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We investigate the Gubser solution of viscous hydrodynamics at finite density and analytically compute
the flow harmonics vn. We explicitly show how vn and their viscous corrections depend on the chemical
potential. The difference in vn between particles and antiparticles is also analytically computed and shown
to be proportional to various chemical potentials and the viscosity. Excellent agreement is obtained between
the results and the available experimental data from the SPS, RHIC and the LHC.
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I. INTRODUCTION

Relativistic hydrodynamics is a general theoretical
framework to describe the collective dynamics of high-
energy systems near local thermal equilibrium. Its first
application to hadron physics dates back to Landau’s
attempt to describe multiparticle production in hadron-
hadron collisions [1]. It has become a topic of great interest
since the discovery of the quark-gluon plasma (QGP) as a
nearly perfect fluid in the “Little Bangs” at BNL
Relativistic Heavy Ion Collider (RHIC) [2–5] and CERN
Large Hadron collider (LHC) [6–8]. This is supported by
the observations that the azimuthal momentum anisotropy
of hadronic distribution [9,10], characterized by flow
harmonics vn, are found to reflect the geometrical
anisotropy ϵn of the overlapping region of two colliding
nuclei, and that they are in good quantitative agreement
with theoretical estimations. Nowadays the viscous hydro-
dynamic modeling is considered as one of the most
powerful tools to quantify the QGP medium near the
crossover phase transition [11].
The recent beam energy scan (BES) experiments at

RHIC pose us intriguing challenges to study the properties
of the medium at finite density and to explore the QCD
phase diagram to find signs of a critical point [12].
Conserved charges such as net baryon number, strangeness
and isospin would play important roles in the collisions
with lower energies, as the differences between particle and
antiparticle yields are clearly seen [13,14]. Historically, it
had long been speculated based on several idealized
calculations that the strong coupling limit is achieved only
at highest energies of RHIC experiments. On the other
hand, recent improvements in off-equilibrium hydrody-
namic modeling motivate us to reexamine the validity of
hydrodynamics in exploring the dense quark matter created
at midlow energies, especially since the differential elliptic
flow v2ðpTÞ is found to remain large in phase I of the
BES experiments. The applicability of hydrodynamic

models is closely related to the origin of fluidity, about
which little is known, and thus its verification would be a
very important step towards a full understanding of the hot
QCD medium.
So far many hydrodynamic analyses have been per-

formed numerically because it is generally quite non-
trivial to solve the partial differential equations involved.
Analytical solutions of relativistic hydrodynamics, on the
other hand, can be obtained with certain symmetry
conditions and they are very instructive in understanding
the essence of heavy-ion dynamics. The boost-invariant
Bjorken flow [15] is one such classic example. More
recently, Gubser found an exact boost-invariant solution
of the Navier-Stokes equation which has a nontrivial
dependence on the transverse coordinate [16]. The latter
solution has the advantage that one can add azimuthally
anisotropic perturbations [17,18] and analytically com-
pute the corresponding flow harmonics vn including the
viscosity effects [18,19] (see, also, [20–22]).
In this study, we investigate vn at finite density by

analytically solving the viscous hydrodynamic equations
coupled with conserved currents assuming conformal and
boost-invariant symmetries. Aside from the fact that the
solution itself is new and of theoretical importance, it
gives us a theoretical guidance about the behavior of vn
over a wide range of the beam energy for which there are
not many numerical simulations [23–27] and the previous
knowledge obtained through the precision analyses in the
RHIC-LHC energy regime, such as the value of the
shear viscosity η=s, are no longer fully applicable. We
discuss extensively the nature of flow in the presence of
currents and estimate the beam energy (or chemical
potential) dependence of vn. The difference in vn between
particles and antiparticles is also analytically computed.
The results are compared with the experimental
data from SPS, RHIC and the LHC [13,14,28,29].
We see that they are in qualitative agreement, which
suggests that a reasonable description of the low-energy
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experimental data might be possible within a hydro-
dynamic framework.
The paper is organized as follows. The basic setup of

relativistic hydrodynamics is outlined in Sec. II. We then
present analytical formulas of the flow harmonics vn in the
ideal and viscous cases in Secs. III and IV, respectively.
Phenomenological inputs for our model are summarized in
Sec. V. Using these formulas and input parameters, we
compare our results with the experimental data in Sec. VI.
Section VII is devoted to summary and conclusions.

II. HYDRODYNAMIC EQUATIONS

A. Setup

We shall consider hydrodynamics of a conformal theory.
The system is characterized by the local temperature T and
a set of local chemical potentials μi where the subscript i
labels various conserved charges of the theory. The flow
velocity is denoted by uμ with the normalization
uμuμ ¼ −1. The energy-momentum tensor in the Navier-
Stokes approximation takes the form

Tμν ¼ 4ε

3
uμuν þ ε

3
gμν − 2ησμν; ð1Þ

where σμν is the shear tensor and η is the shear viscosity.
In (1), the conformal equation of state ε ¼ 3p between the
energy density ε and the pressure p has been used. The
conserved current Jμi associated with the chemical potential
μi can be written as

Jμi ¼ niuμ − κiðuμuν þ gμνÞ∂ν

�
μi
T

�
; ð2Þ

where ni is the charge density and κi is the charge
conductivity. The hydrodynamic equations consist of the
conservation equations for Tμν and Jμi ,

∇μTμν ¼ 0; ∇μJ
μ
i ¼ 0; ð3Þ

where ∇μ is the covariant derivative.
Since there is no intrinsic mass scale in a conformal

theory, the energy density ε and the charge densities ni can
be generically written as

ε¼ T4f

�
μ1
T
;
μ2
T
;…

�
; ni ¼ μiT2gi

�
μ1
T
;
μ2
T
;…

�
: ð4Þ

With a view to applying to heavy-ion collisions, we shall
focus on the following representative situation. We assume
that there is the leading current Jμ ¼ nuμ þ � � � (“baryon
number current”) and the corresponding chemical potential
μ is treated to all orders. In addition, there is one subleading
current ~Jμ ¼ ~nuμ þ � � � (“isospin number current”) whose
chemical potential ~μ is small and treated only to linear

order. We take ~μ to be “orthogonal” to μ, in that εðμ; ~μÞ is
invariant under a sign flip ~μ↔ − ~μ (i.e., cross terms like
μ~μT2 are absent). With these assumptions, we can para-
metrize

ε¼T4f

�
μ

T

�
; n¼ μT2g

�
μ

T

�
; ~n¼ ~μT2 ~g

�
μ

T

�
: ð5Þ

The last equation may be written as ~n ¼ ~μ ~χ where ~χ ∝
∂2p=∂ ~μ2j~μ¼0 is the susceptibility.

B. Gubser flow

We shall solve the hydrodynamic equations (3) for a
given flow velocity,

uτ ¼ cosh
�
tanh−1

2τx⊥
L2 þ τ2 þ x2⊥

�
;

u⊥ ¼ sinh

�
tanh−1

2τx⊥
L2 þ τ2 þ x2⊥

�
; ð6Þ

and uζ ¼ uϕ ¼ 0. The parameter L is the characteristic
length scale of the system. In heavy-ion collisions, it is
roughly the transverse size of the colliding nuclei.
Equation (6) is called Gubser flow [16,17] expressed in
the coordinate system

ds2 ¼ −dτ2 þ τ2dζ2 þ dx2⊥ þ x2⊥dϕ2; ð7Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x23

p
is the proper time, ζ ¼ tanh−1 x3

t is the

spacetime rapidity and x⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the transverse

coordinate. The condition uζ ¼ 0 means that the flow is
boost invariant along the beam (x3) direction.
Gubser flow takes a very simple form in a cleverly

chosen coordinate system x̂μ which is related to the
Minkowski coordinates via a Weyl rescaling of the metric:

dŝ2¼ ds2

τ2
¼−dρ2þ cosh2ρðdΘ2þ sin2Θdϕ2Þþdζ2; ð8Þ

where

sinhρ¼ −
L2 − τ2 þ x2⊥

2Lτ
; tanΘ¼ 2Lx⊥

L2 þ τ2 − x2⊥
: ð9Þ

In this coordinate system, the flow velocity is simply
ûμ ¼ δμρ. In addition to the boost invariance, the flow
respects the Oð3Þ symmetry with respect to the “polar”
angles ðΘ;ϕÞ. Variables in this coordinate system will be
denoted with a “hat,” e.g., ûμ, ε̂.
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III. INVISCID CASE

In this section, we solve the hydrodynamic equations (3)
in the ideal case η ¼ κi ¼ 0. We then deform the solution in
the azimuthal direction ϕ and compute flow harmonics vn.

A. Isotropic ideal solution

The isotropic solution (i.e., independent of ϕ) has been
obtained already in [16,17] in the presence of a current
Jμ ¼ nuμ. Assuming that all the quantities depend only on
ρ, we can readily solve the hydrodynamic equations for ϵ̂0
and n̂0 in the coordinates (8). We then perform the Weyl
transformation back to the Minkowski space ε0 ¼ ε̂0=τ4,
n0 ¼ n̂0=τ3 to get

ε0 ¼ T4
0f

�
μ0
T0

�
∝

1

τ4ðcosh ρÞ8=3 ; ð10Þ

n0 ¼ μ0T2
0g

�
μ0
T0

�
∝

1

τ3cosh2ρ
;

~n0 ¼ ~μ0T2
0 ~g

�
μ0
T0

�
∝

1

τ3cosh2ρ
: ð11Þ

These equations can be solved for T0 and μ0. It is consistent
to look for the solution where T0 and μ0 have the same ρ-
dependence such that the ratios α≡ μ0=T0, ~α≡ ~μ0=T0 are
independent of ρ. We find

T0¼
C

τðcoshρÞ2=3 ; μ0¼
αC

τðcoshρÞ2=3 ; ~μ0¼
~αC

τðcoshρÞ2=3 ;

ð12Þ

and therefore

ε0 ¼
fðαÞC4

τ4ðcoshρÞ8=3 ; n0 ¼
αgðαÞC3

τ3cosh2ρ
; ~n0 ¼

~α ~gðαÞC3

τ3cosh2ρ
:

ð13Þ

The parameter C is related to the particle multiplicity to be
extracted from the experimental data. For a massless
particle species i (“pion”), the relation is [16,19]

dNi

dY
≈ gi

4C3

π
; ð14Þ

where Y is the momentum rapidity and gi is the degeneracy
factor.

B. Anisotropic ideal solution

We now perturb the solution anisotropically to introduce
the cos nϕ dependence. In doing so, we shall focus on the
early time regime τ ≪ L [or ρ → −∞, see (9)]. As
observed in [19], in this regime the perturbed solution is

fully under analytical control including the viscous case to
be discussed in the next section.
Following [17], we consider the following deformation

of the isotropic solution:

ε̂0 → ε̂ ¼ ε̂0ð1 − ϵnAδÞ4;
n̂0 → n̂ ¼ n̂0ð1 − ϵnAδ0Þ3;

ðûρ; ûΘ; ûϕ; ûζÞ ¼ ð1; 0; 0; 0Þ
→ ð1;−ϵnνsĝΘΘ∂ΘA;−ϵnνsĝϕϕ∂ϕA; 0Þ;

ð15Þ

where

A≡
�

2Lx⊥
L2 þ x2⊥

�
n
cos nϕ ð16Þ

is proportional to the spherical harmonics Yn;nðΘ;ϕÞ þ
Yn;−nðΘ;ϕÞ in the early time regime τ ≪ L. Note that we
preserve boost invariance uζ ¼ 0 in this paper, but the case
uζ ≠ 0 was also considered in [17]. ϵn is the eccentricity1

which we assume to be small ϵn ≪ 1 and keep only linear
terms in ϵn. δðρÞ, δ0ðρÞ and νsðρÞ have to be determined by
solving the hydrodynamic equations linearized around the
isotropic solution. Plugging (15) into (3), we find the
following equation for δ0:

∂ρδ
0 ¼ νs

3cosh2ρ
nðnþ 1Þ: ð18Þ

This turns out to be exactly the same as the equation
satisfied by δ [17]. Therefore, in the ideal case we have
δ ¼ δ0, which means that T0 and μ0 are rescaled by the
same factor T ¼ T0ð1 − ϵnAδÞ, μ ¼ μ0ð1 − ϵnAδÞ and
~μ ¼ ~μ0ð1 − ϵnAδÞ. The ratios μ=T ¼ μ0=T0 ¼ α and
~μ=T ¼ ~μ0=T0 ¼ ~α are thus unchanged. At early times
ρ → −∞, the right-hand side of (18) is negligible and
we can set δ ¼ 1 [19].

C. vn at finite μ

In order to compute flow harmonics vn, we use the
Cooper-Frye formula [30]

1In a conformal theory, the definition of eccentricity requires
some care. We use [17,19]

ϵn ¼ −

R
d2x⊥ε3=4

xn⊥
ðL2þx2⊥Þn−1

cos nϕR
d2x⊥ε3=4

xn⊥
ðL2þx2⊥Þn−1

: ð17Þ
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ð2πÞ3 dNi

dYpTdpTdϕp

¼ gi

Z
Σ
ð−pμdσμÞ

�
exp

�
u · pþ kμi

T

�
þ δf

�
∝ 1þ 2vnðpTÞ cos nϕp; ð19Þ

where we assumed the Boltzmann distribution and δf is the
deviation from the equilibrium distribution. The use of the
Boltzmann distribution (rather than the Fermi/Bose distri-
butions) may be justified for the purpose of computing the
integrated vn [19]. μi generically represents a set of
chemical potentials for net baryon number, isospin and
strangeness. We assign k ¼ �1 for particles with positive/
negative quantum numbers mentioned above, and k ¼ 0 for
neutral particles with respect to the corresponding quantum
number. In principle, since we are assuming conformal
symmetry, the formula (19) should be used only for
massless particles, or particles that can be approximately
treated as massless (i.e., pions). However, for the sake of
discussion in Sec. VI C, we shall later introduce massive
particles and compute their vn in the “probe approxima-
tion,” namely, by neglecting their backreaction to the flow
velocity. Since we add in particles in the final state that do
not exist in the fluid, the total energy is not conserved at
freeze-out. But the fraction of the change δε=ε ∼ e−m=T is
exponentially suppressed by the mass m and will be
neglected.
The integral in (19) is taken over the hypersurface Σ of

constant energy density where the kinetic freeze-out
occurs. In the ideal case, constant ε means constant T
since α ¼ μ=T is a constant. Let us write the condition of
constant energy density as

εðτ; x⊥;ϕÞ ¼ T4fðαÞ≡ C4B4

ð2LÞ4 fðαÞ ¼ εc: ð20Þ

Typically, εc is of the order of the critical energy density of
the QCD phase transition. We take εc ¼ 1 GeV=fm3 in this
paper. Following [19], we assume that the condition (20) is
reached within the early time regime τ ≪ L where we can
use the approximate solution (15). The parameter B in (20)
is then related to the (position-dependent) freeze-out time
τf as

τfðx⊥;ϕÞ ¼
ð2LÞ5

B3ðL2 þ x2⊥Þ2
�
1− 3ϵn

�
2Lx⊥

L2 þ x2⊥

�
n
cosnϕ

�
:

ð21Þ

For consistency with our early freeze-out scenario, we must
have B3 ≫ 1.
Under these assumptions, the integral (19) can be

performed analytically and the integrated vn is obtained
from the formula

vn ¼
R
dpTvnðpTÞ dN

dYdpTR
dpT

dN
dYdpT

: ð22Þ

In the ideal case δf ¼ 0, vn does not depend on k since the
factor ekμ=T ¼ ekα cancels in the ratio (22). The result is
[19]2

vn
ϵn

¼ 9

64

Γð3nÞ
Γð4nÞ

�
128

B3

�
n
Γ2

�
n
2

�
n2ð3nþ 2Þ2ðn − 1Þ

2ð4nþ 1Þ

∼ B−3n ∝
�

f3=4

ε3=4c L3

dN
dY

�n

: ð23Þ

This determines the α ¼ μ=T dependence of vn. Quite
generally, fðαÞ is an increasing function α. On the other
hand, dN=dY is a decreasing function of α. We shall see
that, in heavy-ion collisions, the latter dependence is
stronger, and as a result (23) is a decreasing function of
α, or equivalently, an increasing function of the collision
energy

ffiffiffi
s

p
. Incidentally, we note that the directed flow vn¼1

vanishes, consistently with our assumption of boost
invariance.

IV. VISCOUS CASE

We now turn to the viscous case η, κi ≠ 0. Although the
system is out of equilibrium, from the Landau matching
condition we can define the local T and μ using the same
relations as in equilibrium

ε ¼ T4f

�
μ

T

�
; n ¼ μT2g

�
μ

T

�
; ~n ¼ ~μT2 ~g

�
μ

T

�
;

ð24Þ

but now μ=T cannot be a constant.

A. Isotropic viscous solution

First consider the isotropic case ûμ ¼ δμρ. Although μ=T
in (2) is not a constant anymore, it depends only on ρ (see
below). Then we still have Ĵμ ¼ n̂δμρ so that

n ∝
1

τ3cosh2ρ
ð25Þ

is the same as in the ideal case [17]. However, the solu-
tion of the Navier-Stokes equation εNS has an extra ρ-
dependence proportional to the shear viscosity η. In the case
of vanishing chemical potentials, this ρ-dependence can be
obtained exactly [16],

2See (61) of [19]. We have corrected a mistake by a factor of 2
in the overall normalization. The same comment applies to (48)
below.
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εNS ¼
1

τ4
fC4

ðcosh ρÞ8=3
�
1þ η̂

9f1=4C
sinh3ρ2F1

�
3

2
;
7

6
;
5

2
;−sinh2ρ

��
4

; ð26Þ

where η̂≡ η=ε3=4NS is independent of ρ.
However, at finite density, η̂ will depend on ρ, and this makes it difficult to find an exact solution. Related to this, η can

now depend on both ε and n, and this relation can be model dependent. We can get around this problem by assuming that η
is small. Specifically, we rescale η by the entropy density s,

η ¼ η̄

�
μ

T

�
s; ð27Þ

as is often done in hydrodynamic simulations. We then regard η̄ as a small parameter [η̄ ∼Oð10−1Þ] and keep only terms
linear in η̄. In this approximation, we may replace μ=T and s in (27) by their equilibrium values at η ¼ 0, namely, μ=T ¼ α
and

s ≈
1

T0

ðε0 þ p0 − μ0n0Þ ¼
C3

τ3cosh2ρ

�
4

3
fðαÞ − α2gðαÞ

�
≡ C3

τ3cosh2ρ
hðαÞ: ð28Þ

We then find the solution valid to Oðη̄Þ:

εNS ¼ T4f

�
μ

T

�
≈

fðαÞC4

τ4ðcosh ρÞ8=3
�
1þ 4hðαÞη̄ðαÞ

9fðαÞC sinh3ρ2F1

�
3

2
;
7

6
;
5

2
;−sinh2ρ

��

≈
fðαÞC4

τ4ðcosh ρÞ8=3
�
1 −

2hðαÞη̄ðαÞ
fðαÞC

�
e−ρ

2

�
2=3

�
; ð29Þ

nNS ¼ μT2g
�
μ

T

�
¼ αgðαÞC3

τ3cosh2ρ
; ð30Þ

where in the second line of (29) we focus on the early-time
regime where ρ is negative and large.3

Using (29) and (30), we can eliminate C:

ðμT gðμTÞÞ4=3
fðμTÞ

¼ ðαgðαÞÞ4=3
fðαÞð1 − 2hðαÞη̄ðαÞ

fðαÞC ðe−ρ
2
Þ2=3Þ

: ð31Þ

Writing

μ

T
¼ αþ δαðρÞ; ð32Þ

we find the deviation from constancy due to the viscosity,

δαðρÞ ≈ 2hη̄
Cf

ðe−ρ
2
Þ2=3

4
3α þ 4g0

3g −
f0
f

¼ γ
hη̄
Cf

�
L2 þ x2⊥
2Lτ

�
2=3

; ð33Þ

where

γðαÞ≡ 2

4
3α þ 4g0

3g −
f0
f

: ð34Þ

Note that γðαÞ ∝ α as α → 0. At the freeze-out time τ ¼ τf,
we have the relation

μ

T
¼ αþ δαjfreeze-out ≈ αþ γK

ðL2 þ x2⊥Þ2
ð2LÞ4 : ð35Þ

Finally, we can solve for T and μ using (32). The result is

T ¼ C

τðcosh ρÞ2=3
�
1 −

δα

3

�
1

α
þ g0

g

��
;

μ ¼ αC

τðcosh ρÞ2=3
�
1þ δα

3

�
2

α
−
g0

g

��
: ð36Þ

B. Anisotropic viscous solution

We now perturb the solution as in (15). First consider the
current in (2). μ=T now depends not only on ρ, but also on

3The viscous Gubser solution is known to become unphysical
(the temperature becomes negative) as ρ → −∞ [16]. Physically,
this corresponds to very early times and/or very large values of
x⊥. Our results are not sensitive to these regions. We can simply
choose the initial time of the evolution to be small, but not too
small. Besides, all the x⊥-integrals to be performed below are
fully convergent at x⊥ → ∞.
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Θ and ϕ. However, the dependence is of order η. [See (43) below. Remember that for the ideal solution μ=T is constant even
in the anisotropic case.] Therefore, if we neglect terms of order OðκηϵnÞ, we can approximate Ĵμ ≈ n̂ûμ. Then (18) is still
valid and we get

n ¼ μT2g

�
μ

T

�
≈

αgðαÞC3

τ3cosh2ρ
ð1 − ϵnAÞ3: ð37Þ

As for the energy density, we find

ε ¼ T4f

�
μ

T

�
≈

fðαÞC4

τ4ðcosh ρÞ8=3
�
1 −

2hðαÞη̄ðαÞ
fðαÞC

�
e−ρ

2

�
2=3

�
ð1 − ϵnAδÞ4; ð38Þ

where [19]

δ ≈ 1þ hðαÞη̄ðαÞ
2fðαÞC

�
e−ρ

2

�
2=3

: ð39Þ

From the constant energy condition

ε ¼ C4B4

ð2LÞ4 fðαÞ ¼ εc; ð40Þ

we can determine the freeze-out surface τðx⊥;ϕÞ in the viscous case [19],

τfðx⊥;ϕÞ ¼
ð2LÞ5

B3ðL2 þ x2⊥Þ2
�
1 −

3KðL2 þ x2⊥Þ2
2ð2LÞ4 − 3ϵn

�
2Lx⊥

L2 þ x2⊥

�
n
cos nϕ

�
; ð41Þ

where the “Knudsen number” is proportional to the shear viscosity

K ¼ hðαÞη̄ðαÞB2

fðαÞC : ð42Þ

(32) and (36) are also modified as μ
T ¼ αþ δα0 where

δα0 ¼ δαð1þ ϵnAÞ ¼ δα

�
1þ ϵn

�
2Lx⊥

L2 þ x2⊥

�
n
cos nϕ

�
; ð43Þ

and

T ¼ C

τðcosh ρÞ2=3
�
1 − ϵnA −

δα

3

�
1

α
þ g0

g

��
; μ ¼ αC

τðcosh ρÞ2=3
�
1 − ϵnAþ δα

3

�
2

α
−
g0

g

��
: ð44Þ

C. vn at finite μ and η

The computation of vn is more complicated than the μ ¼
0 case. This is because ε ¼ const does not mean T ¼ const,
and therefore one cannot treat T in the Boltzmann factor
(19) as a constant when integrating over the hypersurface of
constant energy. In order to cope with this, we write (44) as

T ¼ Tc −
T0f0

4f
δα; ð45Þ

where

Tc ≡ CB
2L

¼ T0

�
1 − ϵnA −

hη̄
2fC

�
L2 þ x2⊥
2Lτ

�
2=3

�
ð46Þ

is constant by virtue of (40). We then expand the
Boltzmann factor as4

4In this subsection we set ~μ ¼ 0. The case with ~μ ≠ 0 will be
treated in the next subsection.
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exp

�
u · pþ kμ

T

�
≈ ekαeu·p=Tc exp

�
δα

�
u · p
T2
c

T0f0

4f
þ kð1þ ϵnAÞ

��

≈ ekαeu·p=Tc

�
1þ δα

�
u · p
Tc

f0

4f
þ k

�
ð1þ ϵnAÞ

�
; ð47Þ

where we approximated Tc ≈ T0ð1 − ϵnAÞ in the OðδαÞ term.
The first term in (47), proportional to unity, gives the same result as in [19],5

vn
ϵn

¼ 9

64

Γð3nÞ
Γð4nÞ

�
128

B3

�
n
Γ2

�
n
2

��
n2ð3nþ 2Þ2ðn − 1Þ

2ð4nþ 1Þ −
3n3ðn − 1ÞK
16ð3n − 1Þ ð3n2 þ 3nþ 2Þ

�
: ð48Þ

Note that vn=videaln ¼ 1 −OðnKÞ for n ≫ 1 (see, however, [32]). The second term in (47) leads to a new order OðKÞ
contribution to vn. To compute it, we borrow some results from [19]. First, the perturbed flow velocity uμ on the freeze-out
surface has the following components in the coordinates (7):

u⊥ ¼ u0⊥ þ δu⊥ϵn cos nϕ; uϕ ¼ δuϕϵn sin nϕ; ð49Þ

where

u⊥0 ¼ 2x⊥
ð2LÞ5

B3ðL2 þ x2⊥Þ3
;

δu⊥ ¼ 3ð2LÞ5
B3ðL2 þ x2⊥Þ4

�
2Lx⊥

L2 þ x2⊥

�
n−1

LðnðL2 − x2⊥Þ − 4x2⊥Þ;

δuϕ ¼ −
3n
2

ð2LÞ5
B3ðL2 þ x2⊥Þ2

�
2Lx⊥

L2 þ x2⊥

�
n
: ð50Þ

(The viscosity can be neglected here.) The exponential factor in the Boltzmann distribution reads

p · u
Tc

¼ 1

Tc

�
−mT coshðζ − YÞ þ pTu⊥ cosðϕ − ϕpÞ −

pTuϕ
x⊥

sinðϕ − ϕpÞ
�
≡U þ ϵnδU; ð51Þ

where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
is the transverse mass. The volume element of the constant energy hypersurface is

−pμdσμ ¼ x⊥τf
�
mT coshðζ − YÞ − pT cosðϕ − ϕpÞ

∂τf
∂x⊥ þ pT

x⊥
sinðϕ − ϕpÞ

∂τf
∂ϕ

�
dζdx⊥dϕ; ð52Þ

where τf is given by (41) with the viscous term set to zero. Finally, we need the more precise version of (35)

δα ≈ γK
ðL2 þ x2⊥Þ2

ð2LÞ4 ð1þ 2ϵnAÞ: ð53Þ

Armed with these formulas, let us decompose the contribution from the second term in (47) as

ð2πÞ3 dN
dYpTdpTdϕp

∼ ekα
Z
Σ
ð−pμdσμÞeUþϵnδUδα

�
ðU þ ϵnδUÞ f

0

4f
þ k

�
ð1þ ϵnAÞ

≡ ðδJ1 þ δJ2 þ δJ3Þϵn cos nϕp; ð54Þ

corresponding to the three terms in (52). Consider δJ1 first. To OðϵnÞ we have to evaluate

5For simplicity, here we ignore the contribution from the nonequilibrium part δf in (19). This has been computed in [19] for a
particular choice of δf. However, its n-dependence is strongly affected by the choice of δf which is not unique [31]. Moreover, even the
overall sign of this contribution is sensitive to the pT-cutoff.
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δJ1 ∼ ϵn
2LγKekα

B3
mT

Z
dx⊥x⊥

Z
dζdϕ coshðζ − YÞeUδU

�
f0

4f
U þ f0

4f
þ k

�
: ð55Þ

This can be efficiently evaluated using the trick introduced in [19] [see Eq. (73) there]. The ϕ-integral gives Bessel functions
InðzÞ where

z≡ pTu⊥0

Tc
¼ 2x⊥pTð2LÞ5

TcB3ðL2 þ x2⊥Þ3
: ð56Þ

This can be expanded as InðzÞ ∼ zn anticipating that the subsequent pT-integral is dominated by the region z < 1.
We thus find

δJ1 ≈
2LγKekα

B3
mT

Z
∞

0

dx⊥x⊥
4πzn

2nðn − 1Þ!
1

u⊥0

�
δu⊥ −

δuϕ
x⊥

�

×

�
f0

4f

�
nK1ðmT=TcÞ −

mT

2T
ðK0ðmT=TcÞ þ K2ðmT=TcÞÞ

�
þ kK1ðmT=TcÞ

�

¼ 2LγKekα

B3
9πL2mT

�
64pT

TcB3

�
n nðn − 1ÞΓð3nÞ
ð3n − 1ÞΓð4nÞ

×

�
f0

4f

�
nK1ðmT=TcÞ −

mT

2T
ðK0ðmT=TcÞ þ K2ðmT=TcÞÞ

�
þ kK1ðmT=TcÞ

�
: ð57Þ

The correction to vn can be calculated from the formula
[cf. (22)]

δv1n ≡
R
∞
0 dpTpTδJ1R
∞
0 dpTpTJ0

ϵn
2
; ð58Þ

where J0 is the azimuthally symmetric part [cf. Eq. (45)
of [19]],

J0 ¼ 4πmTK1ðmT=TcÞ
16L3

B3
ekα: ð59Þ

In the massless case mT ¼ pT , the integral can be done
exactly and we find

δv1n
ϵn

¼ 9γK
128

�
k −

3f0

4f

��
128

B3

�
n n2ðn − 1ÞΓð3nÞ
ð3n − 1ÞΓð4nÞ

× Γ
�
n
2
þ 2

�
Γ
�
n
2

�
; ð60Þ

and from (23),

δv1n
videaln

¼ γK
4

�
k −

3f0

4f

�
nðnþ 2Þð4nþ 1Þ
ð3n − 1Þð3nþ 2Þ2 : ð61Þ

It is important to emphasize that (61) is induced by the
combined effect of the chemical potential and the viscosity.
It vanishes when η ¼ 0 or α ¼ μ=T ¼ 0 because γð0Þ ¼ 0

[cf. (34)]. Compared with (48) which schematically reads
δvn=videaln ∼ −nK, we notice that (61) is not enhanced
by a factor of n, hence subleading at large n. However,
it is the leading contribution to the difference in vn
between particles (k ¼ 1) and antiparticles (k ¼ −1). If
μ ¼ μB > 0 is the baryon chemical potential, the protons
have larger vn than the antiprotons. We shall study this
effect in detail later.
In fact, for protons the approximation mT ≈ pT is not

valid. Instead, we now assumemT ≫ T and reevaluate δvn.
Note that when mT ≫ T, δJ1 is parametrically larger than
δJ2;3, so it is enough to consider only δJ1.
WhenmT ≫ T, the Bessel function is independent of the

order

KiðmT=TcÞ ≈
ffiffiffiffiffiffiffiffiffi
πTc

2mT

s
e−mT=Tc ; ð62Þ

so that (57) becomes

δJ1 ≈
2γKekα

B3
9πL3mT

�
64pT

TcB3

�
n nðn−1ÞΓð3nÞ
ð3n−1ÞΓð4nÞK1ðmT=TcÞ

×

�
f0

4f

�
n−

mT

Tc

�
þk

�
: ð63Þ

On the other hand, from Eq. (47) of [19],
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δJideal1 ¼ 4πekα
mT

B3
K1ðmT=TcÞ

Γð3nÞ
Γð4nÞ 9L

3

�
64pT

TcB3

�
n
ðn − 1Þ 2ð3nþ 2Þ

4nþ 1
: ð64Þ

The pT-integral can be evaluated by the saddle point at p�
T ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

nmTc
p

for m ≫ nTc and we obtain

δv1n
videaln

≈
γK
4

nð4nþ 1Þ
ð3n − 1Þð3nþ 2Þ

�
f0

4f

�
n
2
−

m
Tc

�
þ k

�
: ð65Þ

The k-independent part is order mT K ≫ nK, but we shall see later that it is numerically small for realistic values ofm because
the factor γf0=f is small. The k-dependent term is again of order OðKÞ without an enhancement by a factor of n.
The evaluation of δJ2;3 in (54) can be done similarly, though it is considerably more tedious. Here we only show the final

result in the massless case m ¼ 0, relegating the details to the Appendix:

δv2þ3
n

ϵn
¼ 9γK

128

�
k −

3f0

4f

��
128

B3

�
n n3ðn − 1ÞΓð3nÞ
ð3n − 1ÞΓð4nÞ Γ

�
n
2
þ 1

�
Γ
�
n
2

�
: ð66Þ

Comparing with (60), we notice that δv1n ¼ nþ2
2n δv2þ3

n . Actually, this relation was repeatedly observed in [19] when
computing other contributions to vn. We do not have a simple explanation for this.
Summing all the contributions including the previously computed term [19], our final result of the viscous correction δvn

in the massless case is

δvn
ϵn

¼ K
256

Γð3nÞ
Γð4nÞ

�
128

B3

�
n
Γ2

�
n
2

�
n3ðn − 1Þ
3n − 1

�
−
27

4
ð3n2 þ 3nþ 2Þ þ 9γ

�
3n
2
þ 1

��
k −

3f0

4f

��
: ð67Þ

The second term in the curly brackets is the new contribution at finite density. It is subleading in n, and actually the factor
γðαÞ is also numerically small. However, it gives the leading contribution to the difference in vn between particles and
antiparticles.

D. Isospin chemical potential

In the previous subsection, we computed vn of particles which couple to the “large” chemical potential μ. Here let us
compute vn of particles neutral under μ but charged under ~μ. We have in mind the charged pions π� in the presence of the
isospin chemical potential. We start with the formula [cf. (37)]

~n ¼ ~α ~gðαÞC3

τ3cosh2ρ
ð1 − ϵnAÞ3 ¼ ~μT2 ~gðμ=TÞ: ð68Þ

We treat ~α ¼ ~μ=T as a small parameter and keep only terms linear in ~α. Dividing by T3 from (44) and using
μ=T ¼ αþ δαð1þ ϵnAÞ, we find

~μ

T
¼ ~α ~gðαÞð1 − ϵnAÞ3

~gðμ=TÞ
	
1 − ϵnA − δα

3

	
1
α þ g0

g




3
≈ ~α

�
1þ δα

�
1

α
þ g0

g
−
~g0

~g

�
ð1þ ϵnAÞ

�
: ð69Þ

The fugacity factor thus becomes

ek ~μ=T ≈ ek ~α
�
1þ k ~αδα

�
1

α
þ g0

g
−
~g0

~g

�
ð1þ ϵnAÞ

�
: ð70Þ

As before, the factor ek ~α drops out in the computation of vn. We see that the only difference from the previous case (47) is
that k is replaced by

k
~α

α

�
1þ αg0

g
−
α~g0

~g

�
: ð71Þ

Thus the final result is the same as (67) except that k is replaced by (71).
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V. PHENOMENOLOGICAL INPUTS

This section serves as a preparation for the next section
where we compare our results with the experimental data.

A. Models

In order to make quantitative predictions, we need
models for the functions f, g, ~g defined in (5). Here we
consider two extreme scenarios in terms of the interaction
strength.

1. Free quark-gluon gas

The energy density of free, massless three flavor QCD is

ε ¼ 3p ¼ 8π2

15
T4 þ 6

X
q¼u;d;s

�
7π2

120
T4 þ μ2qT2

4
þ μ4q
8π2

�
;

nq ¼
∂p
∂μq ¼ μqT2

�
1þ μ2q

π2T2

�
; ð72Þ

where μu ¼ μB
3
þ μI

2
, μd ¼ μB

3
− μI

2
and μs ¼ μB

3
− μS. μB, μI

and μS are the baryon, isospin and strangeness chemical
potentials, respectively. Since the net strangeness is zero in
heavy-ion collisions, we set μS ¼ μB=3 and obtain
(α ¼ μB=T)

fðαÞ ¼ 19

12
π2 þ α2

3
þ α4

54π2
; ð73Þ

gðαÞ ¼ gBðαÞ ¼ 2

�
1þ α2

9π2

�
;

~gðαÞ ¼ gIðαÞ ¼
1

2

�
1þ α2

3π2

�
: ð74Þ

It turns out that, due to the large denominators 9π2 or 3π2,
the effect of g and ~g on vn is numerically small.

2. N ¼ 4 SYM at finite R-charge chemical potential

Next we consider strongly coupled N ¼ 4 supersym-
metric Yang-Mills theory at finite R-charge chemical
potential μ. This theory is conformal, and in the limit of
strong coupling and at large Nc, the thermodynamic
quantities can be computed from the AdS/CFT correspon-
dence. The results are [33]

ε ¼ 3p ¼ 3π2N2
cT4

8

1

24

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ2

3π2T2

s
þ 1

1
CA

3

×

0
B@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ2

3π2T2

s
− 1

1
CA; ð75Þ

n ¼ ∂p
∂μ ¼ μN2

cT2

16

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ2

3π2T2

s
þ 1

1
CA

2

; ð76Þ

where n is the R-charge density. The shear viscosity is
given by η ¼ s

4π.
There are uncertainties when treating this model as a

proxy of strongly coupled QCD, such as the value of Nc
and the proportionality constant between μ and μB.
However, in practical fits, the normalization of f ∝ N2

c
can be absorbed by a change in L [cf. Eq. (20)]. Moreover,
as long as μ ∼OðμBÞ, the two functions (73) and (75) are
qualitatively not so different in shape for μ ∼OðTÞ. As a
result, the quality of fits is similar in the two cases despite
the huge differences in the underlying dynamics. Therefore,
in the next section we show only the results based on (73)
and (74).

B. Freeze-out conditions

We employ the following phenomenological parametri-
zation [34] of the freeze-out temperature T and chemical
potential μB (in units of GeV) as a function of the collision
energy

ffiffiffi
s

p
(per nucleon, in units of GeV):

TðμBÞ ¼ a − bμ2B − cμ4B; μB ¼ d
1þ e

ffiffiffi
s

p ; ð77Þ

with a ¼ 0.166, b ¼ 0.139, c ¼ 0.053, d ¼ 1.308,
e ¼ 0.273. This gives μB=T as a function of

ffiffiffi
s

p
as

shown in Fig. 1. The curve is well approximated by
μB=T ≈ d=ðae ffiffiffi

s
p Þ ≈ 29=

ffiffiffi
s

p
. Actually, T and μB here

are the chemical freeze-out parameters which are in general
different from those entering the Cooper-Frye formula (19)
used at the kinetic freeze-out. However, in our model only
the ratio μB=T matters, and this ratio is roughly constant as

FIG. 1. μB=T at freeze-out as a function of the collision energyffiffiffi
s

p
(per nucleon).
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we have seen. We thus use the relation in Fig. 1 for the
evaluation of vn.
The parameter C also depends on

ffiffiffi
s

p
via (14). We use

the following empirical formula for the charged particle
multiplicity [35]

dNch

dY
≈ 2

4C3

π
≈ 148ð ffiffiffi

s
p Þ0.3; ð78Þ

where the factor of 2 counts the degeneracy between πþ
and π−. From (40) and (78), we see that the Knudsen
number (42) behaves as

K ≈
8hη̄L2

ffiffiffiffiffiffiffi
5εc

p
37πf3=2ð ffiffiffi

s
p Þ0.3 ∼

η̄L2

f1=2ð ffiffiffi
s

p Þ0.3 ∼
η̄ðμB=TÞ0.3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #ðμB=πTÞ2

p ;

ð79Þ

where L is in units of fermi and εc ¼ 1 is in units of
GeV=fm3. Putting aside the potential μB-dependence of
η̄ ¼ η=s, we see that K is an increasing function of μB (up
to μB ≲ πT in our model) or a decreasing function of

ffiffiffi
s

p
.

In fact, up to the RHIC energy, we find that the fol-
lowing parametrization also gives a good description of the
data [36],

dNch

dY
¼ 72 ln

ð ffiffiffi
s

p Þ2
1.41

: ð80Þ

We shall also use this in Sec. VI B.

VI. COMPARISON WITH THE
EXPERIMENTAL DATA

In this section, we compare our results with three
different experimental data: (i) the n-dependence of vn
measured at the LHC; (ii) the collision energy dependence
of v2 measured at the SPS; (iii) the difference in v2 between
particles and antiparticles measured at RHIC.

A. Higher harmonics vn
The CMS collaboration at the LHC has measured the pT-

integrated vn in lead-lead collisions at
ffiffiffi
s

p ¼ 2.76 TeV up
to rather high orders (n ≤ 7) [37]. Using (23) and (67)
together with the phenomenological inputs in the previous
section, we can evaluate vn and compare with the CMS
data.6 The result is shown in Fig. 2. Here we set ϵn ¼ 0.018
for all different values of n. Taking ϵn to be independent of
n may be a good approximation for the very central (0%–
0.2% centrality) nucleus collisions.7 The parameter L is set

to 17 fm. The corresponding value of B in (48) is B3 ≈ 26.7
which is consistent with the assumption B3 ≫ 1.
As a matter of fact, since μB ≈ 0 at the LHC, the new

term at μB > 0 [the term proportional to γ in (67)] is
negligibly small, and the present fit could have been done
in [19] treating B as a fitting parameter. By expressing B in
terms of observables as we have done here, we can test our
result at lower energies or higher chemical potentials
μB ∼OðTÞ. Note that since B3 is larger at lower energies,
vn ∼ e−n lnð4B3=27Þ [19] decreases faster with n, and this will
make the measurement of higher harmonics difficult at low
energies [38].

B. Energy dependence of v2
Next we turn to the energy dependence of the elliptic

flow vn¼2 for which there are already a wealth of exper-
imental data from the SPS and the RHIC BES program
[28,39]. We compare our formulas (48) and (67) (with
k ¼ 0) for n ¼ 2 with the SPS, midcentral data collected in
the low energy region

ffiffiffi
s

p
< 20 GeV [28,36].8 The result

with three different values of η=s is shown in Fig. 3 where
we tried both (78) and (80), the latter actually gives a better
description of dNch=dY in this low energy region. The
other parameters are chosen as L ¼ 15.5 fm and ϵ2 ¼ 0.32.
The value of L here is slightly smaller than the one
(L ¼ 17 fm) used in Fig. 2. This is consistent with the
perception that the QGP droplet is larger at higher energies
at the time of thermalization. The rise of v2 with energy is
nicely reproduced by our formula and attributed to the rise
of dNch=dY. It turns out that the newly calculated viscous

FIG. 2 (color online). vn versus different values of n from 2 to 7
measured by the CMS collaboration (0%–0.2% centrality) [37].
The black solid curve represents the ideal hydrodynamic result,
while the blue dotted curve and red dashed curve correspond to
the viscous results with η=s ¼ 0.08 and η=s ¼ 0.2, respectively.
See, also, Ref. [32].

6The CMS uses the pT cuts 0.3 < pT < 3 GeV while our
analytical result is integrated over all pT . We checked that the
quality of the fit is unchanged by introducing cuts in our model.

7The value 0.018 may seem a bit too small. This may be due to
our nonstandard definition of ϵn (17).

8The SPS data do not have a low-pT cutoff while the RHIC
data have pT > 0.2 GeV. Our analytical formula, integrated over
all pT , should fare better with the SPS results.
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correction in Sec. IV C [the last term in (67)] is numerically
very small [about an order of magnitude smaller than the
first term in (67)] even in the highest density region.
Unfortunately, this fit, which agrees reasonably well with

the low energy data, overshoots the high energy RHIC data
at

ffiffiffi
s

p ¼ 200 GeV [40,41] in similar centrality bins by a
factor of 2 (assuming that ϵ2 is independent of energy). This
is because the rise of dN=dY with energy is too steep. If we
artificially reduce the exponent in (78) as 0.3 → 0.23, for
example, we get a decent description of v2 over a broader
range in

ffiffiffi
s

p
.9 Alternatively, the dependence v2 ∼

ðdN=dYÞ2 from (23) may be too strong, and the exper-
imental data actually suggest a weaker dN=dY-dependence
[28]. While we do not have a resolution of this problem in
the present framework, it seems qualitatively correct that v2
is directly proportional to the multiplicity to some positive
power, and therefore it is an increasing function of

ffiffiffi
s

p
(see,

also, Sec. VII of [19]).

C. Difference in vn between particles and antiparticles

Finally, we investigate the difference in v2 between
particles and antiparticles which has been measured by the
STAR collaboration at RHIC [13,14] and attracted some
attention from theoretical viewpoints [42–45]. For a hadron
with the quantum numbers ðB; I; SÞ (baryon number,
isospin, strangeness), we assign the fugacity factor

exp

�
BμB þ IμI þ SμS

T

�
: ð81Þ

(S ¼ −1 for the strange quark.) In heavy-ion collisions,
μI < 0 since the colliding nuclei are neutron rich, and μS ≈
μB=3 since the net strangeness vanishes. The latter con-
dition implies that we should not treat μS as a small

perturbation. Indeed, various estimates of rS ≡ μS=μB
based on the SPS [46] and RHIC [47] data, and also from
lattice QCD [48,49] all found similar values within the
range 0.21 < rS < 0.27. We thus regard μS as a shift of μB
for strange hadrons and treat it as a fitting parameter,
anticipating that the value of rS should come out in the
window 0.2 < rS < 1=3. On the other hand, we regard
rI ≡ μI=μB as a small parameter compared to unity and use
the result obtained in Sec. IV D.
Let us define the difference in vn between hadrons X and

antihadrons X̄ as

ΔvXn ≡ vXn − vX̄n : ð82Þ

This can be evaluated from (67) and (71). Focusing now on
the elliptic flow case n ¼ 2, we can immediately write
down the following “master formula”:

ΔvX2 ¼ ϵ2
6144

35B6
γK

�
Bþ rSSþ rII

�
1þαg0

g
−
αg0I
gI

��
: ð83Þ

By construction, (83) has been derived for massless
particles. In the massive case, we observe that the following
ratio,

ΔvX2
vX;ideal2

¼ 9γK
40

�
B þ rSSþ rII

�
1þ αg0

g
−
αg0I
gI

��
; ð84Þ

is exactly independent of m.10 This is due to the nontrivial
cancellation of pT-integrals such as (58) in the ratio for the

FIG. 3 (color online). The energy dependence of v2 compared with the SPS data [36] for midcentral collisions. We used (78) and (80)
in the left and right plots, respectively.

9Note that (78) is for central collisions. The exponent may
indeed be smaller for midcentral collisions.

10As already noted in Sec. III C, we introduce massive particles
in the probe approximation, namely, we let these particles flow
with the same flow velocity and neglect their backreaction to the
velocity. While this causes some inconsistencies such as energy
nonconservation, we expect that the essential features of (84) (the
proportionality to the viscosity, μ’s and the corresponding
quantum numbers) are robust.
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k-dependent part. In order to get Δv2 itself, we must
multiply (84) by [19],

videal2 ¼ ϵ2
211

35B6T

R
dpTp3

TðmT
T K1ðmT=TÞ þ 4K0ðmT=TÞÞR
dpTpTmTK1ðmT=TÞ

:

ð85Þ

The m-dependence of (85) is sensitive to the cutoffs of the
pT-integral, but overall the dependence is not very strong.
For simplicity, in this study we ignore them-dependence of
videal2 and use (83) for all hadron species. It is not difficult to
implement this mass effect, but there are other subtleties
which are not taken into account, either.11 Clearly, it is
desirable that the experimental results are plotted in the
form (84) in order to avoid various systematic uncertainties.
The most important feature of (83) or (84) is that Δv2 is

proportional to both the shear viscosity η and the chemical
potentials. [Remember that γ as defined in (34) is roughly
proportional to μB.] This in particular means that Δvπ2 can
be nonzero in viscous hydrodynamics in the presence of the
isospin chemical potential.
Let us confront (83) with the data. The STAR collabo-

ration has measured ΔvX2 for X ¼ πþ, Kþ, p, Λ, Ξ−

[13,14]. This is plotted in Fig. 4 together with our fit
based on (83) with η=s ¼ 0.2. We have used L ¼ 15.5 fm
and ϵ2 ¼ 0.32 as in Fig. 3, and used the fit parameters
rS ¼ 0.23 and rI ¼ −0.15, the former is consistent with our
expectation mentioned above. The steep rise of ΔvX2 for

baryons towards the low-
ffiffiffi
s

p
region is due to the rough

proportionality Δv2 ∝ γ ∝ μB. Compared to this, the μB-
dependence of the factor 1=B6 is subleading. Since p, Λ,
Ξ−, Kþ have ðB; I; SÞ ¼ ð1; 1

2
; 0Þ, (1, 0, −1), (1, − 1

2
, −2),

(0, 1
2
, 1), respectively, we expect the ordering Δvp2 >

ΔvΛ2 > ΔvΞ−

2 > ΔvKþ
2 > 0 for reasonable values of rS >

0 and rI < 0. This tendency is obeyed by most data points
except a few in the low energy region. We note that the Ξ−

data point at
ffiffiffi
s

p ¼ 11.5 GeV should not be taken seriously
because, according to the STAR collaboration [14], this
data point is afflicted with “additional systematic effects
which are not included in the error bars.” In Fig. 4, we have
also included our prediction for theΩ-baryon. SinceΩ− has
S ¼ −3, we expect that ΔvΩ2 ∼ μB − 3μS is smaller than
other baryons.12

Concerning the pions, the negativeΔvπþ2 can be naturally
explained by the negative isospin chemical potential.
However, the magnitude is problematic. Our choice
rI ¼ −0.15, which describes the pion data very well, is
too large compared with the value rI ≈ −0.02 ∼ −0.03
extracted from the SPS data [46,50]. We may dial rI down
to, say, rI ≈ −0.1 without spoiling much the quality of the
Δvπþ2 fit, but not further down. On the other hand, the other
hadrons (p, Λ, Ξ−, Kþ) are more or less unaffected by rI
and can be well fitted even with rI ¼ −0.02 and rS ≈ 0.2.
This may be an indication that there are other mechanisms
to generate the difference Δv2 which predominantly act on
the pions.13

In the large-
ffiffiffi
s

p
region, our result tends to slightly

overestimate ΔvX2 . This is partly due to the too fast rise
of videal2 with energy as mentioned before. However, in
Fig. 4 we assumed that η=s ¼ 0.2 is independent of

ffiffiffi
s

p
. A

recent hydrodynamic simulation suggests that η=s is a
decreasing function of

ffiffiffi
s

p
[27], and this could alleviate the

(small) discrepancy in the large-
ffiffiffi
s

p
region (remember

that ΔvX2 ∝ η=s).

VII. SUMMARY AND CONCLUSIONS

In this paper, we have revealed, in a completely
analytical manner, a number of interesting features about
the nature of hydrodynamics in the presence of conserved
currents as well as the chemical potential (collision energy)
dependence of the flow harmonics vn. Let us summarize the
main findings.

(i) As a generalization of the Gubser flow [16], we have
derived an anisotropic solution of the relativistic
Navier-Stokes equation coupled with conserved

FIG. 4 (color online). ΔvX2 ≡ v2ðXÞ − v2ðX̄Þ as a function offfiffiffi
s

p
compared with the STAR data for five different species of

hadrons [13,14]. We use open symbols for baryons and filled
symbols for mesons. The color of data points is chosen to match
the color of the corresponding line for each hadron species. We
have used η=s ¼ 0.2, μS ¼ 0.23μB and μI ¼ −0.15μB.

11For instance, the STAR collaboration uses 0%–80% central-
ity events to measure Δv2. This reduces the effective value of μB
by about 20% [14] and partly cancels the above mass effect for
baryons when computing Δv2.

12Multistrange hadrons such as Ω and Ξ may freeze out
earlier than nonstrange hadrons. Again this uncertainty mostly
goes away in the ratio (84).

13It is worth mentioning that feed-down corrections (resonance
decays) are not included in the current estimates and they could
change the fitting parameters.
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currents. Conformal symmetry and boost invariance
have been assumed. The solution is valid to linear
order in the shear viscosity η and the eccentricity ϵn.
Based on the solution and the Cooper-Frye formula,
we analytically computed the flow harmonics vn at
finite density.

(ii) In ideal hydrodynamics, the QGP fireball follows a
straight line trajectory μ=T ¼ const. in the phase
diagram in the ðT; μÞ-plane. The shear viscosity causes
a deviation from the straight line as shown in (32). We
expect this picture to be approximately correct inQCD
in the deconfined phase of the hydroevolution.

(iii) vn is a decreasing function of density (or an
increasing function of

ffiffiffi
s

p
) and decreases faster with

n at higher densities vn ∼ e−n lnð4B3=27Þ. This is
because the lifetime of the hydrodynamic regime
(∼1=B3) is shorter at high density as it is correlated
with the multiplicity C3 ∼ dN=dY through the con-
stant energy condition (20). In this regard, it is
interesting to recall that in an early numerical study
[23], a constant (or even decreasing) v2 as a function
of

ffiffiffi
s

p
was obtained if the hydrosimulation is

continued to very low temperatures (the so-called
“hydro limit” [51]). The rising v2 with energy can be
obtained by switching off hydrodynamics at a
relatively high temperature [24]. Our assumption
of early freeze-out is similar in spirit to this.

(iv) At finite chemical potential, there are new viscous
corrections to vn [the last terms proportional to γ in
(67)]. Numerically, they are smaller than the contri-
bution previously found in the μ ¼ 0 case [19].
However, they give the leading order contribution to
the difference invn between particles and antiparticles.

(v) The viscous corrections to vn are enhanced at high
density. Even if η=s is constant, the Knudsen number
K grows at high density as it is inversely propor-
tional to the multiplicity (79). At large-n, it is also
enhanced linearly by n, vn=videaln ∼ 1 −OðnKÞ [19].

(vi) The elliptic flow difference between particles and
antiparticles ΔvX2 ¼ vX2 − vX̄2 (or more generally,
ΔvXn ) can be nonzero only if the particle X is charged
under some chemical potential(s) and the shear vis-
cosity is nonvanishing. This is related to
the deviation from constancy of the ratio μ=T due
to viscous effects. Our result is summarized by the
master formula (83) [or the more fundamental for-
mula (84)] which schematically reads ΔvX2 ∝ ημX.

This formula dictates the ordering Δvp2 > ΔvΛ2 >
ΔvΞ−

2 > ΔvKþ
2 > 0 > Δvπþ2 which seems to be borne

out by theSTARresult except for a fewdatapoints.Our
mechanism of generating ΔvX2 is distinct from the
previous theoretical considerations in [42,44], but we
find it has somecommongroundwith thediscussion in
[43]. Finally we pointed out that the observed magni-
tudeofΔvπþ2 is largeandcanbe fittedonly ifweassume
an unnaturally large value of the isospin chemical
potential μI . This suggests that other mechanisms to
generate Δvπ2 may be at work.

Presumably some of the above features are empirically well
known to the experts of hydrodynamic simulations.
However, they have not been systematically derived with
the level of analytical detail presented in this paper.
There are a number of directions for future work.

Admittedly, the assumptions of boost invariance and
conformal invariance are too simplistic, especially at high
density. One has to relax these approximations to be more
realistic. Related to this, we only considered the conformal
equation of state ε ¼ 3p ¼ T4fðμ=TÞwhere the function f
does not carry any information about the crossover and
possibly first order phase transitions at finite density.
(Nevertheless it is remarkable that we can explain many
features of vn measured at different energies without such
information.) It is important to figure out how the presence
of phase transitions in f is encoded in the observed
behavior of vn. Including the effects of anomaly (see,
e.g., [45]) is also interesting. We hope to address these
questions in future work.
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APPENDIX: COMPUTATION OF δJ2;3

In this Appendix, we carry out the computation of δJ2;3
defined in (54). We first note that the last two terms of (52)
may be combined as

− pT cosðϕ − ϕpÞ
∂τ
∂x⊥ þ pT

x⊥
sinðϕ − ϕpÞ

∂τ
∂ϕ →

ð2LÞ5pT

B3ðL2 þ x2⊥Þ3
�
4x⊥ cosϕþ 3ϵn

�
2Lx⊥

L2 þ x2⊥

�
n

×

��
−4x⊥ þ n

L2 − x2⊥
x⊥

�
cos nðϕþ ϕpÞ cosϕþ n

L2 þ x2⊥
x⊥

sin nðϕþ ϕpÞ sinϕ
��

; ðA1Þ
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where we shifted the integration variable ϕ as ϕ → ϕþ ϕp. We then make the following replacement:

cos nðϕþ ϕpÞ cosϕ → cos nϕ cosϕ cos nϕp →
1

2
cosðn − 1Þϕ cos nϕp;

sin nðϕþ ϕpÞ sinϕ → sin nϕ sinϕ cos nϕp →
1

2
cosðn − 1Þϕ cos nϕp; ðA2Þ

where we neglected sinnϕp which will vanish after the ϕ-integral, and also cosðnþ 1Þϕ which will lead to subleading
terms Inþ1ðzÞ ∼ znþ1 after the ϕ-integral compared to In−1ðzÞ ∼ zn−1. Thus, (A1) effectively becomes

ð2LÞ5pT

B3ðL2 þ x2⊥Þ3
�
4x⊥ cosϕþ 3ϵn

�
2Lx⊥

L2 þ x2⊥

�
n
�
−2x⊥ þ nL2

x⊥

�
cosðn − 1Þϕ cos nϕp

�
: ðA3Þ

Similarly, we can write δU defined in (51) as

δU →
pT

Tc

�
δu⊥ cosϕ cos nðϕþ ϕpÞ −

δuϕ
x⊥

sinϕ sin nðϕþ ϕpÞ
�

→
z
2

1

u⊥0

�
δu⊥ −

δuϕ
x⊥

�
cosðn − 1Þϕ cos nϕp

¼ 3z
4x⊥

�
2Lx⊥

L2 þ x2⊥

�
n
�
−2x⊥ þ nL2

x⊥

�
cosðn − 1Þϕ cos nϕp: ðA4Þ

Using these simplifications, we get

δJ2 þ δJ3 ∼ ϵnekα
ð2LÞ6γKpT

B6

Z
dζdx⊥dϕ

x⊥
ðL2 þ x2⊥Þ3

eU
�
4x⊥δU

�
f0

4f
U þ f0

4f
þ k

�
cosϕ

þ 3

�
2Lx⊥

L2 þ x2⊥

�
n
�
U

f0

4f
þ k

��
−2x⊥ þ nL2

x⊥

�
cosðn − 1Þϕ cos nϕp

�

¼ ϵn
ð2LÞ6γKpT

B6

Z
dζdx⊥dϕ

x⊥
ðL2 þ x2⊥Þ3

eU
�

2Lx⊥
L2 þ x2⊥

�
n
�
−2x⊥ þ nL2

x⊥

�

×

�
3z

�
f0

4f
U þ f0

4f
þ k

�
cosϕþ 3

�
U

f0

4f
þ k

��
cosðn − 1Þϕ cos nϕp; ðA5Þ

where

U ¼ −
mT

Tc
coshðζ − YÞ þ z cosϕ: ðA6Þ

Let us now define

YnðaÞ≡
Z

dζdϕeaU cos nϕ ¼ 4πK0ðamT=TcÞInðazÞ

≈ 4πK0ðamT=TcÞ
1

n!

�
az
2

�
n
: ðA7Þ

Using this we obtain
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δJ2 þ δJ3 ≈
ð2LÞ6γKpT

B6
ekα

Z
dx⊥

x⊥
ðL2 þ x2⊥Þ3

�
2Lx⊥

L2 þ x2⊥

�
n
�
−2x⊥ þ nL2

x⊥

�

×

�
3z
2

�
f0

4f
Y 0
n−2 þ

�
f0

4f
þ k

�
Yn−2

�
þ 3

�
f0

4f
Y 0
n−1 þ kYn−1

��
a¼1

¼ 4π
ð2LÞ6γKpT

B6
ekα

Z
dx⊥

x⊥
ðL2 þ x2⊥Þ3

�
2Lx⊥

L2 þ x2⊥

�
n
�
−2x⊥ þ nL2

x⊥

�

×
3n

ðn − 1Þ!
�
z
2

�
n−1

�
f0

4f

�
−
mT

Tc
K1ðmT=TcÞ þ ðn − 1ÞK0ðmT=TcÞ

�
þ kK0ðmT=TcÞ

�

¼ ekα
36π

B3
γKTc

�
64pT

TcB3

�
n
L3

n2ðn − 1Þ
3n − 1

Γð3nÞ
Γð4nÞ

×

�
f0

4f

�
−
mT

Tc
K1ðmT=TcÞ þ ðn − 1ÞK0ðmT=TcÞ

�
þ kK0ðmT=TcÞ

�
: ðA8Þ

The correction to vn can be computed analogously to (58), and the result is reported in (66).
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