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We show that the hadronic “heat capacity” calculated as a function of temperature may be used to infer
the possible presence of different scales underlying the dynamical structure of hadronic resonances using
the phenomenon of Schottky anomaly. We first demonstrate this possibility with the well-known meson
spectrum in various channels and then comment on the possibility of using this method as a diagnostic to
distinguish the exotic states.
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I. INTRODUCTION

The recent announcement of the discovery[1] of the
so-called pentaquark states has rekindled interest in the
possibility of exotic hadron states. In the last decade, a large
number of exotic mesonic states known as the X, Y, Z states
[2] has been observed by different experimental collabo-
rations (BELLE, BABAR, BESIII, CDF, CLEO, LHCb,
etc.) [3]. Long ago, a proposal was made to identify the
Λð1405Þ baryon as a possible molecular state of a colorless
baryon and meson [4–6]. Recently this proposal was
confirmed through lattice calculations [7].
While the existence of such exotic states has been

theoretically studied over decades [8–13] using models
of quark confinement with hyperfine interaction, we
explore the possibility of identifying states which differ
in their underlying dynamics due to different interaction
scales responsible for forming composite states such as
mesons. This is a model-independent analysis which
depends entirely on the information already contained in
the experimental data on the spectra of composite states.
The method itself is not new. It has been in vogue in the

study of semiconductors with impurities (which may have
closely spaced electronic spectra) or in the analysis of
spectra of deformed nuclear states for a long time. In
principle when the number of states is large, the high
temperature behavior of the specific heat directly yields the
information about the relevant degrees of freedom in the
spectrum—this is the well-known Dulong-Petit law. This
has been effectively put to use in the analysis of the light
baryon spectrum by Bhaduri and Dey [14] where they have
shown that even with the truncated spectrum of light quark
baryon states, the degrees of freedom of the system may be
inferred by comparing the models with the experimental
spectrum through the so-called Schottky peak. However,
such an analysis cannot be applied to the meson spectrum

to infer the degrees of freedom as may be inferred from an
analysis of the meson spectrum.
On the other hand, when a truncated spectrum is

available with no saturation possible, the specific heat at
low temperature displays a Schottky peak (or peaks) which
is an indication of the relevant scale (scales) in the system.
Therefore the method we use here consists of analyzing the
heat capacity CV of a spectrum of states which may contain
finitely many states that may not lead to saturation of the
specific heat. The existence of the Schottky peak (peaks) is
taken as an indication of the presence of an interaction scale
(scales) and analyzed further. This provides a possible
model-independent diagnostic of the presence of unusual or
exotic states. The only input used is the experimentally
measured spectrum of states.
In Sec. II, we illustrate the method with a set of assumed

ideal spectra closely following the illustrations adopted
from Ref. [15]. Though the method has been widely used in
other fields, it may not be familiar to the practitioners in
particle physics phenomenology. In Sec. III we first discuss
the charmonium spectrum to illustrate the applicability of
the method to the measured spectrum of states using the
lists provided in PDG [16]. The charmonium spectrum
provides a template for the analysis of other states. Further,
we discuss other cases, including the bottomonium and
open-charm/bottom mesons, and show that interesting facts
emerge by a simple application of the idea of the Schottky
anomaly. We conclude with a mention of caveats and how
the method may be fruitfully used as and when more data
become available, particularly for the conjectured exotic
bottomonium states.

II. HEAT CAPACITY OF AN IDEAL SYSTEM

In order to illustrate the method, consider the simplest
case of a two-level system with an energy gap given by Δ.
The energy gap is an indication of the scale in the
Hamiltonian. The canonical partition function of the system
is simply given by

Z ¼ 1þ e−βΔ; ð1Þ
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where β ¼ 1=kBT is the inverse temperature. Hereafter we
set the Boltzmann constant kB ¼ 1 and the temperature is
given in energy units. For the purpose of illustration here we
have not assumed any occupancy factors. The temperature is

introduced here simply as a mathematical parameter to
define the partition function of the system and no assumption
is made regarding the system being in a heat bath in
equilibrium. It is a parameter that is used to calculate the
specific heat or more precisely energy fluctuations.
The specific heat of the system at constant volume may

be defined as

CV ¼ β2
�
1

Z
∂2Z
∂β2 −

�
1

Z
∂Z
∂β

�
2
�
¼ β2½hE2i − hEi2�: ð2Þ

In systems with constant density, we may replace CV by
CV . Substituting for the partition function of the two-level
system given in Eq. (1) we have

CV ¼ β2
Δ2e−βΔ

ð1þ e−βΔÞ2 : ð3Þ

When CV is plotted against βΔ the Schottky peak appears
at a value βΔ ≈ 2.4with an exponential tail at higher values
of β. The location of the peak is a function of the energy
gap in the system. In general the Schottky peak occurs in
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FIG. 1 (color online). Schematic illustration of the Schottky
peak in the three-dimensional harmonic oscillator spectrum
showing the effect of truncation of the spectrum.
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FIG. 2 (color online). Schematic illustration of the Schottky peaks in the ideal case when the data contain two scales. The individual
Schottky peaks corresponding to separate spectra (harmonic oscillator spectrum), as well as the combined one (solid line), are shown.
The frequencies are the same for all four figures as shown (ℏω1 ¼ 10 MeV and ℏω2 ¼ 115 MeV). The cutoffs in the principle quantum
number n (indicated in brackets) are (a) n1 ¼ n2 ¼ 1, (b) n1 ¼ 2 n2 ¼ 1, (c) n1 ¼ 1 n2 ¼ 2, and (d) n1 ¼ n2 ¼ 2.
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systems with few energy levels where gaps are a result of a
single scale parameter. If, however, there is more than one
independent scale parameter responsible for the energy
levels, then peaks appear whenever the temperature is
sufficient to cross the gap signaling a change in the entropy
of the system. At high temperatures when all the levels are
equally possible, a plateau appears, signaling very little
change in the entropy.
To further expand on this theme, we next consider an ideal

spectrum, namely, the spectrum of a three-dimensional
harmonic oscillator. The partition function of the system
is given by

Z1 ¼
X∞
n¼0

DðnÞe−βℏωðnþ3=2Þ; ð4Þ

where the oscillator parameter ω defines the scale in the
problem and DðnÞ is the degeneracy of the level. In Fig. 1,
we show the effect of truncation on the specific heat when
plotted as a function of T ¼ 1=β with ℏω ¼ 200 MeV (for
example). As we includemore andmore orbitals, the specific
heat tends to reach the required saturation, while the peak

persists in the truncated spectrum. As we shall see later, in
any realistic hadronic spectrum, especially in the heavy
quark sector, we do not need more than two to three orbitals
to count the observed spectrum of states. For these cases the
location of the Schottky peak is close to βℏω ≈ 2.42.
In order to simulate realistic spectra where there is a

possibility of more than one energy scale in operation, we
combine the spectra of two such systems which differ in ℏω
significantly. In Fig. 2 we show the individual spectra
separately as well as the spectra for the combined single set.
The effect of combining is to normalize the specific heat
with a single partition function given by

ZðβÞ ¼ Z1ðβ;ℏω1Þ þ Z2ðβ;ℏω2Þ: ð5Þ

This is somewhat artificial but nevertheless we use this
for the purpose of illustrating the effect of the presence
of multiple scales in the spectra when the states are
combined in a listing in the absence of any dynamical
information.
As can be seen from Fig. 2 the amplitude and location of

the two separate Schottky peaks depend on truncation apart
from the oscillator frequencies. When combined, the peak
corresponding to the lower frequency remains unchanged
while the one corresponding to the higher frequency is
sensitive to truncation. This is simply due to the domination
of the lower scale in the partition function.
We exploit this sensitivity to different scales in the

problem, and apply it in the analysis of experimental
spectra of sets of mesons in the next section. Different
scales may arise from different terms in the same
Hamiltonian; for example, the confinement scale could
be very different from the splitting of states with different
spins, namely, the hyperfine splitting. Alternatively the data
set could contain states which may arise from different
underlying dynamics and hence have different scales. Often
it may so happen that the data set is missing a certain

TABLE I. Charmonium masses given in MeV along with their
total angular momentum J. Other quantum numbers are not
needed for this analysis.

J ¼ 0
states

Mass
(MeV)

J ¼ 1
states

Mass
(MeV)

J ¼ 2
states

Mass
(MeV)

ηcð1SÞ 2983.6 J=ψð1SÞ 3096.92 χc2ð1PÞ 3556.2
χc0ð1PÞ 3414.75 χc1ð1PÞ 3510.66 χc2ð2PÞ 3927.2
ηcð2SÞ 3639.4 hcð1PÞ 3525.38
χc0ð2PÞ 3918.4 ψð2SÞ 3686.11

ψð3770Þ 3773.15
ψð4040Þ 4039.6
ψð4160Þ 4191
ψð4415Þ 4421
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FIG. 3 (color online). The specific heat of charmonium states plotted as a function of temperature (expressed in MeVunits) with (a) all
the states taken together (i.e., all the states in Table I) and (b) after separating them according to their spins J ¼ 0, 1, 2 (columns 3, 6,
and 9 of Table I).
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number of states, which also introduces an artificial scale
(or energy gap) in the analysis. Nevertheless, the analysis of
Schottky peaks in the experimental spectra may reveal
some hidden scales on the average. We must however
caution that this analysis will not reveal any detailed
dynamics (or the system Hamiltonian) underlying the
formation of the bound states.

III. ANALYSIS OF THE EXPERIMENTAL DATA

We consider an analysis, based on the template given in
the previous section, of the experimental data on mesons.
We divide the data sets according to their flavors and start
from the simplest cases, where there is no complication
arising from the isospin degeneracies. In this analysis we
only use the identification given in the particle data group
tables without any further theoretical bias. We focus on the
heavy quark sector.

TABLE II. The exotics in the charmonium mass range. All
masses except that of Yð4008Þ are taken from PDG [16]. The
mass of Yð4008Þ, as well as some of the J assignments not given
in PDG, is from [2].

J ¼ 0 states Mass (MeV) J ¼ 1 states Mass (MeV)

Xð3940Þ [17] 3942 Xð3872Þ [18,19] 3871.69
Yð4140Þ [20] 4144 Xð3900Þ [21] 3896.35
Xð4160Þ [22] 4156 Xð4260Þ [23,24] 4251

Yð4360Þ [25] 4361
Xð4430Þ� [26] 4485
Xð4660Þ [27] 4664
Yð4008Þ [23] 4008
Zþ
c ð4020Þ [28] 4024

Zþ
1 ð4050Þ [29] 4051

Zþð4200Þ [30] 4196
Zþ
2 ð4250Þ [29] 4248
Xð4630Þ [31] 4634
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FIG. 4 (color online). The specific heat of the exotics as listed in [2,16] in the charmonium region, plotted as a function of temperature
(a) for the pure exotics spectrum (i.e., states from Table II) and the same separated according to the corresponding J’s only and
(b) combined with all the other cc̄ states (i.e., all states from Tables I and II combined).
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FIG. 5 (color online). (a) The single peak obtained by omitting the resonance at 3872 MeV from the other exotics. (b) The exotics
plotted after the assignment of the I values, separated into corresponding groups with the same J and I.
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A. The spectra of charmonium states

We first choose to analyze the spectra of the cc̄ (charmo-
nium) states as identified in the PDG [16], listed in Table I.
Since the number of resonant states is not too small (but

nowhere near saturation), the spectra may be used to
determine the scales involved in the problem. Since these
states involve heavy quarks, one may also compare the results
of the analysis with models of confinement if necessary. In
Fig. 3(a) we show the specific heat of the cc̄ spectrum.
When all the cc̄ are taken together, the spectrum shows

two clear peaks at T ≈ 40 MeV and T ≈ 190 MeV, indi-
cating the existence of two well-defined scales in the
spectrum of states. This is not surprising since all of the
states with different J values, J ¼ 0, 1, 2, are included. As a
result not only the confinement scale, but also the hyperfine
(HF) splitting scale comes into operation. We may think of
the peak at 40 MeV as being due to the HF splitting,
whereas the peak at 190 MeV results from the confinement
scale. For a two-level system, using the relation βΔ ¼ 2.4,
the corresponding energy gap turns out to be 96 MeV for
hyperfine splitting and 450 MeV for the confinement
potential. These are reasonable values from the point of
view of quark models though we need not assume any
particular model for the charmonium states. These scales
reflect the average behavior, since the actual value of

TABLE III. Bottomonium masses given in MeV along with
their total J. Other quantum numbers are not needed for this
analysis.

J ¼ 0
states

Mass
(MeV)

J ¼ 1
states

Mass
(MeV)

J ¼ 2
states

Mass
(MeV)

ηbð1SÞ 9398 ϒð1SÞ 9460.3 χb2ð1PÞ 9912.21
χb0ð1PÞ 9859.44 χb1ð1PÞ 9892.78 ϒð1DÞ 10163.7
ηbð2SÞ 9999 hbð1PÞ 9899.3 χb2ð2PÞ 10268.7
χb0ð2PÞ 10232.5 ϒð2SÞ 10023.3

χb1ð2PÞ 10255.5
hbð2PÞ 10259.8
ϒð3SÞ 10355.2
ϒð4SÞ 10579.4

ϒð10860Þ 10876
ϒð11020Þ 11019
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FIG. 6 (color online). The specific heat of bottomonium states plotted as a function of temperature (expressed in MeV units) (a) with
all the states in Table III and (b) after separating them according to their spins J ¼ 0, 1, 2.
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FIG. 7 (color online). The specific heat of the exotics as listed in PDG in the bottomonium mass range (a) with only the exotic states
and (b) combined with pure bottomonium states (i.e., combined with all the states of Table III).
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HF splitting depends on the orbital in which it is calculated.
For example, in the ground state the HF splitting is of the
order of 100 MeV.
These two scales must correspond to the contribution to

the masses of the resonances from the QCD-inspired
potential models (or in lattice calculations), where the
central potential is assumed to be a combination of the
linear confinement potential and the Coulomb-like poten-
tial arising from one-gluon exchange interaction,

VðrÞ ¼ Crþ 4αs
3r

; ð6Þ

while the hyperfine interaction, which also arises along
with the Coulomb interaction from the one-gluon exchange
interaction, in general has the form

VhfðrÞ ¼ k
σ1:σ2
m1m2

fðrÞ: ð7Þ

Such a nonrelativistic reduction of the QCD-inspired
potential is a good approximation in the heavy quark sector.
In this paper we do not go into the details of the models but
give these here only to indicate possible origins of the
Schottky peaks. It is sufficient to point out that the central
potential, which is spin and flavor independent, contributes
in all sectors, while the HF splitting depends inversely on
the quark masses as well as the particular orbital in which
the spin-dependent potential is evaluated.

To clarify this notion further, in Fig. 3(b) we plot the
states corresponding to different J values separately. It is
easily seen that the peak corresponding to HF splitting
disappears as it should when different J states are plotted
separately. As a result there is only one scale in the problem
due to the central potential. The slight shift in the peaks in
the specific heat is due to the effect of truncation of the
states as noticed in the ideal case in the previous section.
While there are more states in J ¼ 0, 1, there are only two
states in the case of J ¼ 2. In either case, the number of
orbitals involved will not be more than two to three even if a
model is invoked.
Thus, having understood the charmonium spectrum

where the two scales, confinement, and HF interaction
energies stand out, we may now apply the method to the so-
called exotic states listed along with the charmonium states.
Table II shows the states used in the present analysis. Some
of these assignments may be tentative or educated guesses
as discussed in [2]. Nevertheless the specific heat of these
states may be calculated and is shown in Fig. 4(a).
The specific heat plot shows two peaks, one reasonably

broad peak close to 100 MeV and a very sharp one below
10 MeV. The peak at 100 MeV is a unique characteristic of
only the exotics. For a two-level system, using βΔ ¼ 2.4,
the corresponding energy gap is found to be 240 MeV in
contrast to the pure cc̄ case, where it is close to 450 MeV,
and can be attributed to the confinement scale. The “confine-
ment peak” is also present in the combined plots for the
charmonium states along with the exotics [Fig. 4(b)], but not
for the exotics alone. This indicates the presence of a scale
that is different from the confinement, hyperfine, or any
other scale that is exhibited by the established charmonium
states. This definitely hints at a different interaction mecha-
nism for formation of the exotic meson states. This may be
called the “exotic” scale, as in the next section we show that
this same scale is present for the exotics in the bottomonium
mass range as well.
It is easily seen that the sharp peak below 10 MeVarises

due to contributions from the first two states, which are
indeed very close in energy. Since the mass of Xð3872Þ is
very close to theD0D̄�0 threshold, it was described in many
reports earlier as a molecular state [32–36]. However, the
characteristics of Xð3872Þ production in high energy pp̄
and pp collisions, as reported by LHCb [19] and CMS [37]

TABLE IV. Masses of open charm mesons given in MeV along with their total J and I.

J ¼ 0 states I Mass (MeV) J ¼ 1 states I Mass (MeV) J ¼ 2 states I Mass (MeV)

D�
s 0 1968.30 Ds1ð2460Þ� 0 2459.5 D�

2ð2460Þ 1
2

2463.453
D�

s0ð2317Þ� 0 2317.7 Ds1ð2536Þ� 0 2535.10
D 1

2
1867.225 D�

s1ð2700Þ� 0 2709

D�
0ð2400Þ0 1

2
2318 D�ð2007Þ 1

2
2008.61

D�
0ð2400Þ� 1

2
2403 D1ð2420Þ 1

2
2422.3

D1ð2420Þ� 1
2

2539.4 D1ð2430Þ0 1
2

2427
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FIG. 8 (color online). Cv vs T plot for open charm mesons with
all the states in Table IV.

ARITRA BISWAS, M. V. N. MURTHY, and NITA SINHA PHYSICAL REVIEW D 92, 114012 (2015)

114012-6



and discussed in [38], match those of a tightly bound state,
rather than that of a molecule. If this lowest state is removed
from the list of exotics it is seen that the sharp peak below
10 MeV disappears, leaving a single peak close to 60 MeV
as shown in Fig. 5(a). The nature of the state at 3872 MeV
cannot be inferred from the present analysis. The appear-
ance of more such states, if at all, is needed to clarify its
nature. Nevertheless if it is included in the present set, it
possibly indicates the existence of states with much weaker
interaction.
There can be a second explanation for the sharp peak

below 10 MeV. The 3896.35 and the 4024 MeV states
have been claimed to be isospin triplets, but this is not yet
confirmed. Assuming them to be isospin triplets, and
hence taking care of the I symmetry along with the J
symmetry (by assuming others to be I ¼ 0), the plots
immediately exhibit the absence of the said peak, even
though the 3872 resonance is included in the J ¼ 1, I ¼ 0
set [see Fig. 5(b)]. The peaks are close to T ¼ 100
(J ¼ 0); T ¼ 80 (J ¼ 1, I ¼ 0); and T ¼ 50 (J ¼ 1,

I ¼ 1) in MeV units. These differences may be due to a
combination of isospin symmetry breaking as well as
truncation effects.

B. The spectra of bottomonium states

Encouraged by the considerations in the charmonium
spectrum, we now analyze the bottomonium spectrum,
which includes the states given in Table III. Here there are
fewer observed states.
When the specific heats corresponding to these states are

calculated and plotted together, the situation is quite similar
to that of the charmonium states. One observes two clear
peaks close to T ¼ 185 MeV and T ¼ 22 MeV as seen in
Fig. 6(a). The peak at lower T disappears when the states
are separated into groups with the same J value and plotted
again [Fig. 6(b)]. This shows that the peak at lower T
corresponds to the HF splitting and is thus absent when the
states are separated according to spin, while that at higher T
reflects the confinement scale and hence it remains even in
Fig. 6(b). The peak for the J ¼ 2 states is at a slightly lesser
T value, but then, there are just three corresponding states.
With more bottomonium states in the J ¼ 2 sector, we
expect the peak to shift to the right and come close to the
T ¼ 185 MeV value. Interestingly the HF peak in Fig. 6(a)
occurs at a reduced temperature as it should, but it does not
scale with the masses in accordance with Eq. (7). The
difference may be an effect arising from the matrix elements.
In the s-state, this may be approximated by jψsð0Þj2. It is
therefore possible that the bottomonium wave functions are
more sharply peaked compared to the charmonium states.
Next, we repeat the analysis with the so-called exotics

listed by PDG in the bottomonium mass range. The states
are Ybð10890Þ [39], Xð10650Þ� [40], and Xð10610Þ
[40,41] with masses 10888.4, 10652.2, and 10608.1,
respectively (all in MeV). All of them have J ¼ 1 and
I ¼ 1. When plotted against temperature, they again exhibit
two well-defined peaks at approximately T ¼ 19 and
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FIG. 9 (color online). Cv vs T plot for open charm mesons (a) with J ¼ 0 states (column 3 of Table IV) and (b) with J ¼ 1 states
(column 6 of Table IV) separated according to the I values.
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FIG. 10 (color online). Cv vs T plot for I ¼ 0 states grouped
into J ¼ 0 and J ¼ 1 after assigning J ¼ 1 to D��

s with mass
2112.1 MeV.
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T ¼ 101 MeV [Fig. 7(a)]. Since the quantum numbers of
these states are not well defined, it is difficult to comment
on these scales. However, similar to the charmonium
exotics, the exotic peak close to 100 MeV is present for
the bottomonium exotics also, even with as few as three
states. This leads to the important conclusion that the
underlying mechanism may be similar for both the char-
monium and bottomonium exotics. The validity of this
claim can be tested in the future with the advent of more
data, especially in the bottomonium sector.
Similar to their charmonium counterpart, when the

exotics are combined together with established bottomo-
nium states and plotted, the spectra are almost similar to
that of pure bottomonium states displaying a peak corre-
sponding to the hyperfine splitting and another close to
T ¼ 200 MeV corresponding to the confinement scale
[Fig. 7(b)].

C. The spectra of open charm states

In the previous two subsections, we have analyzed the
heavy quarkonium spectra. Using the location of the
Schottky peaks, we may identify, using the intuition from
the potential models, the average energy scales correspond-
ing to the central and HF interactions. The main advantage
here is that there is no complication arising from isospin
assignments since I ¼ 0 unless they are exotic states. This
simplicity is lost when we consider states which have one
or more light quarks. Nevertheless, we may look at the data
in this sector to gain further insights. In this subsection we

look at the data on the specific heat in the open charm
sector. The data used in the analysis are given in Table IV.
Figure 8 shows the specific heat calculated using all the

states in the open charm spectrum plotted as a function of
T. We see two peaks at temperatures close to T ¼ 50 and
T ¼ 160 in MeV units. As usual the peak at higher T
represents the flavor-independent part of the potential. The
scale of HF interactions is larger than it should be since the
splitting involves a light and a heavy quark.
We may analyze the data further by separating them

according to the spins. The J ¼ 2 sector cannot display any
Schottky peak since it only has one state with I ¼ 1

2
and

none with I ¼ 0. In Fig. 9(a) we show the J ¼ 0 spectra.
The two peaks above 150 MeV correspond to isospins I ¼
0 and I ¼ 1=2. In the latter case the peak shifts to the right
since there are more states as seen in the effect of truncation
in the ideal case discussed in Sec. II. The J ¼ 1 sector is
shown in Fig. 9(b) where again we have shown the I ¼ 0
and I ¼ 1=2 cases separately. In the I ¼ 1=2 case, one may
clearly see the usual confinement peak close to
T ¼ 160 MeV. The I ¼ 0 plot indicates a single peak
with a shoulder at 40 MeV.
PDG includes D��

s with mass 2112.1 with I ¼ 0, but
states that its J is unmeasured. However, the corresponding
decay modes of this state are consistent with J ¼ 1.
Including this state in the J ¼ 1, I ¼ 0 set immediately
brings the corresponding peak to approximately the same
position as the J ¼ 0, I ¼ 0 peak (Fig. 10). Hence, this
confirms that this state actually is indeed a J triplet.

TABLE V. Masses of open bottom mesons given in MeV along with their total J and I.

J ¼ 0 states I Mass (MeV) J ¼ 1 states I Mass (MeV) J ¼ 2 states I Mass (MeV)

B0
s 0 5366.77 B�

s 0 5415.4 B�
s2ð5830Þ0 0 5839.96

B�
c 0 6275.6 Bs1ð5830Þ0 0 5828.7 B�

2ð5747Þ0 1
2

5743
B 1

2
5279.42 B� 1

2
5325.2

B1ð5721Þ0 1
2

5723.5
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FIG. 11 (color online). Cv vs T plot for open bottom mesons (a) with all the states given in Table Vand (b) with J ¼ 1 states (column 6
of Table V) grouped according to the I values.
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D. The spectra of open bottom states

Unlike the open charm spectra, the spectra of open
bottom states are even more sparse as shown in Table V.
Nevertheless some features are already visible. For

example, when all the states are plotted together as shown
in Fig. 11(a), we discern the confinement as well as the HF
peak (at a reduced temperature), similar to the open charm
scenario.
Separation into various J and I lists cannot be carried out

here since there are only two states each in the J ¼ 0,
I ¼ 0; J ¼ 1, I ¼ 0; and J ¼ 1, I ¼ 1

2
sectors. It is not

possible to plot the J ¼ 0, I ¼ 0 states against T due to
different flavor contents. For example, the 5366.77 MeV
state is a Bs (b and s quark) state whereas the 6275.6 MeV
state is a Bc (b and c quark) state.
For completeness, we may however plot the J ¼ 1, I ¼ 0

and J ¼ 1, I ¼ 1
2
states, each of which has only two states.

We show the plot in Fig. 11(b), where again the peaks
coincide, indicating the confinement scale. More detailed
analysis must wait for more data.

IV. SUMMARY AND CONCLUSIONS

We have presented a model-independent analysis of the
data on the meson spectra using the Schottky anomaly.
Given a spectrum of states, the specific heat (or equiv-
alently energy fluctuation) when plotted as a function of
temperature displays peaks, known as Schottky peaks,
corresponding to the different scales present in the
interaction Hamiltonian which gives rise to such states.
The peaks are well pronounced, especially if the spectrum
is truncated with very few orbitals as in the case of meson
spectra. The corresponding temperature at which the
Schottky peaks occur may be converted into energy
scales relevant to the spectra on hand. This method is
well known in other areas of physics.
In this analysis temperature is simply treated as a

parameter which is used to extract the scale and should
not be confused with the thermodynamic temperature. The
information so obtained is nothing new since it is already
contained in the spectra, but it provides a newway of looking
at the data and analyzing the same. This is especially useful
if a given set of states, in the absence of any other
information, contains states which may have their origin
in different types of interaction Hamiltonians, for example,
the presence of exotics in the quarkonium states. Unlike the
models of quarkonium states, no dynamical informationmay
be extracted. But the intuition from the potential models or
lattice calculations may be used to gain more insight.
After explaining the salient features of the method through

an ideal case, we have analyzed the experimental data as
listed in the latest edition of PDG. In summary we have

(i) The simplest to analyze are the quarkonium
states, especially the charmonium states. Using this
as a template we show how the two main scales

corresponding to flavor-independent confinement
interaction and the HF interaction may be seen from
the representation of the data through Schottky peaks.
Typically the average confinement scale (correspond-
ing to the radial potential in a model) results in a peak
around T ¼ 200 MeV. If we are to interpret this
information in terms of the actual scale of confine-
ment, we need to invoke a model. If there are only
two to three orbitals involved (as is the case in most of
the data) then a ballpark estimate of the confinement
scale is given approximately by 2.4T. It varies very
slowly with truncation of the orbitals as seen in the
ideal case. The Schottky peak corresponding to HF
interaction results in a peak around T ¼ 40 MeV,
which results in an average splitting of about 90 MeV
as given by potential models.

An analysis of the so-called exotic states in the
charmonium sector seems to indicate that they are
indeed unusual states due to the absence of the usual
confinement peak, but exhibit a peak at a lower T,
about 100 MeV, corresponding to a lower “exotic
confinement” scale at ∼240 MeV.

(ii) Our conclusions in the case of bottomonium states
are similar to the charmonium states. The HF
interaction is much weaker here as it should be if
one uses the intuition from potential models. These
states also exhibit the confinement peak at around
200 MeV. Interestingly, the so-called exotics again
display a peak at about 100 MeV, similar to the
exotics in the charmonium sector.

(iii) The analysis of open charm and open bottom states
is more complicated but nevertheless we do get
some insight into the scales involved.

Finally without going into details, we add a few comments
on the light quark sector. The light quark sector is the most
complicated since here the intuition from the potential
models is not as clean as in the case of the heavy quark
sector. Furthermore, the HF splitting is comparable to the
confinement scale. This results in a single broad peak which
may be due to a combination of confinement and HF
splitting. Both in nonstrange and strange quark pseudoscalar
bound states the confinement scale shifts to a much larger
value due to the complication arising from the masses of the
pion and K-meson. However, when J ≠ 0 states are analyzed
they display the confinement peak as witnessed in all other
sectors. This buttresses the well-known problem with pions,
that they are too light to be simple bound states of a quark
and an antiquark [42]. This is also true, to a lesser extent,
with the pseudoscalar K-mesons around 495 MeV.
While we have analyzed the data on meson spectra here,

we may analyze the baryon spectra also from this perspec-
tive. In some ways this later analysis is likely to provide
complimentary information further simplified by the fact that
only quarks are involved unless the exotics are considered.
This analysis is under way and will be published later [43].
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