
Dilepton production spectrum above Tc with a lattice quark propagator

Taekwang Kim,* Masayuki Asakawa,† and Masakiyo Kitazawa‡

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
(Received 1 June 2015; published 9 December 2015)

The dilepton production rate from the deconfined medium is analyzed with the photon self-energies
constructed from quark propagators obtained by lattice numerical simulation for two values of temperature,
T ¼ 1.5Tc and 3Tc, above the critical temperature Tc. The photon self-energy is calculated by the
Schwinger-Dyson equation with the lattice quark propagtor and a vertex function determined so as to
satisfy the Ward-Takahashi identity. The obtained dilepton production rate at zero momentum exhibits
divergences reflecting van Hove singularity and is significantly enhanced around ω≃ T compared with the
rate obtained by the perturbative analysis.
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I. INTRODUCTION

Ultrarelativistic heavy ion collisions are a unique method
for producing the deconfined medium experimentally on
the Earth [1,2]. Various observables are measured in the
experiments [1] to reveal properties of the deconfined
medium and a variety of phenomena which come into
play during the time evolution of the hot medium. Among
these observables, the dilepton production yield has a
characteristic feature that the yield provides us direct
signals from the primordial deconfined medium [3] because
dileptons once produced in the hot medium do not interact
with and pass through the medium owing to their colorless
nature.
The dilepton yield observed experimentally consists of the

sum of the dilepton production in each stage of the time
evolution of the hot medium. The dilepton production in
heavy ion collisions is roughly classified into three processes
except for the final state hadronic decays. The first one is the
hard process, in which dileptons are produced by scatterings
of hard partons in the colliding nuclei. The second and third
processes are thermal radiations from the deconfined
medium and confined medium, respectively. The dileptons
in the low invariant mass region are usually expected to be
dominated by these thermal radiations, while dileptons from
the hard process have relatively high transverse momenta
and large invariant masses. Experimental results on the
dilepton production yield are usually compared with the
baseline, called the “cocktail,” which is the production yield
estimated from the observed hadron abundances and their
branching ratios into a dilepton pair. If there is no dilepton
production from the hot medium, the dilepton production
yield should be consistent with the cocktail result.
At the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory, eþe− pair production
yield is measured by two collaborations, STAR and

PHENIX [4,5]. Both of these collaborations reported that
the pair production yield measured in Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV has significant enhancements in the low
invariant mass (m) region compared with the cocktail [4–6],
although the discrepancy in the magnitude of the enhance-
ment between the two experimental groups has not been
settled yet. The result of the PHENIX Collaboration shows
that the yield at m≃ 500 MeV is about one order larger
than the cocktail [4].
When one performs an estimate of the dilepton produc-

tion yield, one first calculates the dilepton production rate
per unit time and unit volume from a static medium. The
dilepton production yield is then given by the spacetime
integral of the rate from each volume element of the
medium. The dilepton production rate of a static medium
is proportional to the imaginary part of the virtual photon
self-energy [7–9]. When the temperature (T) is asymptoti-
cally high, the photon self-energy can be calculated
perturbatively. Using the hard thermal loop (HTL)
resummed perturbation theory [10,11], the dilepton pro-
duction rate was calculated in Ref. [12] for lepton pairs with
zero total three-momentum, and the result was extended in
Ref. [13] to nonzero momentum. It is, however, nontrivial
whether or not such perturbative analyses well describe the
production rate from the deconfined medium near the
critical temperature Tc, which has turned out to be a
strongly coupled system [1]. Moreover, it is known that
the perturbative analyses in Refs. [12,13] are modified by
proper inclusion of higher-order terms [14]. The analysis of
higher-order terms, however, is complicated, and it is still
under debate whether the scheme is valid for the whole
kinetic region [14,15]. For the description of the dilepton
production rate in the deconfined phase near Tc, therefore,
it is desirable to evaluate the rate without resort to
perturbative methods. In particular, the large enhancement
observed at PHENIX [4] suggests a possibility that the
dilepton production from the strongly coupled medium
above Tc has a large enhancement compared with the
perturbative results used in the previous analyses [16].
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There are several attempts at nonperturbative analyses
for the dilepton production rate with lattice QCD [17,18].
When one investigates the rate on the lattice, one must take
an analytic continuation from the imaginary-time correlator
computable on the lattice to the real-time photon self-
energy. This procedure, however, is an ill-posed problem,
since the information on the imaginary-time correlators for
discrete imaginary-time points obtained on the lattice is
insufficient to reconstruct the continuous real-time function
by itself [19]. In Ref. [18], an Ansatz for the spectral
function is introduced to avoid this problem. An alternative
way is to use Bayesian analysis, such as the maximum
entropy method [19]. The lattice correlator, however, is
insensitive to the structure of the spectrum in the low-
energy region [20]. The estimate of the low-energy spec-
trum on the lattice, therefore, is a difficult problem with the
presently existing methodologies.
The exact nonperturbative photon self-energy can be

calculated by the Schwinger-Dyson equation (SDE) if we
have the full quark propagator and the photon-quark
vertex function. Recently, an analysis of the nonpertur-
bative quark propagator above Tc was performed on the
lattice in the quenched approximation in Landau gauge
[21–23]. In this series of analyses, the Euclidean quark
correlator obtained on the lattice with various bare quark
mass and momentum are analyzed with several Ansätze.
It has been shown [21–23] that the two-pole Ansatz for the
real-time propagator, which was employed motivated by
the study of fermion propagator at nonzero temperature
[24,25], can reproduce the quark correlator obtained on
the lattice over a rather wide range of these parameters. It
is, therefore, expected that the obtained quark propagator
well grasps the gist of the nonperturbative nature of the
quark propagator.
The purpose of the present study is to analyze the

dilepton production rate using this quark propagator. We
construct the SDE with the quark propagators obtained on
the lattice in Ref. [23] and with the vertex function
constructed so as to satisfy the Ward-Takahashi identity
(WTI). Our formalism, therefore, fulfills the conservation
law of electric current. In this analysis, we show that the
obtained dilepton production rate exhibits an enhancement
of one order or more compared with the one from the free
quark gas. Compared with the perturbative result in
Ref. [12], our result has a qualitatively similar behavior
at the low-m region, while it exhibits an enhancement
around m≃ T owing to the van Hove singularity. The
effect of the vetex correction is also discussed in detail.
The outline of this paper is as follows. In the next section

we introduce the SDE for the photon self-energy and its
components, the lattice quark propagator and a vertex
function satisfying the WTI. In Sec. III, we then solve
the SDE and present the form of the dilepton production
rate in our formalism. The rate without the vertex correction
is also calculated in this section. We then present the

numerical result in Sec. IV. The final section is devoted to a
short summary.

II. SCHWINGER-DYSON EQUATION FOR
PHOTON SELF-ENERGY

A. Schwinger-Dyson equation

As dileptons are emitted from the decays of virtual
photons, the dilepton production rate from a medium per
unit time and unit volume is related to the retarded self-
energy ΠR

μνðω; qÞ of the virtual photon as [7–9]

dΓ
dωd3q

¼ α

12π4
1

Q2

1

eβω − 1
ImΠR;μ

μ ðω; qÞ ð1Þ

at the leading order of the fine structure constant α with
Q2 ¼ ω2 − q2 and the inverse temperature β ¼ 1=T. With
the SDE in the Matsubara formalism, the exact photon self-
energy is given by the full quark propagator SðPÞ and the
full photon-quark vertex ΓμðPþQ;PÞ as

Πμνðiωm; qÞ ¼ −
X
f

e2f T
X
n

Z
d3p
ð2πÞ3

× TrCTrD½SðPÞγμSðPþQÞΓνðPþQ;PÞ�;
ð2Þ

where ωm ¼ 2πTm and νn ¼ ð2nþ 1ÞπT, with integers m
and n representing the Matsubara frequencies for bosons
and fermions, respectively, Pμ ¼ ðiνn; pÞ is the four-
momentum of quarks, and ef is the electric charge of a
quark with an index “f” representing the quark flavor. The
color, flavor, and Dirac indices of SðPÞ are suppressed for
notational simplicity. TrC and TrD denote the trace over
color and Dirac indices, respectively. We note that since
we take the Landau gauge in this calculation, off-diagonal
elements in color space disappear. As a result, the trace
over the color indices gives a factor of 3 in Eq. (2).
Equation (2) is graphically shown in Fig. 1, in which the
shaded circles represent the full propagator and vertex

FIG. 1. Diagrammatic representation of the Schwinger-Dyson
equation for the photon self-energy, Eq. (2). The shaded circles
represent the full quark propagator and the full vertex function.
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function. The retarded photon self-energy is obtained by
the analytic continuation,

ΠR
μνðω; qÞ ¼ Πμνðiωm; qÞjiωm→ωþiη: ð3Þ

In the following, we consider the two-flavor system
with degenerate u and d quarks, in which

P
fe

2
f ¼

5e2=9. In this study we also limit our attention to the
q ¼ 0 case.

B. Lattice quark propagator and spectral function

In the present study, we use the quark propagator
obtained on the quenched lattice in Ref. [23] as the full
quark propagator in Eq. (2). In this subsection, after a brief
review on the general property of the quark propagator,
we describe how to implement the results in Ref. [23] in our
analysis.
On the lattice with a gauge fixing, one can measure the

imaginary-time quark propagator,

Sμνðτ; pÞ ¼
Z

d3xe−ip·xhψμðτ; xÞψ̄νð0; 0Þi; ð4Þ

where ψμðτ; xÞ is the quark field with the Dirac index μ.
Here, τ is the imaginary time restricted to the interval
0 ≤ τ < β. For the moment, the Dirac indices μ and ν of the
quark propagator are explicitly shown. The Fourier trans-
form of the quark correlator,

Sμνðiνn; pÞ ¼
Z

β

0

dτeiνnτSμνðτ; pÞ; ð5Þ

is written in the spectral representation as

Sμνðiνn; pÞ ¼ −
Z

∞

−∞
dν0

ρμνðν0; pÞ
ν0 − iνn

ð6Þ

with the quark spectral function ρμνðν0; pÞ. The spectral
function is related to the imaginary-time correlator Eq. (4) as

Sμνðτ; pÞ ¼
Z

∞

−∞
dν

eð1=2−τ=βÞβν

eβν=2 þ e−βν=2
ρμνðν; pÞ: ð7Þ

In the deconfined phase in which the chiral symmetry is
restored, the quark propagator anticommutes with γ5. In
this case, the spectral function can be decomposed with the
projection operators Λ�ðpÞ ¼ ð1� γ0p̂ · γÞ=2 as

ρðν; pÞ ¼ ρþðν; pÞΛþðpÞγ0 þ ρ−ðν; pÞΛ−ðpÞγ0; ð8Þ
with p ¼ jpj, p̂ ¼ p=p, and

ρ�ðν; pÞ ¼
1

2
TrD½ρðν; pÞγ0Λ�ðpÞ�: ð9Þ

It is shown from the anticommutation relations of ψ and ψ̄
that the decomposed spectral functions satisfy the sum
rules,

Z
dνρ�ðν; pÞ ¼ 1: ð10Þ

Using charge conjugation symmetry, one can show that
ρ�ðν; pÞ satisfy [23]

ρ�ðν; pÞ ¼ ρ∓ð−ν; pÞ: ð11Þ

On the lattice, one can measure the imaginary-time
correlator Eq. (4) for discrete imaginary times. To obtain
the quark propagator, one has to deduce the spectral
function from this information. In Refs. [21–23], the quark
correlator in Landau gauge is analyzed on the lattice with
the quenched approximation, and the quark spectral func-
tion is analyzed with the two-pole Ansatz,

ρþðν; pÞ ¼ ZþðpÞδðν − νþðpÞÞ þ Z−ðpÞδðνþ ν−ðpÞÞ;
ð12Þ

where Z�ðpÞ and ν�ðpÞ are the residues and positions of
the poles, respectively. The four parameters, Z�ðpÞ and
ν�ðpÞ, are determined by fitting the correlators obtained on
the lattice for each p.
Some comments on the two-pole fit in Refs. [21–23] are

in order. First, the two poles in Eq. (12) at νþðpÞ and ν−ðpÞ,
respectively, correspond to the normal and plasmino
modes in the HTL approximation. In fact, the study of
the momentum and bare quark mass, m0, dependences of
the fitting parameters [21–23] shows that the behavior
of these parameters is consistent with this observation
[24,26]; for example, for large m0 or p the residue of the
plasmino mode Z−ðpÞ becomes small, and the propagator
approaches that of the free quark. Second, the restoration of
the chiral symmetry for massless quarks above Tc is
checked explicitly on the lattice by measuring the scalar
term in the massless quark propagator [21,23]. Third, in
Refs. [21,23] the extension of the fitting Ansatz to allow for
the width of the poles is also performed. It, however, is
found that the χ2 of this fit always has a minimum for
vanishing widths, and this extension does not improve the
fit. This result indicates that the existence of sharp
quasiparticle peaks in the quark spectral function even
near Tc is supported from the lattice analysis.
In Fig. 2, we show the fitting result of each parameter in

Eq. (12) for massless quarks as a function of p for T ¼
1.5Tc and 3Tc obtained in Ref. [23]. These analyses are
performed on the lattice with the volume 1283 × 16, where
both the lattice spacing and finite volume effects are found
to be small [23]. In the upper panel, p dependences of
ν�ðpÞ, i.e., the dispersion relations of the normal and
plasmino modes, are shown by the open symbols. The
vertical and horizontal axes are normalized by the thermal
massmT defined by the value of ν�ðpÞ at p ¼ 0: The value
of mT obtained on the lattice after the extrapolation to the
infinite volume limit is mT=T ¼ 0.768ð11Þ and 0.725(14)
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at T ¼ 1.5Tc and 3Tc, respectively [23]. The lower panel
shows the relative weight of the plasmino residue,
Z−=ðZþ þ Z−Þ. This figure shows that the weight becomes
smaller as p increases, which indicates that the quark
propagator for large p=T is dominated by the normal mode.
A result similar to that shown in Fig. 2 is obtained by the
Schwinger-Dyson approach for the quark propagator [27].
The above results are obtained in quenched approxima-

tion. In full QCD, the form of the quark spectrum may be
altered due to contributions of dynamical quark loops. It
should also be noted that the Tc in the quenched approxi-
mation is estimated about 1.5 times larger than that of
full QCD.
Although the lattice data are available only for discrete

values of p, we must have the quark propagator as a
continuous function of p to solve the SDE. For this
purpose, we take the interpolation and extrapolation of
the lattice data by the cubic spline method. From the charge
conjugation symmetry, one can show that dνþðpÞ=dp ¼
−dν−ðpÞ=dp, d2νþðpÞ=dp2¼ d2ν−ðpÞ=dp2, and ZþðpÞ ¼
Z−ðpÞ for p ¼ 0 [22,23]. These properties are taken into
account in our cubic spline interpolation. The lattice data
are available only in the momentum range p=T ≲ 4.7.
To take extrapolations to higher momenta, we extrapolate
the parameters using an exponentially damping form for
Z−=ðZþ þ Z−Þ,

Z−=ðZþ þ Z−Þ ¼ Re−αp; ð13Þ

and ν�ðpÞ are extrapolated by functions,

ν�ðpÞ ¼ pþ β�1 e
−β�

2
p; ð14Þ

which exponentially approach the light cone for large p.
The parameters R, α, and β�i are determined in the cubic
spline analysis. The p dependence of each parameter
determined in this way is shown by the solid lines in
Fig. 2. We tested another extrapolation form by a poly-
nomial, ν�ðpÞ ¼ pþ β0�1 =pþ β0�2 =p2 þ � � �, but found
that it hardly changes the dispersion relation. Finally, we fix

Zþ þ Z− ¼ 1 ð15Þ

throughout this paper to satisfy the sum rule Eq. (10). We
note that the slope of the plasmino dispersion relation
exceeds unity for p≳ 3mT and is acausal. This unphysical
behavior may come from an artifact of the lattice simulation
and/or the Ansatz for the spectral function. However, the
residue of the plasmino mode is small, Z−ðpÞ < 0.05, in this
momentum region, and the contribution of this branch in this
momentum range to our final result is well suppressed.
With the two-pole form of the spectral function in

Eq. (12), the quark propagator reads

Sðiνn; pÞ ¼ Sþðiνn; pÞΛþðpÞγ0 þ S−ðiνn; pÞΛ−ðpÞγ0;
¼

X
s¼�

Ssðiνn; pÞΛsðpÞγ0; ð16Þ

where

Ssðiνn; pÞ ¼
ZþðpÞ

iνn − sνþðpÞ
þ Z−ðpÞ
iνn þ sν−ðpÞ

: ð17Þ

The symbols s ¼ � on the right-hand side are understood
as the numbers �1. Correspondingly, the inverse propa-
gator is given by

S−1ðiνn; pÞ ¼
X
s¼�

S−1s ðiνn; pÞγ0ΛsðpÞ; ð18Þ

with

S−1s ðiνn; pÞ ¼
ðiνn − sνþðpÞÞðiνn þ sν−ðpÞÞ

iνn − sEðpÞ ð19Þ

and

EðpÞ ¼ −ZþðpÞν−ðpÞ þ Z−ðpÞνþðpÞ: ð20Þ

Note that the inverse propagator has poles at iνn ¼ �EðpÞ.
These poles inevitably appear in the multipole Ansatz,
because the propagator Eq. (17) has one zero point in the
range of ω surrounded by two poles. The form of the inverse
propagator Eq. (19) will be used in the construction of the
vertex function. We will see that the poles at iνn ¼ �EðpÞ
give rise to additional terms in the dilepton production rate.
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FIG. 2 (color online). Open symbols show the momentum
dependence of the parameters νþðpÞ, ν−ðpÞ and Z−ðpÞ=
ðZþðpÞ þ Z−ðpÞÞ obtained on the lattice in Ref. [23]. The solid
lines represent their interpolation obtained by the cubic spline
method. The dashed line represents the light cone.
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C. Vertex function

The SDE, Eq. (2), requires the full photon-quark vertex
ΓμðPþQ;PÞ besides the full quark propagator. So far, the
evaluation of ΓμðPþQ;PÞ on the lattice at nonzero
temperature has not been performed to the best of the
authors’ knowledge. In the present study, we construct the
vertex function from the lattice quark propagator respecting
the Ward-Takahashi identity (WTI) as follows.
The gauge invariance requires that the vertex function

must fulfill the WTI,

QμΓμðPþQ;PÞ ¼ S−1ðPþQÞ − S−1ðPÞ; ð21Þ

with the inverse quark propagator S−1ðPÞ. For q ¼ 0, the
temporal component Γ0 is completely determined only by
this constraint as follows. First, in this case q · Γ should
vanish, provided that Γi (i ¼ 1, 2, 3) are not singular at
q ¼ 0. Then, by substituting q · Γ ¼ 0 in Eq. (21), one
obtains

Γ0ðiωm þ iνn; p; iνn; pÞ

¼ 1

iωm
½S−1ðiωm þ iνn; pÞ − S−1ðiνn; pÞ�: ð22Þ

On the other hand, the spatial components Γi cannot be
determined only with Eq. (21) [28]. In the present study, we
employ an approximation to neglect the q dependence of
Γ0ðiωm þ iνn; pþ q; iνn; pÞ at q ¼ 0. In other words, we
assume that

∂Γ0ðiωm þ iνn; pþ q; iνn; pÞ=∂qijq¼0 ¼ 0: ð23Þ

With this approximation and Eq. (21), one obtains

qiΓiðiωm þ iνn; pþ q; iνn; pÞ
¼ S−1ðiωm þ iνn; pþ qÞ − S−1ðiωm þ iνn; pÞ: ð24Þ

By taking the leading-order terms in q on both sides, one
has

Γiðiωm þ iνn; p; iνn; pÞ

¼ ∂S−1
∂pi ðiωm þ iνn; pÞ

¼
X
s¼�

∂S−1s ðiωm þ iνn; pÞ
∂pi γ0ΛsðpÞ

þ
X
s¼�

S−1s ðiωm þ iνn; pÞγ0
∂ΛsðpÞ
∂pi ; ð25Þ

where in the second equality, we used Eq. (18).
We note that there is no a priori justification of Eq. (23).

By expanding Γ0 with respect to q at q ¼ 0, one obtains

iωmΓ0ðiωm þ iνn; pþ q; iνn; pÞ
¼ S−1ðiωm þ iνn; pÞ − S−1ðiνn; pÞ
þ q · pγ0Aðiωm þ iνn; iνn; p2Þ
þ ðq · pÞðp̂ · γÞBðiωm þ iνn; iνn; p2Þ
þ q · γCðiωm þ iνn; iνn; p2Þ þOðq2Þ; ð26Þ

where A, B, and C are unknown functions. Our approxi-
mation corresponds to neglecting these functions. Although
these functions do not affect Eq. (22) at q ¼ 0, the
corresponding terms appear in Eq. (25) when these func-
tions are nonzero. The determination of the nonperturbative
form of the photon-quark and gluon-quark vertices is
generally difficult, and various approximations have been
employed in studies of the SDE [28–31]. It should be
emphasized that the vertex functions, Eqs. (22) and (25),
satisfy the WTI and thus are advantageous in light of the
gauge invariance among various ansätze on the vertex
function. Γ0, in Eq. (22), is the same as that obtained in
Ref. [28] since it is uniquely determined only from the
WTI. On the other hand, Γi differ from the ones in
Ref. [28], even when only the longitudinal part in
Ref. [28] is concerned. Introduction of the functions given
in Eq. (26) fills this difference. We, however, left the
analysis of the dependences of our result on these functions
to future study. Here we just emphasize that there exist
infinite choices of these functions because there is no
guiding principle to determine these functions. The other
comment on the vertex function, Eqs. (22) and (25), is that
this vertex function can be continuously extended to
nonzero q in a simple way. The analysis of the invariant
mass distribution of the dilepton production rate and the
real-photon production rate with the vertex function will be
reported in a future publication [32].

III. DILEPTON PRODUCTION RATE

The goal of the present study is to obtain the dilepton
production rate with the lattice quark propagators and the
vertex function discussed in the previous section. In this
section, however, before the analysis of the full manipu-
lation, we first see the dilepton production rates in simpler
cases: (1) the free quark gas in Sec. III A and (2) the case
with the lattice quark propagators but with the bare vertex
function in Sec. III B. The full analysis is then presented in
Sec. III C.

A. Free quark gas

The photon self-energy for the massless free quark gas
is obtained by substituting the free quark propagator
Sðiνn; pÞ ¼ 1=ðiνnγ0 − p · γÞ and bare vertex function
Γμ ¼ γμ into Eq. (2). The result of the dilepton production
rate for the massless two-flavor case is given by [26]
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dΓ
dωd3q

����
q¼0

¼ 5α2

36π4

�
f

�
ω

2

��
2

; ð27Þ

where fðωÞ ¼ 1=ðeβω þ 1Þ is the Fermi distribution
function.

B. Dilepton production rate without vertex correction

Next, we calculate the photon self-energy and the
dilepton production rate with the lattice quark propagators
from Eq. (16) but with Γμ ¼ γμ. The photon self-energy
obtained in this way, of course, does not fulfill the gauge
invariance. The result obtained here, however, is helpful in
understanding the effect of the vertex correction, i.e., the
role of the WTI.
The photon self-energy with the bare vertex is given by

Πμνðiωm; qÞ ¼ −
5e2

3
T
X
n

Z
d3p
ð2πÞ3

× TrD½Sðiνn; pÞγμSðiωm þ iνn; pþ qÞγν�:
ð28Þ

By substituting Eq. (16) into this formula, we obtain

Πμνðiωm; 0Þ ¼ −
5e2

3
T
X
n

Z
d3p
ð2πÞ3

×
X
s;t¼�

Ssðiνn; pÞStðiωm þ iνn; pÞ

× TrD½Λsγ0γμΛtγ0γν�: ð29Þ

The trace in Eq. (29) is calculated with

TrD½ΛsðpÞΛtðpÞ� ¼ 2δst; ð30Þ

TrD½ΛsðpÞγ0γiΛtðpÞγ0γi� ¼ 2δs;−t þ 2stp̂2
i ; ð31Þ

where it is understood that

δþþ ¼ δ−− ¼ 1; δþ− ¼ δ−þ ¼ 0; ð32Þ

δs;−t ¼ δs;∓ ðfor t ¼ �Þ: ð33Þ

Substituting Eqs. (30), (31), and
P

ip̂
2
i ¼ 1 into Eq. (29),

one obtains

Πμ
μðiωm; 0Þ ¼

20e2

3
T
X
n

Z
d3p
ð2πÞ3

×
X
s¼�

Ssðiνn; pÞS−sðiωm þ iνn; pÞ; ð34Þ

where

S−sðiνn þ iωm; pÞ ¼ S∓ðiνn þ iωm; pÞðfor s ¼ �Þ:
ð35Þ

Using Eq. (17) and taking the Matsubara sum and the
analytic continuation iωm → ωþ iη, we obtain

ΠR;μ
μ ðω;0Þ ¼−40α

3π

Z
∞

0

dpp2

�
ZþðpÞ2ð1− 2fðνþðpÞÞÞ

ω− 2νþðpÞþ iη

þZ−ðpÞ2ð1− 2fðν−ðpÞÞÞ
ω−2ν−ðpÞþ iη

þ 2ZþðpÞZ−ðpÞðfðν−ðpÞÞ−fþðνþðpÞÞÞ
ω− νþðpÞþ ν−ðpÞþ iη

�
:

ð36Þ

Taking the imaginary part of this result, we have

ImΠR;μ
μ ðω;0Þ

¼ 40α

3

Z
∞

0

dpp2fZþðpÞ2δðω−2νþðpÞÞð1−2fðνþðpÞÞÞ

þZ−ðpÞ2δðω−2ν−ðpÞÞð1−2fðν−ðpÞÞÞ
þ2ZþðpÞZ−ðpÞδðω−νþðpÞþν−ðpÞÞ
× ðfðν−ðpÞÞ−fðνþðpÞÞÞg: ð37Þ

The imaginary part of the photon self-energy is the
difference between the annihilation and production rates of
virtual photons in medium. The three terms in Eq. (37)
represent different annihilation and production processes of
a virtual photon. The first and second terms in Eq. (37)
represent the production of a virtual photon through the pair
annihilation of two normal modes and two plasmino
modes, respectively, which are diagrammatically shown
in Fig. 3(a), and their inverse processes. This can be
checked from the arguments of the δ functions and thermal
factors in Eq. (37). The δ function in these terms represents
the energy conservation in these processes, and the thermal
factor which is rewritten as

1–2fðωÞ ¼ ð1 − fðωÞÞ2 − fðωÞ2 ð38Þ

FIG. 3. Photon production processes.
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is the difference between the products of the Pauli blocking
effects and thermal distributions. The existence of the
residues Z�ðpÞ in these terms is similarly understood.
The last term in Eq. (37) represents the Landau damping
between normal and plasmino modes, which is diagram-
matically shown in Fig. 3(b). Correspondingly, the thermal
factor in this term can be rewritten as

fðω1Þ − fðω2Þ ¼ fðω1Þð1 − fðω2ÞÞ − fðω2Þð1 − fðω1ÞÞ:
ð39Þ

The δ functions in Eq. (37) can be integrated out.
The form of the dilepton production rate after the integra-
tion over p reads

ImΠR;μ
μ ðω; 0Þ ¼ 40α

3

�
p2ZþðpÞ2

2jdνþðpÞ=dpj
ð1 − 2fðνþðpÞÞÞjω¼2νþðpÞþ

X
l

p2
l Z−ðplÞ2

2jdν−ðplÞ=dpj
ð1 − 2fðν−ðplÞÞÞjω¼2ν−ðplÞ

þ
X
l

2p2
l ZþðplÞZ−ðplÞ

jd½νþðplÞ − ν−ðplÞ�=dpj
ðfðν−ðplÞÞ − fðνþðplÞÞÞjω¼νþðplÞ−ν−ðplÞ

�
; ð40Þ

where the momentum p in each term is given by the
condition arising from the δ functions in Eq. (37). Each
term can take nonzero values only when there exist
momenta satisfying this condition for a given ω. This
gives the condition for ω at which each term takes a
nonzero value. For example, the first term takes nonzero
values for ω > 2mT. Because the second and third terms
can have multiple solutions of p for a fixed ω, we represent
this possibility by the sum over l. It is also notable that each
term in Eq. (40) is inversely proportional to the derivative
of ν�ðpÞ and νþðpÞ − ν−ðpÞ; they come from the density
of states of each modes. Accordingly, the dilepton pro-
duction rate diverges when the derivatives vanish. Such
divergence is known as van Hove singularity. In Sec. IV, we

will see the appearance of such singularities in the dilepton
spectrum.

C. Dilepton production rate with vertex
correction

Now, let us calculate the dilepton production rate with
the lattice quark propagator in Eq. (16) and the full vertex
functions in Eqs. (22) and (25).
When the full vertex function satisfying the WTI is used

in Eq. (2), the temporal component Π00 for q ¼ 0 vanishes.
One can easily check this explicitly by substituting Eq. (22)
into Eq. (2). For

P
3
i¼1 Πii, by substituting Eqs. (16) and

(25) into Eq. (2), one has

X3
i¼1

Πiiðiωm; 0Þ ¼
5e2

3
T
X
n

Z
d3p
ð2πÞ3

X
s;t;u¼�

Ssðiνn; pÞStðiνn þ iωm; pÞ

×
X3
i¼1

�
p̂i

∂S−1u ðiνn þ iωm; pÞ
∂p TrD½Λsγ0γiΛtΛu� þ

uS−1u ðiνn þ iωm; pÞ
2p

TrD½Λsγ0γiΛtγ0ðγi − ðp̂ · γÞp̂iÞ�
�
:

ð41Þ

We substitute the following relations for the Dirac
traces,

TrD½Λsγ0γiΛtΛs� ¼ 2sp̂iδstδtu; ð42Þ

TrD½Λsγ0γiΛtγ0γi� ¼ 2δs;−t þ 2stp̂2
i ; ð43Þ

TrD½Λsγ0γiΛtγ0ðp̂ · γÞ� ¼ 2p̂iδst; ð44Þ

and obtain

X
i

Πiiðiωm; 0Þ ¼
10e2

3
T
X
n

Z
d3p
ð2πÞ3

X
s¼�

sSsðiνn; pÞ

×

�∂ ln S−1s ðiνn þ iωm; pÞ
∂p

−
1

p

�
1 −

S−sðiνn þ iωm; pÞ
Ssðiνn þ iωm; pÞ

��
; ð45Þ

where to obtain the first term we used

Ssðiνn; pÞ
∂S−1s ðiνn; pÞ

∂p ¼ ∂ ln S−1s ðiνn; pÞ
∂p : ð46Þ
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Up to now, the calculation relies only on the decom-
position in Eq. (16), which is valid for the chiral symmetric
quark propagator, and the form for the vertex in Eq. (25).
The result in Eq. (45), thus, is valid for any form of the

quark propagator S�ðiνn; pÞ. Now we use the two-pole
form of the quark propagator in Eqs. (17) and (19). The
term including ∂ ln S−1s =∂p in Eq. (45) is then calculated
to be

T
X
n

sSsðiνn; pÞ
∂ ln S−1s ðiνn þ iωm; pÞ

∂p
¼ −T

X
n

�
Zþ

iνn − sνþ
þ Z−

iνn þ sν−

��
dνþ=dp

iνn þ iωm − sνþ
−

dν−=dp
iνn þ iωm þ sν−

−
dE=dp

iνn þ iωm − sE

�

¼ −
�

Zþdν−=dp
iωm þ sνþ þ sν−

þ Z−dνþ=dp
iωm − sνþ − sν−

�
ðfðsνþÞ þ fðsν−Þ − 1Þ

−
ZþdE=dp

iωm þ sνþ − sE
ðfðsνþÞ − fðsEÞÞ − Z−dE=dp

iωm − sν− − sE
ðfðsν−Þ − fðsEÞÞ; ð47Þ

where the Matsubara sum over n is taken in the last equality. The remaining part of Eq. (45) is calculated as follows:

T
X
n

sSsðiνn; pÞ
�
1 −

S−sðiνn þ iωm; pÞ
Ssðiνn þ iωm; pÞ

�
1

p

¼ T
X
n

�
Zþ

iνn − sνþ
þ Z−

iνn þ sν−

�

×

�
F1

iνn þ iωm − sE
þ F2

iνn þ iωm þ sνþ
þ F3

iνn þ iωm − sν−

�
ð48Þ

¼ ZþF1

iωm þ sνþ − sE
ðfðsEÞ − fðsνþÞÞ þ

Z−F1

iωm − sν− − sE
ðfðsEÞ − fð−sν−ÞÞ

þ ZþF2

iωm þ 2sνþ
ðfð−sνþÞ − fðsνþÞÞ þ

Z−F2

iωm þ sνþ − sν−
ðfð−sνþÞ − fð−sν−ÞÞ

þ ZþF3

iωm þ sνþ − sν−
ðfðsν−Þ − fðsνþÞÞ þ

Z−F3

iωm − 2sν−
ðfðsν−Þ − fð−sν−ÞÞ; ð49Þ

where

F1 ¼ −
2Eðν− þ EÞðνþ − EÞ
pðν− − EÞðνþ þ EÞ ; F2 ¼

2νþðνþ − EÞðνþ − ν−Þ
pðνþ þ EÞðνþ þ ν−Þ

; F3 ¼
2ν−ðνþ − ν−Þðν− þ EÞ
pðνþ þ ν−Þðν− − EÞ :

Here, each combination of ν� and E in the parantheses is set to become positive; this can be checked by the relation
νþ > ν− > −E > 0.
Combining these results, Eq. (45) is calculated to be

X3
i¼1

Πiiðiωm; 0Þ ¼ −
10e2

3

Z
d3p
ð2πÞ3

X
s¼�

s

�
2Z2þνþΩ̄
pðνþ þ EÞ

1 − 2fðνþÞ
iωm þ 2sνþ

þ 2Z2
−ν−Ω̄

pðν− − EÞ
1 − 2fðν−Þ
iωm þ 2sν−

þ 2ZþZ−Ω̄
Ω̄E − 2ωþω−

pðνþ þ EÞðν− − EÞ
fðν−Þ − fðνþÞ

iωm − sνþ þ sν−

−
�
Zþ

dν−
dp

− Z−
dνþ
dp

�
1 − fðνþÞ − fðν−Þ
iωm þ sνþ þ sν−

þ
�
−
2ZþZ−Eðνþ þ ν−Þ2
pðνþ þ EÞðν− − EÞ −

dE
dp

��
Zþ

fðEÞ − fðνþÞ
iωm þ sνþ − sE

þ Z−
fð−EÞ − fðν−Þ
iωm þ sν− þ sE

��
ð50Þ

with Ω̄ ¼ νþ − ν−.
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By taking the analytic continuation iωm → ωþ iη, and taking the imaginary part, we obtain

ImΠR;μ
μ ðω; 0Þ ¼ −

20α

3

Z
dpp2

�
−
2Ω̄
p

�
Z2þνþ
νþ þ E

ð1 − 2fðνþÞÞδðω − 2νþÞ þ
Z2
−ν−

ν− − E
ð1 − 2fðν−ÞÞδðω − 2ν−Þ

−ZþZ−
Ω̄E − 2νþν−

ðνþ þ EÞðν− − EÞ ðfðν−Þ − fðνþÞÞδðω − νþ þ ν−Þ
�

þ
�
Zþ

dν−
dp

− Z−
dνþ
dp

�
ð1 − fðνþÞ − fðν−ÞÞδðω − νþ − ν−Þ

þ
�
2ZþZ−Eðνþ þ ν−Þ2
pðνþ þ EÞðν− − EÞ þ

dE
dp

�

× fZþð1 − fð−EÞ − fðνþÞÞδðω − νþ þ EÞ þ Z−ðfð−EÞ − fðν−ÞÞδðω − ν− − EÞg
	

þ ðω → −ωÞ: ð51Þ

Now let us inspect the physical meaning of each term in
Eq. (51). From the δ functions and thermal factors, one
finds that the two terms in the first line represent the pair
creation and annihilation processes of normal and plasmino
modes, respectively. The second line corresponds to the
Landau damping. These terms have corresponding counter-
parts in Eq. (37), although the coefficients of these terms
are modified by the vertex correction. The term in the third
line in Eq. (51) can be interpreted as the pair annihilation
and creation of a normal mode and a plasmino one. This
process does not appear in Eq. (37) and can manifest itself
as a consequence of the vertex correction. We note that a
similar process exists in the formula obtained in Ref. [12].
In this way, the terms in the first three lines in Eq. (51) can
be understood as the annihilation, creation, and scattering
processes of quark quasiparticles. We also note that the
Landau damping of two normal or two plasmino modes
does not exist in Eq. (51) because such a process can exist
only for ω ¼ 0 at q ¼ 0.
On the other hand, one cannot give such interpretations

to the terms in the fourth and fifth lines in Eq. (51). From
the δ functions and the thermal factors, these terms seem to
represent the decay and creation rates with a quasiparticle
mode with energy �E, which, however, does not exist in
the quark propagator in Eq. (17). Mathematically, these
terms come from the poles in the vertex function in
Eq. (25). The poles appear in the vertex function via the
WTI in Eq. (21) and the fact that the analytic continuation
of the propagator Ssðiνn; pÞ gives zero points at energies
�E. As discussed in Sec. II B, the zero in Ssðω; pÞ
inevitably appears between the two poles in the two-pole
form of the quark propagator Eq. (17).
Another remark on Eq. (51) is the sign of each term in

Eq. (51). In Eq. (51), all terms are separately positive
definite for ω > 0 except for the one in the third line, which
becomes negative for sufficiently large ω. The negative
contribution of this term is, however, canceled out by the

last term; we have checked that the sum of these terms is
always positive. The total dilepton production rate for
ω > 0, therefore, takes a positive value as it should.
In Fig. 4, we show the dispersion relation of EðpÞ for

T ¼ 1.5Tc. For p ¼ 0, EðpÞ vanishes because of chiral
symmetry, while −EðpÞ approaches p for large p. The
figure shows that −EðpÞ is a monotonically increasing
function of p. The result for T ¼ 3Tc is qualitatively the
same. In Fig. 4, we also show the combinations of the
dispersion relations appearing in the δ functions in Eq. (51),

νþ þ ν−; νþ − ν−; νþ − E; ν− þ E: ð52Þ

From the figure, one sees that νþ − E and ν− þ E are
monotonically increasing and decreasing functions of p,
respectively, starting frommT at p ¼ 0. Also, νþ − E > mT
and 0 < ν− þ E < mT are satisfied. These behaviors
become transparent by rewriting these combinations as

νþ − E ¼ Zþðνþ þ ν−Þ; ð53Þ
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FIG. 4 (color online). Momentum dependences of various
functions composed of ν�ðpÞ and E.
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ν− þ E ¼ Z−ðνþ þ ν−Þ; ð54Þ

where we used Eq. (20).
We finally comment on the limiting behaviors of

Eq. (51). First, in our two-pole Ansatz the quark propagator
for massless free quarks is obtained by setting

ZþðpÞ ¼ 1; Z−ðpÞ ¼ 0; νþðpÞ ¼ p: ð55Þ

Equation (51), thus, should reproduce the photon self-
energy of the free quark gas, when Eq. (55) is substituted.
This can be explicitly checked as follows. By substituting
Z− ¼ 0, all terms including Z− vanish. Since E ¼ −ν− for
Z− ¼ 0, the third and fourth lines in Eq. (51) cancel out
each other without constraints on ν−ðpÞ. Only the first term
in Eq. (51), thus, survives, which gives the free quark result.
Second, our result on the dilepton production rate
approaches the free quark one in the large ω limit because
the lattice quark propagator used in this study reproduces
Eq. (55) at large momentum. This behavior will be
explicitly checked in the next section.

IV. NUMERICAL RESULTS

Now let us see the numerical results on the dilepton
production rate obtained in the previous section. In Fig. 5,
we present the ω dependence of the dilepton production
rate for T ¼ 1.5Tc. In the figure, we also plot the result
without the vertex correction in Eq. (37), together with the
rates obtained by the HTL calculation [12] and the free
quark gas in Eq. (27). The value of the thermal mass mT is
taken from the result obtained on the lattice [23].
Figure 5 shows that the production rate with the lattice

quark propagators has divergences at two energies,
ω=mT ¼ ω1=mT ≃ 1.1 and ω=mT ¼ ω2=mT ≃ 1.8. For
ω < ω1, our result, as a whole, behaves similarly to the
HTL one [12]; i.e., it increases as ω decreases, although our

production rate is smaller than the perturbative one for
small ω. Near ω1, however, it shows a prominent enhance-
ment and exceeds the latter. The region, where the large
production rate is obtained, is located around mT.
Therefore, it is possible that the production yield obtained
by integrating this rate has large enhancement below
several hundred MeV, where the enhancement in the
experimentally observed dilepton spectra at RHIC [4–6]
exists. The rate has a discontinuity at ω ¼ ω1 and is
significantly suppressed compared with Eq. (27) for
ω1 < ω < ω2. The rate has another discontinuity at
ω ¼ ω2, above which the rate is close to the free quark
one. In the dilepton rate without vertex correction, one also
finds two divergences at ω ¼ ω1 and ω2, while the rate
vanishes for ω1 < ω < ω2.
In order to understand these results in more detail, we

show the contribution of each term in Eq. (51) separately in
Fig. 6. In the figure, the rates coming from the pair
annihilation of two normal modes (NN), two plasmino
modes (PP), and a normal and a plasmino modes (NP) are
separately shown, together with those of the Landau
damping between quasiparticles (LD) and processes
including an E mode with a normal (NE) and a plasmino
(PE) mode. From the figure, one finds that the two
divergences at ω ¼ ω1 and ω2 come from the LD and
PP rates, respectively. As discussed in Sec. III B, these
divergences come from the van Hove singularity. The
photon self-energy in Eq. (51) is inversely proportional
to derivatives of the dispersion relations, dν−ðpÞ=dp and
dfνþðpÞ − ν−ðpÞg=dp. As shown in Figs. 2 and 4, each of
ν−ðpÞ and νþðpÞ − ν−ðpÞ has an extremum at nonzero p.
Their values at the extrema are νþðpÞ − ν−ðpÞ ¼ ω1 and
2ν−ðpÞ ¼ ω2. At these points, the derivatives vanish. This
leads to the divergences in the photon self-energy and,
accordingly, the dilepton production rate.
The divergences due to the van Hove singularity are

buried if the quark quasiparticles have a width. When the
width is not large, however, the enhancement of the
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FIG. 5 (color online). Dilepton production rate at zero mo-
mentum for T ¼ 1.5Tc. The result without vertex correction is
also plotted. Thin lines represent the HTL and free quark results.
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FIG. 6 (color online). Decomposition of the dilepton produc-
tion rate.
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dilepton production rate would be observed as a remnant of
the van Hove singularity because the van Hove singularity
takes place as a consequence of the concentration of the
density of states. If the dispersion relation has a structure
which causes such a concentration, the enhancement of the
dilepton production rate is expected to occur although the
singularity is blurred with the width of quasiparticles. It is
also noteworthy that the analyses in Refs. [21,23] suggest
the small width of quark quasiparticles as discussed already
in Sec. II B. The enhancement of the dilepton production
near ω≃mT found in this study, therefore, can be a robust
phenomenon with the modified dispersion relations of
quark quasiparticles.
Figure 6 also shows that each individual process is

nonvanishing in a limited range of ω. The range can be read
off from the corresponding functions plotted in Fig. 4. The
NN and NP rates are nonvanishing for ω > 2mT. On the
other hand, the lower threshold of the PP rate, ω ¼ ω2, is
slightly lower than 2mT, because ν−ðpÞ has a minimum
smaller than mT at nonzero momentum. The range of the
Landau damping is also kinematically constrained to
ω < ω1. The NE and PE rates are nonvanishing for
ω > mT and ω < mT, respectively. The NE rate gives rise
to a nonzero value for ω1 < ω < ω2. To the dilepton
production rate without the vertex correction, only the
NN, PP, and LD contribute and the rate vanishes for
ω1 < ω < ω2.
For large ω, the rate is dominated by the NN. This is a

consequence of the fact that the quark propagator
approaches the free quark one as p becomes larger. A
glance at Fig. 6 might give an impression that the NE rate
also survives for large ω. Although not shown in Fig. 6,
however, the NP rate takes a negative value for ω≳ 2.4mT,
and this term almost cancels out with the NE rate; see the
discussion in Sec. III C.
Next, let us address the behavior of the production rate in

the ω → 0 limit. The retarded photon self-energy is
identical with the electromagnetic current-current correla-
tion function,

JRijðω; pÞ ¼
Z

d4xeiωt−ip·xh½jEMi ðt; xÞ; jEMj ð0; 0Þ�iθðtÞ;

ð56Þ
at the leading order in α. The low-energy behavior of
JRijðω; pÞ is related to the electric conductivity σ through
the Kubo formula,

σ ¼ 1

6
lim
ω→0

1

ω

X3
i¼1

JRiiðω; 0Þ: ð57Þ

Our result shows that
P

3
i¼1 J

R
iiðω; 0Þ approaches zero faster

than ω in the ω → 0 limit, and thus the electric conductivity
vanishes. Incorporation of the width of the quasiparticle
modes, which is not included in the form of the quark
propagator used in this study, may lead to nonzero σ.

In Fig. 7, we show the dilepton production rate at
T ¼ 3Tc. One sees that the behavior is qualitatively the
same as the result for T ¼ 1.5Tc. In particular, there exists
an enhancement of the rate around ω≃ 1.5mT owing to
the van Hove singularity. This indicates that the large
enhancement of the dilepton production rate around
ω≃mT is a general result irrespective of T. The gap
between ω1 and ω2 is narrower than that at T ¼ 1.5Tc
because of the change of the dispersion relations ν�ðpÞ
obtained on the lattice. One also finds that the rate takes a
finite value at ω ¼ 0, while it diverges for T ¼ 1.5Tc. This
limiting behavior may depend on the way of the extrapo-
lation of ν�ðpÞ to large momentum.

V. SUMMARY

In this study we have investigated the dilepton production
rate using a quark propagator obtained on the lattice with a
pole Ansatz. The Schwinger-Dyson equation for the photon
self-energy is solved with the lattice quark propagator and
the photon-quark vertex satisfying the Ward-Takahashi
identity. The effect of the vertex correction is discussed
by comparing the result with the calculation without vertex
correction. Our numerical result shows that the dilepton
production rate with the lattice quark propagators is larger
by about one order or more compared with the one with free
quark propagators in the low invariant mass region.
Compared with the HTL result, there exists a significant
enhancement around ω≃mT ≃ T owing to the van Hove
singularity. This result is interesting since such a large
enhancement in the deconfined medium near Tc may explain
the excess of the dilepton yield observed at PHENIX [4] in
the low invariant mass region. To understand the effect of the
enhancement of the dilepton rate on the experimental result
quantitatively, the analysis with dynamical models describ-
ing the spacetime evolution of the hot medium and integra-
tion of the dilepton production rate is needed. Although in
the present study we investigated the production rate with
zero momentum, the three-momentum integrated production
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FIG. 7 (color online). Dilepton production rate from 3Tc
deconfined phase.
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rate is also needed for comparison with experiments.
To obtain the three-momentum integrated production rate,
the analysis carried out in this paper has to be extended
to nonzero momentum. This will be reported elsewhere.
In addition, a comparison with other nonperturbative
approaches such as Ref. [33] will be the interesting focus
of future work.
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