQCD a system of coupled Schrödinger equations that
describe the hybrid spin-symmetry multiplets constructed
with the Σ−

u andΠu gluonic static energies. It is assumed that
higher gluonic static energies do not mix with them. They
would generate higher mass hybrid multiplets. The matching
from NRQCD to pNRQCD allows us to identify the static
interaction potentials entering the Schrödinger equation. In
the short distance, the static potentials depend on two
nonperturbative parameters. These are the gluelump mass
and the quadratic slope. Both can be determined from lattice
calculations. We adopt a renormalon subtraction scheme for
the calculation of the perturbative part of the potential.
The Schrödinger equations couple the gluon to the heavy

quark dynamics through the action of the angular part of the

kinetic operator of the heavy quarks on the gluonic static
states. The relevant matrix element could be computed on
the lattice but is at present unknown. We estimated it in the
short distance using a version of pNRQCD for which the
multipole expansion holds. The matrix element generates
terms that mix the contributions of different static energies
into the hybrid states, an effect known as Λ doubling in
molecular physics. We have solved numerically the
coupled Schrödinger equations for the heavy quarks and
have obtained the masses for a large set of spin-symmetry
multiplets for cc̄, bc̄, and bb̄ hybrids. The Λ-doubling
effect breaks the degeneracy between opposite-parity spin-
symmetry multiplets and has been found to lower the mass
of the multiplets that get mixed contributions of different
static energies.
We have compared our results with direct lattice com-

putations in the charmonium and bottomonium sectors. We
observe the same Λ-doubling pattern in direct lattice
calculations; namely, the multiplets which receive mixed
contributions from the Σ−

u and Πu have a lower mass than
their parity partners that remain pure Πu states. On average,
the direct lattice computations of hybrid masses lie above
our values but within our uncertainty, which is dominated
by the uncertainty of the gluelump mass of �0.15 GeV.
The mass shift remains fairly constant among the different
multiplets, which could be an indication that it is due to
systematic effects. Comparing the mass splits between
multiplets, we obtain a good agreement in most of the
cases. We have also compared our results with recent
results from QCD sum rules. Sum rule predictions carry
large uncertainties, particularly when compared to the
direct lattice calculations. However, the same Λ-doubling
pattern is also realized there, but the values of the multiplet
masses have a large dispersion compared to our results. Up
to now, works done in the BO approximation have not
included the Λ-doubling terms.

H1

H2

H3

H4

1 0 1 2 0 1 1 0 2

7.0

7.5

8.0

8.5

9.0
Mass GeV

FIG. 8 (color online). Comparison of the mass predictions for bc̄ hybrids, obtained using QCD sum rules [69], with our results using
the Vð0.25Þ potential. The solid lines correspond to the QCD sum rule masses with error bars corresponding to their uncertainties. Our
results for the H1, H2, H3, and H4 multiplets have been plotted in error bands corresponding to the gluelump mass uncertainty
of �0.15 GeV.
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To our knowledge, this is the first attempt to develop from
QCD a nonrelativistic EFT description of heavy quarkonium
hybrids. Still, there are some obvious limitations to what we
have done so far. We have computed the relevant matrix
element using information from weakly coupled pNRQCD
and taking advantage of the multipole expansion. This has
allowed us to write and solve the coupled Schrödinger
equations in a consistent setup. By fitting the nonperturbative
parameters of the potential to the lattice static energy, we
believe we have pushed our description to a sufficiently large
value of the quark-antiquark distance to produce a realistic
pattern of hybrid mass multiplets. This is confirmed also by
the overall agreement that we see with the direct lattice
calculations of the masses. The biggest uncertainty in our
level predictions comes from the error of the lattice determi-
nation of the gluelump mass, which could be improved by
new lattice calculations.
The next step will be to introduce in our framework spin

contributions that will break the spin degeneracy and give a
more detailed structure to the hybrid multiplets. The long-
term goal is to introduce an EFT description of heavy
quarkonium hybrids without using the multipole expansion.
Thiswould entail the definition of the appropriate generalized
Wilson loops that encode the dynamics of the nonperturbative
matrix elements, as well as obtaining in strongly coupled
pNRQCD the dynamical equations that couple them.
Neutral exotic quarkonia above open flavor thresholds

are possible experimental candidates for quarkonium
hybrids. Most of these candidates are 1−− states, due to
these quantum numbers being the most easily accessible
experimentally in electron-positron colliders. In Fig. 3 we
have overlaid the experimental candidates on our hybrid
multiplet mass predictions. Most of these candidates decay
into spin triplet quarkonium states, but their tentative
hybrid identifications correspond to spin singlet states,
which would mean that these decays violate the heavy
quark spin symmetry. The most promising candidate,
Yð4220Þ, is the only 1−− state that decays in a spin singlet
quarkonium; however, this state is not yet well established.
When comparing to the data, besides the prediction of the
hybrid mass multiplets, it is hence important to develop
ways to calculate transition and decay widths. Future EFT
studies of heavy quarkonium hybrids will have to address
the calculation of these quantities.
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APPENDIX A: SYMMETRIES OF THE
STATIC SYSTEM

A system of two static opposite color sources (in our case
the system formedbya heavyquark in positionx1 anda heavy
antiquark in position x2) remains invariant under the follow-
ing symmetry transformations: rotations RðαÞ by an angle
α ∈� − π; π� around the axis defined by the two sources, space
inversion P in combination with charge conjugation C,
reflections M across a plane containing the two sources,
and combinations thereof. These transformations form the
group D∞h, which is the symmetry group of a cylinder.
Since the static Hamiltonian is invariant under these

transformations, we can use the quantum numbers of the
representations of D∞h to label its eigenstates. The conven-
tional notation for the representations of D∞h is Λσ

η . Λ is the
rotational quantum number; it can take non-negative integer
values 0; 1; 2; 3;…, which are traditionally represented by
capital Greek letters Σ;Π;Δ;Φ;… corresponding to the
atomic orbitals s; p; d; f;…, respectively. The eigenvalue of
CP is given as the index η. It can take the values þ1 or −1,
for which the labels g (gerade, i.e., even) and u (ungerade,
i.e., odd) are used. The other index σ gives the sign under
reflections as þ or −; however, it is only written explicitly
for the Σ states, because for Λ ≥ 1 the states with opposite σ
are degenerate with respect to the static energy.
Physically, this can be understood in the following way.

The static system itself has no preferred orientation for the
plane acrosswhich the reflections are defined. In fact, through
a combination of rotation and reflection operations one can
define a new reflection operationM0 ¼ Rð−αÞMRðαÞ, where
the reflection plane is rotated by an angle α. The Σ states are
rotationally invariant, soM andM0 give the same eigenvalue,
but forΛ ≥ 1 they do not. If in the simplest case α is chosen to
be π=2, thenM andM0 have opposite eigenvalues. However,
the static HamiltonianHð0Þ does not depend on the choice of
M orM0, so consequently its eigenvalues, the static energies,
cannot depend on σ unless Λ ¼ 0.
Mathematically, this can be explained by looking at the

irreducible representations of D∞h. We can write D∞h ¼
Oð2Þ ⊗ Z2, where Z2 corresponds to the sign η under CP
transformations. There are two different one-dimensional
irreducible representations of Oð2Þ and countably infinite
two-dimensional ones. The two one-dimensional represen-
tations both map the rotations to unity and differ by the sign
under reflections. These correspond to Λ ¼ 0 and positive
or negative σ.
The two-dimensional representations are given by

RðαÞ ¼
�

cosΛα sinΛα

− sinΛα cosΛα

�
; M ¼

�
1 0

0 −1

�
:

ðA1Þ

The basis for these representations was chosen such thatM is
diagonal. It is possible to make a basis transformation that
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takes M → −M while RðαÞ remains the same. This means
that the sign under reflections is irrelevant for the two-
dimensional representations and σ cannot label different
representations. Since the static energies depend only on the
representation, they must be independent of σ for Λ ≥ 1.
It is also possible to make a basis transformation that

takes RðαÞ → Rð−αÞ while M remains the same. This
means that negative values for Λ do not correspond to a
different representation but just to a different choice of
basis, so by convention Λ is defined to be non-negative. Λ
can only take integer values, because Rð2πÞ is required to
be unity. Note that for Λ ¼ 0 the two-dimensional repre-
sentation is diagonal and reduces to the two one-
dimensional representations.
In the context of the spectrum of the staticHamiltonian, the

two dimensionality of the irreducible representations ofD∞h

means that any eigenstate ofHð0Þ withΛ ≥ 1 consists of two
components, which correspond to σ ¼ �1 in the basis given
above. For the calculations in this paper it is advantageous to
choose a different basis such that RðαÞ is diagonal:

RðαÞ ¼
�
eiΛα 0

0 e−iΛα

�
; M ¼

�
0 σ�M
σM 0

�
: ðA2Þ

There are many ways in which one can make such a basis
transformation, and this manifests itself in the phase σM
appearing inM, which is completely arbitrary. In this basiswe
can label the two components by λ ¼ �Λ such that they
transform with eiλα under rotations. Because M is now off
diagonal, irrespective of the choice of σM, the two compo-

nents are exchanged under reflections, i.e., λ→
M
− λ.

The advantage of this choice of basis is that, if we
introduce the angular-momentum operator K of the light
degrees of freedom, then λ is the eigenvalue of r̂ · K, where
r̂ is the orientation of the quark-antiquark axis. Λ is then
given by the absolute value of r̂ · K, which is also true for
Λ ¼ 0. The operator K2 represents the fully three-dimen-
sional rotations, i.e., the group SOð3Þ, so the static states
are not eigenstates of K2 except for the limit of vanishing
quark-antiquark distance, where this symmetry is restored.

APPENDIX B: RS SCHEME

The RS octet potential is defined as follows [49,54]:

VRS
o ðνfÞ ¼ Vo − δVRS

o ðνfÞ; ðB1Þ

with

Voðr; νÞ ¼
�
CA

2
− CF

�
αVo

ðνÞ
r

; ðB2Þ

δVRS
o ðνfÞ ¼

X∞
n¼1

NVo
νf

�
β0
2π

�
n
αnþ1
s ðνfÞ

X∞
k¼0

ck
Γðnþ 1þ b − kÞ
Γð1þ b − kÞ : ðB3Þ

The value of NVo
¼ 0.114001 was computed in Ref. [49]. The value of αVo

up to order α3s is given by [70]

αVo
ðνÞ ¼ αVs

ðνÞ −
�
3

4
−
π2

16

�
C2
Aα

3
sðνÞ þOðα4s Þ; ðB4Þ

where αVs
is

αVs
ðνÞ ¼ αsðνÞ

�
1þ ða1 þ 2γEβ0Þ

αsðνÞ
4π

þ
�
γEð4a1 þ β0 þ 2β1Þ þ

�
π2

3
þ 4γ2E

�
β20 þ a2

�
α2sðνÞ
16π2

�
: ðB5Þ

The parameters b and the first three ck appearing in δVRS
o are given by

b ¼ β1
2β20

; c0 ¼ 1; c1 ¼
1

4bβ30

�
β21
β0

− β2

�
;

c2 ¼
1

32bðb − 1Þβ80
ðβ41 þ 4β30β1β2 − 2β0β

2
1β2 þ β20ðβ22 − 2β31Þ − 2β40β3Þ: ðB6Þ
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APPENDIX C: DETAILED DERIVATION OF THE RADIAL SCHRÖDINGER EQUATION

The Laplace operator ∇2
r can be split into a radial and an angular part, such that

−
∇2
r

m
¼ −

1

mr2

�
∂rr2∂r þ ∂xð1 − x2Þ∂x þ

1

1 − x2
∂2
φ

�
; ðC1Þ

with the variable x ¼ cos θ. The angular part of this acts on both the wave function and the projection vector in (36), and
since we know n̂ explicitly for the 1þ− gluelump, we can work out the action of the angular part of n̂0 · ð−∇2

r=mÞn̂ in the
form of a matrix acting on the three-component wave function ΨðNÞ. Then we get�

−
1

mr2
∂rr2∂r þ

1

mr2
ðΔx þ ΔφÞ þ VðrÞ

�
ΨðNÞðrÞ ¼ ENΨðNÞðrÞ; ðC2Þ

where we have defined VðrÞ ¼ diagðEð0Þ
Σ ðrÞ; Eð0Þ

Π ðrÞ; Eð0Þ
Π ðrÞÞ and

Δx ¼

0
BBBBB@

−∂xð1 − x2Þ∂x þ 2 − ffiffiffi
2

p ∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p − ffiffiffi
2

p ∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂x −∂xð1 − x2Þ∂x þ
1

1 − x2
0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂x 0 −∂xð1 − x2Þ∂x þ
1

1 − x2

1
CCCCCA; ðC3Þ

Δφ ¼

0
BBBBBBBB@

−
1

1 − x2
∂2
φ

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p i∂φ −
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p i∂φffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p i∂φ −
1

1 − x2
ð∂2

φ − 2xi∂φÞ 0

−
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p i∂φ 0 −
1

1 − x2
ð∂2

φ þ 2xi∂φÞ

1
CCCCCCCCA
: ðC4Þ

The three columns correspond to n̂ ¼ r̂, r̂þ, r̂− and the three rows to n̂0 ¼ r̂, r̂þ, r̂− in that order.
This is a coupled Schrödinger equation, which differs from the standard example of the hydrogen atom by the appearance

of different potentials for the different wave function components and the more complicated angular part. But like the
hydrogen atom, it can be solved by a separation ansatz ΨðNÞðrÞ ¼ ψmðφÞψ lðxÞψ ðNÞðrÞ. The angular wave functions ψmðφÞ
and ψ lðxÞ are matrices acting on the vector ψ ðNÞðrÞ. They are eigenfunctions of their respective differential operatorsΔφ and
Δx in the following sense:

ΔφψmðφÞ ¼ ψmðφÞM and ðΔx þMÞψ lðxÞ ¼ ψ lðxÞL; ðC5Þ

whereM and L are matrices. If we also require ψmðφÞ and ψ lðxÞ to commute with the potential matrix VðrÞ, and in addition
ψmðφÞ to commute withΔx, then the full Schrödinger equation reduces to a coupled radial Schrödinger equation for ψ ðNÞðrÞ
with an effective potential VeffðrÞ ¼ VðrÞ þ L=mr2:

0 ¼
�
−

1

mr2
∂rr2∂r þ

1

mr2
ðΔx þ ΔφÞ þ VðrÞ − EN

�
ψmðφÞψ lðxÞψ ðNÞðrÞ

¼ ψmðφÞ
�
−

1

mr2
∂rr2∂r þ

1

mr2
ðΔx þMÞ þ VðrÞ − EN

�
ψ lðxÞψ ðNÞðrÞ ðC6Þ

¼ ψmðφÞψ lðxÞ
�
−

1

mr2
∂rr2∂r þ

1

mr2
Lþ VðrÞ − EN

�
ψ ðNÞðrÞ ðC7Þ

¼ ψmðφÞψ lðxÞ
�
−

1

mr2
∂rr2∂r þ VeffðrÞ − EN

�
ψ ðNÞðrÞ: ðC8Þ
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We now show that such matrices do indeed exist. A solution for ψmðφÞ can immediately be found by making the ansatz
ψmðφÞ ¼ eimφ1, where 1 is the unit matrix. With this we have

ΔφψmðφÞ ¼ ψmðφÞ

0
BBBBBBBBB@

m2

1 − x2
−

ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

−
ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p m2 − 2mx

1 − x2
0

ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p 0

m2 þ 2mx
1 − x2

1
CCCCCCCCCA
: ðC9Þ

Also for the next wave function ψ lðxÞ, a solution in the form of a diagonal matrix can be found, although now the
diagonal entries differ from each other. The diagonal elements of Δx þM (without constant terms) all have the same form,

−∂xð1 − x2Þ∂x þ
m2 − 2λmxþ λ2

1 − x2
; ðC10Þ

with λ ¼ 0; 1;−1 for the first, second, and third entries, respectively. The eigenfunctions of this differential operator are
generalizations of the associated Legendre polynomials; for λ ¼ 0 they even coincide, and their derivation can be found in
textbooks such as [24].
Including the factor eimφ and proper normalization, they are given by

vλl;mðx;φÞ ¼
ð−1Þmþλ

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!ðl − λÞ!ðlþ λÞ!

s
Pλ
l;mðxÞeimφ; ðC11Þ

Pλ
l;mðxÞ ¼ ð1 − xÞðm−λÞ=2ð1þ xÞðmþλÞ=2∂lþm

x ðx − 1Þlþλðxþ 1Þl−λ: ðC12Þ

The eigenvalue is lðlþ 1Þ, and just like for the spherical
harmonics, solutions exist only when l is a non-
negative integer, jmj ≤ l and jλj ≤ l. They are normalized
such that

Z
dΩvλl0;m0 ðx;φÞvλl;mðx;φÞ ¼ δl0lδm0m; ðC13Þ

and they also satisfy the orthogonality relations

Xl
m¼−l

vλ
0
l;mðx;φÞvλl;mðx;φÞ ¼

2lþ 1

4π
δλ

0λ; ðC14Þ

Xl
λ¼−l

vλl;m0 ðx;φÞvλl;mðx;φÞ ¼
2lþ 1

4π
δm0m: ðC15Þ

The easiest way to construct these functions is to use
ladder operators for m and λ. These operators and their
action on the vλl;m functions are given by

�
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂x −

mx − λffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
e�iφvλl;mðx;φÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ −mðm� 1Þ

p
vλl;m�1ðx;φÞ; ðC16Þ

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂x −

m − λxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�
vλl;mðx;φÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − λðλ� 1Þ

p
vλ�1
l;m ðx;φÞ: ðC17Þ

If we now look at the off-diagonal elements of Δx þM,
we see that they are given exactly by the ladder operators
for λ. So for ψmðφÞψ lðxÞ ¼ diagðv0l;mðx;φÞ; v1l;mðx;φÞ;
v−1l;mðx;φÞÞ Eq. (C5) becomes

ðΔx þ ΔφÞψmðφÞψ lðxÞ
¼ ψmðφÞψ lðxÞ

×

0
BB@

lðlþ 1Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

lðlþ 1Þ 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

0 lðlþ 1Þ

1
CCA:

ðC18Þ

Before we write down the resulting radial Schrödinger
equation, we exploit the fact that we are free to multiply this
expression by any constant matrix, which gives another
solution to the angular differential equation with a modified
but equivalent eigenvalue matrix L. If this constant matrix

QUARKONIUM HYBRIDS WITH NONRELATIVISTIC … PHYSICAL REVIEW D 92, 114019 (2015)

114019-27



is (1, 2)-block diagonal, then, in addition, VðrÞ remains unchanged. In this way we define a new orbital wave function
matrix ψ l;mðx;φÞ as

ψ l;mðx;φÞ ¼
1ffiffiffi
2

p

0
BB@

ffiffiffi
2

p
v0l;mðx;φÞ 0 0

0 v1l;mðx;φÞ v1l;mðx;φÞ
0 −v−1l;mðx;φÞ v−1l;mðx;φÞ

1
CCA: ðC19Þ

The advantage of this redefinition is that now in the radial Schrödinger equation the effective potential is (2, 1)-block
diagonal.

�
−

1

mr2
∂rr2∂r þ

1

mr2
ðΔx þ ΔφÞ þ VðrÞ

�
ψ l;mðx;φÞψ ðNÞðrÞ

¼ ψ l;mðx;φÞ

2
664− 1

mr2
∂rr2∂r þ

1

mr2

0
BB@

lðlþ 1Þ þ 2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

lðlþ 1Þ 0

0 0 lðlþ 1Þ

1
CCAþ VðrÞ

3
775ψ ðNÞðrÞ

¼ ENψ l;mðx;φÞψ ðNÞðrÞ: ðC20Þ

We see here explicitly the decoupling of the opposite parity states described in the main part of this paper. One solution is of

the form ðψ ðNÞ
Σ ðrÞ;ψ ðNÞ

−Π ðrÞ; 0ÞT , the other ð0; 0;ψ ðNÞ
þΠðrÞÞT.

If those are multiplied by the orbital wave function matrix ψ l;mðx;φÞ, and spin and angular-momentum
indices are combined through Clebsch-Gordan coefficients, then we get the following expressions for the hybrid
states:

X
ml;ms

Z
d3rCml;ms

j;m;l;s

�
v0l;ml

r̂ψ ðNÞ
Σ þ 1ffiffiffi

2
p ðv1l;ml

r̂þ − v−1l;ml
r̂−Þψ ðNÞ

−Π

�
· Ga

BO
a†
s;ms j0i; ðC21Þ

X
ml;ms

Z
d3rCml;ms

j;m;l;s
1ffiffiffi
2

p ðv1l;ml
r̂þ þ v−1l;ml

r̂−Þψ ðNÞ
þΠ · Ga

BO
a†
s;ms j0i: ðC22Þ

The first gives the hybrid multiplets H1, H1
0, H3, H4, and H6, and the second gives H2, H2

0, H5, and H7, for
different values of l, s, and N. Note that the different P and C eigenstate combinations come out correctly.
We now show that the hybrid states we have constructed are in fact eigenstates of the total angular-momentum

operator L ¼ LQQ̄ þ K, where K is the angular-momentum operator of the gluons and LQQ̄ the one of the relative
coordinate of the quark-antiquark system. The center-of-mass coordinate R is fixed in the current approximation,
which corresponds to a hybrid at rest, so there is no contribution to the total angular momentum from this
coordinate.
The 1þ− gluelump operator is a (pseudo) vector, so K acts on it as

½Ki; Ga
Bj� ¼ iϵijkGa

Bk: ðC23Þ

The relative angular-momentum operator in the octet sector is given by

LQQ̄ ¼
Z

d3rd3ROa†ðr;RÞ

0
BBBBB@

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinφ∂x þ

ix cosφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cosφ∂x þ

ix sinφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ

−i∂φ

1
CCCCCAOaðr;RÞ: ðC24Þ
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Acting with LQQ̄ on the hybrid states is equivalent to acting with the differential operator between the two octet
fields on the wave functions and projection vectors. In a slight abuse of notation, we also use the symbol LQQ̄ for
this differential operator. It should be clear which one is meant by whether it acts on a state or on a wave
function.
It is straightforward to show that

−i∂φn̂Tðx;φÞ ¼ n̂Tðx;φÞ

0
B@

−i∂φ −i 0

i −i∂φ 0

0 0 −i∂φ

1
CAfor all n̂ ¼ r̂; r̂�; ðC25Þ

and by construction the orbital wave functions satisfy −i∂φvλl;mðx;φÞ ¼ mvλl;mðx;φÞ. So acting with L3 on the hybrid states
(before combining spin and angular-momentum indices) gives

L3

Z
d3rOa†ðr;RÞ

X
n;i

n̂iðx;φÞGa
BiðRÞΨðNÞ

n ðrÞj0i

¼
Z

d3rOa†ðr;RÞ
X
n;i;j

n̂iðx;φÞ

2
664
0
BB@

−i∂φ −i 0

i −i∂φ 0

0 0 −i∂φ

1
CCAþ

0
BB@

0 i 0

−i 0 0

0 0 0

1
CCA
3
775
ij

Ga
BjðRÞΨðNÞ

n ðrÞj0i

¼
Z

d3rOa†ðr;RÞ
X
n;i

n̂iðx;φÞGa
BiðRÞð−i∂φΨ

ðNÞ
n ðrÞÞj0i

¼ m
Z

d3rOa†ðr;RÞ
X
n;i

n̂iðx;φÞGa
BiðRÞΨðNÞ

n ðrÞj0i: ðC26Þ

For L2 we can write

L2 ¼ L2
QQ̄ þ 2LQQ̄ · K þ K2: ðC27Þ

We already know the effect of L2
QQ̄ on n̂ from the previous section:

L2
QQ̄n̂ ¼

�
−∂xð1 − x2Þ∂x −

1

1 − x2
∂2
φ

�
n̂ ¼

X
n0
n̂0ðΔx þ ΔφÞn0n: ðC28Þ

Note that here and in the following we use the indices n and n0 to denote matrices that are defined in the basis of the
different static states, Σ−

u and Π�
u , which correspond to the projection vectors r̂ and r̂�, respectively. In contrast, the

indices i and j will always be used for the components of vectors and matrices defined in three-dimensional
position space.
The last term in Eq. (C27), K2, just gives a constant factor kðkþ 1Þ, which is equal to 2 in our case. So we just need to

determine the effect of LQQ̄ · K on n̂. We can write it as a matrix of differential operators, where the matrix nature comes
from the action of the K part on the gluelump. An explicit calculation gives
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LQQ̄ · Kn̂i ¼
X
j

0
BB@

0 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cosφ∂x

0 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinφ∂xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

cosφ∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sinφ∂x 0

1
CCA

ij

n̂j

þ
X
j

0
BBBBBBBB@

0 −∂φ −
x sinφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ

∂φ 0
x cosφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ

x sinφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ −
x cosφffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ 0

1
CCCCCCCCA

ij

n̂j

¼
X
n0
n̂0i

0
BBBBBBBB@

−2
1ffiffiffi
2

p ∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p 1ffiffiffi
2

p ∂x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

−
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂x −1 0

−
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂x 0 −1

1
CCCCCCCCA

n0n

þ
X
n0
n̂0i

0
BBBBBBBB@

0 −
iffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ
iffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ

−
iffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ 0 0

iffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ∂φ 0 0

1
CCCCCCCCA

n0n

: ðC29Þ

We now see that in L2
QQ̄ þ 2LQQ̄ · K þ K2 all off-diagonal elements of Δx and Δφ cancel, as do all constant terms in the

diagonal elements. What remains is

ðL2
QQ̄ þ 2LQQ̄ · K þ K2Þ

X
n

n̂ðx;φÞΨðNÞ
n ðrÞ ¼

X
n;n0

n̂0ðx;φÞ

0
BBBBBB@

L2
QQ̄ 0 0

0 L2
QQ̄ þ 2ix∂φ þ 1

1 − x2
0

0 0 L2
QQ̄ þ −2ix∂φ þ 1

1 − x2

1
CCCCCCA

n0n

ΨðNÞ
n ðrÞ

¼ lðlþ 1Þ
X
n

n̂ðx;φÞΨðNÞ
n ðrÞ: ðC30Þ

The last equality follows because the diagonal entries are
exactly the defining differential equations for the orbital
wave functions.

APPENDIX D: NUMERICAL SOLUTION OF THE
SCHRÖDINGER EQUATION

The Schrödinger equations in (51) and (52) can be
solved numerically (see, e.g., Ref. [71]). In the uncoupled
case the nodal theorem can be used to determine the energy
eigenvalues. Any value E one inserts into these equations in
the place of EN defines a linear differential equation of
second order. These have, in general, two linearly

independent solutions. Such a solution can only be inter-
preted as a wave function if it is normalizable.
Two independent solutions can be distinguished by their

behavior at the origin,

ψ ðNÞ
þΠðrÞ ∝ rl þOðrlþ1Þ or ψ ðNÞ

þΠðrÞ ∝ r−l−1 þOðr−lÞ:
ðD1Þ

The second expression is singular at the origin and there-
fore not normalizable. The first expression defines initial
conditions for the wave function and its derivative, such
that for any value of E the differential equation (52) has a
unique solution. This solution generally diverges for large
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r; only for particular values of E ¼ EN does it approach
zero and become normalizable. These are the desired wave
function solutions of the Schrödinger equation. The order
N of the eigenvalue is equal to the number of zeros in the
wave function. For the special case of l ¼ 0 the initial

conditions for ψ ðNÞ
Σ are the same as for ψ ðNÞ

þΠ with l ¼ 1.
A similar approach can be used to determine the energy

eigenvalues of the coupled Schrödinger equation (51) for
l ≥ 1. A system of two linearly coupled differential
equations of second order has, in general, four linearly
independent solutions, of which now two are singular at the
origin. The remaining two can also be distinguished by
their behavior at the origin, which is given by

 
ψ ðN1Þ
Σ ðrÞ

ψ ðN1Þ
−Π ðrÞ

!
∝

 ffiffi
l

p
rl−1

−
ffiffiffiffiffiffiffiffiffiffi
lþ 1

p
rl−1

!
þOðrlÞ ðD2Þ

or

 
ψ ðN2Þ
Σ ðrÞ

ψ ðN2Þ
−Π ðrÞ

!
∝

 ffiffiffiffiffiffiffiffiffiffi
lþ 1

p
rlþ1ffiffi

l
p

rlþ1

!
þOðrlþ2Þ: ðD3Þ

Again, the solutions to the two coupled differential
equations with these initial conditions diverge for general
E at large r. For particular values of E ¼ EN there exists one
linear combination,

 
ψ ðNÞ
Σ ðrÞ

ψ ðNÞ
−Π ðrÞ

!
¼
 
ψ ðN1Þ
Σ ðrÞ

ψ ðN1Þ
−Π ðrÞ

!
þ ν

 
ψ ðN2Þ
Σ ðrÞ

ψ ðN2Þ
−Π ðrÞ

!
; ðD4Þ

which approaches zero for large r, while any other
combination with a different ν will still diverge. This gives
the desired wave functions.
So now one has to tune two independent parameters in

order to find the solutions, E and ν. Fortunately, the two can
be determined separately. Instead of counting zeros of the
wave function in order to find the eigenvalues EN like in the
uncoupled case, one now has to look at the determinant of
the two independent solutions [72],

UðrÞ ¼ det

 
ψ ðN1Þ
Σ ðrÞ ψ ðN2Þ

Σ ðrÞ
ψ ðN1Þ
−Π ðrÞ ψ ðN2Þ

−Π ðrÞ

!
: ðD5Þ

This function diverges in the large r limit for general E but
converges for E ¼ EN and then has exactly N zeros. In this
way EN can be determined without knowledge of ν.
Then in order to obtain the wave functions ψ ðNÞ

Σ ðrÞ and
ψ ðNÞ
−Π ðrÞ one can determine ν through

ν ¼ − lim
r→∞

ψ ðN1Þ
Σ ðrÞ

ψ ðN2Þ
Σ ðrÞ

¼ − lim
r→∞

ψ ðN1Þ
−Π ðrÞ

ψ ðN2Þ
−Π ðrÞ

; ðD6Þ

after E has been fixed to the eigenvalue EN from the
previous step. Alternatively, ð1; νÞT is the eigenvector of
the wave function matrix [i.e., the matrix of which UðrÞ is
the determinant] at r → ∞ with eigenvalue zero.
These properties of the solutions of the radial

Schrödinger equations can be exploited in an algorithm
to numerically find the eigenvalues and wave functions.
The details of this will be described elsewhere [51].
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