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We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order
accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special
emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section
calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical
uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
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I. INTRODUCTION AND MOTIVATION

Within the framework of perturbative QCD (pQCD),
cross sections may be written in terms of perturbatively
calculable hard-scattering coefficient functions convoluted
with appropriate sets of nonperturbative but universal input
functions constrained by data. The underlying theoretical
foundations have been established in factorization theo-
rems [1]. In this work, we consider processes with
identified hadrons in the final state, specifically, single-
inclusive electron-positron annihilation (SIA) eþe− → hX,
where h denotes the detected hadron and X the remaining,
unidentified hadronic remnant. The information of how
energetic quarks and gluons that are produced in SIA or
other hard-scattering processes subsequently hadronize is
encoded in nonperturbative parton-to-hadron fragmentation
functions (FFs) [2]. When considering scattering processes
involving also hadrons in the initial-state, parton distribu-
tions functions (PDFs), the spacelike counterparts of FFs,
need to be considered as well.
A reliable quantitative description of inclusive hadron

yields within pQCD crucially depends on the precise
knowledge of FFs and their uncertainties. In general, these
functions are obtained from data through global QCD
analyses of certain reference processes [3–8]. Here, SIA
data are of utmost importance, similar to the singular role
played by deep-inelastic scattering (DIS) measurements in
determinations of PDFs. Recently, results from the Belle
[9] and BABAR [10] Collaborations have complemented the
existing suite of SIA data mainly from the CERN-LEP
experiments taken at a center-of-mass system (c.m.s.)
energy of

ffiffiffi
S

p ¼ 91.2 GeV. Thanks to the unprecedented

precision of the new data sets, where the statistical
uncertainties are mainly at the subpercent level despite
their fine binning, and the lower

ffiffiffi
S

p
, global QCD analyses

can now utilize the energy dependence of the SIA data in
the range from about 10.5 to 91.2 GeV [8] to extract FFs
also from scaling violations, a key prediction of pQCD.
In order to match the increasing precision of the

experimental data sets, the theoretical framework needs
to be advanced as well. So far, all global fits of FFs [3–8]
were carried out at most at next-to-leading order (NLO)
accuracy with still rather sizable theoretical uncertainties
due to the truncation of the perturbative series. In this work,
we present for the first time an analysis of SIA data at next-
to-next-to-leading order (NNLO) in QCD, a level already
routinely accomplished in current PDF sets [11] and
needed for precision CERN-LHC phenomenology. To
reach full NNLO accuracy also for FFs, one first of all
needs to include the two-loop coefficient functions for SIA
given in Refs. [12–15]. In addition, the FFs exhibit a
factorization scale dependence that can be calculated within
pQCD and which is governed by a set of coupled equations
analogous to the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi evolution equations for PDFs. The required three-
loop evolution kernels at Oðα3sÞ in the strong coupling can
be found in Ref. [16].
In our phenomenological study of SIA data in terms of

FFs, we adopt the technical framework used in the DSS
global analyses [6–8] which we extend to NNLO accuracy.
As we shall discuss in some detail below, we apply efficient
Mellin space techniques in order to both solve the evolution
equations and compute the SIA cross section at NNLO. As
it turns out, the numerical implementation of the Mellin
inverse transformation, needed to compare to data, requires
special attention in case of the timelike scale evolution of
FFs. We perform global fits to SIA data at leading order
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(LO), NLO, and NNLO accuracy to demonstrate the
anticipated reduction in theoretical uncertainties inherent
to the truncation of the perturbative calculation at a given
fixed order in αs. We also outline how the quality of the fit
gradually improves by including higher-order terms in the
global analysis. We note that first reference results for the
scale evolution of FFs at Oðα3sÞ were obtained in [17] with
which we compare. For the time being, we refrain from
including other sources of hadron production data used in
the DSS global analyses at NLO accuracy [6–8], hadron
multiplicities in semi-inclusive DIS and high transverse
momentum hadron production in proton-proton collisions,
due to the lack of corresponding NNLO partonic cross
sections. As a consequence, our fits will use less free
parameters than in the DSS global analyses.
The remainder of the paper is organized as follows: in the

next section, we outline all the necessary technical ingre-
dients for the extension of the pQCD framework for SIA to
NNLO, specifically, those related to the proper Mellin
space implementation and the Mellin inverse transforma-
tion. In Sec. III, we briefly recall the DSS global analysis
framework and discuss the results of our fits of SIA data up
to NNLO accuracy. In particular, we demonstrate the
reduction of the scale uncertainty when increasing the
perturbative order from LO and NLO to NNLO. In
addition, we compare the resulting fragmentation functions
to those obtained by DSS [8] and Kretzer [3]. We
summarize our main results in Sec. IV, where we also
discuss potential further improvements of the presented
analysis framework for fragmentation functions.

II. SEMI-INCLUSIVE eþe− ANNIHILATION
UP TO NNLO ACCURACY

In this section we review the necessary technical aspects
to compute SIA cross sections up to NNLO accuracy.
Special emphasis is put on the transformation from momen-
tum to Mellin moment space and the additional subtleties
appearing beyond NLO. To set the stage, we first recall in
Sec. II A the general structure of the SIA cross section. Next,
we discuss some relevant features of the NNLO coefficient
functions. In Sec. II B we review the timelike evolution
equations at NNLO and their truncated and iterated sol-
utions, which we shall compare numerically in Sec. III.
Section II C is devoted to a detailed discussion of the
numerical implementation of the Mellin space expressions
and the proper choice of contour for the Mellin inverse
transformation. We will also compare to the results of the
MELA evolution code presented in Ref. [17].

A. Cross section and coefficient functions

We consider the SIA process eþe− → γ=Z → hX medi-
ated by an intermediate virtual photon γ or Z boson at a
c.m.s. energy

ffiffiffi
S

p
, more specifically, hadron multiplicities

defined as

1

σtot

dσh

dz
¼ 1

σtot

�
dσhT
dz

þ dσhL
dz

�
: ð1Þ

Since we have already integrated over the scattering angle θ
of the produced hadron h in (1), parity-violating interfer-
ence terms vanish, and the cross section dσh=dz can be
decomposed only into a transverse (T) and a longitudinal
(L) part, where T; L refer to the γ=Z polarizations [18]. The
scaling variable z is defined in terms of the four momenta
Ph and q of the observed hadron and γ=Z boson, respec-
tively, as

z≡ 2Ph · q
Q2

; ð2Þ

where Q2 ≡ q2 ¼ S, and reduces to the scaled hadron
energy z ¼ 2Eh=

ffiffiffi
S

p
in the eþe− c.m.s. frame.

Experimental results for Eq. (1) are often given in terms
of the scaled hadron three momentum xp ¼ 2ph=

ffiffiffi
S

p
,

which coincides with z as long as hadron mass effects
are negligible.
Up to NNLO accuracy, i.e., Oðα2sÞ in the strong

coupling, the total hadronic cross section σtot in Eq. (1)
is given by [13,19]

σtot ¼ σ0Nc

X
q

ê2q

�
1þ 3CFas þ a2s

�
−
3

2
C2
F

þ CACF

�
−11 log

�
Q2

μ2R

�
− 44ζð3Þ þ 123

2

�

þ NfCFTf

�
4 log

�
Q2

μ2R

�
þ 16ζð3Þ − 22

���
; ð3Þ

where σ0 ¼ 4πα2=ð3Q2Þ is the lowest order QED cross
section for eþe− → μþμ−, α denotes the electromagnetic
fine structure constant, êq are the electroweak quark
charges, and Nc ¼ 3 is the number of colors. In addition,
we have introduced the usual QCD color factors CA ¼ 3,
CF ¼ 4=3, and Tf ¼ 1=2. The sum in (3) runs over Nf

active massless quark flavors. Here and throughout this
paper, we use the definition as ¼ αsðμ2RÞ=4π, where μR is
the renormalization scale. We refrain from reproducing the
well-known expressions for the electroweak quark charges
which can be found, e.g., in Ref. [13].
The NNLO QCD corrections to the transverse and

longitudinal cross sections dσhk=dz, k ¼ T, L, in Eq. (1)
were calculated in [12–14]. Adopting the same notation,
they can be expressed in factorized form as a convolution of
appropriate combinations of quark and gluon fragmentation
functions Dh

l¼q;gðz; μ2Þ and calculable coefficient functions

CS;NS
k;l ðz;Q2=μ2Þ:
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dσhk
dz

¼ σð0Þtot

�
Dh

Sðz; μ2Þ ⊗ CS
k;q

�
z;
Q2

μ2

�

þDh
gðz; μ2Þ ⊗ CS

k;g

�
z;
Q2

μ2

��

þ
X
q

σð0Þq Dh
NS;qðz; μ2Þ ⊗ CNS

k;q

�
z;
Q2

μ2

�
; ð4Þ

where, for simplicity, we have set the renormalization scale
μR equal to the factorization scale μF, i.e., μR ¼ μF ≡ μ.
The symbol ⊗ denotes the standard convolution integral
defined as

fðzÞ ⊗ gðzÞ≡
Z

1

0

dx
Z

1

0

dyfðxÞgðyÞδðz − xyÞ: ð5Þ

σð0Þq in Eq. (4) is the total quark production cross section for

a given flavor q at LO,Oðα0sÞ, and σð0Þtot is the corresponding

sum over all Nf active flavors. They read σð0Þq ¼ σ0Ncê2q
and σð0Þtot ¼

P
qσ

ð0Þ
q . Factorization in Eq. (4) holds in general

only in the presence of a hard scale, in this case Q. Higher-
twist corrections to Eq. (4), that are suppressed by inverse
powers of the hard scale, can be usually safely neglected as
long as Q is large enough. We do not consider them in
this study.
The nonperturbative but universal FFs Dh

i ðz; μ2Þ have a
formal definition as bilocal operators [2] and parametrize
the hadronization of a massless (anti)quark or gluon, i ¼ q,
q̄, g, into the observed hadron h as a function of its
fractional momentum z. The fragmentation process is
assumed to be independent of any other colored particles
produced in a hard scattering. The scale dependence of the
FFs is calculable in pQCD and governed by renormaliza-
tion group equations similar to those for PDFs. The SIA
cross section in Eq. (4) depends on the gluon-to-hadron FF
Dh

gðz; μ2Þ and the quark singlet (S) and nonsinglet (NS)
combinations that are defined as

Dh
Sðz; μ2Þ ¼

1

Nf

X
q

½Dh
qðz; μ2Þ þDh

q̄ðz; μ2Þ� ð6Þ

and

Dh
NS;qðz; μ2Þ ¼ Dh

qðz; μ2Þ þDh
q̄ðz; μ2Þ −Dh

Sðz; μ2Þ ð7Þ

respectively, in terms of the quark plus antiquark FFs
Dh

qðz; μ2Þ þDh
q̄ðz; μ2Þ for each flavor q.

The corresponding i ¼ S, NS coefficient functions in
Eq. (4) can be calculated perturbatively in pQCD as a
series in as,

Ci
k;l ¼ Ci;ð0Þ

k;l þ asC
i;ð1Þ
k;l þ a2sC

i;ð2Þ
k;l þ…; ð8Þ

where we have suppressed the arguments ðz;Q2=μ2Þ in (8).
Results are available up to Oða2sÞ [12–14] which is NNLO
for the CS;NS

T;l but formally only of NLO accuracy for the

subleading longitudinal coefficient functions CS;NS
L;l . The

latter coefficients vanish at Oða0sÞ, and their perturbative
series is hence shifted by one power in the strong coupling
as. The situation is completely analogous to DIS but, unlike
in DIS [20], the Oða3sÞ NNLO contributions have not been
calculated yet for SIA. In our phenomenological studies in
Sec. III, we will therefore resort, for the time being, to the
approximation where the perturbative orders for CS;NS

L;l are

counted as for CS;NS
T;l , i.e., we treat the Oða2sÞ longitudinal

coefficients as NNLO. In that case, the gluon FF does not

contribute directly in SIA at LO as also Ci;ð0Þ
T;g ¼ 0, again,

similar to DIS. In addition, we note that up to NLO
accuracy, the relation CS

k;q ¼ CNS
k;q holds, which can be

used to simplify Eq. (4) as was done, e.g., in Ref. [21].
Numerically, in particular, when fitting a large number of

data in a global QCD analysis, it is advantageous to work in
complex Mellin N moment space rather than with expres-
sions like Eq. (4) containing one or several time-consuming
convolution integrals. In general, the Mellin transform
fðNÞ of a function fðzÞ is defined by

fðNÞ ¼
Z

1

0

dzzN−1fðzÞ: ð9Þ

It has the well-known property that convolutions of two
functions factorize into ordinary products, i.e., both the
transverse and longitudinal cross section dσhk=dz in
Eq. (4) can be schematically written as products of the
Mellin N moments of FFs and coefficient functions,
Dh

l ðN; μ2Þ · Ck;lðN;Q2=μ2Þ.
The Mellin moments of the NNLO coefficient functions

Ci;ð2Þ
k;l in (8) were computed in both Refs. [14] and [15]. We

analytically checked the consistency of the two results,
which are presented using somewhat different notations, by
independently calculating the Mellin moments from scratch
starting from the z-space expressions given in Appendix C
of Ref. [14]. To this end, two MATHEMATICA packages
[22,23] were employed. The z-space results in [14] are
given in terms of harmonic polylogarithms expressed in the
notation Hm1;…;mw

, mj ¼ 0, �1 introduced in [24]. Their
Mellin transform can be written in terms of harmonic sums

Sa1;…;anðNÞ ¼
XN
k1¼1

Xk1
k2¼1

…
Xkn−1
kn¼1

signða1Þk1
kja1j1

…
signðanÞkn

kjanjn

;

ð10Þ

where the ak are positive or negative integers, and N is a
positive integer. The number n of ak indices indicates the
so-called depth, whereas w ¼Pn

k¼1 jakj is called the
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weight of the function. At NNLO accuracy one ends up
dealing with harmonic sums of weight up to w ¼ 4.
In order to perform the Mellin inverse transformation to z

space along a contour in the complex N plane at the very
end, see Sec. II C below, one needs to know all functions
not only for discrete integers but for any complex value of
N. This is achieved by proper analytical continuation of the
harmonic sums in Eq. (10). As it is well known [25], there
is no analytical continuation for all integer values of N due
to the presence of terms ∝ ð−1ÞN , and a choice ð−1ÞN →
�1 has to be made based on physical considerations. For
instance, the analytical continuation of all the coefficient
functions CS;NS

k;l appearing in Eq. (4) has to correctly
reproduce only even integer N moments.
To compare our results for the Mellin moments of the

NNLO coefficients obtained with the help of the
MATHEMATICA packages [22,23] with those given for even
values of N in [14], special care needs to be taken for
factors ∝ S−2ðN − 2Þ=ðN − 2Þ since the zero in the denom-
inator for N ¼ 2 suggests the presence of a pole. However,
this is a spurious pole as can be seen by making use of its
the integral representation [26]

S−2ðNÞ ¼ −
Z

1

0

dz logðzÞ ð−zÞ
N − 1

1þ z
: ð11Þ

The existence of this spurious pole for N ¼ 2 at NNLO is
the reason for the notation adopted in [14], where the
Mellin moments of the coefficient functions are written
proportional to θðN − 3Þ and δðN − 2Þ, representing the
finite N → 2 limit. Note that the limit in Eq. (11) has to be
taken for even N to obtain the correct sign. This can be
made manifest by rewriting Eq. (11) in terms of the
digamma function which is defined as the derivative of
the Euler Gamma function ψðxÞ≡ d log½ΓðxÞ�=dx. The
harmonic sum in Eq. (11) then reads [27]

S−2ðNÞ ¼ ð−1ÞNþ3β0ðN þ 1Þ − 1

2
ζð2Þ; ð12Þ

where

βðNÞ ¼ 1

2

�
ψ

�
N þ 1

2

�
− ψ

�
N
2

��
: ð13Þ

We fully reproduce both the θðN − 3Þ pieces and the
N → 2 limits of the NNLO coefficients CS;NS

k;l ðNÞ listed in
Ref. [14]. Note that the subtleties concerning the spurious
pole for N ¼ 2 first appear at the NNLO level. We also
completely agree with the results given in Ref. [15] as long
as we do not use their definitions of the functions A3ðNÞ,
A5ðNÞ, A18ðNÞ, A21ðNÞ, and A22ðNÞ in Eq. (14) of [15] but,
instead, define them as the Mellin transforms of the
functions g3ðxÞ, g5ðxÞ, g18ðxÞ, g21ðxÞ, and g22ðxÞ specified
in the ANCONT package [27].

In our numerical code we implement the Mellin N space
expressions for the NNLO coefficient functions in the way
as they are presented in [15]. The proper analytical
continuations of all the harmonic sums and special func-
tions are taken from [15,26–28]. In addition, we are making
use of some of the routines provided in the ANCONT

package [27].

B. Timelike evolution equations

The factorization procedure invoked in Eq. (4) introdu-
ces an arbitrary scale μF which conceptually separates the
high-energy perturbative regime from the low-energy,
nonperturbative region. Both the hard coefficient functions
and the FFs depend on μF in such a way that at OðansÞ in
pQCD any residual dependence of a physical cross section
on μF is of orderOðanþ1

s Þ. Similar to the case of PDFs, this
leads to a set of 2Nf þ 1 coupled renormalization group
equations (RGEs) governing the scale μF dependence of the
gluon and Nf quark and antiquark FFs into a given hadron
species h. Schematically, these timelike evolution equa-
tions read

∂
∂ ln μ2D

h
i ðz; μ2Þ ¼

X
j

PT
jiðz; μ2Þ ⊗ Dh

j ðz; μ2Þ; ð14Þ

i, j ¼ q, q̄, g, and where, for simplicity, we have set μR ¼
μF ¼ μ as in Sec. II A. The j → i splitting functions
PT
jiðz; μ2Þ can be calculated perturbatively as a series in as,

PT
ji ¼ asP

T;ð0Þ
ji þ a2sP

T;ð1Þ
ji þ a3sP

T;ð2Þ
ji þ…; ð15Þ

suppressing all arguments z, μ2 in (15). They are known up
to NNLO accuracy [16], i.e., Oða3sÞ, as is the case for their
spacelike counterparts PS

ij [29] needed for the scale
evolution of PDFs. In fact, there is still a small uncertainty

left concerning the off-diagonal splitting kernel PT;ð2Þ
qg

which could not be completely determined by the crossing
relations to the spacelike results employed in [16].
Presumably, this remaining ambiguity is numerically irrel-
evant for all phenomenological applications; see, however,
Ref. [30] for the status of an ongoing direct calculation of
the NNLO timelike kernels.
To implement the timelike evolution equations (14)

numerically up to NNLO accuracy, we closely follow
the strategies and framework developed for the public,
spacelike PDF evolution code PEGASUS [31]. In general,
the structure and solutions of the spacelike and timelike
evolution equations are completely analogous apart from
replacing PDFs by FFs and the kernels PS

ij by PT
ji. Hence,

for completeness, we repeat here only the most important
aspects, in particular, those features appearing for the first
time at NNLO.
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Instead of working directly with the system of 2Nf þ 1
coupled equations in (14) it is convenient to recast the
quark sector into a flavor singlet

Dh
Σ ≡

XNf

q

ðDh
q þDh

q̄Þ; ð16Þ

which evolves along with the gluon FF Dh
g,

d
d ln μ2

 
Dh

Σ

Dh
g

!
¼
 

PT
qq 2NfPT

gq

1
2Nf

PT
qg PT

gg

!
⊗

 
Dh

Σ

Dh
g

!
; ð17Þ

and 2Nf − 1 nonsinglet combinations

Dh;�
NS;l ≡

Xk
i¼1

ðDh
qi �Dh

q̄iÞ − kðDh
qk �Dh

q̄kÞ; ð18Þ

Dh
NS;v ≡

XNf

q

ðDh
q −Dh

q̄Þ; ð19Þ

reflecting the properties of the (anti)quark to (anti)quark
splitting functions and which all evolve independently. In
Eq. (18) l ¼ k2 − 1, k ¼ 1;…; Nf, and the subscripts i; k
were introduced to distinguish different quark flavors. After
the evolution is performed, the individualDh

q andDh
q̄ can be

recovered from Eqs. (16), (18), and (19), and any combi-
nation relevant for a cross section calculation can be
computed, such as those used in the factorized expression
for SIA given in Eq. (4).
More specifically, the three NS combinations in

Eqs. (18) and (19) evolve with the following NS splitting
functions [16]:

PT;�
NS ¼ PT;v

qq � PT;v
qq̄ ;

PT;v
NS ¼ PT;−

NS þ PT;s
NS ; ð20Þ

respectively, and the singlet PT
qq in (17) obeys

PT
qq ¼ PT;þ

NS þ PT;ps: ð21Þ
Similarly to the spacelike case, PT;v

qq̄ ¼ PT;s
NS ¼ PT;ps ¼ 0

and PT;s
NS ¼ 0 in LO and NLO, respectively, such that three

independently evolving NS quark combinations appear for
the first time at NNLO accuracy [16]. We note that PT;s

NS ≠ 0

can lead to a perturbatively generated, albeit small strange-
quark asymmetry for FFs, i.e., Dh

s ðz; μ2Þ −Dh
s̄ ðz; μ2Þ ≠ 0,

even if the inputDh
s andDh

s̄ are symmetric; see Ref. [32] for
a detailed discussion of a similar effect in the context of
PDFs. For pion FFs such a charge asymmetry is expected to
be further suppressed since the effect is driven by a non-
zero Dh

NS ;v in (19). This combination vanishes when exact
charge conjugation and isospin symmetry is imposed on the
u and d quark and antiquark FFs as is the case in many of
the available sets of pion FFs [3–5].
As mentioned already, we choose to solve the set of

timelike evolution equations in Mellin N space, which not

only has the benefit of turning all integro-differential
equations into ordinary differential equations but also
makes them amenable to further analytical studies.
Solutions of the evolution equations in N space, as well
as their numerical implementation, are well known and
were treated extensively in, e.g., Ref. [31] in the spacelike
case relevant for PDFs. Since the procedure for FFs is
essentially the same, we will in the following only sketch
some aspects of the solution at NNLO important for our

discussions later on. The needed NNLO kernels PT;ð2Þ
ji ðNÞ

can be found in [16]. As for the SIA coefficient functions
presented in Sec. II A, we have verified the expressions for

PT;ð2Þ
ji ðNÞ starting from z space and find full agreement.
We start our discussions by recalling the Mellin trans-

formed timelike evolution equations. Adopting the nota-
tions used in the PEGASUS code [31], one finds

∂DhðN; asÞ
∂as ¼ −

1

as

�
R0ðNÞ þ

X∞
k¼1

aksRkðNÞ
�
DhðN; asÞ;

ð22Þ

where the bold characters indicate that we are dealing in
general with 2 × 2 matrix-valued equations, cf. Eq. (17).
For the NS combinations (18) and (19), Eq. (22) reduces to
a set of single partial differential equations which are
straightforward to solve, and we do not consider them here
any further.
The Rk in (22) are defined recursively as

R0 ≡ 1

β0
PT;ð0Þ; Rk ≡ 1

β0
PT;ðkÞ −

Xk
i¼1

biRk−i; ð23Þ

where PT;ðkÞðNÞ is the kth term in the perturbative expan-
sion of the 2 × 2 matrix of singlet splitting functions,
cf. Eq. (17). In addition, bi ≡ βi=β0 with βk denoting the
expansion coefficients of the QCD β function; see Ref. [33]
for explicit expressions up to NNLO, i.e, β2. Also note that
Eq. (22) is now written in terms of ∂as rather than ∂ log μ2
used in Eq. (14). This convenient change of variables is
possible as long as factorization and renormalization scales
are related by a constant, i.e., μR ¼ κμF, in numerical
studies; see Ref. [31] for a detailed discussion. For
simplicity, we have so far only considered the case
μ ¼ μR ¼ μF. Expressions for κ ≠ 1 can be easily recov-
ered both for the coefficient functions (8) and the splitting
functions (15) by reexpanding as in powers of logðμ2F=μ2RÞ.
The general expressions are implemented in our numeri-
cal code.
Due to the matrix-valued nature of Eq. (22), no unique

closed solution exists beyond LO. Instead, it can be
written as an expansion around the LO solution,
ðas=a0Þ−R0ðNÞDhðN; a0Þ, where a0 is the value of as at
the initial scale μ0 where the nonperturbative input
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DhðN; a0Þ is specified from a fit to data. This expansion
reads

DhðN; asÞ ¼
�
1þ

X∞
k¼1

aksUkðNÞ
��

as
a0

�
−R0ðNÞ

×

�
1þ

X∞
k¼1

aksUkðNÞ
�
−1
DhðN; a0Þ: ð24Þ

The evolution matrices Uk are recursively defined by the
commutation relations

½Uk;R0� ¼ Rk þ
Xk−1
i¼1

Rk−1Ui þ kUk: ð25Þ

Based on (24), it is now possible to define several
solutions at order NmLO which are all equivalent up to the
accuracy considered, i.e., up to subleading higher-order
terms. Any numerical differences between two different
choices should be treated as a source of theoretical
uncertainty in the determination of FFs or PDFs, and it
is expected that the inclusion of NNLO corrections reduces
this type of ambiguity as compared to NLO. We highlight
two possible solutions which we pursue further in our
phenomenological studies in Sec. III. Suppose the pertur-
batively calculable quantities PT;ðkÞ and βk are available up
to a certain order k ¼ m. One possibility is to expand
Eq. (24) in as and strictly keep only terms up to ams . This
defines what is usually called the truncated solution in
Mellin moment space, and, unless stated otherwise, will be
used in all our phenomenological applications.
However, given the iterative definition of the Rk in

Eq. (23), one may alternatively calculate the Rk and, hence
the Uk in Eq. (25), for any k > m from the known results
for PT;ðkÞ and βk up to k ¼ m. Any higher-order PT;ðkÞ and
βk with k > m are simply set to zero. Taking into account
all the thus constructed Uk in Eq. (24) defines the so-called
iterated solution. This solution is important as it mimics the
results that would be obtained by solving Eq. (14) directly
in z space by some numerical iterative method. Both
choices are equally valid as they only differ by terms that
are of orderOðamþ1

s Þ and are implemented in our numerical
code; see Ref. [31] for a more detailed discussion in the
context of spacelike evolution equations. We shall illustrate
the numerical differences between the truncated and
iterated solution in Sec. III.

C. Numerical implementation

We base the development of our new NNLO evolution
code for FFs on the well-tested PEGASUS package [31]
which provides different numerical solutions to the space-
like evolution of PDFs up to NNLO accuracy in Mellin N
space and the necessary routines for the subsequent Mellin
inverse transformation back to momentum space. It also

solves the RGE for the strong coupling asðμ2RÞ in the
required order in pQCD. In addition to extending PEGASUS
to handle also timelike evolution, we also add packages to
compute the SIA cross section in N space and to determine
the parameters of the FFs at some input scale μ0 from a fit to
existing SIA data at LO, NLO, and NNLO accuracy.
In Sec. II B we have omitted how we deal with heavy

quark flavors, i.e., charm and bottom, in the timelike scale
evolution apart from defining the relevant 2Nf − 1 NS
combinations of FFs in Eqs. (18) and (19). In PEGASUS [31]
both a fixed flavor-number scheme (FFNS) and a variable
flavor-number scheme (VFNS) evolution are implemented.
For the latter, matching coefficients between the spacelike
evolution for Nf and Nf þ 1 are provided for both PDFs
[34] and the RGE for as [35] up to NNLO accuracy. Similar
timelike matching coefficients for FFs are only known up to
NLO and can be found in Ref. [36]. They are implemented
in our evolution code. In practice, however, all fits of FFs
performed so far [3–8], have used a different approach for
the charm and bottom-to-light hadron FFs. Once the scale μ
in the evolution crosses the heavy quark pole mass
Q ¼ mc;b, a new nonperturbative input distribution is
introduced at that scale Dh

c;bðz;m2
c;bÞ and Nf → Nf þ 1.

The parameters describing these input distributions
Dh

c;bðz;m2
c;bÞ are also determined by a fit to, usually

flavor-tagged, data taken at scales μ ≫ mc;b. We will also
adopt this nonperturbative input scheme (NPIS) in all our
phenomenological studies below. We note that as one of the
many cross-checks for our new timelike evolution code, we
have implemented the input parameters and asðμ0Þ value of
the NLO NPIS fit to SIA data performed in Ref. [3]. We
obtain an excellent numerical agreement with the FFs of [3]
for all z and μ values.
As the last technical issue, we would like to comment on

the numerical implementation of the Mellin inverse trans-
formation. To this end, one needs to perform a numerical
integration in complex N space along a suitably chosen
contour CN in order to recover expressions in z space which
can be compared to data. In case of the SIA cross section,
this transformation schematically reads

DðzÞ ⊗ CðzÞ ¼ 1

2πi

Z
CN

dNz−NDðNÞCðNÞ; ð26Þ

where we have omitted any scale μ and flavor dependence
in Eq. (26). In practice, one chooses a tilted contour CN
which can be parametrized in terms of a real variable x as
N ¼ cþ xeiϕ; see Fig. 1 for an illustration of the path and
Ref. [31] for more details. To ensure that the value of the
integral is independent of CN , c has to be to the right of the
rightmost pole of the integrand, which, in our case, are all
located along the real axis. An exponential dampening of
the integrand in (26) is achieved for π > ϕ ≥ π=2, resulting
in a smaller upper integration limit xmax sufficient for a
numerically stable result.

DANIELE P. ANDERLE, MARCO STRATMANN, and FELIX RINGER PHYSICAL REVIEW D 92, 114017 (2015)

114017-6



However, extra care needs to be taken in choosing actual
values for both c and ϕ beyond the requirements just
outlined. As it turns out, the standard choice, c ¼ 1.9 and
ϕ ¼ 3=4, made for the PDF evolution in PEGASUS cannot
be used in the timelike case. This is due to the fact that the
timelike kernels PTðzÞ are more singular than their space-
like counterparts PSðxÞ in the limit z, x → 0. At NLO

accuracy, one finds, for instance, that PT;ð1Þ
gg ðzÞ ∝ log2ðzÞ=z

[16] whereas PS;ð1Þ
gg ðxÞ ∝ 1=z [29]. In Mellin space this

behavior translates into ∝ 1=ðN − 1Þ3 and ∝ 1=ðN − 1Þ,
respectively, i.e., a leading singularity at N ¼ 1. To order

NmLO this generalizes to PT;ðmÞ
gg ðNÞ ∝ 1=ðN − 1Þð2mþ1Þ

[37] whereas in the spacelike case only one additional
power of 1=ðN − 1Þ appears in each order [38]. As a result,
the function that is integrated in Eq. (26) has potentially
much stronger oscillations in the vicinity of the pole N ¼ 1
than for the corresponding Mellin inverse transformations
for spacelike PDFs and observables, and achieving numeri-
cal convergence becomes considerably more delicate.
To illustrate this issue further, we schematically write the

general solution in Eq. (24) as

DhðN;asÞ ¼
 
KT

11ðas; a0;NÞ KT
12ðas; a0;NÞ

KT
21ðas; a0;NÞ KT

22ðas; a0;NÞ

!
DhðN;a0Þ;

ð27Þ

where the KT
ij denote the entries of the 2 × 2 timelike

evolution matrix on the right-hand side of (24). A similar
equation can be written down for the evolution of PDFs.
In Fig. 2 we show a comparison of the real part of the

NLO singlet evolution kernel RefKT;S
12 g for the truncated

solution for both the evolution of FFs (upper panel) and
PDFs (lower panel) in the relevant section of the complexN
plane. As an illustrative example, we have chosen μ20 ¼
1 GeV2 and μ2 ¼ 110 GeV2, the scale relevant for Belle

and BABAR, in Eq. (27). The line labeled as C1 represents
the standard contour CN implemented in PEGASUS [31], and
C2;3 are two alternative choices.
As can be seen from the upper panel of Fig. 2, the

contour C1 with c ¼ 1.9 and ϕ ¼ 3=4 goes through a region
of strong numerical oscillations of RefKT

12g and, as a
consequence, yields numerically unstable results for the
integral in Eq. (26). Hence, in our code we need to choose
either a different angle, e.g., ϕ ¼ 2=3 as in C2, or a different
value of c, such as c ¼ 2.5 adopted in C3. Both choices lead
to numerically stable and identical results for the Mellin
inverse transformation in Eq. (26) for all practical purposes.
Figure 2 also shows that no such issue appears for the
evolution of PDFs because of the weaker N ¼ 1 singularity
than in the timelike case.
Finally, we compare the results of our timelike evolution

code with those obtained with the publicly available MELA

[17] package, where also tables of benchmark numbers are
given corresponding to input FFs taken from the fit in
Ref. [5]; cf. Eq. (3.3) in [17]. Using the same input FFs, we
were not able to directly reproduce their benchmark results
as generated “out of the box”from the downloadable script.
The RGE for asðμRÞ is always solved exactly in our code by

FIG. 1. The dashed line represents the contour CN in complexN
space to perform the inverse Mellin transformation (26). The
poles of the integrand along the real axis are schematically
represented by the crosses.
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FIG. 2 (color online). The value of the real part of K12 in
Eq. (27) in a region of the complex N plane for both the evolution
of FFs (upper panel) and PDFs (lower panel). The lines
correspond to three different integration contours CN in (26).
C1 is the default choice in the PEGASUS package [31]; see text.

FRAGMENTATION FUNCTIONS AT NEXT-TO-NEXT-TO- … PHYSICAL REVIEW D 92, 114017 (2015)

114017-7



means of a fourth order Runge-Kutta integration [39] (as
taken from the PEGASUS package [31]), whereas in MELA

the standard, expanded solution is utilized for the truncated
solution of Eq. (24). After this small difference is accounted
for, we achieve perfect numerical agreement with
differences of less than 0.01% for both the truncated and
iterated solution using the FFNS withNf ¼ 3 or the VFNS.

III. PHENOMENOLOGICAL APPLICATIONS

As a first application of our timelike evolution package
presented in Sec. II, we will perform a fit to the available
SIA data with identified pions up to NNLO accuracy in
Sec. III A. The obtained sets of LO, NLO, and NNLO pion
FFs will be used in Sec. III B to demonstrate the relevance
of the NNLO corrections to the SIA cross section and to
estimate the residual theoretical uncertainties due to var-
iations of the factorization scale in each order or to the
choice of a truncated or iterated variant of the solution to
the evolution equations given in (24).

A. Fit of pion FFs up to NNLO accuracy

Since full NNLO corrections are only available for a
rather limited set of hard-scattering processes, we have to
restrict our first analysis of FFs at NNLO accuracy to data
obtained in SIA for the time being. In addition, we focus
solely on pion production where data are most abundant
and precise. In any case, the main interest of this work are
the general features of NNLO corrections rather than to
provide a new set of FFs.
To facilitate the fitting procedure, we closely follow the

framework outlined and used in the series of DSS global
QCD analyses of parton-to-pion FFs at NLO accuracy
[6–8]. Specifically, we adopt the same flexible functional
form

Dπþ
i ðz; μ20Þ ¼

Nizαið1 − zÞβi ½1þ γið1 − zÞδi �
B½2þ αi; βi þ 1� þ γiB½2þ αi; βi þ δi þ 1�

ð28Þ
to parametrize the nonperturbative input FFs for charged
pions at a scale μ0 in the MS scheme. Here, B½a; b� is the
Euler Beta function used to normalize the parameter Ni in
(28) for each flavor i to its contribution to the energy-
momentum sum rule. In addition to the gluon i ¼ g, we
only consider FFs for the sum of a quark and an antiquark
of a given flavor i, i.e., i ¼ uþ ū, dþ d̄, sþ s̄, cþ c̄, and
bþ b̄, since SIA is only sensitive to qþ q̄ flavor combi-
nations as can be already inferred from Eq. (4). Also, since
all hadrons in SIA originate from the initially produced qq̄
pair, the rates for πþ and π− are the same, and data for
charged pions are usually presented for the sum
dσπ ≡ dσπ

þ þ dσπ
−
.

We assume charge conjugation and isospin symmetry
and imposeDπ�

uþū ¼ Dπ�
dþd̄

as is also suggested by the flavor

composition of π�. We note that a recent global QCD
analysis of pion FFs at NLO accuracy based on SIA,
SIDIS, and pp data [8] finds a breaking of this symmetry
of less than 0.5%. Beyond that, we are forced to fix
certain parameters in our ansatz (28) as they cannot be
constrained by data. More specifically, we set
αsþs̄ ¼ αuþū, βsþs̄ ¼ βuþū þ δuþū, and βg ¼ 8. In addi-
tion, δg;sþs̄;cþc̄ ¼ 0 and γg;sþs̄;cþc̄ ¼ 0. For light quark
flavors and the gluon, we choose an initial scale of
μ0 ¼ 1 GeV. As in all previous fits [3–8], the charm and
bottom-to-pion FFs are treated as a nonperturbative input
and are turned on discontinuously at μc0 ¼ mc ¼ 1.4 GeV
and μb0 ¼ mb ¼ 4.75 GeV, respectively. Their parameters
are essentially determined by charm and bottom flavor-
tagged SIA data. In case of Dπþ

bþb̄
, a good fit is only

achieved with the full functional form (28) using all five
parameters, whereas for charm only three free parameters
are needed. Since the heavy quark masses are neglected
throughout in the NPIS, Dπþ

cþc̄ and Dπþ
bþb̄

should be only
used in cross sections such as Eq. (4) at scales well
beyond their partonic thresholds μ ¼ 2mc and μ ¼ 2mb,
respectively.
The remaining 16 free parameters are determined by a

standard χ2 minimization procedure as described,
for instance, in Ref. [8]. They are listed in Table I
for our LO, NLO, and NNLO sets of pion FFs. For
each set of experimental data we determine the
optimum normalization shift analytically and assign
an additional contribution to χ2 according to the quoted
experimental uncertainties; see, e.g., Eq. (5) in Ref. [8]
for details.
Our fits are performed to the following sets of inclusive

and flavor-tagged SIA data with identified pions: SLD [40],
Aleph [41], Delphi [42], and Opal [43], all taken at a c.m.s.
energy of

ffiffiffi
S

p ¼ 91.2 GeV, TPC [44] at
ffiffiffi
S

p ¼ 29 GeV,
and BABAR [10] and Belle [9] both at

ffiffiffi
S

p ¼ 10.5 GeV.
The SLD, Delphi and TPC experiments not only provide
inclusive SIA measurements but also uds, charm and
bottom-tagged data. All these sets were also used in the
recent global analysis presented in Ref. [8].
As is customary [3–8], we do not include any data below

a certain zmin in the fit where finite, but neglected hadron
mass effects ∝ Mπ=ðz2SÞ might become relevant [45], and
potentially large logarithmic contributions ∝ log z, briefly
mentioned in Sec. II C, need to be resumed to all orders
[37,46,47]. For all our fits, we choose zmin ¼ 0.075. In
addition, we employ an upper cut of z < zmax ¼ 0.95. In
this region threshold logarithms ∝ logð1 − zÞ in the coef-
ficient functions are expected to become increasingly
relevant, and, again, all-order resummations are needed
[45,48]. Resummations are rather straightforward to imple-
ment in Mellin N space, and, hence, we plan to extend our
code further by including them based on the knowledge that
can be gathered from all the available fixed order results at
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NNLO accuracy for both z → 0 and z → 1 in a dedicated
future work.
We note that we are not fitting the initial value as at some

reference scale in order to solve the RGE governing the
running of the strong coupling but rather adopt the
following boundary conditions αsðMZÞ ¼ 0.135 at LO,
αsðMZÞ ¼ 0.120 at NLO, and αsðMZÞ ¼ 0.118 at NNLO
accuracy from the recent MMHT global analysis of PDFs;
see the first reference in [11].
Table II and Fig. 3 illustrate the quality of our fits to SIA

data at LO, NLO, and NNLO accuracy in terms of the
individual χ2 values obtained for each experiment and the
quantity “[data-theory]/theory,” respectively. The total χ2

penalty originating from the normalization shifts applied
to each data set can be also found at the bottom of Table II.
It turns out to be small, about 7 units, and is largely
independent of the perturbative order. Upon applying the
cuts on the z range discussed above, a total of 288 data
points remains for the fitting procedure and to determine
the 16 free parameters describing our parton-to-pion FFs
Dπþ

i ðz; μ0Þ in Eq. (28). All fits yield a very good χ2 per
degree of freedom (d.o.f.) ranging from 0.89 in LO to 0.64
at NNLO accuracy. We note, however, that the χ2=d:o:f.
would deteriorate very significantly if the number of free fit
parameters would be reduced further by setting, for
instance, γuþū ¼ 0 or γbþb̄ ¼ 0.

As can be seen from Table II and Fig. 3, nearly all SIA
data sets can be described equally well in LO, NLO, and
NNLO accuracy with just a few exceptions, most notably
the BABAR data [10] taken at the smallest

ffiffiffi
S

p
which drive

the differences found in the total χ2 values of the three fits.
Here, the inclusion of higher-order corrections progres-
sively leads to better fits. A closer inspection reveals that
the larger χ2 at LO, and also at NLO, stems from the data
points corresponding to the lowest z values included in the
fit, i.e., 0.075 ≤ z≲ 0.12; note that the Belle Collaboration
does not provide any data below z ¼ 0.2. This result is
readily understood from the fact that calculations at higher
orders contain more of the numerically important small z
enhancements ∝ log z mentioned above, i.e., are closer to
an all-order result. From the observation that calculations at
NNLO accuracy provide a significantly better description
of data at small z, one can anticipate that including all-order
resummations into the analysis framework would even-
tually further extend the range of z amenable to pQCD. We
will investigate this quantitatively in a future publication.
The neglected hadron mass is another source of potentially
large corrections at small z and/or

ffiffiffi
S

p
. In Ref. [45] it was

shown, however, that hadron mass terms are relatively
small for pion production in SIA in the kinematic regime
relevant for the BABAR data. We also wish to recall that
BABAR provides their data in two variants called “conven-
tional” and “prompt,” differing by the treatment of weak
decays into pions in their event sample [10]. As in the
recent global NLO analysis [8], our results are based on the
latter set. We have verified that a decent fit to all SIA data

TABLE I. Parameters describing our optimum LO, NLO, and
NNLO Dπþ

i ðz; μ0Þ in Eq. (28) at the input scale μ0 ¼ 1 GeV.
Results for the charm and bottom FFs refer to the scales μc0 ¼
mc ¼ 1.4 GeV and μb0 ¼ mb ¼ 4.75 GeV, respectively. The
parameters given in italics are fixed by αsþs̄ ¼ αuþū,
βsþs̄ ¼ βuþū þ δuþū, and βg ¼ 8 but are listed for completeness.

Parameter LO NLO NNLO

Nuþū 0.735 0.572 0.579
αuþū −0.371 −0.705 −0.913
βuþū 0.953 0.816 0.865
γuþū 8.123 5.553 4.062
δuþū 3.854 1.968 1.775

Nsþs̄ 0.243 0.135 0.271
αsþs̄ −0.371 −0.705 −0.913
βsþs̄ 4.807 2.784 2.640

Ng 0.273 0.211 0.174
αg 2.414 2.210 1.595
βg 8.000 8.000 8.000

Ncþc̄ 0.405 0.302 0.338
αcþc̄ −0.164 −0.026 −0.233
βcþc̄ 5.114 6.862 6.564

Nbþb̄ 0.462 0.405 0.445
αbþb̄ −0.090 −0.411 −0.695
βbþb̄ 4.301 4.039 3.681
γbþb̄ 24.85 15.80 11.22
δbþb̄ 12.25 11.27 9.908

TABLE II. The individual χ2 values and number of points for
each inclusive and flavor-tagged data set included in our fits at
LO, NLO, and NNLO accuracy. At the bottom, we list the total χ2

penalty from the normalization shifts and the total χ2 for each fit.

Experiment Data # data χ2

type in fit LO NLO NNLO

SLD [40] Inclusive 23 15.0 14.8 15.5
uds tag 14 9.7 18.7 18.8
c tag 14 10.4 21.0 20.4
b tag 14 5.9 7.1 8.4

Aleph [41] Inclusive 17 19.2 12.8 12.6
Delphi [42] Inclusive 15 7.4 9.0 9.9

uds tag 15 8.3 3.8 4.3
b tag 15 8.5 4.5 4.0

Opal [43] Inclusive 13 8.9 4.9 4.8
TPC [44] Inclusive 13 5.3 6.0 6.9

uds tag 6 1.9 2.1 1.7
c tag 6 4.0 4.5 4.1
b tag 6 8.6 8.8 8.6

BABAR [10] Inclusive 41 108.7 54.3 37.1
Belle [9] Inclusive 76 11.8 10.9 11.0
Normalization shifts 7.4 6.8 7.1
TOTAL: 288 241.0 190.0 175.2
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can be also obtained when the “conventional” data are used
instead but at the expense of a less favorable total χ2, e.g.,
236.4 rather than 190.0 units at NLO, and, more impor-
tantly, for undesirable corners of the parameter space
describing the Dπþ

i ðz; μ0Þ in Eq. (28). For instance, the uþ
ū fragmentation tends to saturate the energy-momentum
sum rule, which is summed over all hadrons, already
for pions.
Table II and Fig. 3 also reveal that some flavor-tagged

data from SLD can be described best at LO but at the
expense of larger χ2 values for inclusive Aleph and
Opal data. In general, the NLO and NNLO results are
very similar for all data sets used in the fits except, as
just discussed, for a few points from BABAR at small z.
This observation also carries over to the obtained FFs at
NLO and NNLO accuracy, in particular, those flavor
combinations which are constrained best by the SIA
data alone.
Figure 4 shows our fitted LO, NLO, and NNLO

Dπþ
i ðz;Q2Þ at Q2 ¼ 10 GeV2 for i ¼ uþ ū, sþ s̄, g,

and the flavor singlet combination in (16) for Nf ¼ 4.
As a comparison with previous NLO results, we consider
the most recent global analysis of the DSS group [8], based
on the same set of SIA data plus SIDIS and pp data, and the
old fit by Kretzer [3]. The latter still provides a good
description of all pion data, including those from SIDIS and
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pp, despite making use of only a small subset of the SIA
data listed in Table II comprising SLD [40], Aleph [41], and
TPC [44]. To illustrate how the current experimental
uncertainties typically propagate to the extraction of
parton-to-pion FFs, we also show in Fig. 4 the 90% con-
fidence level (C.L.) estimates of the latest DSS global QCD
fit (shaded bands). As was already mentioned, we refrain
from providing uncertainty bands for our fits as SIA data
alone are not sufficient for providing a reliable estimate due
to the assumptions one has to impose on the parameter
space describing the Dπþ

i ðz; μ0Þ in Eq. (28).
From Fig. 4 one can make the following observations:

the quantity which is known to be constrained best by the
SIA data alone [3–8], the flavor singlet combination Dπþ

Σ
defined in Eq. (16), is very similar for all the NLO
results, DSS, Kretzer, and our fit, in particular, for
z≳ 0.1. The fact that also the singlet FF determined at
NNLO accuracy is close to the NLO results gives some
indication that NNLO corrections do not seem to alter
results obtained at NLO accuracy too much. A similar
level of agreement for Dπþ

Σ is found also at other scales,
for instance, μ ¼ MZ.
Breaking up the singlet into FFs for individual quark

flavors depends on the assumptions made in the fit,
including such details as the choice for zmin. Therefore,
it is not too surprising that one finds some differences
between the various fits shown in Fig. 4 for the favored
Dπþ

uþū and the unfavored D
πþ
sþs̄, with the latter FF, of course,

being considerably less well constrained by data than the
former. Another FF which is only loosely constrained by a
fit to solely SIA data is the gluon Dπþ

g , which, despite the
different assumptions, agrees rather well among all fits.
Finally, one notices that for a LO fit both the singlet and the
favored FFs, Dπþ

Σ and Dπþ
uþū, respectively, are significantly

larger than the corresponding NLO estimates. In general,
we find that in order to achieve a good fit to SIA data at LO
accuracy, some of the parameters listed in Table I tend to
approach extreme values, for instance, the uþ ū fragmen-
tation saturates most of the energy-momentum sum rule
already for pions. In any case, LO estimates are not
sufficient for phenomenological applications.

B. Impact of NNLO corrections on theoretical
uncertainties

In this section we analyze the relevance of the NNLO
corrections for a reliable phenomenology of the SIA
process. To this end, we will examine the importance of
various sources of theoretical uncertainties in LO, NLO,
and NNLO accuracy. We will present results for the size of
the NNLO corrections in terms of the K factor, study the
residual dependence on the choice of scale μ, and inves-
tigate the uncertainties induced by choosing a particular
solution, truncated or iterated, to the timelike evolution
equations. All these results are largely independent of the

details of fitting an actual set of FFs, and as such they
represent the main numerical results of this paper along
with our newly developed NNLO code described in Sec. II.
In Fig. 5, we show the K factor for the SIA process

defined as dσπðNmLOÞ=dσπðNm-1LOÞ for m ¼ 2 (solid)
and m ¼ 1 (dashed lines) for the three c.m.s. energies
corresponding to the experiments included in our fit; see
Table II. To determine only the impact of the genuine
higher-order corrections and not some numerical
differences in the LO, NLO, and NNLO FFs, like those
illustrated in Fig. 4, all calculations in Fig. 5 are performed
with our NLO input FFs. Their evolution, the running
of the strong coupling as, and the coefficient functions are
taken consistently either at LO, NLO, or NNLO accuracy
though.
As one expects, the K factor for the NNLO/NLO results

is significantly smaller than the one for NLO/LO, and for
most values of z the additional NNLO corrections are at the
level of about 10% or less. Both at large and small z, one
finds clear indications for the presence of large logarithmic
corrections to the perturbative series contained in the
evolution kernels PT and the SIA coefficient functions
C. They need to be resummed to all orders to extend the
range of applicability of the presented fixed order results to
both z → 1 and z → 0. We note that the small

ffiffiffi
S

p
dependence of the K factors in Fig. 5 is only caused by
the different orders in pQCD used in the denominator and
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FIG. 5 (color online). NNLO/NLO (solid) and NLO/LO
(dashed lines) K factors for the SIA process for three different
c.m.s. energies. All computations are performed with our NLO
set of parton-to-pion FFs; see text.
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in the numerator, dσπðNmLOÞ and dσπðNm-1LOÞ, respec-
tively, to compute the scale evolution of FFs and the
coupling as. There is no scale in the coefficient functions as
we have set μR ¼ μF ¼ μ ¼ Q throughout, i.e., all loga-
rithms of the type logðμ2R=μ2FÞ or logðQ2=μ2FÞ vanish.
The scale dependence of the SIA cross section is

illustrated in Fig. 6, where we show results at LO, NLO,
and NNLO accuracy (shaded bands) for μR ¼ μF ¼ μ ¼
2Q and μ ¼ Q=2 normalized in each case to our default
choice μ ¼ Q. The residual dependence on the choice of
the scale μ in a theoretical calculation is presumably the
most important source of uncertainty and is expected to
shrink progressively upon including higher and higher-
order corrections. This is exactly what we find. For
instance, at

ffiffiffi
S

p ¼ 10.5 GeV, relevant for BABAR and
Belle, the typical scale uncertainty at z ≈ 0.5 amounts to
about 20% at LO and reduces to ≈10% at NLO and ≈5% at
NNLO. At larger c.m.s. energies, the scale ambiguities are
even smaller and reach around 1%–2% at NNLO accuracy.
This is actually needed in a phenomenological analysis to
roughly match the experimental uncertainties for the most
precise sets of inclusive pion data as can be inferred from
Fig. 3; note that the scale uncertainty bands are hardly
visible for some of the flavor-tagged data as we had to
inflate the axis of the ordinate in Fig. 3 to accommodate the
rather sizable experimental uncertainties.
As can be seen from Fig. 6, all scale uncertainty bands

narrow down somewhere in the range 0.1≲ z≲ 0.15

before they start to increase again towards z → 0. This
can be readily understood from fact that one has approxi-
mate “scaling” of the SIA cross section, or, alternatively,
the quark FFs, for some value of z in this region, i.e., they
become independent of the scale μ. This is very much
similar to DIS and PDFs, where this happens somewhere
near momentum fractions of about 0.2. Of course, QCD
corrections always introduce some scale dependence, and
higher-order cross sections never probe a FFs or a PDFs
locally at one value of momentum fraction but rather over a
broad range due to the presence of convolutions, like, for
instance, in Eq. (4).
We close our discussions about the relevance of the

NNLO corrections by showing the theoretical ambiguity
associated with the different choices one has in defining the
solution to the timelike evolution equations beyond the LO
accuracy. More specifically, Fig. 7 gives the ratio of the
iterated and truncated variant of the general solution given
in Eq. (24) computed in NLO (dashed) and NNLO (solid
line); see also the corresponding discussions in Sec. II B. In
the z range relevant for the extraction of FFs from data, this
type of theoretical uncertainty is rather small, and we note
that it is usually not considered or even mentioned [3–8].
As for the K factor and the scale dependence shown in
Figs. 5 and 6, respectively, including NNLO corrections
reduces the residual uncertainties by about a factor of 2 as
compared to the results obtained at NLO accuracy. For
most values of z, the differences between the truncated
and iterated solutions are less than 0.5% at NNLO, i.e.,
smaller than scale uncertainties and potentially missing
higher-order corrections as indicated by the K factor for
NNLO/NLO.
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FIG. 6 (color online). Scale dependence of the SIA cross
section at LO, NLO, and NNLO accuracy in the range Q=2 ≤
μ ¼ μR ¼ μF ≤ 2Q normalized to the results obtained for μ ¼ Q
for three values of

ffiffiffi
S

p
.
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FIG. 7 (color online). Ratio of the iterated and truncated variant
of the solution (24) to the timelike evolution equations at NLO
(dashed) and NNLO (solid line) accuracy at the scale of the
BABAR and Belle experiments.
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IV. CONCLUSIONS AND OUTLOOK

We have presented a first analysis of parton-to-pion
fragmentation functions at next-to-next-to-leading order
accuracy in QCD based on single-inclusive pion production
in electron-positron annihilation. To this end, we have
extended the existing spacelike evolution package
PEGASUS for parton distribution functions to the timelike
region and fragmentation functions. The code is numeri-
cally very efficient and works throughout in Mellin N
moment space, where the evolution equations can be solved
analytically.
We have discussed all the relevant technical details to

perform the QCD scale evolution and cross section calcu-
lation for single-inclusive hadron production in electron-
positron annihilation up to next-to-next-to-leading order
accuracy. We have verified all the needed expressions for
the N moments of the timelike evolution kernels and the
hard-scattering coefficient functions by rederiving them
from their counterparts in momentum space. We find full
agreement with the results given in the literature. The
results obtained with our timelike evolution code are found
to agree with the MELA package after correcting some
obvious inconsistency in generating their benchmark
numbers.
On the phenomenological side, we have extracted new

sets of parton-to-pion fragmentation functions from a fit to
electron-positron annihilation data up to next-to-next-to-
leading order accuracy. We have compared our results to
existing next-to-leading order fits in the literature. The flavor
singlet fragmentation function, which is known to be con-
strained best by data, comes out very similar as in all
previous fits in both our next-to-leading and next-to-next-to-
leading order analyses whereas some small ambiguities
remain for the fully flavor-decomposed fragmentation func-
tions. While the quality of our fits to electron-positron
annihilation data was already acceptable at leading order
accuracy, it gradually improved upon including higher-order
corrections. In particular, the description of data at small
momentum fractions z at the lowest energies Q is signifi-
cantly better at next-to-next-to-leading order accuracy. In
addition, leading order fits are found to explore regions in the
parameter space which are at the border of becoming
unphysical in order to achieve the best possible fit to data.
As for the analysis of parton distributions, we expect global
fits of fragmentation functions at next-to-next-to-leading
order accuracy to become the new standard soon.
In the last part of the paper we have illustrated some

salient features of the next-to-next-to-leading order correc-
tions to the evolution of fragmentation functions and
hadron production in electron-positron annihilation. The
most important new asset is the found reduction of
theoretical uncertainties related to the choice of the fac-
torization scale by about a factor of 2 as compared to the
next-to-leading order level. The uncertainties now match
the precision of the data in most of the kinematic regime

relevant for an analysis of fragmentation functions. A
similar reduction by a factor of 2 was found for the size
of the genuine higher-order corrections relative to calcu-
lations performed one order lower in the perturbative series,
i.e., in the K factor. The latter and the scale ambiguity tend
to increase both for very large and small values of z,
indicating the presence and numerical relevance of large
logarithmic corrections in the perturbative series, which
eventually should be resummed to all orders.
There are several avenues one can follow to further

improve the theoretical framework for the analysis of
fragmentation functions and the phenomenology of sin-
gle-inclusive hadron production in electron-positron anni-
hilation. First and foremost, one can include the mentioned
all-order resummations, for which our code in Mellin
moment space is particularly suited. This will allow one
to not only extend the range in zwhere fits to fragmentation
functions can be performed reliably but it would also give
access to other experimentally relevant quantities such as
integrated hadron multiplicities.
As is well known and utilized in global QCD analyses of

fragmentation functions at next-to-leading order already,
other processes such as semi-inclusive deep-inelastic scat-
tering or inclusive hadron production in hadron-hadron
collisions provide invaluable information on the flavor
decomposition and the gluon fragmentation function. Full
next-to-next-to-leading order expressions for these proc-
esses are unfortunately not yet available but one can resort
to results obtained with resummation techniques that
contain the dominant higher-order terms. Again, these
expression can be most conveniently implemented numeri-
cally in terms of Mellin moments.
Finally, the treatment of heavy quark to light meson

fragmentation functions in global analyses certainly leaves
room for improvement. For instance, matching conditions for
a variable flavor-number scheme are only know up to next-to-
leading order accuracy so far. We plan to provide quantitative
studies along all these directions in the near future.
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